
J Sci Comput (2017) 70:1–28
DOI 10.1007/s10915-016-0240-7

Suboptimal Feedback Control of PDEs by Solving HJB
Equations on Adaptive Sparse Grids

Jochen Garcke1,2 · Axel Kröner3

Received: 19 August 2015 / Revised: 26 April 2016 / Accepted: 14 June 2016 /
Published online: 24 June 2016
© Springer Science+Business Media New York 2016

Abstract An approach to solve finite time horizon suboptimal feedback control problems
for partial differential equations is proposed by solving dynamic programming equations on
adaptive sparse grids. A semi-discrete optimal control problem is introduced and the feed-
back control is derived from the corresponding value function. The value function can be
characterized as the solution of an evolutionary Hamilton–Jacobi Bellman (HJB) equation
which is defined over a state space whose dimension is equal to the dimension of the under-
lying semi-discrete system. Besides a low dimensional semi-discretization it is important
to solve the HJB equation efficiently to address the curse of dimensionality. We propose to
apply a semi-Lagrangian scheme using spatially adaptive sparse grids. Sparse grids allow
the discretization of the value functions in (higher) space dimensions since the curse of
dimensionality of full grid methods arises to a much smaller extent. For additional efficiency
an adaptive grid refinement procedure is explored. The approach is illustrated for the wave
equation and an extension to equations of Schrödinger type is indicated. We present several
numerical examples studying the effect the parameters characterizing the sparse grid have
on the accuracy of the value function and the optimal trajectory.
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1 Introduction

In this paper we present a framework for finite horizon closed-loop suboptimal control of evo-
lutionary partial differential equations (PDEs) based on a dynamic programming approach
on adaptive sparse grids. We consider control problems for systems which arise from a
semi-discretization (in space) of a PDE and solve the corresponding dynamic programming
equations with adaptive semi-Lagrangian schemes on sparse grids. More precisely, we con-
sider optimal control problems of the following type

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
u∈Uad

J (u) =
∫ T

0
l(y(t), u(t)) dt,

yt (t) = f (y(t), u(t)),

y(0) = y0,

(1.1)

with dynamics f : Rd × Rm → R, d,m ∈ N, which arise from a semi-discretization of
a PDE, running cost l : Rd × Rm → R, the initial state y0 ∈ Rd , the set of admissible
controls Uad, and time horizon 0 < T < ∞. The presented approach is illustrated and
numerically analyzed for the wave equation. Additionally we show how the approach can be
transferred to equations of Schrödinger type and present numerical examples for a simplified
bilinear setting in 2D. Although other approaches may be considered to control the solution
of the corresponding semi-discrete systems—without usingHamilton–Jacobi Bellman (HJB)
equations—the presented approach aims to give a general framework which is applicable on
a wider class of problems. There are only few results on numerical methods for closed-loop
optimal control of partial differential equations which are suitable for nonlinear problems.

To set up a feedback lawwecharacterize the value function of problem (1.1) as the viscosity
solution of an instationary HJB equation, from which we derive a control in feedback form.
However, solving the HJB equation numerically is due to the curse of dimensionality very
challenging in higher dimension. To reduce the computational effort there exist different
possibilities. On the one hand the dimension of the dynamical system can be reduced by using
model order reduction techniques for the discretization of the underlying PDE. An efficient
reduction method is, e.g., proper orthogonal decomposition (POD) for certain classes of
nonlinear equations, see, e.g., [32,33]. A low-dimensional discretization based on spectral
elements (taking the first d sinus-modes as a basis of the discrete state space) is used in
[31]. On the other hand efficient numerical methods are crucial for solving the HJB equation.
There exists a wide range of methods including (higher order) finite difference [41], semi-
Lagrangian [13,15], discontinuous Galerkin methods [28], sparse grids [10], or low rank
tensor approximation for linear HJB equations [27].

In this paper we use spectral elements for the discretization of the underlying PDE fol-
lowing the approach in [31]. The corresponding HJB equation is solved by an adaptive
semi-Lagrangian scheme on sparse grids based on [10]. While the HJB equation is defined
on the full space, for the numerical approximation a finite computational domain and an
artificial boundary condition has to be chosen carefully. The use of regular sparse grids
implies a reduction of the degrees of freedom. For functions f from the Sobolev-space
with dominating mixed derivative H2

mix the number of grid points on discretization level n,
with one-dimensional mesh size hn = 2−n , reduces from O(h−d

n ) to O(h−1
n (log h−1

n )d−1),
whereas the asymptotic accuracywith respect to L2- or L∞-norm decreases only from O(h2n)

123



J Sci Comput (2017) 70:1–28 3

to O(h2n(log h
−1
n )d−1). Sparse grids go back to the work by Smolyak [44] and in particular

Zenger [47], Griebel [23], and Griebel and Bungartz [11]. In case of nonsmoothness of the
solution an adaptive sparse grid scheme may allow to improve the accuracy of the approxi-
mation, we refer to [17,43] for references on adaptive sparse grids. Note that the interpolation
on sparse grids is not monotone [10,43], e.g., the sparse grid interpolant of a non-negative
function can be negative on non-interpolation points. Therefore the scheme is in general not
monotone and a convergence theorem follows not directly from Barles and Souganidis [5].

In this paper we consider control problems for the wave and the bilinear Schrödinger
equation. In contrast to [10] we consider different underlying systems and allowmore general
controls than bang-bang controls. We study numerically the error in the approximating value
function (for d = 2) and the optimal trajectory and control (2 ≤ d ≤ 8). Since for normal
sparse grids the nodes on the boundary become dominant in the computational complexity
in higher dimensions, i.e. the ratio of points on the boundary versus that in the interior grows
significantly with increasing dimensions [43], it is crucial to solve the equation by using only
inner nodes and to use a fast approach to determine the Hamiltonian minimizing control.

To put the results in a general context we give an overview of some related work. For
results on feedback control of infinite dimensional, second-order (in time), linear oscilla-
tors, see [21]; further we refer to the review article by Morris [39] on feedback control
problems of PDEs considering in particular applications in the control of noise and plate
vibrations. Moreover, we mention the monograph by Lasiecka and Triggiani [34] on control
theory of PDEs. Regarding feedback stabilization of (the finite- and infinite-dimensional)
Schrödinger equations, see, e.g., [7,37,38]. For optimal feedback control problems by solv-
ing HJB equations for reduced systems using proper orthogonal decomposition we refer to
[1,2,22,26,32,33], for reduced system using spectral elements to [31]. Regarding estimates
for the error between the value functions of the continuous and semi-discrete optimal con-
trol problem in case of linear dynamics we refer to [16]. For publications on sparse grids
we refer, e.g., to [11,19,23,25,43,47]. For sparse approximation of PDEs in high dimen-
sions, see, e.g., [14] and for sparse grids methods for solving Schrödinger equations we refer
to [20,24]. Higher order semi-Lagrangian schemes on sparse grids for second order HJB
equations are considered in [46]. Furthermore, in [45] several two dimensional numerical
examples for semi-Lagrangian schemes on sparse grids for first order HJB equation are con-
sidered. We further mention that model order reduction in combination with sparse grids was
considered in [6,42].

The paper is organized as follows. In Sect. 3 we formulate the closed-loop optimal control
problems arising from control of the wave and Schrödinger equation, in Sect. 4 we recall
the basic ideas of sparse grids, in Sect. 5 we formulate the semi-Lagrangian scheme, and in
Sect. 6 we present several numerical examples illustrating our approach.

2 Notation

Throughout the paper we use for given interval (resp. bounded domain) Ω ⊂ K with
K ∈ {R,C} the usual notation for the real-valued (resp. complex-valued) Lebesgue spaces
L2(Ω,K) (resp. L̄2(Ω,K)), and analogue for Sobolev spaces H1

0 (Ω) = H1
0 (Ω,R) (resp.

