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Abstract In this work, we study the penalty finite element approximation of the stationary
power law Stokes problem. We prove uniform convergence of the finite element solution
with respect to the penalized parameter under classical assumptions on the weak solution.
We formulate and analyze the convergence of a nonlinear saddle point problem by adopting
a particular algorithm based on vanishing viscosity approach and long time behavior of an
initial value problem. Finally, the predictions observed theoretically are validated by means
of numerical experiments.
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1 Introduction

This work is concerned with the finite element approximation of the power-law Stokes flow
governed by the partial differential equations
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− ν div(|D(u)|r−2D(u)) + ∇ p = f in �,

divu = 0 in �,

u = 0 on ∂�, (1.1)

where � is the flow region, a bounded domain in R
d with d = 2, 3, and ∂� its boundary.

The motion of our incompressible fluid is described by the velocity u(x) and pressure p(x).
The external force per unit volume is f , while the positive parameter ν is the viscosity of the
fluid. Of course, the symmetric part of the velocity gradient given is

D(u) = 1

2
(∇u + (∇u)T ).

|·| denotes the Euclidean vector norm (that is |u|2 = u ·u) for a vector, whereas for a tensor of
order two, it is a Frobenius norm. For convenience, we also assume that r > 1. It is immediate
to see that (1.1) is reduced to the classical Stokes equations for r = 2, a case which is well
documented in the literature (see [1–3] for a good description and analysis of a multitude of
approximations). However, to the best of our knowledge, there is very little documentations
devoted to (1.1) even though one of the first work dedicated to such problem goes back to
the seventies [4] were the first error analysis has been proposed and numerical simulations.
Notable contributions have been made in [5–9] for the analysis of the convergence of the
finite element discretzation. Due to the severe nonlinearity, combine with the pressure and
the incompressibility condition it is clear that the numerical analysis of (1.1) is complicated.
(1.1) can be regarded as a mathematical model of non-Newtonian flow (see [10,11]). But
the r -Laplacian may also be used in many other situations; in chemical engineering (see
Boger and co-workers [12]), design of extrusion of dies, (Liu and co-workers [13]), the study
of lithosphere, (England [14]), and other geophysical applications, (Sonder [15]), and in
meteorology (see [16]).

The mixed finite element method has been the framework used by many researchers to
study the power lawStokes flow.Among these studies, one can singled out theworks ofLefton
and Wei [17], Borggaard, Iliescu and Roop [18], Barrett and Liu [8], Baranger and Najib
[5,6], just to mention a few. In [5,6], convergence of the finite element solution is obtained for
two dimensional fluid with r ∈ (1, 2), while Barrett and Liu [8] have generalized that result
by considering r > 1. No numerical experiments are exhibited in these works. It should be
mentioned that the results obtained in [5,6,8] are based on the mixed formulation derived
from (1.1), while the theory of Babuska-Brezzi is the the main tool for obtaining existence
and uniqueness of the solutions. In this work, instead we will “eliminate” the constraint
divu = 0 by introducing a penalty parameter ε that we will set to zero later on. The reasons
for adopting this approach are well known, among them are; its computational efficiency,
the simplification it brings to the problem, its dependence on solid mathematical foundation.
The reader can check among many references [1,17–25] to see the power of the method.

Lefton and Wei in [17,19] considered the following nonlinear penalty method

− νdiv(|D(u)ε |r−2D(uε)) + ∇ pε = f in �,

|divuε |r−2 divuε + εpε = 0 in �,

uε = 0 on ∂�, (1.2)

where 0 < ε << 1, and showed the following

‖u − uε‖1,r ≤ C

{
ε

1
(r−1)2 if r ≥ 2

ε
1

(r−1)(3−r) if 1 < r ≤ 2
, (1.3)
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where C is a generic positive constant depending here on the size of f and the domain �.
Moreover, they have obtained the following convergence result for r > 1

‖u − uε
h‖1,r = O(hαε−β) , (1.4)

where α, β are positive numbers, and uε
h is the finite element approximation of uε . Later on in

a work supported by numerical experiments, Borggaard, Iliescu and Roop [18] have obtained
similar result with better convergence rate. To our knowledge, these are the first results in
the literature dealing with penalized Stokes power-law finite element approximations. It is
manifest that these convergence results are not valid for all ε, and therefore violate the essence
of adopting penalized method. In this work, we consider instead the following penalized
equations

− νdiv(|D(uε)|r−2D(uε)) + ∇ pε = f in �,

divuε + εpε = 0 in �,

uε = 0 on ∂�. (1.5)

One of our aims is to show uniform convergence with respect to ε of the penalized finite
element formulation. It should be mentioned that Borggaard, Iliescu and Roop [18] have
analyzed (1.5) for the case r ≥ 2 and derived a convergence in the form of (1.4) previously
obtained in [17]. Our convergence result differs in the sense that we obtain an error estimate
of the form O(hα)+O(εβ) where α and β are two positive constants. It is clear that our result
is valid for all ε. Numerical simulations also confirm this (see particulary Table 3). We obtain
the a priori error estimate without any extra assumptions, though the rate of convergence
is far from optimal. The key difference between our analysis and those of [17,18] is our
careful application of Babuska-Brezzi’s theory for mixed variational problem. The second
contribution of this work is the numerical resolution of (1.5). Indeed since we are dealing
with a nonlinear equations, an iterative process such as Newton’s method or fixed point can
be used (see (1.2)), but instead we adopt a strategy pioneered by R. Glowinski (see [26,27])
consisting of the following steps after the finite element formulation of (1.5):

