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Abstract We present a second order energy stable numerical scheme for the two and three
dimensional Cahn–Hilliard equation, with Fourier pseudo-spectral approximation in space.
A convex splitting treatment assures the unique solvability and unconditional energy stability
of the scheme.Meanwhile, the implicit treatment of the nonlinear termmakes a direct nonlin-
ear solver impractical, due to the global nature of the pseudo-spectral spatial discretization.
We propose a homogeneous linear iteration algorithm to overcome this difficulty, in which an
O(s2) (where s the time step size) artificial diffusion term, a Douglas–Dupont-type regular-
ization, is introduced. As a consequence, the numerical efficiency can be greatly improved,
since the highly nonlinear system can be decomposed as an iteration of purely linear solvers,
which can be implemented with the help of the FFT in a pseudo-spectral setting. Moreover,
a careful nonlinear analysis shows a contraction mapping property of this linear iteration,
in the discrete �4 norm, with discrete Sobolev inequalities applied. Moreover, a bound of
numerical solution in �∞ norm is also provided at a theoretical level. The efficiency of the
linear iteration solver is demonstrated in our numerical experiments. Some numerical simu-
lation results are presented, showing the energy decay rate for the Cahn–Hilliard flow with
different values of ε.
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1 Introduction

In this article we consider an efficient numerical implementation of a second order accurate
and energy stable scheme for the Cahn–Hilliard equation. For any φ ∈ H1(�), with� ⊂ Rd

(d = 2 or d = 3), the energy functional is given by (see [8] for a detailed derivation):

E(φ) =
∫

�

(
1

4
φ4 − 1

2
φ2 + ε2

2
|∇φ|2

)
dx, (1)

in which a positive constant ε stands for the parameter of the interface width. In turn, the
Cahn–Hilliard equation becomes the H−1 conserved gradient flow of the energy functional
(1):

φt = �μ, with μ := δφE = φ3 − φ − ε2�φ, (2)

with a periodic boundary condition imposed for both the phase field φ and the chemical
potential μ. As a result of a simple calculation, the following energy dissipation law is
available: dt E(t) = − ∫

�
|∇μ|2 dx ≤ 0. Furthermore, the equation is mass conservative:∫

�
∂tφ dx = 0.
The numerical approximation to the CH equation has been extensively studied; see the

related references [1,3,20–23,25,26,29,37,40–43,52], etc. In particular, the energy stability
becomes one research focus in recent years, due to its importance to the long time numer-
ical simulation. Among the energy stable numerical approaches, the convex splitting idea,
originated by Eyre’s pioneering work [24], has attracted more and more attentions. This
approach treats the convex part implicitly and the concave part explicitly; as a result, the
unique solvability and unconditional energy stability could be established at a theoreti-
cal level. Its extensive applications to a wide class of gradient flows have been available;
see the related works for the phase field crystal (PFC) equation and the modified version
[4,5,39,49,50,53], epitaxial thin filmgrowthmodels [10,12,46,48], non-local Cahn–Hilliard
model [33,34], theCahn–Hilliard–Hele–Shaw (CHHS) and relatedmodels [11,14,15,28,51],
etc.

Bothfirst and secondorder (in time) convex splitting approximations havebeen extensively
studied for these gradient flows. In particular, a great advantage of the second order tempo-
ral splitting over the standard first order one has been demonstrated by various numerical
experiments, in terms of numerical efficiency and accuracy. For the Cahn–Hilliard equation
(2), a second order convex splitting scheme has been reported in a recent article [36], based
on the modified version of the Crank–Nicholson temporal approximation. This numerical
scheme enjoys many advantages over the standard second order temporal approximations
[2,17,29,47], in particular in terms of the unconditional energy stability and an uncondi-
tionally unique solvability. Also see another recent finite element work [16] for the related
analysis.

Meanwhile, it is observed that, for most convex splitting numerical works in the existing
literature, a local spatial discretization is used, such as the finite difference or finite element
approximation; there has been no reported numerical scheme which combines the convex
splitting (in time) for the Cahn–Hilliard-type gradient flow and a spatial approximation with
a global nature, such as the spectral or pseudo-spectral method. The key reason for this
subtle fact is that, the convex splitting scheme usually treats the nonlinear term implicitly,
since the nonlinear part corresponds to the convex part of the Ginzburg–Landau energy func-
tional. In turn, an efficient nonlinear solver is needed for this implicit treatment. Moreover,
a well-known fact shows that, highly efficient nonlinear finite difference and finite element
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solvers have been available, such as nonlinear multi-grid or nonlinear conjugate solvers;
the local nature of these spatial discretization has greatly simplified the numerical efforts
to develop these solvers. On the other hand, the development of a nonlinear solver with
spectral or pseudo-spectral solver turns out to be much more challenging. This makes a
convex splitting scheme with spectral/pseudo-spectral spatial approximation very difficult to
implement.

In this paper, we propose a linear iteration algorithm to implement the second order
convex splitting scheme for the CH equation (2), with a Fourier pseudo-spectral spatial
discretization. This algorithm introduces a second order accurate O(s2) artificial diffusion
term in the form of Douglas–Dupont regularization. And also, the diffusion power may
be a fractional number, dependent on the discrete Sobolev embedding from Hα into L4.
A key point of the linear iteration is that, although the numerical scheme itself is highly
nonlinear, we treat the nonlinear term explicitly at each iteration stage. Therefore, the numer-
ical difficulty associated with the nonlinear solver and the global nature of pseudo-spectral
approximation is overcome. Moreover, by a careful nonlinear analysis and using a subtle
estimate of the functional bound for the nonlinear terms, a contraction mapping property
(in a discrete �4 norm) is theoretically justified if the parameter associated with the artificial
diffusion coefficient is greater than a given constant, and this constant will be discussed
in detail. In other words, the highly nonlinear numerical scheme can be very efficiently
solved by such a linear iteration algorithm, and a geometric convergence rate is assured
for this linear iteration under the given constraint. Similar to the linear iteration algorithm
reported in [12] for the no-slope-selection epitaxial thin film growth model, the linear oper-
ator involved in the scheme, denoted as L, is positive definite with constant coefficients,
and it can be efficiently inverted at the discrete level by FFT or other existing fast linear
solvers.

The leading order energy stability indicates a uniform in time H1 bound at a discrete level.
In addition, we demonstrate a discrete version of an �∞(0, T ; H2) bound of the numerical
solution, and this bound is independent of the final time T . Such a bound is based on a discrete
�∞(0, T ; H2) ∩ �2(0, T ; H4) energy estimate for the numerical scheme, with the help of
repeated applications of discrete Hölder inequality and Sobolev inequalities in the Fourier
pseudo-spectral space. In comparison with a recent work [36], where a similar analysis for
the finite difference scheme is performed, the nonlinear analysis and Sobolev inequality
are more involved in the pseudo-spectral scheme reported in this article. Moreover, as an
application of three-dimensional Sobolev inequality, a uniform in time �∞ bound (in the
maximum norm) of the numerical solution is derived. Because of this estimate, a cut-off
approach for the numerical solution is not needed in our work, compared to a few existing
ones [47].

The rest of the manuscript is organized as follows. In Sect. 2 we present the numerical
scheme. First we review the Fourier pseudo-spectral approximation in space and recall a
second order convex splitting scheme for the Cahn–Hilliard equation (2) with unconditional
energy stability and unique solvability, as reported in [16,36]. Then we propose an O(s2)
artificial diffusion term in the form of a Douglas–Dupont-type regularization, and a linear
iteration algorithm to implement it. We demonstrate that the unconditional energy stability
is preserved for such an addition of artificial diffusion. In particular, we prove that the corre-
sponding linear iteration algorithm is assured to be a contraction mapping under a condition
for the artificial diffusion constant. Subsequently, the �∞ bound of the numerical solution is
provided in Sect. 3. In Sect. 4 we present some numerical simulation results. We offer our
concluding remarks in Sect. 5.
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2 The Numerical Scheme

2.1 Fourier Pseudo-Spectral Approximations

The Fourier pseudo-spectral method, a discrete variable representation (DVR) method, is
also referred as the Fourier collocation spectral method. It is closely related to the Fourier
spectral method, but complements the basis by an additional pseudo-spectral basis, which
allows to represent functions on a quadrature grid. This simplifies the evaluation of certain
operators, and can considerably speed up the calculation when using fast algorithms such as
the fast Fourier transform (FFT); see the related descriptions in [6,13,32,38].

To simplify the notation in our pseudo-spectral analysis, we assume that the domain is
given by � = (0, 1)3, Nx = Ny = Nz =: N ∈ N and N · h = 1. We further assume that N
is odd:

N = 2K + 1, for some K ∈ N.

The analyses for more general cases are a bit more tedious, but can be carried out without
essential difficulty. The spatial variables are evaluated on the standard 3D numerical grid�N ,
which is defined by grid points (xi , y j , zk), with xi = ih, y j = jh, zk = kh, 0 ≤ i, j, k ≤
2K + 1. This description for three-dimensional mesh (d = 3) can here and elsewhere be
trivially modified for the two-dimensional case (d = 2).