H̄1
0 (Ω) = H1

0 (Ω,C)), m ∈ N. We set H = L2(Ω,R) and H̄ = L2(Ω,C). Furthermore,
we introduce for a Hilbert space W the Bochner and Hölder spaces by L2(0, T ;W ) and
Ck(0, T ;W ), k = 0, 1, omitting the index for k = 0. For the Euclidean and maximum norm
in Rn, n ∈ N, we use the usual notation ‖·‖2 and ‖·‖∞.
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3 Optimal Control Problems

In this sectionwe introduce an optimal control problem for thewave andSchrödinger equation
and the corresponding semi-discrete (in space) problems.

In the following, let T > 0 be a finite time horizon, L > 0, and c be a positive scalar.

3.1 Optimal Control of the Wave Equation

To formulate the optimal control problem for the wave equation, we first define the set of
admissible controls

Uw
ad := L2 (

0, T ;Uw
)
, with Uw := {

u ∈ Rm |ua ≤ u ≤ ub
}

(3.1)

for ua, ub ∈ Rm,m ∈ N. For controls u ∈ Uw
ad the equation is given by

⎧
⎨

⎩

ŷt t − cΔŷ = Bwu in (0, T ) × Ω,

ŷ(0) = ŷ0, ŷt (0) = ŷ1 in Ω,

ŷ = 0 on (0, T ) × ∂Ω

(3.2)

for initial state and velocity ŷ0 ∈ H1
0 (Ω) and ŷ1 ∈ L2(Ω), and control operator Bw(x) :=

(sin(πx1), . . . , sin(mπx2)) for x ∈ Ω . Equation (3.2) has a unique solution

ŷ ∈ C
(
0, T ; H1

0 (Ω)
) ∩ C1 (

0, T ; L2(Ω)
)
, (3.3)

see [35, pp. 275 and 288]. Let the cost functional be given by

Jw
(
u, ŷ

) :=
∫ T

0

(
βy

∥
∥ŷ(t) − yd

∥
∥2
H + βu |u(t)|2

)
dt, (3.4)

for yd ∈ H and βy > 0 and βu > 0. We denote the control-to-state operator for the wave
equation by ŷw[·]. The optimal control problem is given by

min Fw(u) := Jw
(
u, ŷw[u]) , u ∈ Uw

ad. (3.5)

The existence of a unique solution of the control problem (3.5) follows by classical arguments,
see, e.g., [36].

Next, we introduce a semi-discrete formulation of the control problem, in particular we
use the method of lines. For a given basis b := (ϕ1, . . . , ϕd), with ϕi ∈ H1

0 (Ω), d ∈ N, we
define

A := (
(∇ϕi (x),∇ϕ j (x))i, j=1,...,d

)
(stiffness matrix),

M := (
(ϕi (x), ϕ j (x))i, j=1,...,d

)
(mass matrix).

(3.6)

Note that for our numerical experiments in Sect. 6 we will choose

ϕi (x) := sin(iπx), i = 1, . . . , d, (3.7)

and obtain

A = diag
((
1/2(iπ)2

)

i=1,...,d

)
, M = diag((1/2)i=1,...,d). (3.8)

although the following exposition holds for a general basis b.
A semi-discrete formulation of the wave equation with respect to a basis b is obtained by

a first order system in time given by

ẏw(t) = f w(yw(t), u(t)), t > 0, y(0) = y0 (3.9)
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with yw(t) ∈ R2d and the dynamics

f w : R2d × Rm → R, f w(x, u) := Awx + Bwu, (3.10)

where

Aw :=
(

0 Id
−cM−1A 0

)

, Bw :=
(
0
id

)

, y0 ∈ R2d . (3.11)

Furthermore, we define the functional

Jw
h (u, y) :=

∫ T

0
lw(y(t), u(t)) dt (3.12)

with running cost lw(x, u) := βy xT1 Mx1 + βuuT u for x = (x1, x2) ∈ R2d , u ∈ Uw. The
semi-discrete optimal control problem is given as

min Fw
h (u) := Jw

h (u, yw[u]), u ∈ Uw
ad. (3.13)

Existence of a solution for (3.13) follows similarly as in the continuous case.

3.2 Optimal Control of the Schrödinger Equation

We define the set of admissible controls for the Schrödinger equation

Us
ad := L2 (

0, T ;Us) , with Us := {u ∈ R|ua ≤ u ≤ ub} (3.14)

and introduce the equation for controls u ∈ Us
ad by

⎧
⎨

⎩

i ŷt + cΔŷ − uBs ŷ = 0 in (0, T ) × Ω,

ŷ(0) = ŷ0 in Ω,

ŷ = 0 on (0, T ) × ∂Ω,

(3.15)

with initial state ŷ0 ∈ H̄1
0 (Ω), and scalar Bs ∈ R. Equation (3.15) has a unique solution in

C
(
0, T ; H̄1

0 (Ω)
) ∩ C1 (

0, T ; H̄−1(Ω)
)
, (3.16)

see [35]. We define the cost functional as

J s
(
u, ŷ

) :=
∫ T

0

(
βy

∥
∥ŷ(t) − yd

∥
∥2
H̄ + βu |u(t)|2

)
dt (3.17)

with yd ∈ H̄ , βy > 0 and βu > 0. The optimal control problem is given by

min Fs(u) := J s
(
u, ŷs[u]) , u ∈ Us

ad (3.18)

where, in analogy to the wave equation, ŷs[u] denotes the solution of (3.15) for given u ∈
Us
ad. The existence of a solution of (3.18) can be shown using classical arguments, see [3,

Proposition 7.5].
We introduce a semi-discretization of the Schrödinger equation as a real-valued system

as

f s : R2d × R → R, f s(x, u) := As x + uBs y (3.19)
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with

As :=
(

0 cM−1A
−cM−1A 0

)

, M :=
(
M 0
0 M

)

, Bs := M−1 B̂,

B̂ :=
(
0 −B̄
B̄ 0

)

, B̄ = diag
(
Bs, . . . , Bs) ∈ Rd×d .

(3.20)

The discrete cost functional is given by

J sh (u, y) :=
∫ T

0
ls(y(t), u(t)) dt (3.21)

with running cost

ls(x, u) := βy x
TMx + βuu

T u, (3.22)

where x = (x1, x2) ∈ R2d , u ∈ U . The semi-discrete optimal control problem is given as

min Fs
h (u) := J sh (u, ys[u]), u ∈ Us

ad. (3.23)

Again, existence of a solution of (3.23) follows similarly as in the continuous case.

3.3 Suboptimal Feedback Control

We introduce the value function for both semi-discrete problems (3.13) and (3.23):

v(x, t) := inf
u∈U

∫ T

t
l(y(s), u(s)) ds, s.t. (3.24)

ẏ(s) = f (y(s), u(s)), y(t) = x, s > t, (3.25)

for t ∈ [0, T ] and x ∈ R2d with l = lw, f = f w , and U = Uw (resp. l = ls, f = f s , and
U = Us) for the wave (resp. Schrödinger) equation. The value function satisfies the dynamic
programming principle

v(x, t) = inf
u∈U

(∫ τ

t
l(y(s), u(s)) ds + v(y(τ ), τ )

)

in R2d × [0, T ], (3.26)

for all τ ∈ [t, T ] and can be characterized as the unique viscosity solution of
{−vt (x, t) + H(x,∇v) = 0 in R2d × [0, T ],

v(x, T ) = 0 in R2d ,
(3.27)

with Hamiltonian

H(x, p) := sup
u∈U

(
− f (x, u)T p − l(x, u)

)
(3.28)

for x ∈ R2d and p ∈ R2d , see [4,29].
We assume that for the value function holds v ∈ C1(R2d × [0, T ]). To derive a feedback

control law from the value function we introduce the set-valued map (following the notation
in [18, Chapter I]) given by

g∗(x, t) := argmin
u∈U

{
− f (x, u)T∇xv(x, t) − l(x, u)

