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Abstract The classical weak formulation of theHelmholtz transmission eigenvalue problem
can be linearized into an equivalent nonsymmetric eigenvalue problem. Based on this non-
symmetric eigenvalue problem, we first discuss the a posteriori error estimates and adaptive
algorithm of conforming finite elements for the Helmholtz transmission eigenvalue problem.
We give the a posteriori error indicators for primal eigenfunction, dual eigenfunction and
eigenvalue. Theoretical analysis shows that the indicators for both primal eigenfunction and
dual eigenfunction are reliable and efficient and that the indicator for eigenvalue is reliable.
Numerical experiments confirm our theoretical analysis.

Keywords Transmission eigenvalues · A posteriori error estimates · Adaptive algorithm

1 Introduction

The transmission eigenvalue problem arises in inverse scattering theory for an inhomo-
geneous medium. They can be used to obtain estimates for the material properties of the
scattering object and have theoretical importance in the uniqueness and reconstruction in
inverse scattering theory [1,2].

In recent years, the numerical methods of the transmission eigenvalue problem are hot
topics in the field of engineering and computational mathematics. The first numerical study
was made by Colton et al. [3] in 2010 and involves three numerical methods. Later on, their
works have been developed by [4–10]. These works mentioned above provide some efficient
computational approaches. Among them [4,7,8,10] discussed the a priori error estimates for
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finite element methods of the transmission eigenvalue problem. In 2011, Sun [4] proposed
the iterative methods for computing real eigenvalues coupled with a coarse error analysis on
the numerical eigenvalues. Based on his work, Ji et al. [7] further proved the accurate error
estimates of the iterative methods and put forward an efficient mutigrid method to compute
the real transmission eigenvalues. In addition, more recently Cakoni et al. [8] also made an
error analysis for eigenvalues by a mixed finite element method. A relatively complete error
analysis of an H2 conforming finite element method and a two grid algorithm arose in [10].

The a posteriori error estimates and adaptive finite element methods are always the main
streams of scientific and engineering computing. The idea of the a posteriori error estimates
were first introduced by Babuska and Rheinboldt [11] in 1978. A few decades later, there
have developed many types of a posteriori error estimates such as residual type [12–15] and
recovery type [16,17]. Up to now, many excellent works have been summarized in the books
such as [18–20].A posteriori error estimates of residual type have been applied to conforming
or nonconforming finite elements of second and fourth order elliptic eigenvalue problems.
But to our knowledge, there does not exist any research on a posteriori error estimates and
adaptive algorithms for the transmission eigenvalue problem and so deriving the a posteriori
error estimates for the problem is still a new topic. Hence the aim of this paper is to fill in
the gap.

The classical weak formulation of the transmission eigenvalue problem is essentially a
quadratic and fourth order eigenvalue problem (see, e.g., [3,4,8,27]).Deriving thea posteriori
error estimates directly for this quadratic problem is a very challenging task. A feasible way
for this purpose, just like the way adopted by the literatures [8,10], is to linearize the classical
weak formulation into a nonsymmetric eigenvalue problem. In recent years, there are many
works regarding finite element adaptive algorithms for nonsymmetric eigenvalue problems
but mainly for second order elliptic eigenvalue problems, such as the works of Heuveline
and Rannacher [21,22], Carstensen et al. [23–25], and Giani et al. [26].

In this paper, using the linear weak formulation proposed by [10], we aim to study the a
posteriori error estimates of residual type for the transmission eigenvalue problem and give
an efficient finite element adaptive algorithm. We first give the a posteriori error indicators
for the primal eigenfunction and the dual eigenfunction and prove their reliability and effi-
ciency. Thanks to the basic relation between the eigenvalue and its approximate eigenvalue
(see Lemma 3.6), we give the a posteriori error indicator for the eigenvalue. The difficulty
of theoretical analysis lies in the nonsymmetry, with derivatives, at the right side hand of
the eigenvalue problem. Based on the given a posteriori error indicator, we design an effi-
cient adaptive algorithm. This algorithm can be used to compute the multiple and complex
eigenvalues. Finally in numerical experiments, we adopt the Argyris element to implement
the adaptive algorithm and numerical results not only confirm the efficiency and reliability
of the indicator but also indicate that in many cases the error of numerical eigenvalues can
achieve the optimal convergence order O(dof −4) even on a nonconvex domain.

2 Preliminaries

Let Hs(D) be a Sobolev space with norm ‖ · ‖s (s = 1, 2), and

H2
0 (D) =

{
v ∈ H2(D) : v|∂D = ∂v

∂ν
|∂D = 0

}
.

Consider the Helmholtz transmission eigenvalue problem: Find k ∈ C, ω, σ ∈ L2(D),
ω − σ ∈ H2(D) such that
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Δω + k2n(x)ω = 0, in D, (2.1)

Δσ + k2σ = 0, in D, (2.2)

ω − σ = 0, on ∂D, (2.3)
∂ω

∂ν
− ∂σ

∂ν
= 0, on ∂D, (2.4)

where D ⊂ R
t (t = 2, 3) is an bounded Lipschitz polyhedron, and ν is the unit outward

normal to ∂D.
Let u = ω − σ . Then the eigenvalue problem (2.1)–(2.4) can be stated as the classical

weak formulation below (see, e.g., [1,3,27]): Find k2 ∈ C, k2 �= 0, nontrivial u ∈ H2
0 (D)

such that (
1

n(x) − 1
(Δu + k2u),Δv + k

2
n(x)v

)
0

= 0, ∀v ∈ H2
0 (D), (2.5)

where (·, ·)0 is the inner product of L2(D). As usual, we define λ = k2 as the transmission
eigenvalue in this paper. We suppose that the index of refraction n ∈ L∞(D) satisfying the
following assumption

1 + δ ≤ n(x) a.e. in Ω,

for some constant δ > 0, although, with obvious changes, the theoretical analysis in this
paper also holds for n strictly less than 1. For simplicity, throughout this paper we assume
n(x) ∈ W 1,∞(D)

⋂
H2(D).

Define Hilbert spaces H = H2
0 (D) × L2(D) and Hs(K ) = Hs(K ) × Hs−2(K ). Let

‖ · ‖s,K be the norm in Hs(K ) for a given K ⊆ D. Using the same notation, we define
the norm in Hs(K ) as ‖(u, w)‖s,K = ‖u‖s,K + ‖w‖s−2,K . We write H1 := H1(D) for
simplicity.

From (2.5) we derive that(
1

n − 1
Δu,Δv

)
0
− λ

(
∇

(
1

n − 1
u

)
,∇v

)
0

− λ

(
∇u,∇

(
n

n − 1
v

))
0
+ λ2

(
n

n − 1
u, v

)
0

= 0, ∀v ∈ H2
0 (D).

Let w = λu, then we arrive at a linear weak formulation: Find (λ, u, w) ∈ C × H2
0 (D) ×

L2(D) such that(
1

n − 1
Δu,Δv

)
0

= λ

(
∇

(
1

n − 1
u

)
,∇v

)
0

+ λ

(
∇u,∇

(
n

n − 1
v

))
0
− λ

(
n

n − 1
w, v

)
0
, ∀v ∈ H2

0 (D), (2.6)

(w, z)0 = λ(u, z)0, ∀z ∈ L2(D). (2.7)

We introduce the following sesquilinear forms

A((u, w), (v, z)) =
(

1

n − 1
Δu,Δv

)
0
+ (w, z)0,

B((u, w), (v, z))

=
(

∇
(

1

n − 1
u

)
,∇v

)
0
+

(
∇u,∇

(
n

n − 1
v

))
0
−

(
n

n − 1
w, v

)
0
+ (u, z)0,
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then (2.5) can be rewritten as the following problem (primal problem): Find λ ∈ C, nontrivial
(u, w) ∈ H such that

A((u, w), (v, z)) = λB((u, w), (v, z)), ∀(v, z) ∈ H. (2.8)

Let norm ‖ · ‖A be induced by the inner product A(·, ·), then it is clear ‖ · ‖A is equivalent to
‖ · ‖2,D in H.