We define the grid function space

GN := {
f : Z

3 → R

∣∣ f is �N -periodic
}
. (3)

Given any periodic grid functions f, g ∈ GN , the �2 inner product and norm are defined as

〈 f, g〉 := h3
N−1∑

i, j,k=0

fi, j,k · gi, j,k, ‖ f ‖2 := √〈 f, f 〉. (4)

The zero-mean grid function subspace is denoted G̊N := {
f ∈ GN

∣∣ 〈 f, 1〉 =: f = 0
}
. For

f ∈ GN , we have the discrete Fourier expansion

fi, j,k =
K∑

�,m,n=−K

f̂ N�,m,n exp
(
2π i(�xi + myj + nzk)

)
, (5)

where

f̂ N�,m,n := h3
N−1∑

i, j,k=0

fi, j,k exp
(−2π i

(
�xi + mx j + nxk

))
(6)

are the discrete Fourier coefficients. The collocation Fourier spectral first and second order
derivatives of f are defined as

Dx fi, j,k :=
K∑

�,m,n=−K

(2π i�) f̂ N�,m,n exp
(
2π i(�xi + myj + nzk)

)
, (7)

D2
x fi, j,k :=

K∑
�,m,n=−K

(−4π2�2
)
f̂ N�,m,n exp

(
2π i(�xi + myj + nzk)

)
. (8)
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The differentiation operators in the y and z directions, Dy , D2
y , Dz and D2

z can be defined in
the same fashion. In turn, the discrete Laplacian, gradient and divergence operators are given
by

�N f :=
(
D2

x + D2
y + D2

z

)
f, ∇N f :=

⎛
⎝Dx f

Dy f
Dz f

⎞
⎠ ,

∇N ·
⎛
⎝ f1

f2
f3

⎞
⎠ := Dx f1 + Dy f2 + Dz f3, (9)

at the point-wise level. It is straightforward to verify that

∇N · ∇N f = �N f. (10)

See the derivations in the related references [6,9,30], et cetera.
In addition, we introduce the discrete fractional operator (−�N )γ , for any γ > 0, via the

formula

(−�N )γ fi, j,k :=
K∑

�,m,n=−K

(
4π2(�2 + m2 + n2)

)γ
f̂ N�,m,n exp

(
2π i(�xi + myj + nzk)

)
,

(11)

for a grid function f with the discrete Fourier expansion as (5). Similarly, for a grid function
f of (discrete) mean zero—i.e., f ∈ G̊N—a discrete version of the operator (−�)−γ may
be defined as

(−�N )−γ fi, j,k :=
K∑

�,m,n=−K
(�,m,n)�=0

(
4π2(�2+m2+n2)

)−γ
f̂ N�,m,n exp

(
2π i(�xi +myj + nzk)

)
.

(12)

Observe that, in this way of defining the inverse operator, the result is a periodic grid function
of zero mean, i.e, (−�N )−γ f ∈ G̊N .

Detailed calculations show that the following summation-by-parts formulas are valid (see
the related discussions in [10,12,31,32]): for any periodic grid functions f, g ∈ GN ,

〈 f,�N g〉 = − 〈∇N f,∇N g〉 ,
〈
f,�2

N g
〉 = 〈�N f,�N g〉 . (13)

Similarly, the following summation-by-parts formula is also available: for any γ ≥ 0,
〈
f, (−�N )γ g

〉 =
〈
(−�N )

γ
2 f, (−�N )

γ
2 g

〉
. (14)

We define ‖ f ‖Hγ
N

:= ‖(−�N )
γ
2 f ‖2.

Since the Cahn–Hilliard equation (2) is an H−1 gradient flow, we need a discrete version
of the norm ‖ · ‖H−1 defined on G̊N . To this end, for any f ∈ G̊N , we define

‖ f ‖−1,N := ‖(−�N )−
1
2 f ‖2. (15)

Similar to (14), the following summation-by-parts formula may be derived:
〈
f, (−�N )−1g

〉 =
〈
(−�N )−

1
2 f, (−�N )−

1
2 g

〉
. (16)
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In addition to the standard �2 norm, we also introduce the �p , 1 ≤ p < ∞, and �∞ norms
for a grid function f ∈ GN :

‖ f ‖∞ := max
i, j,k

| fi, j,k |, ‖ f ‖p :=
⎛
⎝h3

N−1∑
i, j,k=0

| fi, j,k |p
⎞
⎠

1
p

, 1 ≤ p < ∞. (17)

For any periodic grid function φ ∈ GN , the discrete Cahn–Hilliard energy is defined as

EN (φ) := 1

4
‖φ‖44 − 1

2
‖φ‖22 + ε2

2
‖∇Nφ‖22 . (18)

The following two lemmas will play important roles in the contraction mapping analysis
and the maximum norm analysis in the later sections.

Lemma 2.1 Suppose d = 2 or 3, α0 ∈ (0, 1), and γ1, γ2 > 0. For any periodic grid function
with zero mean, f ∈ G̊N , we have,

C0γ
1−α0
2

1 γ
1+α0
2

2 ‖ f ‖2
H

α0
N

≤ γ1‖ f ‖2−1,N + γ2‖∇N f ‖22, (19)

‖ f ‖4 ≤ C1‖(−�N )
d
8 f ‖2, (20)

for some constant C0 > 0 that only depends on α0 and d, and some constant C1 > 0 that
only depends on d.

Lemma 2.2 Suppose d = 2 or 3. For any f ∈ G̊N , we have

‖ f ‖∞ ≤ C2 ‖(−�N ) f ‖2 . (21)

for some C2 > 0 that only depends on d.

The proofs will be provided in “Appendices 1 and 2”, respectively. Observe that (20) and
(21) are discrete versions of the standard Sobolev embeddings from Hα0 into L4 and H2 into
L∞, respectively, both of which are needed in the nonlinear analysis.

It is well-known that the existence of aliasing error in the nonlinear terms poses a serious
challenge in the numerical analysis of Fourier pseudo-spectral schemes, and we need some
tools to quantify this error. To this end, we introduce a periodic extension of a grid function
and a Fourier collocation interpolation operator.

Definition 1 Suppose that the grid function f ∈ GN has the discrete Fourier expansion (5).
Its spectral extension into the trigonometric polynomial spacePK (the space of trigonometric
polynomials of degree at most K ) is defined as

fS(x, y, z) =
K∑

�,m,n=−K

f̂ N�,m,n exp (2π i(�x + my + nz)) . (22)

We write SN ( f ) = fS and call SN : GN → PK the spectral interpolation operator. Suppose
g ∈ Cper(�, R). We define the grid projection QN : Cper(�, R) → GN via

QN (g)i, j,k := g(xi , y j , zk), (23)

The resultant grid function may, of course, be expressed as a discrete Fourier expansion:

QN (g)i, j,k =
K∑

�,m,n=−K

Q̂N (g)
N
�,m,n exp

(
2π i(�xi + myj + nzk)

)
.
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We define the de-aliasing operator RN : Cper(�, R) → PK via RN := SN (QN ). In other
words,

RN (g)(x, y, z) =
K∑

�,m,n=−K

Q̂N (g)
N
�,m,n exp (2π i(�x + my + nz)) . (24)

Finally, for any g ∈ L2(�, R), we define the (standard) Fourier projection operator PN :
L2(�, R) → PK via

PN (g)(x, y, z) =
K∑

�,m,n=−K

ĝ�,m,n exp (2π i(�x + my + nz)) ,

where

ĝ�,m,n =
∫

�

g(x, y, z) exp (−2π i (�x + my + nz)) dx,

are the (standard) Fourier coefficients.

Remark 2.3 Note that, in general, for g ∈ Cper(�, R), PN (g) �= RN (g), and, in particular,

ĝ�,m,n �= Q̂N (g)
N
�,m,n .

However, if g ∈ PK to begin with, then ĝ�,m,n = Q̂N (g)
N
�,m,n . In other words, RN : PK →

PK is the identity operator.

To overcome a key difficulty associated with the Hm bound of the nonlinear term obtained
by collocation interpolation, the following lemma is introduced.

Lemma 2.4 Suppose that m and K are non-negative integers, and, as before, assume that
N = 2K + 1. For any ϕ ∈ PmK in R

d , we have the estimate

‖RN (ϕ)‖Hr ≤ m
d
2 ‖ϕ‖Hr , (25)

for any non-negative integer r .

The case of r = 0 was proven in Weinan E’s earlier papers [18,19]. The case of r ≥ 1 was
analyzed in a recent article by Gottlieb and Wang [32].