}
. (3.29)
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We call u : R2d × (t, T ) → U an admissible feedback control and define u(s) := u(y(s), s).
Let u∗ be an admissible feedback control with

u∗(x, s) ∈ g∗(x, s) (3.30)

for all (x, s) ∈ R2d × (t, T ) and admissible for the initial condition (x, t), then we call u∗
an optimal feedback control and with the corresponding solution y∗ we have

u∗(s) = u∗(y∗(s), s). (3.31)

We call the corresponding trajectory for given initial state (x, t) optimal.
Note that for f and l given as above we obtain from the feedback law in (3.29) that

u∗ (
y∗(s), s

) = PUw
ad

(

− 1

βu
(Bw)T∇xv

(
y∗(s), s

)
)

(3.32)

for the semi-discrete wave equation and

u∗ (
y∗(s), s

) = PUs
ad

(

− 1

βu
y∗(s)T

(Bs)T ∇xv
(
y∗(s), s

)
)

(3.33)

for the semi-discrete Schrödinger equation, where PUw
ad
(resp. PUs

ad
) denotes the projection

on the set of admissible controls.

3.4 Curse of Dimensionality

Optimal control problems of type (3.24) and (3.25) allow to derive controls in feedback
form from the corresponding value function given as the unique viscosity solution of an
instationary HJB equation (3.27). However, when the problem arises from a semi-discrete
optimal control problem governed from a PDE, it usually leads to a high dimensional state
space and, because of the curse of dimensionality, the numerical approximation becomes
very challenging.

For the numerical approach, the first step is a restriction of the state space to a suitable
bounded subdomain Q ⊂ R2d . To make the problem numerically feasible and to reduce
the computational effort two different aspects are crucial. On the one hand the reduction of
the dimension of the underlying system and on the other hand efficient schemes for solving
the HJB equation (3.27). In this paper we focus on the latter and analyze the approximation
by adaptive semi-Lagrangian schemes on sparse grids. Nevertheless, a low dimensional
approximation is necessary such that the problem is numerically feasible. Here, following the
approach presented in [31], we consider semi-discretizations based on spectral elements and
the aim is to control the lowermodes (neglecting the behaviour of the highermodes).However,
the presented framework could also be applied to optimal control problems of parabolic
equations for which model order reduction techniques like proper orthogonal decomposition
are very efficient (cf. the cited references in the introduction).

4 Sparse Grids

For the numerical approximation of the value function we use a semi-Lagrangian scheme
on adaptive sparse grids. In the following we recall the main ideas behind (adaptive) sparse
grids, more details can be found in e.g., [11,19,43]. Let here, to simplify the exposition,
Q = [0, 1]d , d ∈ N. For a multiindex l = (l1, . . . , ld) ∈ Nd we introduce a mesh Ql with
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mesh parameters hl = (hl1 , . . . , hld ) which are constant hli := 2−li in each direction but
may differ with respect to the dimensions. The grid points are denoted by

xl, j = (
xl1, j1 , . . . , xld , jd

)
, xlt , jt = jt · hlt , t = 1, . . . , d. (4.1)

Here, l denotes the level which characterizes the resolution of the discretization and j defines
the position of the mesh point. Let

Vl := span
{
ϕl, j

∣
∣
∣ jt = 0, . . . , 2lt , t = 1, . . . , d

}
(4.2)

be the space of all d-dimensional piecewise d-linear hat functions. The hierarchical difference
space is given by

Wl := Vl\
d⊕

t=1

Vl−et , (4.3)

where et denotes the t th unit vector. Therefore Wl consists of the functions in Vl which are
not in any Vl−et and this allows the construction of a multilevel subspace splitting. Thus we
define, denoting by ≤ a component-wise relation here and in the following,

Vl =
⊕

k≤l

Wk, (4.4)

cf. Fig. 1. With Vn := V(n,...,n) for n ∈ N every f ∈ Vn can be characterized as

f
(
x
) =

∑

|l|∞≤n

∑

j∈Bl
αl, j · ϕl, j

(
x
)
, (4.5)

with so-called hierarchical coefficients αl, j ∈ R and for

Bl :=
{

j ∈ Nd
∣
∣
∣
∣
jt = 1, . . . , 2lt − 1, jtodd, t = 1, . . . , d, if lt > 1,
jt = 0, 1, 2, t = 1, . . . , d, if lt = 1

}

. (4.6)

In nodal (4.2) or hierarchical (4.5) basis a function f ∈ Vn with discretization level n is
characterized by (2n + 1)d points.

To proceed, we need the so-called Sobolev-space with dominating mixed derivative H2
mix.

We introduce the corresponding norm and semi-norm

‖ f ‖2
H2
mix(Q)

=
∑

0≤k≤2

|∂ |k|1
x
k1
1 ...x

kd
d

f |22, and | f |H2
mix(Q) =

∥
∥
∥∂2d

x21 ...x2d
f
∥
∥
∥
2
, (4.7)

respectively. One formally defines

H2
mix(Q) =

{
f ∈ H

∣
∣ ‖ f ‖H2

mix
≤ C for C > 0

}
(4.8)

which satisfies the relation H2·d(Q) ⊂ H2
mix(Q) ⊂ H2(Q), see [25]. For f ∈ H2

mix(Q)

there holds, see e.g., [11],
∥
∥ fl

∥
∥
2 ≤ C(d) · 2−2|l|1 | f |H2

mix(Q) (4.9)

with constant C(d) > 0 depending on the dimension d and

fl :=
∑

j∈Bl
αl, jφl, j (x) ∈ Wl .

123



J Sci Comput (2017) 70:1–28 9

W4 1 W4 2 W4 3 W4 4

W3,1 W3,2 W3,3 W3,4

W2,1 W2,2 W2,3 W2,4

W1,1 W1,2 W1,3 W1,4

Fig. 1 Supports of the basis functions ϕl, j of the hierarchical subspaces Wl of the space V4 = V(4,4), where

the functions of each Wl have disjunct support. The regular sparse grid V s
4 contains the upper left triangle of

spaces

The hierarchical mesh becomes a sparse mesh when taking out those basis function which
have a small contribution to the representation of the function, i.e. those with a small support
due to estimate (4.9). Following Griebel [23] and Zenger [47], we replace

∥
∥l

∥
∥∞ ≤ n by the

rule
∥
∥l

∥
∥
1 ≤ n + d − 1. (4.10)

For the dimension of the sparse grid space it holds dim V s
n = O(2n · nd−1), in comparison

to regular grids where we have dim Vn = O(2nd). For functions f ∈ H2
mix(Q) there holds

the error estimate
∥
∥ f − f sn

∥
∥
2 = O

(
h2n

(
log h−1

n

)d−1
)

(4.11)

in comparison to the approximation on regular grids, where we have
∥
∥ f − f sn

∥
∥
2 = O (

h2n
)
. (4.12)

This fact leads to a strong reduction of the computational storage consumption in comparison
to a full mesh approach for a similar approximation quality. If the required H2

mix-regularity
is given, the points in the sparse grid are optimal in a cost-benefit analysis [11].
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4.1 Adaptive Sparse Grids

For a further reduction of the number of nodes we use an adaptive refinement strategy as in
[10],where the values of the hierarchical coefficients are employed as error indicators [17,43].

We now collect the indices (l, j) of the employed adaptive sparse grid functions in an
index set I, denote the resulting discretization mesh as QI and start with some suitable
initialization I = {(l, j)|ϕl, j ∈ V s

n } for a small n. In the iterative adaptive procedure to build
the refined index set I, an index (l, j) ∈ I is then marked for refinement if there holds, for
given parameter ε > 0,

|al, j |
∥
∥
∥φl, j

∥
∥
∥ > ε (4.13)

for the hierarchical coefficient al, j in the function representation (4.5). In such a case the 2d
children, left and right in each dimension, are added to I, where for consistency one might
need to add fathers in other dimensions of these newly added sparse grid points. The spatially
adaptive refinement algorithm to build an adaptive sparse grid for given function F , initial I,
and ε is presented in Algorithm 1 and is based on [10] and described in more detail therein.