One can easily verify that for any given ( f, g) ∈ H1, B(( f, g), (v, z)) is a continuous
bilinear form on H1:

B(( f, g), (v, z)) � ‖( f, g)‖1,D‖(v, z)‖1,D, ∀(v, z) ∈ H1. (2.9)

Here and hereafter we use the symbols x � y to mean x ≤ Cy for a constant C that is
independent of the mesh size and may be different at different occurrences.

Consider the dual problem of (2.8): Find λ∗ ∈ C, nontrivial (u∗, w∗) ∈ H such that

A((v, z), (u∗, w∗)) = λ∗B((v, z), (u∗, w∗)), ∀(v, z) ∈ H, (2.10)

or equivalently,(
1

n − 1
Δu∗,Δv

)
0

= λ∗
(

∇u∗,∇
(

1

n − 1
v

))
0

+ λ∗
(

∇
(

n

n − 1
u∗

)
,∇v

)
0
+ λ∗(w∗, v)0, ∀v ∈ H2

0 (D), (2.11)

(w∗, z)0 = −λ∗
(

n

n − 1
u∗, z

)
0
, ∀z ∈ L2(D). (2.12)

Note that the primal and dual eigenvalues are connected via λ = λ∗.
Define the corresponding solution operator T ∗ : H1 → H by

A((v, z), T ∗( f, g)) = B((v, z), ( f, g)), ∀(v, z) ∈ H.

In order to discretize the spaceH, we need two finite element spaces to discretize H2
0 (D)

and L2(D) respectively. Since H2
0 (D) ⊂ L2(D) here we can construct only one conforming

finite element space Sh ⊂ H2
0 (D) of the piecewise polynomial degree ≤ l such that Hh :=

Sh × Sh ⊂ H2
0 (D) × L2(D). For example, Sh can be taken as the Argyris element or the

Bell element space. Let {πh}h>0 be a sequence of shape regular meshes of D and κ be an
element on πh with the diameter hκ .

The conforming finite element approximation of (2.8) is given by the following: Find
λh ∈ C, nontrivial (uh, wh) ∈ Hh such that

A((uh, wh), (v, z)) = λh B((uh, wh), (v, z)), ∀(v, z) ∈ Hh . (2.13)

To give the error of eigenfunction (uh, wh) in the norm ‖ · ‖1,D we make the following
regularity assumption:

R(D). For any ξ ∈ H−1(D), there exists ψ ∈ H2+r1(D) satisfying

Δ

(
1

n − 1
Δψ

)
= ξ, in D,

ψ = ∂ψ

∂ν
= 0, on ∂D,

and

‖ψ‖2+r1 ≤ Cp‖ξ‖−1, (2.14)
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where r1 ∈ (0, 1], Cp denotes the prior constant dependent on the equation and D but
independent of the right-hand side ξ of the equation.

It is easy to know that (2.14) is valid with r1 = 1when n and ∂D are appropriately smooth.
When n is a constant and D ⊂ R

2 is a convex polygon, from Theorem 2 in [28] we can get
r1 = 1.

The conforming finite element approximation of (2.10) is given by: Find λ∗
h ∈ C,

(u∗
h, w

∗
h) ∈ Hh such that

A((v, z), (u∗
h, w

∗
h)) = λ∗

h B((v, z), (u∗
h, w

∗
h)), ∀(v, z) ∈ Hh . (2.15)

Note that the primal and dual eigenvalues are connected via λh = λ∗
h .

Define the corresponding solution operator T ∗
h : H1 → Hh satisfying

A((v, z), T ∗
h ( f, g)) = B((v, z), ( f, g)), ∀ (v, z) ∈ Hh .

For reading convenience we adopt the following notation in this paper. Let λ be the
i th eigenvalue of (2.8) with the ascent α. Assume there are q eigenvalues λ j,h ( j =
i, · · · , i + q − 1) of (2.13) converging to λ. Let M(λ) be the space spanned by all gen-
eralized eigenfunctions corresponding to the eigenvalue λ. Let Mh(λ) be the space spanned
by all generalized eigenfunctions of (2.13) corresponding to the eigenvalues {λ j,h}i+q−1

j=i . As
for the dual problems (2.10) and (2.15), the definitions of M∗(λ∗) and M∗

h (λ∗) are made
similarly to M(λ) and Mh(λ), respectively. In what follows, to characterize the approxima-
tion relation of the finite element spaceHh to M(λ) and M∗(λ∗), we introduce the following
quantities

δh(λ) = sup
(v,z)∈M(λ)

‖(v,z)‖2,D=1

inf
(vh ,zh)∈Hh

‖(v, z) − (vh, zh)‖2,D,

δ∗
h(λ

∗) = sup
(v,z)∈M∗(λ∗)
‖(v,z)‖2,D=1

inf
(vh ,zh)∈Hh

‖(v, z) − (vh, zh)‖2,D .

Using the spectral approximation theory [29,30], [10] established the following a priori
error estimates for the finite element approximation (2.13).

Lemma 2.1 Let λh be an eigenvalue of the problem (2.13) that converges to λ. Let (uh, wh)

be an eigenfunction of the problem (2.13) and ‖(uh, wh)‖A = 1, then there exists a primal
eigenfunction (u, w) such that

‖(uh, wh) − (u, w)‖2,D � δh(λ)1/α, (2.16)

‖(uh, wh) − (u, w)‖1,D � hr1‖(uh, wh) − (u, w)‖2,D f or α = 1, (2.17)

|λ − λh | � (δh(λ)δ∗
h(λ

∗))1/α. (2.18)

For any (u∗
h, w

∗
h) ∈ M∗

h (λ∗) satisfying ‖(u∗
h, w

∗
h)‖A = 1, there exists (u∗, w∗) ∈ M∗(λ∗)

such that

‖(u∗
h, w

∗
h) − (u∗, w∗)‖2,D � δ∗

h(λ
∗), (2.19)

‖(u∗
h, w

∗
h) − (u∗, w∗)‖1,D � hr1‖(u∗

h, w
∗
h) − (u∗, w∗)‖2,D f or α = 1. (2.20)

Remark 2.1 The similar estimates as (2.16)–(2.18) are valid for the finite element approxi-
mation (2.15) of the dual problem (2.10) (see [10]).
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3 A Posteriori Error Estimates

In this section,we aim to derive thea posteriori error estimates for the transmission eigenvalue
problem. First of all, we give the local a posteriori error indicators ηκ and η∗

κ for the primal
eigenfunction (uh, wh) and the dual eigenfunction (u∗

h, w
∗
h). Here we use the symbol f̃ to

denote the polynomial interpolation for the function f on its definition domain G, which is
bounded from a Sobolev space between H2(Ĝ) and H1(Ĝ) into H2(Ĝ) with Ĝ being the
reference element of G, into polynomial space of degree ≤ mG , G = e, k. Throughout this
section, the symbol e represents an edge in R

2 or an face in R
3 on the mesh πh . On one hand,

we define the local error indicator of the primal eigenfunction (uh, wh)

η2κ (uh, wh) := η2Tκ
(uh, wh) + η2Eκ

(uh).

For any element κ ∈ πh , we define the element residual

ηTκ (uh, wh) := h2κ‖R̂κ (uh, wh)‖0,κ
with

R̂κ (uh, wh) = Δ

(
1̃

n − 1
Δuh

)
+ Δ

(
λ̃h

n − 1
uh

)
+ λ̃hn

n − 1
Δuh + λ̃hn

n − 1
wh

being an approximation of

Rκ (uh, wh) = Δ

(
1

n − 1
Δuh

)
+ Δ

(
λh

n − 1
uh

)
+ λhn

n − 1
Δuh + λhn

n − 1
wh .