2.2 The Second-Order Convex Splitting Scheme

A second order accurate convex splitting scheme for the CH equation (2) was reported in [36],
with a centered difference approximation in space. If the spatial discretization is replaced by
the Fourier pseudo-spectral method, the numerical scheme is formulated as follows: given
φm, φm−1 ∈ GN , find φm+1, μm+1/2 ∈ GN such that

φm+1 − φm

s
= �Nμm+1/2, (26)

μm+1/2 = χ(φm+1, φm) − φ̆m+1/2 − ε2�N φ̂m+1/2, (27)

χ(φm+1, φm) := 1

4

(
φm+1 + φm) (

(φm+1)2 + (φm)2
)
, (28)
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φ̆m+1/2 := 3

2
φm − 1

2
φm−1, φ̂m+1/2 := 3

4
φm+1 + 1

4
φm−1, (29)

where s = T/M . For simplicity, on the initial step we assume φ−1 ≡ φ0.
Following a similar argument as in [36], the unique solvability and unconditional energy

stability for this numerical scheme can be straightforwardly established. On the other
hand, there are severe numerical challenges associated with the practical implementation
of (26)–(29), due to the implicit treatment of the nonlinear term χ(φm+1, φm). If a spatial
discretization of a local nature, such as the finite difference approximation, is taken, this issue
could be handled by some well-developed multi-grid solvers; see the related discussions in
[4,39,51,53], et cetera. However, the global nature of the Fourier pseudo-spectral method
makes a direct numerical implementation of this nonlinear scheme extremely challenging.

To overcome this difficulty, we add an O(s2) artificial diffusion term to (26), and come
up with the following alternate second order numerical scheme:

φm+1 − φm

s
= �N μ̃m+1/2, μ̃m+1/2 := μm+1/2 + A(−�N )α(φm+1 − 2φm + φm−1).

(30)

The values of A and α will be specified later.
Before proceeding into further analysis, we make an observation. It is clear that the

numerical solution of the fully discrete second order scheme (30) is mass-conserving at the
discrete level: if φm−1 = φm = φav, then φm+1 = φav. We will assume that |φav| ≤ 1, as is
standard.

Proposition 2.5 For any A ≥ 0 and any α ≥ 0 the scheme (30) is second order accurate in
time, i.e., its local truncation error is O

(
s2

)
; it is unconditionally uniquely solvable, and it

is unconditionally strongly energy stable, with respect to the discrete energy

EN (φm, φm−1) := EN (φm) + 1

4

∥∥φm − φm−1
∥∥2
2 + ε2

8

∥∥∇N (φm − φm−1)
∥∥2
2

+ A

2

∥∥∥(−�N )
α
2 (φm − φm−1)

∥∥∥2
2
, (31)

i.e., EN (φm+1, φm) ≤ EN (φm, φm−1), for any n ≥ 1, and any s > 0.

Proof The order of accuracy the can be verified by Taylor expansions, assuming sufficient
regularity. We omit the details for brevity. For the unique solvability, we note that scheme
(30) could be rewritten as

(−�N )−1
(

φm+1 − φm

s

)
+ 3ε2

4
(−�N )φm+1 + A(−�N )αφm+1

+ 1

4

(
(φm+1)3 + (φm+1)2φm + φm+1(φm)2

) = F(φm, φm−1) + μm+1/2
av , (32)

where

F(φm, φm−1) := ε2

4
�Nφm−1 + A(−�N )α(2φm − φm−1) − 1

4
(φm)3 + φ̆m+1/2. (33)

Note that the constant μm+1/2
av must be added for compatibility, so that

μm+1/2
av = |�|−1〈χ(φm+1, φm) − φ̆m+1/2, 1〉 = |�|−1〈χ(φm+1, φm), 1〉 − φav.
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The unconditional unique solvability of (32)–(33) can be proved by observing the strict
convexity of the following functional over the affine hyperplane A := {

φ ∈ GN
∣∣ φ = φav

}
:

GN (φ) := s

2

∥∥∥∥φ − φm

s

∥∥∥∥
2

−1,N
+ 3ε2

8
‖∇Nφ‖22 + A

2

∥∥∥(−�N )
α
2 φ

∥∥∥2
2

+ 1

16
‖φ‖44 + 1

12

〈
φm, φ3〉 + 1

8

〈
(φm)2, φ2〉 − 〈F(φm, φm−1), φ〉. (34)

It is often easier to shift the hyperplane A to the linear space G̊N through a simple affine
change of variables. See [15,39], for example, for more details.

For the energy stability analysis, we take a discrete inner product of (30) with
(−�N )−1(φm+1 − φm), and make use of the following identities and inequalities:

〈
χ(φm+1, φm), φm+1 − φm 〉 = 1

4

(∥∥φm+1
∥∥4
4 − ∥∥φm

∥∥4
4

)
, (35)

〈
−φ̆m+1/2, φm+1 − φm

〉
≥ −1

2

(∥∥φm+1
∥∥2
2 − ∥∥φm

∥∥2
2

)

+ 1

4

(∥∥φm+1 − φm
∥∥2
2 − ∥∥φm − φm−1

∥∥2
2

)
, (36)

〈
−�N φ̂m+1/2, φm+1 − φm

〉
=

〈
∇N φ̂m+1/2,∇N (φm+1 − φm)

〉

≥ 1

2

(∥∥∇Nφm+1
∥∥2
2 − ∥∥∇Nφm

∥∥2
2

)

+ 1

8

( ∥∥∇N
(
φm+1 − φm)∥∥2

2 − ∥∥∇N
(
φm − φm−1)∥∥2

2

)
,

(37)

and 〈
(−�N )1+α(φm+1 − 2φm + φm−1), (−�N )−1(φm+1 − φm)

〉

=
〈
(−�N )

α
2 (φm+1 − 2φm + φm−1), (−�N )

α
2 (φm+1 − φm)

〉

≥ 1

2

(∥∥∥(−�N )
α
2 (φm+1 − φm)

∥∥∥2
2
−

∥∥∥(−�N )
α
2 (φm − φm−1)

∥∥∥2
2

)
. (38)

Then we arrive at

EN (φm+1, φm) − EN (φm, φm−1) ≤ −1

s

∥∥φm+1 − φm
∥∥2−1,N ≤ 0, (39)

so that an unconditional stability with respect to the modified discrete energy (31) is estab-
lished. ��
Remark 2.6 We can obtain an equivalent statement of energy stability, which will be useful
for some purposes, using the following identity:

1

s

∥∥φm+1 − φm
∥∥2−1,N = s

∥∥∇N μ̃m+1/2
∥∥2
2 .

Remark 2.7 We note that the modified energy (31) is strongly stable, i.e., EN (φm+1, φm) ≤
EN (φm, φm−1). Meanwhile, for the original energy EN (φ), such a strong stability is not
available at a theoretical level. On the other hand, since the modified energy contains EN (φ)
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and a non-negative modified term, we are able to derive the weak stability of the original
energy functional:

EN (φm) ≤ EN (φm, φm−1) ≤ EN (φ0, φ−1) = EN (φ0) := C3, ∀m ≥ 0, (40)

by taking φ−1 ≡ φ0. In other words, the original energy functional is always bounded by the
initial energy value.

In addition to the second order convex splitting approaches, there have been a few related
works with second-order in time approximations for the CH equation in recent years. A semi-
discrete second-order scheme for a family of Cahn–Hilliard-type equations was proposed in
[54], with applications to diffuse interface tumor growth models. An unconditional energy
stability was proved, by taking advantage of a (quadratic) cut-off of the double-well energy
and artificial stabilization terms.And also, their scheme turns out to be linear, which is another
advantage. However, a convergence analysis is not available in their work.

A careful examination of several second-order in time numerical schemes for the CH
equation is presented in [35]. An alternate variable is used in the numerical design, denoted
as a second order approximation to v = φ2 − 1. A linearized, second order accurate scheme
is derived as the outcome of this idea, and an unconditional energy stability is established
in a modified version. However, such an energy stability is applied to a pair of numerical
variables (φ, v), and an H1 stability for the original physical variable φ has not been justified.
As a result, the convergence analysis is not available for this numerical approach.

In comparison, with the weak stability (40) available for the original energy functional, we
are able to derive a uniform-in-time H1 and H2 bound of the numerical solution presented
in this article, namely (66) and (73) in Sect. 3. These estimates play an essential role in the
convergence analysis for the proposed numerical scheme.

With all these observations, we notemany advantages of the proposed second order convex
splitting approach over the second order temporal approximations reported in the existing
literature, in particular in terms of the energy stability for the original phase variable φ and
the convergence analysis.

2.3 A Homogeneous Linear Iteration (HLI) Algorithm

Although the unconditional energy stability and unique solvability of (30) have been estab-
lished, implementation of the scheme is clearly a challenge due to the combination of strong
nonlinearity and the global nature of the pseudo-spectral discretization. In this section, we
propose a linear iteration method to solve the scheme, and prove that the iteration always
converges to the unique solution of (30) if the splitting parameter A is chosen judiciously.

Based on (32)–(33), we rewrite the scheme (30) in an equivalent form:

L (
φm+1 − φav

) = −χ(φm+1, φm) + G(φm, φm−1) + μm+1/2
av , (41)

where

L (ψ) :=
[
1

s
(−�N )−1 + 3

4
ε2(−�N ) + A(−�N )α

]
ψ, ∀ψ ∈ G̊N ,

and

G(φm, φm−1) := F(φm, φm−1) + 1

4
(φm)3 + (−�N )−1

(
φm − φav

s

)
.