Algorithm 1: Spatially adaptive refinement
Data: initial I, refinement threshold ε and function evaluation F
Result: refined I, adaptive sparse grid approximation of F in VI
for all indices (l, j) ∈ I do

compute F(xl, j ) � evaluate F on initial grid

compute hierarchical values αl, j for all indices;

while indices are added to I do
for (l, j) ∈ I do � look at all indices

if |αl, j | · ‖φl, j‖ > ε then
for t = 1, . . . , d do � surplus is large

if (l̃, j̃) /∈ I for l̃ = l + et and j̃ ∈ { j + jt et ± 1} then
I = I ∪ (l̃, j̃) � add children not in I

check ∀(l, j) ∈ I: (l̃, j̃) ∈ I for l̃ ≤ l and supp(φl̃, j̃ ) ∩ supp(φl, j ) �= ∅ ;

for all added indices (l, j) ∈ I do
compute F(xl, j ) � evaluate F at new grid points

compute hierarchical values αl, j for newly added indices

Additionally, we also use coarsening of the spatially adaptive sparse grid, i.e. for given
parameter η > 0 we remove an index (l, j) from I if

|al, j |
∥
∥
∥φl, j

∥
∥
∥ < η, (4.14)

and no children of (l, j) are in I, see Algorithm 2. This is to avoid unnecessary function
evaluations on sparse grid points whose basis function only have little contribution, again
see [10] for more details. A typical choice is η = ε/10, which we will use in our experiments
in Sect. 6.
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Algorithm 2: Spatially adaptive coarsening
Data: index set I, coarsening threshold η, and αl, j ∀(l, j) ∈ I
Result: coarsened index set I
while indices are removed from I do

for (l, j) ∈ I do � look at all indices
if |αl, j | · ‖φl, j‖ < η then � surplus is small

if ∀t = 1, . . . , d: (l̃, j̃) /∈ I for l̃ = l + et and j̃ ∈ { j + jt et ± 1} then
I = I\(l, j) � remove if no children in I

Note that several norms are possible in (4.13) and (4.14), e.g., L∞(Q), L2(Q), L1(Q),

H1(Q) or mixtures thereof. In the numerical experiments we use ‖ · ‖L∞(Q) which is one for
the employed basis functions.

5 The Semi-Lagrangian Scheme

To compute the value function numerically we apply a semi-Lagrangian scheme, cf., e.g.,
[15]. For a bounded domain Q ⊂ R2d we apply for its discretization QI the procedure

{
vk(x) = min

u∈U
(
Δtl(x, u) + I

[
vk+1

]
(yx (Δt))

)
,

vk(x) = 0
(5.1)

for all x ∈ QI , time step Δt > 0, k = K , . . . , 0, and K = T/Δt , where I is either the index
set of a regular or adaptive sparse grid. The interpolation operator I is defined on the grid
points of QI by I [v](x) = v(x) for all x ∈ QI and yx (Δt) denotes the state obtained by a
time discretization scheme when going from x one step forward in time.

5.1 Computational Domain and Boundary Treatment

When using sparse grids, the number of points on the boundary increases, in comparison to
inner points, strongly with respect to the refinement level and the dimension, see, e.g., [43].
To avoid this behaviour we use so-called fold out ansatz functions which are defined with
inner nodes only and extrapolate them to and over the boundary following ideas developed
in [10,43], see Fig. 2a, b.

Besides this, we have to prescribe some boundary condition for solving the dynamic
programming equation on the extended domain. We set the second derivative equal to zero,
which corresponds to a linear extension of the values on inner nodes over the boundary. With
the fold out basis functions we have this extrapolation outside of the domain naturally, see
Fig. 2c. For the normal basis function we set the value of v for an evaluation point outside
of the domain, i.e. (x̃, y) = (x ± h, y) with (x, y) ∈ ∂Ql and h > 0 the distance from x̃ to
Ql , as

v (x̃, y) = v(x ± h, y) := 2 · v(x, y) ∓ v(x ∓ h, y), (5.2)

taking either the backward or forward difference quotient depending on which part of the
boundary we are. If the evaluation point is outside of the domain in more than one dimension
we treat all affected dimensions in this way.
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φ1,0 φ1,2φ1,1

φ2,1 φ2,3

φ3,1 φ3,3 φ3,5 φ3,7

φ̃1,1

φ̃2,1 φ̃2,3

φ̃3,1 φ3,3 φ3,5 φ̃3,7

φ2,3

x2,3 1

φ̃2,3

x2,3 1

φ̃2,3

x2,3 1

(a) (b)

(c)

Fig. 2 Normal and fold out basis functions. a Normal basis, b fold-out basis, c last basis before the boundary
gets folded up and linearly extrapolated across the boundary

5.2 Computational Aspects of the Minimization in the Hamiltonian and the
Feedback Law

In general the determination of the minimum in the right hand side of (5.1) over the set
of admissible controls on sparse grids is a non-trivial task; already on regular grids this
questions has to be addressed carefully, for a discussion of first-order and second-order
algorithms see [30]. For global minimization algorithms on sparse grids see, e.g., [40]. In the
following we discuss two different methods to determine the minimizing control which can
be used within the SL-scheme as well as for computing optimal trajectories.

5.2.1 Feedback Law Based on Minimization by Comparison

In this approach a finite subsetUσ ⊂ U can be chosen overwhich theminimizer is determined
by comparison over its elements, i.e. we chose

u∗(x, s) ∈ argmin
u∈U

(
vk(x + Δt · f (x, u), s) + Δt · l(x, u)

)
, x ∈ QI , (5.3)

see, e.g., [4,15]. This approach is easy to implement and allows to consider also non-smooth
cost functionals, however it is very time consuming in higher dimensions in particular if the
control has several components.

5.2.2 Feedback Law Based on the Gradient of the Value Function

In case of differentiability of the value function a projection formula for the minimization
using the gradient of the value function can be used, see (3.32) and (3.33). Within the semi-
Lagrangian scheme, the value function of the previous time step is used to evaluate the right
hand side in the feedback law. A suitable approximation of the gradient has to be chosen.
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A finite difference approximation using the interpolation on sparse grids can be used given
by

un(x, s) = PU

(

− 1

βu
(Bw)T∇hvn+1(x, s)

)

(5.4)

for the wave equation and

un(x, s) = PU

(

− 1

βu
xT (Bs)T∇hvn+1(x, s)

)

(5.5)

for the Schrödinger equation, respectively, with

(
∇hvn+1(x, s)

)

i
:= vn+1(x + hi , s) − vn+1(x − hi , s)

2h
(5.6)

for hi = (0, . . . , h, 0, . . . 0) ∈ R2d and h > 0.However, the choice of h > 0 in the difference
quotient approximation is not naturally given on sparse grids as it is the case for regular grids.

In Sect. 6 we will compare numerically both approaches for determining the minimizing
control.

5.3 Evaluation of the Right Hand Side in (5.1)

For the computation of yx (Δt) we use the second order Heun scheme

yx (Δt) := 1

2

(
x + x̃ + Δt · f

(
x̃, u

))
, (5.7)

where x̃ is computed with the Euler scheme

yx (Δt) := x + Δt f (x, u). (5.8)

For the evaluation of the right hand side of (5.1) in the n-dimensional space given by

Fk(x) = min
u∈U

(
vk(yx (Δt)) + Δtl(x, u)

)
, k = K , . . . , 0, (5.9)

we interpolate the expression on sparse grids as presented in Algorithm 3.