Note that ñ
n−1 and

1̃
n−1 are well defined since we have assumed n(x) ∈ W 1,∞(D)

⋂
H2(D).

In what follows, the definition of R̂e,1, R̂e,2, R̂∗
κ,1, R̂

∗
κ,2 are similar and thus omitted. For any

edge (in R
2) or face (in R

3) e ⊂ ∂κ ∩ D, we define the element edge or face residual

ηEκ (uh) :=
{ ∑
e⊂∂κ∩D

(
he‖R̂e,1(uh)‖20,e + h3e‖R̂e,2(uh)‖20,e

)}1/2

with

Re,1(uh) =
[[

1

n − 1
Δuh

]]
e

and

Re,2(uh) =
[[

∇(
1

n − 1
Δuh) · νe

]]
e
,

where the symbol [[·]]e represents the jump across the edge or face e.
On the other hand, we define the local error indicator of the dual eigenfunction (u∗

h, w
∗
h)

η∗2
κ (u∗

h, w
∗
h) := η∗2

Tκ
(u∗

h, w
∗
h) + η∗2

Eκ
(u∗

h). (3.1)

For any element κ ∈ πh , we define the element residual

η∗2
Tκ

(u∗
h, w

∗
h) := h4κ‖R̂∗

κ,1(u
∗
h, w

∗
h)‖20,κ + h4κ‖R̂∗

κ,2(u
∗
h, w

∗
h)‖20,κ
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with

R∗
κ,1(u

∗
h, w

∗
h) = Δ

(
1

n − 1
Δu∗

h

)
+ Δ

(
λ∗
h

n − 1
u∗
h

)
+ λ∗

hn

n − 1
Δu∗

h − λ∗
hw

∗
h, (3.2)

R∗
κ,2(u

∗
h, w

∗
h) = w∗

h + λ∗
hn

n − 1
u∗
h . (3.3)

For any edge or face e ⊂ ∂κ ∩ D, we define the element edge or face residual

η∗
Eκ

(u∗
h) :=

{ ∑
e⊂∂κ∩D

(
he‖R̂e,1(u

∗
h)‖20,e + h3e‖R̂e,2(u

∗
h)‖20,e

)}1/2
.

Finally the global error indicators can be given as

ηh(uh, wh) =
{ ∑

κ∈πh

η2κ (uh, wh)

}1/2

,

η∗
h(u

∗
h, w

∗
h) =

{ ∑
κ∈πh

η∗2
κ (u∗

h, w
∗
h)

}1/2

.

The following interpolation error estimate of projection-meanoperator (see [20]) is a powerful
tool to analyze the reliability of the indicators ηh(uh, wh) and η∗

h(u
∗
h, w

∗
h).

Lemma 3.1 Assume Sh is the finite element space with at most third order derivative in
every node and non-zero dimensional face (edge in R

2 or edge and face in R
3) degrees

of freedom. Then there exists a linear bounded operator Ih : L2(D) → Sh such that the
following estimates hold for any element κ ∈ πh and any edge or face e ⊂ ∂κ ∩ D

‖φ − Ihφ‖ j,κ � hs− j
κ ‖φ‖s,ωκ , 1 ≤ s ≤ l + 1, 0 ≤ j ≤ s, ∀φ ∈ Hs(D), (3.4)

‖φ − Ihφ‖0,e + he‖νe · ∇(φ − Ihφ)‖0,e � h3/2e ‖φ‖2,ωκ , ∀φ ∈ H2(D), (3.5)

where ωκ is the union of elements sharing at least one node with κ .

The following two theorems shows respectively the global reliability of the indicators
ηh(uh, wh) and η∗

h(u
∗
h, w

∗
h).

Theorem 3.1 Let (uh, wh, λh) be an eigenpair of the discrete problem (2.13), then there
exists an eigenpair (u, w, λ) of the primal problem (2.8) such that

‖(u, w) − (uh, wh)‖A � ηh(uh, wh) + ‖λ(u, w) − λh(uh, wh)‖1,D
+

{ ∑
κ∈πh

[
h4κ‖R̂κ (uh, wh) − Rκ (uh, wh)‖20,κ

+
∑

e⊂∂κ∩D

(
he‖R̂e,1(uh) − Re,1(uh)‖20,e

+ h3e‖R̂e,2(uh) − Re,2(uh)‖20,e
)]}1/2

. (3.6)
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Proof Denote eh = (u, w) − (uh, wh) and Ieh = (Ih(u − uh), Ih(w − wh)). A direct
calculation shows that

‖(u, w) − (uh, wh)‖2A = A((u, w) − (uh, wh), eh − Ieh)

+ A((u, w) − (uh, wh), Ieh)

= B(λ(u, w), eh − Ieh) − A((uh, wh), eh − Ieh)

+ B(λ(u, w) − λh(uh, wh), Ieh)

= B(λ(u, w), eh) − B(λh(uh, wh), Ieh) − A((uh, wh), eh − Ieh)

= B(λh(uh, wh), eh − Ieh) − A((uh, wh), eh − Ieh)

+ B(λ(u, w) − λh(uh, wh), eh). (3.7)

For any (v, z) ∈ H, the integration by parts leads to

B((uh, wh), (v, z))

=
(

∇
(

1

n − 1
uh

)
,∇v

)
0
+

(
∇uh,∇

(
n

n − 1
v

))
0
−

(
n

n − 1
wh, v

)
0
+ (uh, z)0

=
(

−Δ

(
1

n − 1
uh

)
− n

n − 1
Δuh − n

n − 1
wh, v

)
0
+ (uh, z)0

and

A((uh, wh), (v, z)) =
(

1

n − 1
Δuh,Δv

)
0
+ (wh, z)0

=
∑
κ∈πh

{ ∫
κ

Δ

(
1

n − 1
Δuh

)
v + 1

2

∑
e⊂∂κ∩D

([[
(

1

n − 1
Δuh)∇v · νe

]]
e

− [[
v∇

(
1

n − 1
Δuh

)
· νe

]]
e

)}
+ (wh, z)0.

It is immediate that

A((uh, wh), (v, z)) − B(λh(uh, wh), (v, z))

=
∑
κ∈πh

{ ∫
κ

(
Δ(

1

n − 1
Δuh) + Δ

(
λh

n − 1
uh

)
+ λhn

n − 1
Δuh + n

n − 1
λhwh

)
v

+ 1

2

∑
e⊂∂κ∩D

∫
e

([[
(

1

n − 1
Δuh)∇v · νe

]]
e − [[

v∇
(

1

n − 1
Δuh

)
· νe

]]
e

)}
.