Note that L is a positive, linear, homogeneous (constant coefficient) operator.
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Now, we propose the following homogeneous linear iteration (HLI) method to solve the
scheme (41): given φm, φm−1, ψk ∈ GN , find the unique periodic solution, ψk+1 ∈ GN , that
satisfies

L
(
ψk+1 − φav

)
= −χ(ψk, φm) + G

(
φm, φm−1) + μk

av, (42)

where the mass compatibility constant must now take the form

μk
av = |�|−1〈χ(φk, φm) − φ̆m+1/2, 1〉 = 〈χ(φk, φm), 1〉 − φav. (43)

Observe that the mass compatibility ensures that the right hand side of (42) is of mean zero,
a necessary condition for solvability. Here k stands for the HLI index, not the time step
index. The method is initialized via ψ0 := φm . Clearly, ψ = φm+1 is the unique fixed point
solution:

L(ψ) = −χ(ψ, φm) + G
(
φm, φm−1) + μm+1/2

av . (44)

2.4 A Contraction Mapping Property

First, we derive a uniform in time ‖ · ‖4 bound of the exact solution for the numerical
scheme (30). ByProposition 2.5, the energy bound (40) is available.Meanwhile, the following
inequality is observed: for any f ∈ GN ,

1

4
‖ f ‖44 − 1

2
‖ f ‖22 ≥ 1

8
‖ f ‖44 − 1

2
|�|, (45)

since 1
8 | f |4 − 1

2 | f |2 + 1
2 ≥ 0 holds at a point-wise level. A combination with the discrete

energy (18) implies that, for all n ≥ 1,∥∥φm
∥∥
4 ≤ (8C3 + 4|�|)1/4 := C4. (46)

We now prove that the linear fixed point iteration (42) must converge to the unique fixed
point, provided that A is sufficiently large.

Theorem 2.8 By choosing α = 1
2 for d = 2, and α = 3

4 for d = 3, the linear iteration (42)
is a contraction mapping in the discrete ‖ · ‖4 norm, provided that

C−2
1

(
A + C0s

− 1−α
2

(
3

4
ε2

) 1+α
2

)
=: C5 >

11

2
C2
4 , (47)

with the constants C0, C1 and C4 given by (19), (20) and (46), respectively.

Proof Let ψ denote the unique periodic solution to (41) and define the iteration error at each
stage via

ek := ψk − ψ, (48)

where ψk is the kth iterate generated by the HLI method (42). First, we observe that the
solution created by (42) at each iteration stage has the same discrete average as φm , namely,

ψk+1 = ψk = · · · = ψ0 = φm = φav. (49)

The iteration error, therefore, always has zero (discrete) mean: ek = 0.
Since ψ0 := φm , and ψ = φm+1, by the preliminary bound (46), we obtain an estimate

for the initial error in the discrete ‖ · ‖4 norm:

‖e0‖4 ≤ ‖ψ0‖4 + ‖ψ‖4 = ‖φm‖4 + ‖φm+1‖4 ≤ 2C4. (50)
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Subtracting (42) from (41) yields

L(ek+1) = −1

4

(
ψ2 + ψψk + (ψk)2 + (ψ + ψk)φm + (φm)2

)
ek + μk

av − μm+1/2
av .

(51)

Taking a discrete inner product with ek+1 – and using the fact that ek+1 = 0 – leads to

〈
L(ek+1), ek+1

〉
= 1

s
‖ek+1‖2−1,N + 3ε2

4
‖∇Ne

k+1‖22 + A‖ek+1‖2Hα
N

= − 1

4

〈(
ψ2 + ψψk + (ψk)2 + (ψ + ψk)φm + (φm)2

)
ek, ek+1

〉

+
〈
μk
av − μm+1/2

av , ek+1
〉

≤1

2

(
‖ψ‖24 + ‖ψk‖24 + ‖φm‖24

)
‖ek‖4 · ‖ek+1‖4, (52)

in which the summation-by-parts formulas (13) and (14) were used in the first step, and a
discrete Hölder inequality was applied at the last step.

To proceed further in the nonlinear analysis, we make the following a priori assumption
at the iteration stage k:

‖ek‖4 ≤ 2C4. (53)

We now show that this same bound will be recovered at the next iteration stage. With this
assumption, we get a bound of ψk in the discrete ‖ · ‖4 norm:

‖ψk‖4 = ‖ek + ψ‖4 ≤ ‖ek‖4 + ‖ψ‖4 ≤ 3C4. (54)

Going back to (52), we arrive at the following estimate:

1

s
‖ek+1‖2−1,N + 3ε2

4
‖∇Ne

k+1‖22 + A‖ek+1‖2Hα
N

≤ 11

2
C2
4‖ek‖4 · ‖ek+1‖4 ≤ 11

4
C2
4 (‖ek‖24 + ‖ek+1‖24). (55)

Moreover, since ek = 0 for any k, we apply (19) (in Lemma 2.1) and get

1

s
‖ek+1‖2−1,N + 3ε2

4
‖∇Ne

k+1‖22 ≥ C0s
− 1−α

2

(
3

4
ε2

) 1+α
2 ‖ek+1‖2Hα

N
, (56)

which in turn yields

1

s
‖ek+1‖2−1,N + 3ε2

4
‖∇Ne

k+1‖22 + A‖ek+1‖2Hα
N

≥ C2
1C5‖ek+1‖2Hα

N
, (57)

where C5 is defined in (47). Meanwhile, an application of the discrete Sobolev inequality
(20) leads to

1

s
‖ek+1‖2−1,N + 3ε2

4
‖∇Ne

k+1‖22 + A‖ek+1‖2Hα
N

≥ C5‖ek+1‖24. (58)

Substitution into (58) yields

C5‖ek+1‖24 ≤ 11

4
C2
4

(
‖ek‖24 + ‖ek+1‖24

)
, (59)
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or, equivalently,
(
C5 − 11

4
C2
4

)
‖ek+1‖24 ≤ 11

4
C2
4‖ek‖24. (60)

As a result, a contraction is assured under the condition that

C5 − 11

4
C2
4 >

11

4
C2
4 , (61)

or, equivalently,

C5 >
11

2
C2
4 . (62)

Clearly, we are justified in our a priori assumption (53), since

‖ek+1‖4 < ‖ek‖4 ≤ 2C4 (63)

provided condition (62) is enforced. This finishes the proof. ��
Remark 2.9 At each iteration stage, the operator L defined in (41) is positive, linear, and
homogeneous and can be inverted efficiently using the Fast Fourier Transform (FFT). We
note that the operators (�N )−1 and (−�N )α (with a non-integer value of α) do not pose
any difficulty in the numerical implementation, since all the operators share exactly the
same Fourier eigenfunctions; only a slight modification of the eigenvalues is needed in the
computations.

Remark 2.10 Asanobservation in the contractionmapping analysis, the purposeof the choice
of a non-zero value for the parameter α is to make sure that the continuous “embedding”

from
(
GN , ‖ · ‖Hα

N

)
into (GN , ‖ · ‖4) is valid, independent of N . On the other hand, an

increasing value of α usually amplifies the Douglas–Dupont regularization, which in turn
leads to increasing local truncation error. In practical computations, we can take α = 0. For
instance, with α = 0, the following choice

A ≥ C

(
‖φm‖2∞ + ‖φm+1‖2∞ + (max

k≥1
‖ψk‖∞)2

)
(64)

would, formally, lead to a contraction. Since themaximumnorm of the solution for the typical
Cahn–Hilliard model is of O(1), we are able to take an O(1) value of A, combined with
α = 0, in practical computations, as presented in Sect. 4. However, this argument is only
intuitive, and a firm theoretical justification is not available.

Remark 2.11 In a recent work [12], a similar linear iteration was proposed and analyzed for
the epitaxial thin film growth without slope selection. In particular, a universal bound of 5

4
was established for the constant A associated with the Douglas–Dupont regularization, to
ensure a contractionmapping property for the HLI proposed in [12]. In comparison, the lower
bound for constant A in Theorem 2.8 is related to the discrete Sobolev constant C1 and the
uniform in time ‖ · ‖4 bound C4 (dependent on the initial data), given by estimates (20) and
(46), respectively. The key reason for this subtle fact is that the higher order derivatives of the
nonlinear terms in the no-slope selection thin film model automatically have an L∞ bound,
as a universal constant 1, so that a universal lower bound for A is available. In contrast, for
the nonlinear numerical scheme (30), where the nonlinear terms have a polynomial structure,
an L∞ bound of their derivatives are not directly valid.
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On the other hand,we observe that the lower bound of constant A (given byTheorem2.8)
does not have a singular dependence on ε, since C1 and C4 do not. This constant could be
taken to be O(1) in practical computations.

3 A Maximum Norm Estimate of the Numerical Solution

A uniform-in-time H1 bound of the numerical solution (30) is available at a discrete level,
as a result of the energy stability given by Proposition 2.5. A combination of (40) and (45)
yields, for all n ≥ 0,

C3 ≥ EN (φm) ≥ 1

8
‖φ‖44 − 1

2
|�| + ε2

2
‖∇Nφm‖22 ⇒ ‖∇Nφm‖22 ≤ 2C3 + |�|

ε2
. (65)

Now, consider φn
S := SN (φm), where SN is the spectral interpolation operator defined in

(22). Since φn
S ∈ PK , it follows that

‖∇φn
S‖L2 = ‖∇Nφm‖2.