Algorithm 3: Adaptive SL-SG scheme

Data: suitable initial index set I, refinement constant ε and coarsening constant η
Result: sequence of adaptive sparse grid solutions vk ∈ VI(k) for k = K , . . . , 0
Alg. 1 with I, ε, and Fk(x) = 0 � interpolate ϕ by v0 ∈ VI(0)
Alg. 2 with I(0), η, and v0 � coarsen v0
for k = K − 1, . . . , 0 do � iterate in time with Δt = T/K

Alg. 1 with I(k), ε and Fk(x) � compute vk−1 ∈ VI(k−1)
Alg. 2 with I(k − 1), η and vk−1 � coarsen vk−1 ∈ VI(k−1)

5.4 Computation of the Trajectory

For the computation of optimal trajectories we solve the dynamical system (3.25) with the
control given by the feedback laws using comparison after (5.3) or using the gradient of the
value function after (5.4) and (5.5), respectively. The dynamical system is solved by the Heun
time-stepping scheme. Note that one can choose the stepsize h for computing (5.6) for the
trajectory differently from the choice within the semi-Lagrangian scheme.
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The computational domain is chosen (by ‘testing’ and ‘checking’) in such a way that the
trajectory does not reach the boundary to avoid numerical artefacts.

6 Numerical Examples

In this section we present several numerical examples in which we study for optimal control
problems of type (3.24) and (3.25) the accuracy of the discrete value function (for d = 2)
and optimal trajectories (for 2 ≤ d ≤ 8) when solving the corresponding HJB equation by
the SL-SG-scheme described in Sect. 5. For the study of convergence of the SL-SG-scheme
we focus on the discretization error in space while using a time resolution which is “good
enough”. While on regular grids various error estimates for semi-Lagrangian schemes are
known, see, e.g., [4, Appendix A] and [5], on sparse grids very little results are available in
the literature, see, e.g., [46] where under a certain assumptions an estimate is derived.

Since we only have an inefficient proof-of-concept sparse grid implementation available,
we abstain from giving runtimes. Using efficient sparse grid implementations [12,43] would
significantly (an order of magnitude or more) change the needed runtime.

In the following experiments with the semi Lagrangian scheme, we use for the feedback
law by comparison (5.3) a discretization of the control space with 40 equidistantly spaced
controls in one dimension, while for the feedback law by using the gradient after (5.4) and
(5.5) we use the stepsize h = 1

40 .

6.1 Reference Solutions

To analyze the accuracy of our computed discrete value function we compare it with a
reference solution vref computed with a higher order finite difference code on a uniform
mesh based on methods developed in [9,41]. We compute a reference solution vref by an
ENO scheme as a variant of a Lax–Friedrichs scheme

vk−1
ref (xI ) = vkref(xI ) − ΔtHLF

(
xI , D

+vkref(xI ), D
−vkref(xI )

)
, (6.1)

where HLF is the numerical Hamiltonian, D±vkref(xI ) are higher order approximations of
the gradient in grid point xI , I ∈ Z, k is the time step, Δt the temporal mesh parameter, and
coupled with a Runge–Kutta time discretization scheme of second order, for details see [31].
For the numerical realization of the scheme we use the software library ROC-HJ (see [8]).

To quantify the error in the optimal trajectories for the control problem for the semi-
discrete wave equation we compute reference trajectories yr in state space and ur in control
space using a Riccati approach, i.e. we solve backward in time

{−Pt (t) = AP(t) − P(t)A + PT (t)BTRBPy(t) = 0, t > 0
P(T ) = 0

(6.2)

with A = Aw,B = Bw and set the feedback operator as

u(x, t) = −R−1BT P(t)x (6.3)

withR = βu . For computing the trajectory fromour solution,we employh = 2
40 in (5.6). This

is to decouple the step sizes for the semi-Lagrangian scheme and the trajectory computation.
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We estimate the error in the value function by computing the vector difference to the
reference solution on its discretization grid, and denote it by

ev
2 := ‖v − v∗‖L2(Q) ≈ ‖v − vr‖2√

Nr
, (6.4)

ev∞ := ‖v − v∗‖L∞(Q) ≈ ‖v − vr‖∞. (6.5)

For the errors in the state and control we use the following notation:

ey2 := ‖y − y∗‖L2(0,T ;R2d), ey∞ := ‖y − y∗‖L∞(0,T ;R2d), (6.6)

eu2 := ‖u − u∗‖L2(0,T ;Rm ), eu∞ := ‖u − u∗‖L∞(0,T ;Rm ), (6.7)

and approximate the L∞-error by maxk=1,...,T/Δt |yk − ykr | and the L2-error by

1√
T/Δt

T/Δt∑

k=1

|yk − ykr |2.

Furthermore, we give convergence rates for the different discretization errors ei as

ρe(i) = log2

(
ei−1

ei

)

, (6.8)

where ei denotes the error on level i or the error for ε = 0.1 × 1/2i , respectively, and e is
any one of the above errors.

6.2 Control of the Harmonic Oscillator

As a first example we consider a simplification of the semi-discrete wave equation, namely
the Harmonic oscillator, i.e. we consider dynamics of type (3.10) with

βy = 2, βu = 0.1, T = 1, Δt = 0.01, Aw =
(

0 1
−1 0

)

, Bw =
(
0
1

)

, (6.9)

initial data x ∈ R2, computational domain Q = [−1, 1]2,Uw = [−3.5, 3.5]. We solve the
corresponding HJB equation (3.27) and compare different variants of our semi-Lagrangian
scheme on sparse grids. The reference value function is computed as described in Sect. 6.1
on the domain [−1, 1]2 with Δx = 1/200 × length(Q) = 1/200 × 2 and Δt = T/1000.

6.2.1 Error in the Value Function

To show the overall behaviour of the four different variants of our approach (namely using
normal or fold out basis functions and uniform or adaptive refinement, respectively) we
present in Fig. 3 combined convergence plots for the error in the value function at the initial
time in comparison to the reference solution.

We also show two exemplary convergence tables with more detailed numbers. In Table 1
we give the error on regular sparse grids using the scheme presented in Algorithm 3 which
includes nodes on the boundary, as well as fold out basis functions following Sect. 5.1; while
in Table 2 we compare the error on the adaptive sparse grids with normal hat functions
for decreasing refinement thresholds at the initial time zero by using either the gradient or
comparison of all actions to realize the minimization on the sparse grid.

FromTable 1 andFig. 3awe can see that the different variants show the similar convergence
of the error in regard to the level. Since a regular sparse grid with the fold-out basis functions
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(a) (b)

(c) (d)

Fig. 3 Harmonic oscillator (6.9) in 2D: error in the approximating value function comparing the scheme
based on sparse grids using normal hat and fold out basis functions and feedback laws from 5.2.1 and 5.2.2.
a Error in the value function versus level, b error in the value function versus ε, c nodes versus ε and d error
in the value function versus nodes, feedback law based on gradient approach

Table 1 Harmonic oscillator (6.9) in 2D: error in the value function with regular sparse grids using both kinds
of basis functions and the gradient approach

Level Normal Fold out

ev2 ρev2
ev∞ ρev∞ ev2 ρev2

ev∞ ρev∞

2 7.91 × 10−2 – 1.09 × 10−1 – 1.09 × 10−1 – 2.68 × 10−1 –

3 3.81 × 10−2 1.05 5.29 × 10−2 1.05 2.82 × 10−2 1.95 4.02 × 10−2 2.74

4 1.80 × 10−2 1.08 2.66 × 10−2 0.99 1.80 × 10−2 0.65 4.19 × 10−2 −0.06

5 8.50 × 10−3 1.08 1.44 × 10−2 0.89 8.89 × 10−3 1.02 3.07 × 10−2 0.45

6 3.98 × 10−3 1.09 8.72 × 10−3 0.73 4.53 × 10−3 0.97 2.42 × 10−2 0.34

7 2.00 × 10−3 0.99 5.93 × 10−3 0.56 2.62 × 10−3 0.79 2.04 × 10−2 0.25

8 1.37 × 10−3 0.55 5.75 × 10−3 0.04 2.15 × 10−3 0.29 2.06 × 10−2 −0.02

9 1.15 × 10−3 0.25 3.84 × 10−3 0.58 1.90 × 10−3 0.17 1.89 × 10−2 0.13

10 1.10 × 10−3 0.06 3.45 × 10−3 0.16 1.51 × 10−3 0.33 1.25 × 10−2 0.60
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Table 2 Harmonic oscillator (6.9) in 2D: error in the value function for adaptively refined sparse grids using
compare and gradient approaches with the normal basis functions