Hence taking (v, z) = eh − Ieh and using Lemma 3.1 we have

|A((uh, wh), (v, z)) − B(λh(uh, wh), (v, z))| �
∑
κ∈πh

{
‖Rκ (uh, wh)‖0,κ‖v‖0,κ

+
∑

e⊂∂κ∩D

(
‖Re,1(uh)‖0,e‖νe · ∇v‖0,e + ‖Re,2(uh)‖0,e‖v‖0,e

)}

� ‖eh‖2,D
{ ∑

κ∈πh

[
h4κ‖Rκ (uh, wh)‖20,κ

+
∑

e⊂∂κ∩D

(
he‖Re,1(uh)‖20,e + h3e‖Re,2(uh)‖20,e

)]}1/2
.
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By virtue of triangle inequality, (3.7) together with the above inequality and (2.9) yields (3.6).
��

Theorem 3.2 Let (u∗
h, w

∗
h, λ

∗
h) be an eigenpair of the discrete problem (2.15), then there

exists an eigenpair (u∗, w∗, λ∗) of the dual problem (2.10) such that

‖(u∗, w∗) − (u∗
h, w

∗
h)‖A � η∗

h(u
∗
h, w

∗
h) + ‖λ∗(u∗, w∗) − λ∗

h(u
∗
h, w

∗
h)‖1,D

+
{ ∑

κ∈πh

[
h4κ

∑
i=1,2

‖R̂∗
κ,i (u

∗
h, w

∗
h) − R∗

κ,i (u
∗
h, w

∗
h)‖20,κ

+
∑

e⊂∂κ∩D

(
he‖R̂e,1(u

∗
h) − Re,1(u

∗
h)‖20,e

+ h3e‖R̂e,2(u
∗
h) − Re,2(u

∗
h)‖20,e

)]}1/2
. (3.8)

Proof Notice that for all (v, z) ∈ H, A((v, z), (u∗
h, w

∗
h)) = A((u∗

h, w
∗
h), (v, z)) and

B((v, z), λ∗
h(u

∗
h, w

∗
h))

= (∇(
λ∗
hn

n − 1
u∗
h),∇v)0 + (λ∗

h∇u∗
h,∇(

1

n − 1
v))0 − (

λ∗
hn

n − 1
u∗
h, z)0 + (λ∗

hw
∗
h, v)0

= (∇(
λ∗
h

n − 1
u∗
h),∇v)0 + (λ∗

h∇u∗
h,∇(

n

n − 1
v))0 − (

λ∗
hn

n − 1
u∗
h, z)0 + (λ∗

hw
∗
h, v)0.

We set e∗
h = (u∗, w∗) − (u∗

h, w
∗
h) and Ie∗

h = (Ih(u∗ − u∗
h), Ih(w

∗ − w∗
h)). Using the similar

argument to show (3.7) yields

‖(u∗, w∗) − (u∗
h, w

∗
h)‖2A

= B(e∗
h, λ

∗(u∗, w∗) − λ∗
h(u

∗
h, w

∗
h)) + B(e∗

h − Ie∗
h, λ

∗
h(u

∗
h, w

∗
h))

− A(e∗
h − Ie∗

h, (u
∗
h, w

∗
h)). (3.9)

It is immediate that

A((v, z), (u∗
h, w

∗
h)) − B((v, z), λ∗

h(u
∗
h, w

∗
h))

=
∑
κ∈πh

{ ∫
κ

((
Δ(

1

n − 1
Δu∗

h) + Δ(
λ∗
h

n − 1
u∗
h) + λ∗

hn

n − 1
Δu∗

h − λ∗
hw

∗
h

)
v

+ (w∗
h + λ∗

hn

n − 1
u∗
h)z

)

+ 1

2

∑
e⊂∂κ∩D

∫
e

([[
(

1

n − 1
Δu∗

h)∇v · νe
]]

e − [[
v∇(

1

n − 1
Δu∗

h) · νe
]]

e

)}
.

The similar argument used in the proof of Theorem 3.1 can show (3.8). ��
Next we shall prove the local efficiency of the indicator ηk for the primal problem (2.8).

We need to estimate the upper bound of the terms with respect to R̂κ (uh, wh), R̂e,1(uh) and
R̂e,2(uh) step by step.

Lemma 3.2 The following estimate of element residual holds for the primal eigenpair
(u, w, λ) and its approximate eigenpair (uh, wh, λh)

h2κ‖R̂κ (uh, wh)‖0,κ � ‖uh − u‖2,κ + h2κ‖wh − w‖0,κ + hκ |λh − λ|
+ h2κ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,κ . (3.10)
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Proof Define the H2
0 (κ) function wκ = b2κ R̂κ (uh, wh) with the bubble function bκ = (t +

1)t+1Lκ,1Lκ,2 · · · Lκ,t+1 where Lκ,1, Lκ,2, · · · , Lκ,t+1 are the barycentric coordinates of κ .
Using (2.6) with v = wκ we have∫

κ

Rκ (uh, wh)wκ =
∫
κ

{ 1

n − 1
ΔuhΔwκ − ∇(

λh

n − 1
uh) · ∇wκ

− λh∇uh · ∇(
n

n − 1
wκ) + n

n − 1
λhwhwκ

}

� ‖uh − u‖2,κ‖wκ‖2,κ + ‖wh − w‖0,κ‖wκ‖0,κ + |λh − λ|‖wκ‖1,κ
� (h−2

κ ‖uh − u‖2,κ + ‖wh − w‖0,κ + h−1
κ |λh − λ|)‖wκ‖0,κ ,

hence

‖R̂κ (uh, wh)‖20,κ �
∫
κ

(
Rκ (uh, wh) + R̂κ (uh, wh) − Rκ (uh, wh))wκ

� (h−2
κ ‖uh − u‖2,κ + ‖wh − w‖0,κ + h−1

κ |λh − λ|)‖wκ‖0,κ
+ ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,κ‖wκ‖0,κ .

And (3.10) follows. ��
Lemma 3.3 Assume n(x) ∈ W 2,∞(κ) for all κ ∈ πh. The following estimates of element
edge or face residual holds for the primal eigenpair (u, w, λ) and its approximate eigenpair
(uh, wh, λh)

h1/2e ‖R̂e,1(uh)‖0,e � ‖uh − u‖2,ωe + h2e‖wh − w‖0,ωe + he|λh − λ|
+ h2e‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ωe

+ h1/2e ‖R̂e,1(uh) − Re,1(uh)‖0,e, e ⊂ ∂κ ∩ D, (3.11)

h3/2e ‖R̂e,2(uh)‖0,e � ‖uh − u‖2,ωe + h2e‖wh − w‖0,ωe + he|λh − λ|
+ h2e‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ωe

+ h1/2e ‖R̂e,1(uh) − Re,1(uh)‖0,e
+ h3/2e ‖R̂e,2(uh) − Re,2(uh)‖0,e, e ⊂ ∂κ ∩ D, (3.12)

where ωe is the union of elements sharing the edge or face e.

Proof First we shall estimate R̂e,1(uh). Define the H2
0 (ωe) function we,1 = (bκ2 −

bκ1)be R̂e,1(uh) which vanishes on the edge or face e, where be is defined by enumerating
the the vertices of κ1 and κ2 such that the vertices of e are numbered first:

be =
{ t t Lκi ,1Lκi ,2 · · · Lκi ,t , in κi ,

0, D \ ωe.

Note that we,1 is continuously differentiable across e and that

νe · ∇we,1 = (t + 1)t+1

t t+1

( |e|
|κ2| + |e|

|κ1|
)
b2e R̂e,1(uh) on e, (3.13)

where νe is fixed as the unit inward normal of κ2 on the edge or face e; in fact, note that

∇Lκ2,t · νe = |e|
t |κ2| , ∇Lκ1,t · νe = −|e|

t |κ1| ,

123



J Sci Comput (2016) 69:1279–1300 1289

then (3.13) can be obtained by the equality below

νe · ∇we,1 = (t + 1)t+1νe · (∇Lκ2,t − ∇Lκ1,t )
b2e
t t

R̂e,1(uh) on e.