Since φm = φav (discrete average), it also follows by a simple calculation that φn
S = φav

(continuous average). Using the continuous Poincaré inequality,

‖φn
S‖H1 ≤C

(|φav|+
∥∥∇φn

S

∥∥
L2

)≤C(β0 + ‖∇Nφm‖2) ≤ C

(
β0+

√
2C3 + |�|

ε

)
=: C6,

(66)

for all n ≥ 0, with β0 = |φav|.

Lemma 3.1 Suppose that φ� ∈ GN , � = 0, 1, · · · , M are the unique solutions to the scheme
(30). The following estimate is valid: for any 0 ≤ m ≤ M − 1,

∥∥�Nχ(φm+1, φm)
∥∥
2 ≤ C7

(
‖�2

Nφm+1‖
2
3
2 + ‖�2

Nφm‖
2
3
2

)

+ C8

(
‖�2

Nφm+1‖
1
3
2 + ‖�2

Nφm‖
1
3
2

)

+ C9

(
‖�2

Nφm+1‖
1
2
2 + ‖�2

Nφm‖
1
2
2

)
+ C10, (67)

for some positive constants C7, · · · ,C10 that are independent of s and m.

Proof We observe that χ(φm+1, φm) is the point-wise interpolation of a continuous function
χ(φm+1

S , φm
S ). As a consequence of Lemma 2.4 and the fact that χ(φm+1

S , φm
S ) ∈ PL , with

L = 3 · K , we conclude that

‖�Nχ(φm+1, φm)‖2 = ‖�RN (χ(φm+1
S , φm

S ))‖L2 ≤ (
√
3)3‖�(χ(φm+1

S , φm
S ))‖L2 .

(68)
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Furthermore, a repeated application of the Hölder inequality shows that

‖�(χ(φm+1
S , φm

S ))‖
≤ C(‖φm+1

S ‖L∞ + ‖φm
S ‖L∞) · (‖∇φm+1

S ‖L∞ + ‖∇φm
S ‖L∞) · (‖φm+1

S ‖H1 + ‖φm
S ‖H1)

+ C(‖φm+1
S ‖2L∞ + ‖φm

S ‖2L∞) · (‖φm+1
S ‖H2 + ‖φm

S ‖H2)

≤ C
(
(‖φm+1

S ‖L∞ + ‖φm
S ‖L∞) · (‖∇φm+1

S ‖L∞ + ‖∇φm
S ‖L∞)

+ (‖φm+1
S ‖2L∞ + ‖φm

S ‖2L∞) · (‖φm+1
S ‖H2 + ‖φm

S ‖H2)
)
. (69)

Meanwhile, the uniform in time H1 estimate (66), combinedwith the 3-D Sobolev inequality,
and the Gagliardo-Nirenberg type inequalities, indicates that

‖φ�
S‖H2 ≤ C

(
‖φ�

S‖
2
3
H1‖�2φ�

S‖
1
3
L2 + ‖φ�

S‖H1

)
≤ C

(
C

1
3
6 · ‖�2φ�

S‖
1
3
L2 + C

1
2
6

)
, (70)

‖φ�
S‖L∞ ≤ C

(
‖φ�

S‖
5
6
H1‖�2φ�

S‖
1
6
L2 + ‖φ�

S‖H1

)
≤ C

(
C

5
12
6 · ‖�2φ�

S‖
1
6
L2 + C

1
2
6

)
, (71)

‖∇φ�
S‖L∞ ≤ C‖φ�‖

1
2
H1‖�2φ�

S‖
1
2
L2 ≤ CC

1
4
6 · ‖�2φ�

S‖
1
2
L2 , (72)

for � = m,m + 1. A combination of (68), (69), and the equality
∥∥�2φ�

S

∥∥
L2 = ∥∥�2

Nφ�
∥∥
2

leads to the result. ��
Using estimates (66) and (67), we can now derive a discrete �∞(0, T ; H2) estimate of the

numerical solution. The following proposition is the main result of this section.

Theorem 3.2 We assume an initial data φ0 ∈ H4
per(�). For any A ≥ 0 and any α ∈ [0, 1),

the following bound is valid for the numerical solution given by the approximation scheme
(30):

‖φ‖�∞(0,T ;H2
h ) := max

0≤m≤M

∥∥φm
S

∥∥
H2 ≤ C11, (73)

where s · M = T and C11 > 0 is a constant independent of h, s, and T , provided that the
time step size satisfies the restriction

s ≤ 5 · 32
6 · 19

C2
12

ε2
, (74)

where C12 > 0 is the constant associated with the discrete elliptic regularity, ‖�N f ‖2 ≤
C12‖�2

N f ‖2. The right hand side of estimate (74) is independent of T .

Proof Taking the discrete inner product of (30) with �2
Nφm+1 gives

〈φm+1 − φm,�2
Nφm+1〉 + s〈�2

Nφm+1,�N φ̆m+1/2〉
− s〈�2

Nφm+1,�Nχ(φm+1, φm)〉 + ε2s〈�2
Nφm+1,�2

N φ̂m+1/2〉
= −As〈�2

Nφm+1, (−�N )1+α(φm+1 − 2φm + φm−1)〉. (75)

An application of summation-by-parts using periodic boundary conditions indicates that

〈φm+1 − φm,�2
Nφm+1〉 = 〈�N (φm+1 − φm),�Nφm+1〉

= 1

2
(‖�Nφm+1‖22 − ‖�Nφm‖22) + 1

2
‖�N (φm+1 − φm)‖22.

(76)
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The concave diffusion term could be similarly handled:

−〈�2
Nφm+1,�N φ̆m+1/2〉 ≤ β‖�2

Nφm+1‖22 + 1

4β
‖�N φ̆m+1/2‖22

≤β‖�2
Nφm+1‖22 + 9

8β
‖�Nφm‖22 + 1

8β
‖�Nφm−1‖22

≤ β‖�2
Nφm+1‖22 + 9β

8
‖�2

Nφm‖22 + β

8
‖�2

Nφm−1‖22 + 5C2
6

16β3 ,

(77)

for any β > 0, in which the following inequality has been applied in the last step:

‖�Nφ�‖22 = 〈φ�,�2
Nφ�〉 ≤ 1

4β2 ‖φ�‖22 + β2‖�2
Nφ�‖22 ≤ C2

6

4β2 + β2‖�2
Nφ�‖22, (78)

for � = m,m − 1. Meanwhile, the bi-harmonic diffusion term can be treated in a more
straightforward way:

〈�2
Nφm+1,�2

N φ̂m+1/2〉 = 3

4
‖�2

Nφm+1‖22 + 1

4
〈�2

Nφm+1,�2
Nφm−1〉

≥ 3

4
‖�2

Nφm+1‖22 − 1

8
(‖�2

Nφm+1‖22 + ‖�2
Nφm−1‖22)

≥ 5

8
‖�2

Nφm+1‖22 − 1

8
‖�2

Nφm−1‖22. (79)

The estimate for the right hand side of (75) is similar to that of the concave diffusion term.
First, we will need the following weighed Sobolev inequality:

‖(−�N )
3+α
2 φ�‖22 ≤ C‖∇Nφ�‖

2(1−α)
3

2 · ‖�2
Nφ�‖

2(2+α)
3

2 ≤ CC
2(1−α)

3
6 · ‖�2

Nφ�‖
2(2+α)

3
2

≤ C14 + β

A
‖�2

Nφ�‖22, (80)

for any β > 0, where C14 > 0 depends on A, β, and C6. Then, using the last inequality,
along with the summation-by-parts formula (14) and the Cauchy inequality

− 〈�2
Nφm+1, (−�N )1+α(φm+1 − 2φm + φm−1)〉

= −‖(−�N )
3+α
2 φm+1‖22 + 2〈(−�N )

3+α
2 φm+1, (−�N )

3+α
2 φm〉

− 〈(−�N )
3+α
2 φm+1, (−�N )

3+α
2 φm−1〉

≤ 1

2
‖(−�N )

3+α
2 φm+1‖22 + ‖(−�N )

3+α
2 φm‖22 + 1

2
‖(−�N )

3+α
2 φm−1‖22

≤ 3C14 + β

2A
‖�2

Nφm+1‖22 + β

A
‖�2

Nφm‖22 + β

2A
‖�2

Nφm−1‖22. (81)
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Using estimate (67), we arrive at

〈�2
Nφm+1,�Nχ

(
φm+1, φm)〉 ≤‖�2

Nφm+1‖2 · ‖�Nχ
(
φm+1, φm) ‖2

≤ C7

(
‖�2

Nφm+1‖
5
3
2 + ‖�2

Nφm+1‖2 · ‖�2
hφ

m‖
2
3
2

)

+ C8

(
‖�2

Nφm+1‖
4
3
2 + ‖�2

Nφm+1‖2 · ‖�2
Nφm‖

1
3
2

)

+ C9 ·
(

‖�2
Nφm+1‖

3
2
2 + ‖�2

Nφm+1‖2 · ‖�2
Nφm‖

1
2
2

)