ε Gradient Compare

ev2 ρev2
ev∞ ρev∞ ev2 ρev2

ev∞ ρev∞

5.00−2 5.86 × 10−2 7.54 × 10−2 5.69 × 10−2 7.45 × 10−2

2.50−2 5.20 × 10−2 0.17 6.44 × 10−2 0.23 5.05 × 10−2 0.17 6.31 × 10−2 0.24

1.25−2 4.96 × 10−2 0.07 6.18 × 10−2 0.06 4.81 × 10−2 0.07 5.95 × 10−2 0.08

6.25−3 3.79 × 10−2 0.39 5.13 × 10−2 0.27 3.69 × 10−2 0.38 4.95 × 10−2 0.27

3.13−3 2.53 × 10−2 0.58 3.73 × 10−2 0.46 2.56 × 10−2 0.53 3.86 × 10−2 0.36

1.56−3 1.70 × 10−2 0.57 2.51 × 10−2 0.57 1.71 × 10−2 0.58 2.53 × 10−2 0.61

7.81−4 1.01 × 10−2 0.76 1.63 × 10−2 0.62 1.00 × 10−2 0.78 1.60 × 10−2 0.65

3.91−4 6.84 × 10−3 0.56 1.03 × 10−2 0.66 6.97 × 10−3 0.52 1.04 × 10−2 0.63

1.95−4 4.11 × 10−3 0.74 6.40 × 10−3 0.68 4.16 × 10−3 0.74 6.46 × 10−3 0.68

9.77−5 2.83 × 10−3 0.54 4.51 × 10−3 0.50 2.94 × 10−3 0.50 4.61 × 10−3 0.49

4.88−5 1.88 × 10−3 0.59 3.45 × 10−3 0.39 1.95 × 10−3 0.59 3.92 × 10−3 0.23

2.44−5 1.56 × 10−3 0.27 5.31 × 10−3 −0.62 1.66 × 10−3 0.23 5.60 × 10−3 −0.51

uses less points, it is the preferred choice in this setting, although for very fine resolution the
convergence stagnates. Note that for a sparse grid with level 10 one has 13,313 nodes with
normal hat functions and 9217with fold out hat functions, respectively. To study the influence
of the artificial boundary conditionon the error,we also computed regular sparse grid solutions
on the enlarged domain [−2, 2]2, but evaluated the error only on Q = [−1, 1]2. We observe
overall very similar convergence behaviour for this setting and essentially identical errors for
the normal and fold out basis functions, which indicates that the treatment of the boundary
of the enlarged domain has little effect on the value function in Q.

From Table 2 and Fig. 3b we also see no big difference between the compare and gradient
variants. We observe that the normal hat functions show slightly better performance when
looking at the decrease of the error in comparison to ε. When taking the effort into account
by counting the number of points in the adaptive sparse grids at the end of the computation,
we see a stronger increase in the number of points for the fold-out basis function than for the
normal ones, while for coarser ε the fold-out ones use less basis functions, see Fig. 3c. When
comparing the error reduction with increasing number of nodes for adaptive versus regular
grids, we see in Fig. 3d, that for normal hat functions there is no real difference, while for
fold out hat functions the regular approach performs better and more stable.

6.2.2 Error in the Trajectory and Control

Next we study for given initial point x = (0.4,−0.2)T the accuracy of the corresponding
trajectory and control when using regular/adaptive sparse grids, the gradient/comparison
approach, and normal/fold out basis functions. Overall, the behaviour is very similar over
the different measured errors, in particular when comparing the different basis functions and
feedback laws on regular sparse grids. However, on adaptive sparse grids we observe for the
fold out basis functions oscillating convergence behaviour.
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Table 3 Harmonic oscillator (6.9) in 2D: error in the trajectory and control with regular sparse grids using
the gradient approach and fold out basis functions

Level ey2 ρey2
ey∞ ρey∞ eu2 ρeu2

eu∞ ρeu∞

2 4.17 × 10−1 – 3.60 × 101 – 7.31 × 10−1 – 1.68 × 100 –

3 7.64 × 10−2 2.45 6.53 × 100 2.46 1.33 × 10−1 2.46 2.74 × 10−1 2.61

4 3.64 × 10−2 1.07 3.10 × 100 1.07 6.09 × 10−2 1.12 1.18 × 10−1 1.21

5 1.90 × 10−2 0.93 1.62 × 100 0.93 3.18 × 10−2 0.94 5.97 × 10−2 0.99

6 1.03 × 10−2 0.89 8.77 × 10−1 0.89 1.72 × 10−2 0.89 3.20 × 10−2 0.90

7 5.88 × 10−3 0.80 5.04 × 10−1 0.80 9.91 × 10−3 0.79 2.02 × 10−2 0.66

8 3.60 × 10−3 0.71 3.09 × 10−1 0.70 6.09 × 10−3 0.70 1.24 × 10−2 0.70

9 4.47 × 10−3 −0.31 3.80 × 10−1 −0.30 7.39 × 10−3 −0.28 1.21 × 10−2 0.03

10 4.08 × 10−3 0.13 3.49 × 10−1 0.13 6.80 × 10−3 0.12 1.25 × 10−2 −0.04

Table 4 Harmonic oscillator (6.9) in 2D: error in the trajectory and control with adaptive grids using the
gradient approach and fold out basis functions

ε ey2 ρey2
ey∞ ρey∞ eu2 ρeu2

eu∞ ρeu∞

5.00−2 4.17 × 10−1 – 3.60 × 101 – 7.31 × 10−1 – 1.68 × 100 –

2.50−2 3.99 × 10−1 0.07 3.43 × 101 0.07 6.89 × 10−1 0.09 1.34 × 100 0.33

1.25−2 1.92 × 10−1 1.05 1.63 × 101 1.07 3.15 × 10−1 1.13 5.11 × 10−1 1.39

6.25−3 7.40 × 10−2 1.38 6.10 × 100 1.42 1.24 × 10−1 1.34 2.02 × 10−1 1.34

3.13−3 3.24 × 10−2 1.19 2.79 × 100 1.13 6.01 × 10−2 1.04 1.49 × 10−1 0.44

1.56−3 5.99 × 10−2 −0.89 5.17 × 100 −0.89 1.09 × 10−1 −0.86 2.36 × 10−1 −0.66

7.81−4 2.34 × 10−2 1.35 2.03 × 100 1.35 4.53 × 10−2 1.27 9.95 × 10−2 1.25

3.91−4 3.32 × 10−2 −0.50 2.86 × 100 −0.50 5.94 × 10−2 −0.39 1.24 × 10−1 −0.32

1.95−4 1.29 × 10−2 1.36 1.08 × 100 1.41 2.16 × 10−2 1.46 3.69 × 10−2 1.75

9.77−5 1.73 × 10−2 −0.42 1.48 × 100 −0.46 2.94 × 10−2 −0.45 6.11 × 10−2 −0.73

4.88−5 8.43 × 10−3 1.03 7.22 × 10−1 1.04 1.42 × 10−2 1.06 2.64 × 10−2 1.21

2.44−5 1.02 × 10−2 −0.27 8.72 × 10−1 −0.27 1.71 × 10−2 −0.27 3.28 × 10−2 −0.31

In Table 3 we see the error in the state and control with respect to the L2- and L∞-norm
and the corresponding rates of convergence on regular sparse grids with the gradient approach
and fold out basis functions. The rate of convergence shows a similar behaviour in all three
variables with values from 0.5 to values around 1.