It is obtained by (2.6) and the estimate (3.10) that

|
∫
e
Re,1(uh)νe · ∇we,1| = |

∫
ωe

1

n − 1
ΔuhΔwe,1 − Δ(

1

n − 1
Δuh)we,1|

= |
∫

ωe

1

n − 1
Δ(uh − u)Δwe,1 −

∫
ωe

(
Rκ (uh, wh) − Δ(

1

n − 1
(λhuh − λu))

− n

n − 1
Δ(λhuh − λu) − n

n − 1
(λhwh − λw)

)
we,1|

�
(
h−2
e ‖uh − u‖2,ωe + ‖wh − w‖0,ωe + h−1

e |λh − λ|
+ ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ωe

)‖we,1‖0,eh1/2e . (3.14)

We deduce from (3.13) and the above estimate that

h−1
e ‖R̂e,1(uh)‖20,e �

∫
e

(
Re,1(uh) + R̂e,1(uh) − Re,1(uh)

)
νe · ∇we,1

�
(
h−2
e ‖uh − u‖2,ωe + ‖wh − w‖0,ωe + h−1

e |λh − λ|
+ ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ωe

)‖we,1‖0,eh1/2e

+ ‖R̂e,1(uh) − Re,1(uh)‖0,e‖we,1‖0,eh−1
e .

This yields (3.11).
It remains to estimate R̂e,2(uh). Define the function we,2 = b′

e P R̂e,2(uh), where the pro-
longation operator P : C1(e) → C1(ωe) and the bubble function b′

e are defined as follows
respectively. Enumerate the vertices of κ1 and κ2 such that the vertices of e are numbered
first. Then we set

b′
e =

{ (
t2t

∏t
i=1(Lκ1,i Lκ2,i )

)2
, on ωe,

0, on D\ωe.

Denote by xe = (xe,1, · · · , xe,t ) an Euclidean coordinate system such that e is contained in
the hyperplane {xe,t = 0}. Set x ′

e = (xe,1, xe,2, · · · , xe,t−1) and define

Pδ(xe) :=
{ b′

e(x
′
e, 0)δ(x

′
e, 0), if (x ′

e, 0) ∈ e,
0, if (x ′

e, 0)∈e.

Such construction of P can guarantee that P� ∈ C1(ωe) if� ∈ C1(e). Hencewe,2 ∈ H2
0 (ωe).

According to the definition of Re,2(uh), using the Green’s formula we have

∫
e
Re,2(uh)we,2 =

∫
ωe

(
Δ(

1

n − 1
Δuh)we,2 + ∇(

1

n − 1
Δuh) · ∇we,2

)

=
∫

ωe

(
Δ(

1

n − 1
Δuh)we,2 − 1

n − 1
ΔuhΔwe,2

) +
∫
e
Re,1(uh)νe · ∇we,2.
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Using the similar way to show (3.14) yields

|
∫

ωe

1

n − 1
ΔuhΔwe,2 − Δ(

1

n − 1
Δuh)we,2|

�
(
h−2
e ‖uh − u‖2,ωe + ‖wh − w‖0,ωe + h−1

e |λh − λ|
+ ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ωe

)‖we,2‖0,eh1/2e .

Hence

|
∫
e
Re,2(uh)we,2| �

(
h−2
e ‖uh − u‖2,ωe + ‖wh − w‖0,ωe + h−1

e |λh − λ|

+ ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ωe

)‖we,2‖0,eh1/2e

+ ‖Re,1(uh)‖0,e‖we,2‖0,eh−1
e .

It is immediate that

‖R̂e,2(uh)‖20,e �
∫
e
(Re,2(uh) + R̂e,2(uh) − Re,2(uh))we,2

�
(
h−3/2
e ‖uh − u‖2,ωe + h1/2e ‖wh − w‖0,ωe + h−1/2

e |λh − λ|
+ h1/2e ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ωe + ‖Re,1(uh)‖0,eh−1

e

)‖we,2‖0,e
+ ‖R̂e,2(uh) − Re,2(uh)‖0,e‖we,2‖0,e,

from which we deduce

h3/2e ‖R̂e,2(uh)‖0,e � ‖uh − u‖2,ωe + h2e‖wh − w‖0,ωe + he|λh − λ|
+ h2e‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ωe + h1/2e ‖Re,1(uh)‖0,e
+ h3/2e ‖R̂e,2(uh) − Re,2(uh)‖0,e.

This together with (3.11) yields (3.12). ��
Notice that the dual problem (2.11)–(2.12) has a similar form as the primal problem (2.6)–

(2.7). By the similar argument used in Lemmas 3.2–3.3, we can also prove the following two
lemmas for the dual problem (2.10).

Lemma 3.4 The following estimates of element residual hold for the dual eigenpair
(u∗, w∗, λ∗) and its approximate eigenpair (u∗

h, w
∗
h, λ

∗
h)

h2κ‖R̂∗
κ,1(u

∗
h, w

∗
h)‖0,κ � ‖u∗

h − u∗‖2,κ + h2κ‖w∗
h − w∗‖0,κ + hκ |λh − λ|

+ h2κ‖R̂∗
κ,1(u

∗
h, w

∗
h) − Rκ,1(u

∗
h, w

∗
h)‖0,κ , (3.15)

‖R̂∗
κ,2(u

∗
h, w

∗
h)‖0,κ � ‖u∗

h − u∗‖2,κ + ‖w∗
h − w∗‖0,κ + |λh − λ|

+ ‖R̂∗
κ,2(u

∗
h, w

∗
h) − Rκ,1(u

∗
h, w

∗
h)‖0,κ . (3.16)

Proof (3.15) can be obtained by the similar proof used in (3.10). In order to prove (3.16),
we define the H2

0 (κ) function wκ,2 = b2κ R̂κ,2(u∗
h, w

∗
h). Then by (2.12) we have∫

κ
R̂∗

κ,2(u
∗
h, w

∗
h)wκ,2 = ∫

κ

(
R∗

κ,2(u
∗
h, w

∗
h) + R̂∗

κ,2(u
∗
h, w

∗
h) − R∗

κ,2(u
∗
h, w

∗
h)

)
wκ,2

�
∫
κ
(w∗

h + λ∗
hn

n−1u
∗
h)wκ,2 + ‖R̂∗

κ,2(u
∗
h, w

∗
h) − R∗

κ,2(u
∗
h, w

∗
h)‖κ,0‖wκ,2‖κ,0

� (‖u∗
h − u∗‖0,κ + ‖w∗

h − w∗‖0,κ + |λh − λ|
+ ‖R̂∗

κ,2(u
∗
h, w

∗
h) − R∗

κ,2(u
∗
h, w

∗
h)‖κ,0)‖wκ,2‖κ,0,
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which together with ‖R̂∗
κ,2(u

∗
h, w

∗
h)‖20,κ �

∫
κ
R̂∗

κ,2(u
∗
h, w

∗
h)wκ,2 yields (3.16). ��

Lemma 3.5 Assume n(x) ∈ W 2,∞(κ) for all κ ∈ πh. The following estimates of element
edge or face residual hold for the dual eigenpair (u∗, w∗, λ∗) and its approximate eigenpair
(u∗

h, w
∗
h, λ

∗
h)

h1/2e ‖R̂e,1(u
∗
h)‖0,e � ‖u∗

h − u∗‖2,ωe + h2e‖w∗
h − w∗‖0,ωe + he|λh − λ|

+ h2κ
∑
i=1,2

‖R̂∗
κ,i (u

∗
h, w

∗
h) − R∗

κ,i (u
∗
h, w

∗
h)‖0,ωe

+ h1/2e ‖R̂e,1(u
∗
h) − Re,1(u

∗
h)‖0,e, e ⊂ ∂κ ∩ D, (3.17)

h3/2e ‖R̂e,2(u
∗
h)‖0,e � ‖u∗

h − u∗‖2,ωe + h2e‖w∗
h − w∗‖0,ωe + he|λh − λ|

+ h2κ
∑
i=1,2

‖R̂∗
κ,i (u

∗
h, w

∗
h) − R∗

κ,i (u
∗
h, w

∗
h)‖0,ωe

+ h1/2e ‖R̂e,1(u
∗
h) − Re,1(u

∗
h)‖0,e

+ h3/2e ‖R̂e,2(u
∗
h) − Re,2(u

∗
h)‖0,e, e ⊂ ∂κ ∩ D. (3.18)

Combining Lemmas 3.2 and 3.3, we naturally have the following.