+ C10‖�2
Nφm+1‖2

≤ C15 + β
(‖�2

Nφm+1‖22 + ‖�2
hφ

m‖22
)
, (82)

for any β > 0, with C15 = C15(β,C7, · · · ,C10) > 0.
A combination of (75), (76), (77), (79), (81), and (82) yields

‖�Nφm+1‖22 − ‖�Nφm‖22 + s
(5ε2

4
− 5β

)
‖�2

Nφm+1‖22

≤ 25β

4
s‖�2

Nφm‖22 + s

(
ε2

4
+ 5β

4

)
‖�2

Nφm−1‖22 + s

(
5C2

6

16β3 + 3AC14 + C15

)
, (83)

under a standard assumption A ≥ 1. Choosing β = 1
40ε

2 fixes the constant term, and we
have

‖�Nφm+1‖22 − ‖�Nφm‖22 + 9ε2

8
s‖�2

Nφm+1‖22

≤ 5ε2

32
s‖�2

Nφm‖2 + 9ε2

32
s‖�2

Nφm−1‖22 + sC16, (84)

where C16 > 0 is a fixed constant that depends on ε−1 to some positive power. With an

addition of 7ε2
16 ‖�2

Nφm‖22 to both sides, this inequality becomes

‖�Nφm+1‖22 + 9ε2

8
s‖�2

Nφm+1‖22 + 7ε2

16
s‖�2

Nφm‖22

≤ ‖�Nφm‖22 + 19ε2

32
s‖�2

Nφm‖22 + 9ε2

32
s‖�2

Nφm−1‖22 + sC16. (85)

We now introduce a modified “energy”:

Gm := ‖�Nφm‖22 + 19ε2

32
s‖�2

Nφm‖22 + 9ε2

32
s‖�2

Nφm−1‖22. (86)

The last estimate now takes the form

Gm+1 + 17ε2

32
s‖�2

Nφm+1‖22 + 5ε2

32
s‖�2

Nφm‖22 ≤ Gm + sC16. (87)

On the other hand, by performing a similar analysis as in (3.32) – (3.33) in reference [36],
the following estimate is valid:

17ε2

32
s‖�2

Nφm+1‖22 + 5ε2

32
s‖�2

Nφm‖22 ≥ 3ε2

16
s‖�2

Nφm+1‖22 + 3ε2

16C2
12

sGm+1, (88)
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provided that the constraint (74) is satisfied. Note that (74) is not so restrictive, since the
bound on the right-hand-side will typically be greater than 1. Then we arrive at(

1 + 3ε2

16C2
12

s

)
Gm+1 + 3ε2

16
s‖�2

Nφm+1‖22 ≤ Gm + sC16. (89)

An application of induction with the last estimate (see reference [36]) indicates that

Gm+1 ≤
(
1 + 3ε2s

16C2
12

)−(m+1)

G0 + 16C16C2
12

3ε2
≤ G0 + 16C16C2

12

3ε2
. (90)

The following observation is made

‖φm+1‖22 + ‖�Nφm+1‖22 ≤ C6 + G0 + 16C16C2
12

3ε2
≤ C17, (91)

for some C17 > 0 that is independent of T and s, using φ−1 ≡ φ0 and the fact that G0 is
bounded independently of h by consistency. To conclude, we employ the elliptic regularity

‖φm
S ‖H2 ≤ C(‖φm

S ‖L2 + ‖�φm
S ‖L2) = C(‖φm‖2 + ‖�Nφm‖2), (92)

and this finishes the proof of Proposition 3.2. ��
Remark 3.3 This analysis follows a similar idea as in the recent work [36], in which the
second order convex splitting temporal approximation is combined with the centered differ-
ence in space. On the other hand, due to the Fourier pseudo-spectral spatial approximation
in (30), we are able to bound the nonlinear inner product with the help of Lemma 2.4. In
turn, this approach avoids an application of discrete version of Hölder inequality and Sobolev
embedding. This subtle difference greatly simplifies the estimate presented in Theorem 3.2.

Remark 3.4 A detailed examination of (90) reveals an asymptotic decay of the contribution
coming from the term G0, which is essentially the H2 norm of the initial data φ0.

In addition, we observe the following Sobolev inequality

‖φm‖∞ ≤ ‖φm
S ‖L∞ ≤ C‖φm

S ‖H2 ≤ CC11, ∀m ≥ 0, (93)

where the first estimate is based on the fact that φm is the point-wise interpolation of its
continuous extension φm

S . This gives the �∞(0, T ; �∞) bound of the numerical solution.

Remark 3.5 Similar to the H2 estimate given by Theorem 3.2, the ‖ · ‖∞ bound (93) for the
numerical solution is final time independent. There have been limited theoretical works to
derive an L∞ bound of the numerical solution for the Cahn–Hilliard equation; see [3] for
the analysis of a first-order numerical scheme applied to the CH equation with a logarithmic
energy. On the other hand, for a second-order scheme for the CH model with a nonlinear
polynomial energy, estimate (93) is the first such result if a pseudo-spectral approximation
is taken in space.

Remark 3.6 A detailed derivation shows that the global in time ‖ · ‖∞ bound, CC11 in (93),
depends singularly on ε−m0 , where m0 is some positive integer. Meanwhile, a well-known
theoretical analysis presented by L. Caffarelli [7] gives an ε-independent L∞ bound for the
CH equation, at the PDE level, provided that a cut-off is applied to the energy. For the standard
CH energy (1), in which the polynomial part is given by 1

4φ
4 − 1

2φ
2 without a cut-off, the

availability of an ε-independent L∞ bound of the solution is still an open problem, at both
the PDE and numerical levels.
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Remark 3.7 A careful examination reveals that, the stability estimate for the modified energy
(31) and the weak stability (40) for the original energy functional are valid for any A ≥ 0, due
to the convex splitting nature of the temporal discretization. In turn, the uniform in time H1

and H2 bound for the numerical solution, namely (65) and (73), respectively, could be derived
in the same manner, even if A = 0. In other words, the Douglas–Dupont-type regularization
term does not play any essential role in the proof of Theorem 3.2, and the estimate (73) holds
even if the artificial regularization term is removed.

On the other hand, the primary purpose to introduce the Douglas–Dupont-type regular-
ization term is to facilitate the numerical implementation of the highly nonlinear scheme
(30). With an addition of this regularization term, the linear iteration algorithm (42) could be
efficiently applied, and the contraction mapping property of such an iteration is theoretically
justified in Theorem 2.8, provided that the parameter A satisfies (47).

We point out that, with the uniform-in-time H2 bound (73) available for the numerical
solution,we are able to establish a local in time convergence analysis for the proposed scheme.
This analysis follows a very similar form as Theorem 4.1 in [36]; the details are skipped for
simplicity and are left to interested readers.

Theorem 3.8 Given initial data ψ ∈ Cm+6
per (�), suppose the unique solution φe(x, y, z, t)

for the Cahn–Hilliard equation (2) is of regularity class

R := C3([0, T ∗];C2
per(�))∩C2([0, T ∗];Cm+4

per (�))∩C2([0, T ∗];C2
per(�))∩C0([0, T ∗];

Cm+6
per (�)). (94)

Define the error grid function φ̃�
i, j,k := ��

i, j,k −φ�
i, j,k , where φ�

i, j,k is the numerical solution
of the proposed scheme (30). Consequently, provided s is sufficiently small, for all positive
integers �, such that s · � ≤ T , we have∥∥∥φ̃�

N

∥∥∥
H2

≤ C
(
s2 + hm

)
, (95)

where C = C(ε, T ) > 0 is independent of s and h.

Remark 3.9 For the consistency, we note that the numerical scheme (30) has an O(s2) local
truncation error. On the other hand, if we rewrite (30) in an equivalent form: φm+1 − φm =
s�N μ̃m+1/2, the local truncation error becomes O(s3), since we havemultiplied by s on both
sides. In the convergence analysis and error estimate, a well-known fact implies that, although
only an O(s3) local truncation error has contributed to the numerical error function—the
difference between the numerical and exact solutions—at each time step, its accumulation
in time leads to an O(s2) convergence rate.

Remark 3.10 With the O(s2 + hm) consistency at hand, the key point to establish the con-
vergence analysis is to obtain a bound of the numerical solution in certain functional norm.
The uniform in time H2 bound (73) and the ‖ · ‖∞ bound (93) enable us to derive the desired
H2 convergence result, namely (95).

Remark 3.11 Other than the nonlinear convex splitting approach, the idea of linear convex
splitting has also attracted a great deal of attentions in recent years. For example, the following
linear convex splitting scheme for the CH equation was considered in Feng, Tang and Yang
[27]:

φm+1 − φm

s
= �

(
f (φm) + β(φm+1 − φm) − ε2φm+1) , (96)
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with f (x) = x3 − x . Energy stability may be rigorously proven for such linear splitting
schemes, provided that β ≥ β0, where β0 ∼ ε−n0 , for some integer value of n0. A theoretical
justification of the value for β has been provided in more recent works [44,45].

For this linear splitting scheme, the energy stability will yield the desired bound for the
numerical solution, and a full order convergence analysis is expected to be available.