For adaptive and regular sparse grids using the gradient approach and normal basis func-
tions we observe a similar behaviour, see Fig. 4. When using fold out hat functions in
comparison to normal ones we observe a slight reduction of the convergence rate for the
feedback law by comparison and the amplitude of the oscillations increases when using the
feedback law based on the gradient on adaptive sparse grids, see Fig. 5 and Table 4. In Fig. 6
the behaviour on regular and adaptive sparse grids with respect to the number of nodes is
shown. We again observe an oscillatory behaviour when using fold out basis functions on
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(a) (b)

Fig. 4 Harmonic oscillator (6.9) in 2D: comparing the scheme on regular sparse grids using normal hat and
fold out basis functions. a Error in the trajectory versus level, b error in the control versus level

(a) (b)

Fig. 5 Harmonic oscillator (6.9) in 2D: comparing the scheme on adaptive sparse grids using normal hat and
fold out basis functions. a Error in the trajectory versus ε, b error in the control versus ε

adaptive sparse grids. The corresponding adaptive sparse mesh at initial time with normal
and fold out basis functions is shown in Fig. 7.

Since we have numerically confirmed that the compare and gradient approaches behave
essentially the same, we only investigate the gradient approach for the following examples
to avoid the more costly comparison approach in the higher dimensional control spaces.

6.3 Control of the Semi-discrete Wave Equation (4D)

In this example we consider the optimal control problem (3.24) and (3.25) for the semi-
discrete wave equation (3.10) in dimension four, that means we discretize the state and
velocity by two modes using (3.7). We choose the parameters as

Q = [−3, 3]4, βy = 2, βu = 0.1, T = 4, Δt = 0.01, c = 0.05. (6.10)

Since a full grid approach is very costly in four dimensions, we consider directly the error
in the state and control along an optimal trajectory for a given initial point to study the
convergence. For the initial point x = (0.4, 0.6, 0, 0)T we see in Tables 5 and 6 the behaviour
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(a) (b)

Fig. 6 Harmonic oscillator (6.9) in 2D: comparing the scheme using the gradient approach 5.2.2 on adaptive
and regular sparse grids using normal hat and fold out basis functions. a Error in the trajectory versus nodes,
b error in the control versus nodes

(a) (b)

Fig. 7 Harmonic oscillator (6.9) in 2D: adaptive sparse grid for ε = 1.95× 10−4. a Normal hat functions, b
fold-out hat functions

of the error for d = 2 andm = 2 using fold out basis functions on regular and adaptive sparse
grids. Note that when using normal basis functions on an adaptive sparse grid we observe
a similar performance. In Fig. 8a we see the error on adaptive sparse grids. As before the
error with respect to the threshold ε behaves similarly for normal and fold out basis function,
here not only in the convergence rate, but also in absolute values. In this four dimensional
example the fold out basis functions use less basis functions for the same ε, therefore when
considering the error with respect to the number of nodes we observe in Fig. 8b that the
fold out basis functions perform better than the normal ones. Furthermore, when comparing
adaptive against regular sparse grids, we see from the figure and Tables 5 and 6 that the
adaptive scheme needs an order of magnitude less points for the same accuracy. Since the
absolute value of the entries in the stiffness matrix increase in higher dimension and require a
finer discretization, the behaviour of the error can therefore be interpreted in the way that the
adaptive algorithm automatically leads to adaptivity with respect to the different dimensions
leading to anisotropic sparse grids.
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Table 5 Wave equation (6.10) in
4D: error in the trajectory and
control with regular sparse grids
using the gradient approach and
fold out basis functions

Level ey∞ ρey∞ eu∞ ρeu∞ Nodes (end)

2 6.93 × 10−1 – 2.87 × 100 – 9

3 6.27 × 10−1 0.14 1.79 × 100 0.68 49

4 4.40 × 10−1 0.51 1.36 × 100 0.40 209

5 2.61 × 10−1 0.75 5.72 × 10−1 1.24 769

6 1.45 × 10−1 0.85 2.95 × 10−1 0.96 2561

7 9.00 × 10−2 0.68 1.95 × 10−1 0.59 7937

8 4.53 × 10−2 0.99 9.47 × 10−2 1.05 23,297

9 1.42 × 10−2 1.68 3.28 × 10−2 1.53 65,537

10 6.01 × 10−3 1.24 1.43 × 10−2 1.19 1.78 × 105

Table 6 Wave equation (6.10) in 4D: error in the trajectory and control with adaptive grids using the gradient
approach and fold out basis functions

ε ey∞ ρey∞ eu∞ ρeu∞ Nodes (end)

5.00−2 3.67 × 10−1 – 3.05 × 100 – 389

2.50−2 2.52 × 10−1 0.54 1.28 × 100 1.25 567

1.25−2 1.38 × 10−1 0.87 1.07 × 100 0.27 655

6.25−3 1.35 × 10−1 0.03 3.46 × 10−1 1.62 889

3.13−3 1.39 × 10−1 −0.04 3.29 × 10−1 0.07 1051

1.56−3 1.41 × 10−1 −0.02 4.50 × 10−1 −0.45 1231

7.81−4 8.73 × 10−2 0.70 1.42 × 10−1 1.67 1671

3.91−4 6.33 × 10−2 0.46 7.37 × 10−2 0.94 2207

1.95−4 4.53 × 10−2 0.48 5.23 × 10−2 0.49 3581

9.77−5 3.09 × 10−2 0.55 3.59 × 10−2 0.54 5133

4.88−5 1.94 × 10−2 0.67 3.04 × 10−2 0.24 9829

2.44−5 1.27 × 10−2 0.61 1.84 × 10−2 0.73 13,249

In Fig. 9 we confirm that the feedback control we derive from the value function leads to
a trajectory which coincide (up to a small error depending on the mesh parameter) with a
reference trajectory derived from a Riccati equation.

6.4 Control of the Semi-discrete Wave Equation (6D)

Next, we consider problem (3.24) and (3.25) for the semi-discrete wave equation (3.10) in
six dimensions with data as given in (6.10) and initial point x = (0.4, 0.6, 0.2, 0, 0, 0)T .
Note that we have to decrease the size of the time step to Δt = 0.0025 when increasing
the entries in the stiffness matrix. We remark that larger entries in the stiffness matrix lead
to an increase of the derivative |Hp(x, p)|, which requires in the context of finite difference
schemes a smaller time step because of the CFL-condition. As before we use the gradient
approach to derive the feedback and now employ only fold out basis function to keep the
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(a) (b)

Fig. 8 Wave equation (6.10) in 4D: error in the control comparing the scheme based on sparse grids using
normal hat and fold out basis functions, regular and adaptive sparse grids. a Error in the control versus ε, b
error in the control versus nodes

(a) (b) (c)

(d) (e) (f)

Fig. 9 Wave equation (6.10) in 4D: Components of the optimal state y and corresponding optimal control u
resulting from the SL-SG approach on a sparse grid with threshold ε = 2.44× 10−5. As a reference solution
the corresponding components of a solution generated by a Riccati approach are presented. a y1, b y3, c u1,
d y2, e y4, f u2

computational cost low. In Table 7 and Fig. 10 the behaviour in the state along an optimal
trajectory is shown, overall similar to the 4D case, although a certain resolution needs to be
there for the convergence to kick in.
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Table 7 Wave equation (6.10) in 6D: error in the trajectory and control with adaptive grids using the gradient
approach and fold out basis functions

ε ey∞ ρey∞ eu∞ ρeu∞ Nodes (end)