Theorem 3.3 Assume n(x) ∈ W 2,∞(κ) for all κ ∈ πh. The following efficiency of the
error indicator ηκ holds for the primal eigenpair (u, w, λ) and its approximate eigenpair
(uh, wh, λh)

ηκ(uh, wh) � ‖uh − u‖2,ω̂κ + h2κ‖wh − w‖0,ω̂κ + hκ |λh − λ|
+ h2κ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,ω̂κ

+
∑

e⊂∂κ∩D

h1/2e ‖R̂e,1(uh) − Re,1(uh)‖0,e

+
∑

e⊂∂κ∩D

h3/2e ‖R̂e,2(uh) − Re,2(uh)‖0,e, (3.19)

where ω̂κ is the union of elements sharing at least one edge in R
2 or at least one face in R

3

with the element κ .

Combing Lemmas 3.4 and 3.5, we can also give the following upper bound of η∗
κ .

Theorem 3.4 Assume n(x) ∈ W 2,∞(κ) for all κ ∈ πh. The following efficiency of the
error indicator η∗

κ holds for the dual eigenpair (u∗, w∗, λ∗) and its approximate eigenpair
(u∗

h, w
∗
h, λ

∗
h)

η∗
κ (u∗

h, w
∗
h) � ‖u∗

h − u∗‖2,ω̂κ + h2κ‖w∗
h − w∗‖0,ω̂κ + hκ |λh − λ|

+ h2κ
∑
i=1,2

‖R̂∗
κ,i (u

∗
h, w

∗
h) − R∗

κ,i (u
∗
h, w

∗
h)‖0,ω̂κ

+
∑

e⊂∂κ∩D

h1/2e ‖R̂e,1(u
∗
h) − Re,1(u

∗
h)‖0,e

+
∑

e⊂∂κ∩D

h3/2e ‖R̂e,2(u
∗
h) − Re,2(u

∗
h)‖0,e. (3.20)
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Thanks to Lemma 2.1, we know in (3.6) and (3.19) ‖λ(u, w) − λh(uh, wh)‖1,D (� |λ −
λh | + ‖(u, w) − (uh, wh)‖1) and hκ |λh − λ| are terms of higher order, and the similar assert
is valid for (3.8) and (3.20). In what follows, we shall point out that in (3.6) and (3.19) the
small quantities with h2κ‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,κ , h1/2e ‖R̂e,1(uh) − Re,1(uh)‖0,e and
h3/2e ‖R̂e,2(uh)− Re,2(uh)‖0,e are of higher order than ‖(uh, wh) − (u, w)‖A, which implies
ηκ is a reliable and efficient error indicator of ‖(uh, wh)− (u, w)‖A. The similar assertion is
valid for (3.8) and (3.20). Here, as an special case to specify this point, we take the symbol
f̃ to be the Lagrange interpolation of f or the L2-projection onto the polynomial space of
degree ≤ mG .

For simplicity, hereafter we assume the ascent α of λ is equal to 1.
Let the primal eigenfunction satisfy the piecewise smoothness (u, w)|ωκ ∈ H2+rκ (ωκ),∀

κ ∈ πh . Let n ∈ H2+r̂κ (κ),∀κ ∈ πh with r̂κ > 0 to be determined.
Condition A. min(̂rκ + 3/2,mκ + 1, min

e⊂∂κ∩D
me + 1) > min(rκ , l − 1), ∀κ ∈ πh .

By (2.16) and Lemma 3.1 we get the following a priori error estimate

‖(uh, wh) − (u, w)‖A �
( ∑

κ∈πh

h2min(rκ ,l−1)
κ ‖(u, w)‖22+rκ ,ωκ

)1/2

. (3.21)

By the interpolation error estimate, R̂κ (uh, wh)− Rκ (uh, wh) can be bounded as follows.

‖R̂κ (uh, wh) − Rκ (uh, wh)‖0,κ

�
2∑

i=0

| 1̃

n − 1
− 1

n − 1
|i,κ‖uh‖4−i,κ + | 1̃

n − 1
− 1

n − 1
|0,κ‖wh‖0,κ

�
( 2∑

i=0

h2+min(̂rκ ,mκ−1)−i
κ hi−2

κ ‖uh‖2,κ + h2+min(̂rκ ,mκ−1)
κ ‖wh‖0,κ

)

· | 1

n − 1
|2+r̂κ ,κ

� hmin(̂rκ ,mκ−1)
κ ‖(uh, wh)‖2,κ . (3.22)

Using the interpolation error estimate and the inverse inequality again, R̂e,i (uh) −
Re,i (uh) (i = 1, 2, e ⊂ ∂κ ∩ D) can be bounded as follows.

‖R̂e,1(uh) − Re,1(uh)‖0,e � | 1̃

n − 1
− 1

n − 1
|0,e‖[[uh]]e‖2,e

� h3/2+min(̂rκ ,me−1/2)
e | 1

n − 1
|2+r̂κ ,κ

∑
κ⊂ωe

‖uh‖5/2,κ

� h1+min(̂rκ ,me−1/2)
e | 1

n − 1
|2+r̂κ ,κ

∑
κ⊂ωe

‖uh‖2,κ , (3.23)

and

‖R̂e,2(uh) − Re,2(uh)‖0,e �
1∑

i=0

| 1̃

n − 1
− 1

n − 1
|i,e‖[[uh]]e‖3−i,e

�
1∑

i=0

h3/2+min(̂rκ ,me−1/2)−i
κ | 1

n − 1
|2+r̂κ ,κh

i−1
κ ‖[[uh]]e‖2,e
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� h1/2+min(̂rκ ,me−1/2)
κ | 1

n − 1
|2+r̂κ ,κ

∑
κ⊂ωe

‖uh‖5/2,κ

� hmin(̂rκ ,me−1/2)
κ | 1

n − 1
|2+r̂κ ,κ

∑
κ⊂ωe

‖uh‖2,κ . (3.24)

To summarize, we know from Theorems 3.1 and 3.3 and (3.21)–(3.24) the following conclu-
sion:

Let (uh, wh) be an approximate eigenfunction of the primal eigenfunction (u, w). If
Condition A is valid, ηh(uh, wh) is a globally reliable and efficient error indicator of
‖(uh, wh) − (u, w)‖A.

Let the dual eigenfunction satisfy the piecewise smoothness (u∗, w∗)|ωκ ∈ H2+r∗
κ (ωκ),∀

κ ∈ πh .
Condition B. min(̂rκ + 3/2,mκ + 1, min

e⊂∂κ∩D
me + 1) > min(r∗

κ , l − 1), ∀κ ∈ πh .

By the similar argument as above, we can also have the following conclusion:
Let (u∗

h, w
∗
h) be an approximate eigenfunction of the dual eigenfunction (u∗, w∗). If

Condition B is valid, η∗
h(u

∗
h, w

∗
h) is a globally reliable and efficient error indicator of

‖(u∗
h, w

∗
h) − (u∗, w∗)‖A.

It is clear that Conditions A and B can be easily satisfied when r̂κ ,mκ andme are relatively
large compared with rκ , r∗

κ and l.
The following lemma improvesLemma3.2 in [31],which builds the basic relation between

the eigenvalue and its approximate eigenvalue.