Remark 3.12 In addition to the linear splitting scheme (96), its combination with the spec-
tral deferred correction (SDC) method has also been studied in [27], to achieve higher order
temporal accuracy. For the SDC method, an immediate observation is that the energy sta-
bility is not directly available any more, due to the Picard iteration nature involved in the
numerical algorithm. In turn, any further numerical analysis for the SDC method becomes
very challenging, due to the lack of energy stability estimate. Instead, one may think about
an alternate approach, the linearized stability analysis for the numerical scheme. This chal-
lenging problem will be considered in our future works.

4 Numerical Simulation Results

4.1 Algebraic Convergence of the HLI Algorithm

In this subsection we present some numerical tests to support the theoretical convergence
for the proposed homogeneous linear iteration (HLI) algorithm (42). Different values of the
diffusion coefficient ε and the time step size s are used to compare the convergence rates for
the linear iteration. We take the following exact profile for the phase variable:

ψ(x, y) = sin(2πx)cos(2πy) (97)

over the domain � = (0, 1)2. Making this the exact solution requires that we manufacture
appropriate values for φm and F in (33). In Fig. 1 we plot the iteration error

∥∥ek∥∥2 versus
k, where ek := ψk − ψ , as in Theorem 2.8, with a fixed N = 128. We expect to and, in
fact, do see a finite saturation of the iteration error in the figure. As expected, the saturation
levels differ for different values of the parameters. Naturally, a larger value of N will allow
for smaller saturation levels in each case, but at the cost of more computation.

For the first test, the results for which are reported in Fig. 1a, we fix s = 0.01 and A = 1
and vary ε: ε = 1 and ε = 0.1. It is clear that the linear iteration error reaches a saturation
after certain iteration stages. We observe that the convergence rate for the linear iteration
increases with an increasing value of ε, which in turn implies that numerical implementation
of the linear iteration algorithm (42) becomes more challenging with a smaller diffusion
coefficient ε. This result matches with our theoretical analysis in proof of Theorem 2.8. Also
note, that each iteration of the linear iteration method reduces the iteration by roughly a
constant amount, which is not surprising since we have a pure contraction of the error.

For the second test, the results for which are reported in Fig. 1b, we fix ε = 0.1, A = 1
and vary s: s = 10−2 and s = 10−3. Similarly, the linear iteration error reaches a saturation
after certain iteration stages. The convergence rate for the linear iteration increases with a
decreasing value of s. These results likewise match with our theoretical analysis in the proof
of Theorem 2.8.

Based on these experiment data, we usually take six to ten iteration stages within each
time step in the practical numerical simulations, by setting 10−10 as the tolerance of iteration
error.
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Fig. 1 Discrete ‖ · ‖2 norm of the error for the linear iteration versus the iteration stage k, with a fixed
choice A = 1. a Dependence of the convergence rate on the diffusion parameter ε, with s = 0.01, A = 1; b
dependence of the convergence rate on the time step size s, with ε = 0.1, A = 1
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4.2 Convergence of the Proposed Numerical Scheme

In this subsection we perform a numerical accuracy check for the fully discrete second order
scheme (30). The two-dimensional computational domain is set to be � = (0, 1)2, and the
exact profile for the phase variable is given by

�(x, y, t) = sin(2πx) cos(2πy) cos(t). (98)

To make � satisfy the original PDE (2), we have to add an artificial, time-dependent forcing
term. The linear iteration (42) is applied to solve the nonlinear system associated with the
proposed second order scheme (30) for (2). We compute solutions with grid sizes N = 64
to N = 640 in increments of 64, and the errors are reported at the final time T = 1. Two
parameters for the diffusion coefficient are used: ε = 0.5 and ε = 0.1. The time step is
determined by the linear refinement path: s = 0.5h, where h is the spatial grid size. Figure 2
shows the discrete ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ norms of the errors between the numerical and
exact solutions. A clear second order temporal accuracy is observed in all cases.

Meanwhile, we note that the numerical errors displayed in Fig. 2 are dominated by the
temporal error, since the Fourier spectral accuracy makes the spatial numerical error almost
negligible, in comparison with the O(s2) temporal accuracy. To investigate the spatial accu-
racy in an appropriate way, we rewrite the forcing term associated with the substitution of
the exact profile (98) into the original PDE (2), so that the temporal discretization errors
are exactly canceled in the equation and only the spatial discretization errors are kept. With
such an external force term, we compute solutions with grid sizes N = 24 to N = 96 in
increments of 8, and the errors are reported at the final time T = 0.5, with a fixed time step
size s = 0.01. The discrete numerical errors (in ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ norms) are presented
in Fig. 3, with the same diffusion parameters as in Fig. 2: ε = 0.5 and ε = 0.1. The spatial
spectral accuracy is apparently observed for both cases. And also, a saturation of spectral
accuracy appears with an increasing N , due to finite machine precision.

4.3 Coarsening Processes and Energy Dissipation in Time

In this subsection we present a numerical simulation result of a physics example. With the
assumption that the interface width is in a much smaller scale than the domain size, i.e.,
ε � min

{
Lx , Ly

}
, one is interested in how properties associated with the solution to (2)

scalewith time. In particular, the energy dissipation lawhas attracted a great deal of attentions,
and a formal analysis indicates a lower decay bound as t−1/3. Meanwhile, it is noted that the
rate quoted as the lower bound is typically observed for the averaged values of the energy
quantity. A numerical prediction of this scaling law turns out to be very challenging, since
a large time scale simulation has to be performed. To adequately capture the full range of
coarsening behaviors, numerical simulations for the coarsening process require short- and
long-time accuracy and stability, in addition to high spatial accuracy for small values of ε.

We compare the numerical simulation result with the predicted coarsening rate, using the
proposed second order scheme (30) combined with the linear iteration algorithm (42) for the
Cahn–Hilliard flow (2). The diffusion parameter is taken to be ε = 0.02. For the domain we
take Lx = Ly = L = 12.8 and h = L/N , where h is the uniform spatial step size. For such
a value of ε, our numerical experiment has shown that N = 512 is sufficient to resolve the
small structures in the solution.

For the temporal step size s, we use increasing values of s in the time evolution. In more
detail, s = 0.004 on the time interval [0, 400], s = 0.04 on the time interval [400, 6000],
and s = 0.16 on the time interval [6000, 20,000]. Whenever a new time step size is applied,
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Fig. 2 Discrete ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ numerical errors at T = 1.0 plotted versus N for the fully discrete
second order scheme (30), with the linear iteration algorithm (42) applied. The time step size is set to be
s = 0.5h. The data lie roughly on curves CN−2, for appropriate choices of C , confirming the full second-
order accuracy of the scheme. Left:With the diffusion parameter ε = 0.5; Right: with the diffusion parameter
ε = 0.1
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Fig. 3 Discrete ‖·‖1, ‖·‖2 and ‖·‖∞ numerical errors at T = 0.5 plotted versus N for the proposed numerical
scheme (30), combined with the linear iteration algorithm (42). The external force term is rewritten to make
the temporal numerical error exactly cancel, so that only the spectrally accurate spatial error is observed. The
time step size is fixed as s = 0.01. Left: With the diffusion parameter ε = 0.5; Right: with the diffusion
parameter ε = 0.1
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Fig. 4 (Color online.) Snapshots of the computed phase variable φ at the indicated times for the parameters
L = 12.8, ε = 0.02

we initiate the two-step numerical scheme by taking φ−1 = φ0, with the initial data φ0 given
by the final time output of the last time period. Both the energy stability and second order
numerical accuracy have been theoretically assured by our arguments in Proposition 2.5,
Theorem 3.8, respectively. Figure 4 presents time snapshots of the phase variable φ with
ε = 0.02. A significant coarsening process is clearly observed in the system. At early times
many small structures are present. At the final time, t = 20,000, a single interface structure
emerges, and further coarsening is not possible.

The long time characteristics of the solution, especially the energydecay rate, are of interest
to material scientists. Recall that, at the space-discrete level, the energy, EN is defined via
(18). Figure 5 presents the log–log plot for the energy versus time, with the given physical
parameter ε = 0.02. The detailed scaling “exponent” is obtained using least squares fits of
the computed data up to time t = 400. A clear observation of the aetbe scaling law can be
made, with ae = 8.1095, be = −0.3445. In other words, an almost perfect t−1/3 energy
dissipation law is confirmed by our numerical simulation.