5.00−2 5.75 × 10−1 – 1.69 × 100 – 43

2.50−2 5.78 × 10−1 −0.01 1.70 × 100 −0.01 69

1.25−2 1.51 × 10−1 1.94 2.33 × 100 −0.45 1015

6.25−3 1.18 × 10−1 0.36 1.77 × 100 0.40 919

3.13−3 1.11 × 10−1 0.09 3.07 × 10−1 2.52 1549

1.56−3 1.14 × 10−1 −0.04 4.15 × 10−1 −0.44 1779

7.81−4 1.06 × 10−1 0.10 3.13 × 10−1 0.41 2053

3.91−4 7.73 × 10−2 0.46 2.12 × 10−1 0.56 2851

1.95−4 4.80 × 10−2 0.69 1.03 × 10−1 1.04 3657

9.77−5 2.98 × 10−2 0.69 5.35 × 10−2 0.95 5415

4.88−5 2.35 × 10−2 0.34 3.68 × 10−2 0.54 9691

2.44−5 1.59 × 10−2 0.57 2.59 × 10−2 0.51 12,507

(a) (b)

Fig. 10 Wave equation (6.10) in 6D: the adaptive sparse grids scheme using fold out basis functions. a error
in the trajectory versus ε, b error in the control versus ε

6.5 Control of the Semi-discrete Wave Equation (8D)

Next, we consider problem (3.24) and (3.25) for the semi-discrete wave equation (3.10) in
eight dimensionwith data as given in (6.10) and initial point x=(0.4, 0.6, 0.2, 0.1, 0, 0, 0, 0)T .
Again, we needed to decrease the time step, now to Δt = 0.00125. In Fig. 11 and Table 8
we see the errors with respect to the threshold ε. Again, the approach needs a certain reso-
lution for a stable convergence behaviour, which now starts for a smaller ε than in the 6D
case. The number of mesh points on the finest refinement level is still moderate, however the
computational cost is relatively high.

This being our example with the largest number of dimensions, we note that we needed
about 2.5GB of main memory during the computation for the finest resolution.
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Table 8 Wave equation (6.10) in 8D: error in the trajectory and control with adaptive grids using the gradient
approach and fold out basis functions

ε ey∞ ρey∞ eu∞ ρeu∞ Nodes (end)

5.00−2 5.64 × 10−1 – 1.63 × 100 – 49

2.50−2 5.74 × 10−1 −0.03 1.68 × 100 −0.04 63

1.25−2 5.77 × 10−1 −0.01 3.32 × 100 −0.98 241

6.25−3 1.40 × 10−1 2.04 2.51 × 100 0.40 1391

3.13−3 1.17 × 10−1 0.26 1.78 × 100 0.50 1455

1.56−3 1.15 × 10−1 0.03 3.57 × 10−1 2.32 2169

7.81−4 1.08 × 10−1 0.09 3.56 × 10−1 0.00 2759

3.91−4 1.01 × 10−1 0.11 3.81 × 10−1 −0.10 3283

1.95−4 7.26 × 10−2 0.47 2.18 × 10−1 0.81 5011

9.77−5 3.89 × 10−2 0.90 6.92 × 10−2 1.65 7113

4.88−5 2.90 × 10−2 0.43 4.98 × 10−2 0.47 9059

(a) (b)

Fig. 11 Wave equation (6.10) in 8D: the adaptive sparse grids scheme using fold out basis functions. a Error
in the trajectory versus ε, b error in the control versus ε

6.6 Control of a Bilinear System (2D)

In this last example we consider a dynamics arising from a bilinear dynamical system which
is of Schrödinger type, see (3.19). Because of the nonlinear coupling of state and control the
Riccati approach is here not directly applicable.

We consider two settings; while in the first one we observe numerically a smooth value
function, in the second one a non-differentiability appears.

Remark 1 If the value function is not differentiable in a point (x, t), then (x, t) is not a
regular point, i.e. there exists not a unique optimal trajectory y∗(·) starting in x at time t with
y∗(t) = x , see [18, p. 42, Thm. 10.2].
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(a) (b)

Fig. 12 Bilinear equation (6.11): error in the value function comparing the scheme based on sparse grids
using normal and fold out basis functions, adaptive sparse grid (2D). a Error in the value function versus ε, b
error in the value function versus nodes

(a) (b)

Fig. 13 Bilinear equation (6.12) in 2D: error in the value function comparing the scheme based on sparse
grids using normal and fold out basis functions, adaptive sparse grid. a Error in the value function versus ε, b
error in the value function versus nodes

Example 1 Let Q = [−2, 2]2, T = 1,Δt = 1/200, βy = 2, βu = 0.1,

As =
(

0 0.1
−0.1 0

)

, B̂ =
(

0 −0.1
0.1 0

)

, M =
(
1 0
0 1

)

, (6.11)

and control bounds inactive, i.e. we choose Us = [−10, 10] big enough for the comparison
approach. For computing a reference value function as described in Sect. 6.1 we choose Δx
and Δt as given in Sect. 6.2. In Fig. 12 we see the error when using comparison and the
gradient. Using normal/fold out basis functions and a comparison/gradient based approach
lead to a similar behaviour of the error in the value function with respect to the threshold ε.

Example 2 Let

As =
(

0 0.5
−0.5 0

)

, B̂ =
(

0 −0.5
0.5 0

)

, (6.12)
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(a) (b)

Fig. 14 Bilinear equation (6.11) and (6.12) in 2D: adaptive sparse grid. a Example (6.11) with feedback (5.3),
fold-out basis functions and ε = 1.95× 10−4, b example (6.12) with feedback (5.3), fold-out basis functions
and ε = 7.78 × 10−4

and, besides Δt = 1/500, the other parameters as in Example 1, and let the control space be
given byU = [−4, 4]. In Fig. 13we see the behaviour of the error when using the comparison
approach and normal and fold out basis functions, respectively. In Fig. 14 the meshes for
ε = 1.95 × 10−4 and ε = 7.78 × 10−4 are shown. We observe a strong refinement of the
mesh along the non-differentiability.

In both example we observe a similar convergence behaviour as for the wave equation.
Furthermore, in this two dimensional setting again the different approaches lead to quite the
same results.

7 Outlook

The presented approach allows to include further aspects to increase the accuracy and to
reduce the computational costs. A higher order interpolation could be used within the semi-
Lagrangian scheme (cf. also [46]). Additionally an efficient numerical algorithm to determine
the minimum within the Hamiltonian in the semi-Lagrangian scheme could be developed
which is also suitable for a more general class of cost functionals. Finally information on the
basis function could be used to introduce a priori an adaptivity with respect to the dimensions.

Note that the computational bottleneck is the evaluation of the sparse grid function in
the scheme (5.1). Our current proof-of-concept implementation is essentially unoptimized
for this aspect. The more evolved and sophisticated SG++-library [43] already would most
likely show a much reduced computational time. Furthermore, there are recent results for
more efficient and suitable data structures for sparse grids which take machine constraints
into consideration [12], which have the potential to gain a factor of two to three in serial
runtime against the mature SG++, while allowing for multicore parallelism. In conclusion,
although the runtime for the eight dimensional problem is in our implementation in the order
of days, it is fully justified to assume it can be reduced to hours, if not less, on multicore
architectures.

Besides an efficient implementation of the sparse grid function evaluation, two other
aspects warrant further investigation. One is the interplay between spatial and time resolution.
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While in this work we concentrated on the spatial resolution, it is well known that these
discretizations should be analyzed jointly. Here, the non-local nature of the sparse grid basis
function pose additional difficulties in the analysis. The other is the spatial adaptivity, here we
concentrated on using the hierarchical coefficients, but these refine in all dimensions, which
results in the examples in overrefinement in some dimensions due to anisotropic nature of the
problem. Only through the coarsening these grid points will be removed again, but of course
it would be much more efficient, if the adaptive procedure only refines in some dimensions.
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