Lemma 3.6 Let (λh, uh, ωh) be an approximate eigenpair of the primal eigenpair (λ, u, ω),
(λ∗, u∗, w∗) be an dual eigenpair with λ∗ = λ, and λ∗

h = λh. Let (u
−
h , w−

h ) be the orthogonal
projection of (uh, wh) onto M∗

h (λ∗) in the sense of the inner product A(·, ·), and

(u∗
h, w

∗
h) = (u−

h , w−
h )

‖(u−
h , w−

h )‖A
. (3.25)

Then |A((uh, wh), (u∗
h, w

∗
h))| has a positive lower bound uniformly with respect to h and

|A((uh, wh), (u
∗
h, w

∗
h))||λ − λh | � ‖(uh, wh) − (u, w)‖2A + ‖(ϕ∗

h , ψ
∗
h ) − (ϕ∗, ψ∗)‖2A

+ ‖λ∗(u∗, w∗) − λ∗
h(u

∗
h, w

∗
h)‖21,D, (3.26)

where (ϕ∗, ψ∗) ∈ H and (ϕ∗
h , ψ

∗
h ) ∈ Hh are respectively defined by

A((v, z), (ϕ∗, ψ∗)) = B((v, z), λ∗
h(u

∗
h, w

∗
h)), ∀(v, z) ∈ H,

A((v, z), (ϕ∗
h , ψ

∗
h )) = B((v, z), λ∗

h(u
∗
h, w

∗
h)), ∀(v, z) ∈ Hh . (3.27)

Proof From Lemma 4.1 in [10] we know |A((uh, wh), (u∗
h, w

∗
h))| has a positive lower bound

uniformlywith respect to h. Then the assertion can be proved by the similar proofs of Theorem
3.2 in [31, lines 5-32 on page 56]. ��

We need to estimate the upper bound of ‖(ϕ∗, ψ∗) − (ϕ∗
h , ψ

∗
h )‖A in (3.26). Similar to the

proof of Theorem 3.2, we have
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Theorem 3.5 Under the conditions of Lemma 3.6, there holds

‖(ϕ∗, ψ∗) − (ϕ∗
h , ψ

∗
h )‖A � η∗

h
(u∗

h, w
∗
h)

+
{ ∑

κ∈πh

[
h4κ

∑
i=1,2

‖R̂∗
κ,i (u

∗
h, w

∗
h) − R∗

κ,i (u
∗
h, w

∗
h)‖20,κ

+
∑

e⊂∂κ∩D

(
he‖R̂e,1(ϕ

∗
h ) − Re,1(ϕ

∗
h )‖20,e

+ h3e‖R̂e,2(ϕ
∗
h ) − Re,2(ϕ

∗
h )‖20,e

)]}1/2
, (3.28)

where η∗2
h

(u∗
h, w

∗
h) = ∑

κ∈πh

η∗2
κ

(u∗
h, w

∗
h); η∗

κ
(u∗

h, w
∗
h) is defined similarly as η∗

κ (u∗
h, w

∗
h) in

(3.1) by only replacing η∗
Eκ

(u∗
h) with η∗

Eκ
(ϕ∗

h ), and replacing R∗
κ,1(u

∗
h, w

∗
h) and R∗

κ,2(u
∗
h, w

∗
h)

with R∗
κ,1(u

∗
h, w

∗
h)and R

∗
κ,2(u

∗
h, w

∗
h) respectively; R

∗
κ,1(u

∗
h, w

∗
h)and R

∗
κ,2(u

∗
h, w

∗
h)are defined

by replacing u∗
h and w∗

h in the first term of the right hand side of (3.2)–(3.3) with ϕ∗
h and ψ∗

h
respectively.

Remark 3.1 Theorem 3.5 indicates that η∗
h
(u∗

h, w
∗
h) is a reliable indicator of ‖(ϕ∗, ψ∗) −

(ϕ∗
h , ψ

∗
h )‖A if the ascent α = 1. In fact, let (u∗

h, w
∗
h) and (u∗, w∗) satisfy Lemma 3.6 then

‖(ϕ∗, ψ∗) − (ϕ∗
h , ψ

∗
h )‖A = ‖λ∗

h(T
∗ − T ∗

h )(u∗
h, w

∗
h)‖A,

|‖λ∗
h(T

∗ − T ∗
h )(u∗

h, w
∗
h)‖A − ‖λ∗(T ∗ − T ∗

h )(u∗, w∗)‖A|
≤ ‖(T ∗ − T ∗

h )(λ∗
h(u

∗
h, w

∗
h) − λ∗(u∗, w∗))‖A

� ‖T ∗ − T ∗
h ‖H→H‖λ∗

h(u
∗
h, w

∗
h) − λ∗(u∗, w∗)‖A.

From [10] we know ‖T ∗ − T ∗
h ‖H→H → 0; hence from the above estimate and (2.18)–(2.20)

we have ‖(ϕ∗, ψ∗) − (ϕ∗
h , ψ

∗
h )‖A has the same order as ‖λ∗(T ∗ − T ∗

h )(u∗, w∗)‖A. Notice
that ‖(ϕ∗

h , ψ
∗
h )‖A = ‖λ∗

hT
∗
h (u∗

h, w
∗
h)‖A � ‖(u∗

h, w
∗
h)‖A; then by the similar argument as in

(3.21)–(3.24), we can prove that if (u∗, w∗) satisfies Condition B then the second term at
right hand side of (3.28) is a small quantity of higher order than ‖λ∗(T ∗ − T ∗

h )(u∗, w∗)‖A

as well as ‖(ϕ∗, ψ∗) − (ϕ∗
h , ψ

∗
h )‖A.

Theorem 3.6 Let λh be an eigenvalue of the primal problem (2.13) which converges to the
eigenvalue λ, and let the approximate eigenfunction (uh, wh) and (u∗

h, w
∗
h) ∈ M∗

h (λ∗) be
defined in Lemma 3.6. Suppose the ascent α = 1 and that the primal eigenfunction (u, w)

and the dual eigenfunction (u∗, w∗) satisfy Conditions A and B respectively. Then

|λh − λ| � η2h(uh, wh) + η∗2
h

(u∗
h, w

∗
h). (3.29)

Proof From (2.19)–(2.20) and Remark 3.1 we know the third term at the right side hand of
(3.26) is a small quantity of higher order. According to Conditions A and B and Remark 3.1,
we know the second term at right hand side of (3.28) is a small quantity of higher order.
Hence (3.29) can be derived from (3.6), (3.26) and (3.28). ��
Remark 3.2 When using (3.29) to estimate |λ − λh |, it seems that one needs to solve the
boundary value problem (3.27) for (ϕ∗

h , ψ
∗
h ). However, if the ascent of the eigenvalues

λ j,h( j = i, . . . , i + q − 1) is 1, then

(ϕ∗
h , ψ

∗
h ) =

i+q−1∑
j=i

λ∗
hλ

∗−1
j,h a j (u∗

j,h, w
∗
j,h)

‖(u−
h , w−

h )‖A
, (u∗

j,h, w
∗
j,h) ∈ M∗(λ∗

j,h),
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where (u−
h , w−

h ) =
i+q−1∑
j=i

a j (u∗
j,h, w

∗
j,h) with ‖(u∗

j,h, w
∗
j,h)‖A = 1 is the orthogonal projec-

tion of (uh, wh) onto M∗
h (λ∗).

Remark 3.3 Theorem3.6 shows only the reliability of the indicatorη2h(uh, wh)+η∗2
h

(u∗
h, w

∗
h)

of λh . To our knowledge, up to now, there does not exist any work regarding residual type a
posteriori error estimates of finite elements for nonsymmetric eigenvalue problems that has
proved the efficiency of the indicator of λh therein.