In addition, we provide another numerical simulation result to demonstrate the energy
dissipation law versus time, with a different physical parameter ε = 0.03; all other set-up
are kept the same. For this physical parameter ε, we compute the Cahn–Hilliard flow up to a
final time T = 6000, when the saturation state is clearly observed. The log–log plot for the
energy is presented in Fig. 6. Again, the least squares approximation (up to time t = 400)
is applied to calculate the scaling “exponent”, and a scaling law of aetbe , with ae = 9.8286,
be = −0.3118, is obtained by the numerical results. This scaling law also matches the t−1/3

law very well. And also, it is remarkable to note that a smaller value of ε = 0.02 leads to a
scaling law closer to the t−1/3 prediction.
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Fig. 5 Log–log plot of the temporal evolution the energy EN for ε = 0.02. The energy decreases like t−1/3

until saturation. The red lines represent the energy plot obtained by the simulations, while the straight lines
are obtained by least squares approximations to the energy data. The least squares fit is only taken for the
linear part of the calculated data, only up to about time t = 400. The fitted line has the form aetbe , with
ae = 8.1095, be = −0.3445 (Color figure online)
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time
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Fig. 6 Log–log plot of the temporal evolution the energy EN for ε = 0.03, with the same set-up as in Fig. 5.
The least squares fit is only taken for the linear part of the calculated data, only up to about time t = 400. The
fitted line has the form aetbe , with ae = 9.8286, be = −0.3118 (Color figure online)
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5 Summary and Remarks

In this paper we have presented an unconditionally energy stable second-order numerical
scheme for the Cahn–Hilliard equation (2), with the Fourier pseudo-spectral approximation
in space. The temporal discretization follows the second order convex splitting reported in
a recent article [36], while the global nature of the Fourier pseudo-spectral scheme makes a
direct nonlinear solver not feasible. In turn, we introduce an O(s2) artificial diffusion term,
a Douglas–Dupont-type regularization, and a contraction mapping property of the proposed
linear iteration (in a discrete ‖ · ‖4 norm) is justified at a theoretical level. An addition of this
regularization does not affect the unconditional unique solvability and unconditional energy
stability of the scheme. In addition to the leading order H1 estimate indicated by the energy
stability, we establish a uniform in time H2 bound for the numerical solution, by performing
an �∞(0, T ; H2) ∩ �2(0, T ; H4) analysis at a discrete level. As a result of this H2 estimate,
a discrete maximum bound is also available for the numerical solution.

This linear iteration algorithm demonstrates an efficient approach to implement a highly
nonlinear scheme. The nonlinear system can be decomposed as an iteration of purely linear
solvers, which can be very efficiently implemented with the help of FFT in a Fourier spectral
set-up. The numerical simulation experiments showed that the second order scheme, com-
bined with the linear iteration algorithm, is able to produce accurate long time numerical
results with a reasonable computational cost. In particular, the energy dissipation rate given
by our numerical simulation indicates an almost perfect match with the theoretical t−1/3

prediction, which is remarkable.
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Proof of Lemma 2.1

For a 3-D grid function f with its discrete Fourier expansion as (5), an application of discrete
Parseval equality gives

‖ f ‖2−1,N = ‖(−�N )−
1
2 f ‖22 =

K∑
�,m,n=−K
(�,m,n)�=0

λ−1
�,m,n | f̂�,m,n|2, (99)

‖∇N f ‖22 =
K∑

�,m,n=−K
(�,m,n)�=0

λ�,m,n | f̂�,m,n |2, (100)

with λ�,m,n = 4π2(�2 + m2 + n2). This in turn yields

γ1‖ f ‖2−1,N + γ2‖∇N f ‖22 =
K∑

�,m,n=−K
(�,m,n)�=0

(
γ1λ

−1
�,m,n + γ2λ�,m,n

)
| f̂�,m,n |2. (101)
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A similar calculation also gives

‖ f ‖2
H

α0
N

=
K∑

�,m,n=−K
(�,m,n)�=0

α0λ
α0
�,m,n | f̂�,m,n|2, ∀0 < α0 < 1. (102)

By making comparison between (101) and (102), we conclude that (19) is a direct conse-
quence of the following application of Young’s inequality:

γ1λ
−1
�,m,n + γ2λ�,m,n ≥ C∗γ

1−α0
2

1 γ
1+α0
2

2 λ
α0
�,m,n, ∀ − K ≤ �,m, n ≤ K , (103)

with C∗ only dependent on α0 and �.
For the proof of (20), a discrete version of Sobolev embedding from Hα0 into �4, we have

to utilize the continuous extension of f , given by (22). For simplicity of presentation, we
focus our analysis in the 2-D case; for the 3-D grid function, the analysis could be carried
out in a similar, yet more tedious way. And also, ‖ · ‖ is denoted as the standard L2 norm for
a continuous function.

We denote the following grid function

gi, j = (
fi, j

)2
. (104)

A direct calculation shows that

‖ f ‖4 = (‖g‖2) 1
2 . (105)

Note that both norms are discrete in the above identity.Moreover, we assume the grid function
g has a discrete Fourier expansion as

gi, j =
K∑

�,m=−K

(ĝNc )�,me
2π i(�xi+my j ), (106)

and denote its continuous version as

G(x, y) =
K∑

�,m=−K

(ĝNc )�,me
2π i(�x+my) ∈ PK . (107)

With an application of the Parseval equality at both the discrete and continuous levels, we
have

‖g‖22 = ‖G‖2 =
K∑

�,m=−K

∣∣∣(ĝNc )�,m

∣∣∣2 . (108)

On the other hand, we also denote

H(x, y) = ( fS(x, y))
2 =

2K∑
�,m=−2K

(ĥN )�,me
2π i(�x+my) ∈ P2K . (109)

The reason for H ∈ P2K is because fN ∈ PK . We note that H �= G, since H ∈ P2K , while
G ∈ PK , although H and G have the same interpolation values on at the numerical grid
points (xi , y j ). In other words, g is the interpolation of H onto the numerical grid point and
G is the continuous version of g in PK . As a result, collocation coefficients ĝNc for G are not
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equal to ĥN for H , due to the aliasing error. In more detail, for −K ≤ �,m ≤ K , we have
the following representations:

(ĝNc )�,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ĥN )�,m + (ĥN )�+N ,m + (ĥN )�,m+N + (ĥN )�+N ,m+N , � < 0,m < 0,
(ĥN )�,m + (ĥN )�+N ,m, k < 0,m = 0,
(ĥN )�,m + (ĥN )�+N ,m + (ĥN )�,m−N + (ĥN )�+N ,m−N , � < 0,m > 0,
(ĥN )�,m + (ĥN )�−N ,m + (ĥN )�,m−N + (ĥN )�−N ,m−N , � > 0,m > 0,
(ĥN )�,m + (ĥN )�−N ,m, � > 0,m = 0,
(ĥN )�,m + (ĥN )�−N ,m + (ĥN )�,m+N + (ĥN )�−N ,m+N , � > 0,m < 0,
(ĥN )�,m + (ĥN )�,m+N , � = 0,m < 0,
(ĥN )�,m, � = 0,m = 0,
(ĥN )�,m + (ĥN )�,m−N , � = 0,m > 0.

(110)

With an application of Cauchy inequality, it is clear that

K∑
�,m=−K

∣∣∣(ĝNc )�,m

∣∣∣2 ≤ 4

∣∣∣∣∣∣
2K∑

�,m=−2K

(ĥN )�,m

∣∣∣∣∣∣
2

. (111)

Meanwhile, an application of Parseval’s identity to the Fourier expansion (109) gives

‖H‖2 =
∣∣∣∣∣∣

2K∑
�,m=−2K

(ĥN )�,m

∣∣∣∣∣∣
2

. (112)

Its comparison with (108) indicates that

‖g‖22 = ‖G‖2 ≤ 4 ‖H‖2 , i.e. ‖g‖2 ≤ 2 ‖H‖ , (113)

with the estimate (111) applied. Meanwhile, since H(x, y) = ( fN (x, y))2, we have

‖ fN‖L4 = (‖H‖2)
1
2 . (114)

Therefore, a combination of (105), (113) and (114) results in

‖ f ‖4 = (‖g‖2) 1
2 ≤ (

2 ‖H‖L2
) 1
2 ≤ √

2 ‖ fN‖L4 . (115)

For the continuous function fN (x, y), we have the following estimate in Sobolev embed-
ding (in 2-D):

‖ fN‖L4 ≤ C ‖ fN‖H1/2 ≤ C‖(−�N )
1
2 f ‖2, (since

∫
�

fN (x, y)dx = f = 0). (116)

Then we arrive at

‖ f ‖4 ≤ √
2 ‖ fN‖L4 ≤ C0‖(−�N )

1
2 f ‖2. (117)

This finishes the proof of (20) for d = 2.
The 3-D case could be analyzed in the same fashion, and the details are skipped for the

sake of brevity. The proof of Lemma 2.1 is completed.
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Proof of Lemma 2.2

For any grid function f ∈ GN , we recall its continuous extension, fS = SN ( f ) ∈ PK , as
defined in (22). Since f is the point-wise grid interpolation of fS , we have

‖ f ‖∞ ≤ ‖ fS‖L∞ . (118)

For the smooth function fS , applying the 3-D Sobolev inequality associated to the embedding
H2 ↪→ L∞ and elliptic regularity, we have

‖ fS‖L∞ ≤ C

(∣∣∣∣
∫

�

fS dx

∣∣∣∣ + ‖� fS‖L2

)
. (119)

Subsequently, the maximum norm estimate (21) is a direct consequence of the following
identities:

h3
N−1∑

i, j,k=0

fi, j,k =: f = fS :=
∫

�

fS dx, ‖�N f ‖2 = ‖� fS‖L2 . (120)

This finishes the proof of Lemma 2.2.
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