4 Adaptive Algorithm and Numerical Experiment

The following algorithm is a standard adaptive procedure (e.g., see Algorithm C in [32]).
Algorithm 1

Step 1. Set i t = 0 and Pick any initial mesh πhit with the mesh size hit .
Step 2. Solve (2.13) on πhit for the discrete solution (λhit , uhit , whit ) and find
(u∗

hit
, w∗

hit
) ∈ Mhit (λ

∗) by (3.25) such that ‖(uhit , whit )‖A = ‖(u∗
hit

, w∗
hit

)‖A = 1.
Step 3. Compute the local indicators ηκ(uhit , whit ) and η∗

κ
(u∗

hit
, w∗

hit
).

Step 4. Construct π̂hit ⊂ πhit by Marking Strategy E and parameter θ .
Step 5. Refine πhit to get a new mesh πhit+1 by Procedure REFINE.
Step 6. Let i t = i t + 1 and go to Step 2.

Marking Strategy E
Given parameter 0 < θ < 1:
Step 1. Construct a minimal subset π̂hit ⊂ πhit by selecting some elements in πhit such that∑

κ∈π̂hit

(η2κ (uhit , whit ) + η∗2
κ

(uhit , whit )) ≥ θ(η2hit (uhit , whit ) + η∗2
hit

(uhit , whit )).

Step 2. Mark all the elements in π̂hit .
In this section, we will report some numerical experiments for solving the transmission

eigenvalue problem (2.8) by the Argyris element to validate our theoretical results. We con-
sider the case when D is the unit square (0, 1)2 or the L-shaped domain (−1, 1)2\([0, 1) ×
(−1, 0]) and the index of refraction n = 16, 8 + x1 − x2, 1.005.

We use Matlab 2012a to solve (2.1)–(2.4) on a Lenovo G480 PC with 4G memory. Our
program is made in the environment of Matlab together with the package of iFEM [33]. In
steps 2 of Algorithm 1, we use the sparse solver eigs inMatlab to solve the matrix eigenvalue
problem.We adopt the quadrature formulawith sixth order algebraic precision to numerically

compute the integral on elements and edges. We use the effective index
η2h(uh ,wh)+η∗2

h
(u∗

h ,w
∗
h )

|k−kh |
to investigate the reliability of the indicator of λh . For reading convenience, we denote by
k j = √

λ j and k j,h = √
λ j,h the j th eigenvalue and the j th numerical eigenvalue obtained

by Algorithm 1 on Hh .

4.1 Model Problem on the Unit Square

In the computation of errors, we take k1 ≈ 1.879591173147 and k2 ≈ 2.444236099229
(the multiplicity of k2 is 2) for n = 16, k1 ≈ 2.82218934089 and k5 ≈ 4.496551954471 −
0.871481780427i for n = 8 + x1 − x2, k1 ≈ 5.579320511651 − 2.442978884001i and
k3 ≈ 8.280617372950− 2.806336620282i (the multiplicity of k3 is 2) for n = 1.005, all of
which are obtained by our adaptive procedure and are relatively accurate.
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Fig. 1 Error curves on the unit square with θ = 0.25 for the 1st (left top) and 2nd (right top) eigenvalues with
n = 16 and the 1st (left bottom) and 5th (right bottom) eigenvalues with n = 8 + x1 − x2

The initial mesh on the unit square is made up of congruent triangles, the mesh size h0
being respectively

√
2

16 and
√
2
8 . We set the different parameter θ to compute the numerical

eigenvalues, varying according to the setting of n and the domain D. We depict the error
curves (see Figs. 1 and 5) and some adaptively refined meshes (see Fig. 2) for the numerical
eigenvalues.We see from Fig. 1 that the error curve of the uniform refinement is not a straight
line; we are confused for this phenomena since there is no singularity in that case and we
cannot explain it at present.

According to the regularity theory, we know u, w ∈ H4(D) if D is a square. When the
ascent of k is equal to 1: according to (2.18), using the uniform meshes, the accuracy of the
numerical eigenvalue k j,h on the unit square can achieve O(dof −2) (where dof denotes the
number of degrees of freedomoffinite element equation). It is seen fromFigs. 1, 5 and6 that all
of the a posteriori error indicators of the numerical eigenvalues are reliable, which coincides

with the theoretical result. When setting h0 =
√
2
4 , using Algorithm 1 after 3 iterations we

obtain the first two eigenvalues 1.87965 and 2.44455 with dof = 374 and 356 respectively.
Table 3 in [3] shows that the first two eigenvalues by continuous method are 1.9094, 2.5032
with dof = 330 and those by mixed method are 1.8954, 2.4644 with dof = 513; hence the
advantage of adaptive Algorithm in this paper is obvious. Also it is easy to know that our
adaptive Algorithm is efficient compared with the numerical results on the unit square in [8].

In addition, we can see from Fig. 2 that the weak singularities of the eigenfunctions
corresponding to k1, k2 for n = 16 and k1 for n = 8 + x1 − x2 mainly center on the corner
points.
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Fig. 2 Adaptive meshes on the
unit square after 20 iterations for
the 1st (left top) and 2nd (right
top) eigenvalues with n = 16 and
the 1st (left bottom) and 5th (right
bottom) eigenvalues with
n = 8 + x1 − x2
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Fig. 3 Error curves on the L-shaped for the 1st (left top) and 2nd (right top) eigenvalues with n = 16 and
θ = 0.75 and the 1st (left bottom, θ = 0.75) and 5th (right bottom, θ = 0.5) eigenvalues with n = 8+ x1 − x2
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Fig. 4 Adaptive meshes on the
L-shaped after 20 iterations for
the 1st (left top) and 2nd (right
top) eigenvalues with n = 16 and
the 1st (left bottom) and 5th (right
bottom) eigenvalues with
n = 8 + x1 − x2
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Fig. 5 Error curves on the unit square with θ = 0.25 for the 1st (left top) and 2nd (right top) eigenvalues with
n = 1.005 and on the L-shaped for the 1st (left bottom, θ = 0.75) and 3rd (right bottom, θ = 0.5) eigenvalues
with n = 1.005
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Fig. 6 Effective indexes for eigenvalues on the unit square (left) and on the L-shaped (right)

4.2 Model Problem on the L-Shaped

In the computation of errors, we take k1 ≈ 1.476100561 and k2 ≈ 1.56972574409 for
n = 16, k1 ≈ 2.30212057 and k5 ≈ 2.9242325 − 0.5645906i for n = 8 + x1 − x2,
k1 ≈ 4.11589607 − 2.06786337i and k3 ≈ 4.795653396 − 2.0361001266i for n = 1.005,
all of which are obtained by our adaptive procedure and are relatively accurate.

The initial meshes on the L-shaped are made up of congruent triangles, the mesh size h0
being

√
2
8 . We depict the error curves (see Fig. 3) and some adaptively refined meshes (see

Fig. 4) for the numerical eigenvalues.
Since the problem on the L-shaped has the singularity in general so that the accuracy of the

numerical eigenvalue k j,h is not less than O(dof −2). It is seen from Figs. 3, 5 and 6 that all
of the a posteriori error indicators of the numerical eigenvalues are reliable, which coincides
with the theoretical result. The phenomena that the curves of effective indexes go upward
may lie in the insufficiently exact eigenvalues provided in this paper. Moreover, the most
numerical eigenvalues in numerical examples can achieve the nearly optimal convergence
order O(dof −4). The convergence order of the numerical eigenvalues k5,h on the L-shaped
with n = 8+x1−x2 is O(dof −3). Note that for all cases on the L-shapedwith n = 8+x1−x2
the accuracy of the numerical eigenvalue on adaptive meshes is better than that on uniform
meshes. We can see from the numerical results in [7,10] that the convergence order of
numerical eigenvalues on the L-shaped on uniform meshes by the BFS element is less than
1 with respect to dof −1.

In addition, we can see from Fig. 4 that the eigenfunctions corresponding to all computed
eigenvalues on theL-shaped have singularities towards theL corner point and change abruptly
near the midpoints of two longest sides of this domain.
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