Step1. Associate to the weak formulation obtained with (1.5), an initial value problem.
Step2. Use an operator splitting to time discretize the equations obtained in step 1.
The idea behind the consideration of this algorithm is to recover the solution of the steady

equations from the solution of the evolution equations as the time goes to infinity. It is
then apparent that when step 1 is achieved with the desired long term behavior, any time
discretization can be used to perform step 2 since in the long run we will obtained a steady
solution. One of the advantage of using this approach is that a linear scheme can be formulated
for a nonlinear problem. Another important aspect worth to acknowledge in the algorithm
described is the uniqueness of solution for the steady problem that we obtain as t → ∞.
Indeed, if we do not have uniqueness of solution, the notion of convergence will be vague,
but E.J. Dean and R. Glowinski in [28] have managed to approximate solution using the
procedure even when the uniqueness of the steady problem is lacking.

In this work, we discretize the time based on semi-implicit scheme, and conditions for
convergence of these algorithms are established. The features and performances of these
algorithms are illustrated through a number of numerical examples. The rest of this work is as
follows. In Sect. 2, we recall or introduce some notations, preliminary results and introduce
our penalized weak formulation. In Sect. 3, we introduce and study the mixed penalized
approximation method and discuss the error estimates. Section 4 contains the description
and analysis of the algorithm used to compute the solution, as well as some computational
results. Our findings and future projects are reported in Sect. 5.
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2 Preliminaries and Variational Formulations

In this section, we introduce notations and some results that will be used throughout our work.
We also formulate various weak formulations and discuss (recall) some existence results.

2.1 Notations and Preliminaries

� is a bounded domain in R
d with a regular boundary ∂� = �. The Lebesgue space is

denoted as usual Lr (�), 1 ≤ r ≤ ∞, with norms ‖ · ‖Lr (except the L2(�)-norm which
is denoted by ‖ · ‖). For any non-negative integer m and real number r ≥ 1, the classical
Sobolev spaces [29]:

Wm,r (�) = {v ∈ Lr (�); ∂α v ∈ Lr (�) for all |α| ≤ m} ,

equipped with the seminorm

|v|m,r =
⎧⎨
⎩

∑
|α|=m

∫
�

|∂α v|rdx
⎫⎬
⎭

1/r

, (2.1)

and norm

‖v‖m,r =
⎧⎨
⎩

∑
0≤|α|≤m

|v|rWk,r (�)

⎫⎬
⎭

1/r

, (2.2)

with the usual extension when r = ∞. When r = 2, Wm,r (�) is the Hilbert space Hm(�)

with the scalar product

((v,w))m =
∑

|α|≤m

(∂αv, ∂αw) .

It should be mentioned that ∂α stands for the derivative in the sense of distribution, while
α = (α1, · · · , αd) denotes a multi-index of length |α| = α1 +· · ·+αd .W

m,r
0 (�) consists of

functions of Wm,r (�) that vanish on ∂�. Throughout this work, boldface characters denote
vector quantities, and H1(�) ≡ H1(�)d and L2(�) = L2(�)d . During the course, of this
study, we will use Poincaré-Fredrichs’s inequality, which state that; there exists a positive
constant C , such that∫

�

vrdx ≤ C
∫

�

|∇v|rdx for all v ∈ Wm,r
0 (�), (2.3)

which implies that the semi-norm (2.1) defines a norm which is equivalent to the norm (2.2).
For 1 < r < ∞, let r ′ denote the conjugate of r given by the relation r ′ = r(r − 1)−1.
W−m,r ′

(�) denote the topological dual space of Wm,r
0 (�), and ‖ · ‖−m,r ′ its norm. 〈·, ·〉

denotes the duality pairing betweenWm,r
0 (�) andW−m,r ′

(�) as well as between Lr (�) and
Lr ′

(�). Also of importance here is the Korn’s inequality which reads; there exists a positive
constant C , such that∫

�

|∇v|rdx ≤ C
∫

�

|D(v)|rdx for all v ∈ Wm,r
0 (�). (2.4)

Since we will be working with the pressure, it is convenient to introduce the following space

Lr
0(�) = {

q ∈ Lr (�) , (q, 1) = 0
}
.
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2.2 Mixed Variational Formulations

In this paragraph, we formulate various equivalent variational models associated to problem
(1.1), and its penalized form (1.5).We also indicate how existence and uniqueness of solution
is obtained.

Starting with (1.1), its variational formulation is classical and proceed as follows. We
weaken (1.1)1 by Green’s formula. It follows from the nonlinear term in (1.1)1 that the
velocity u and the test function v must belong to W1,r

0 (�); then the pressure must belong to
Lr ′

(�). Also from (1.1)2, since divu is an element of Lr (�), it follows that the trial function
q must be in Lr ′

(�). Before going further, it is important to notice that for all r ≥ 2, the space
W1,r

0 (�) is continuously imbedded in L2(�). But these results do not hold for 1 < r ≤ 2,

except when
1

r
− 1

d
≤ 1

2
(see [25]). Thus, we introduce the following spaces

X = W1,r
0 (�) ∩ L2(�) , Q = Lr ′

0 (�),

where the zero mean-value condition is added because the pressure is only defined by (1.1)
up to an additive constant. The weak formulation reads: Find (u, p) ∈ X × Q such that

〈A(u), v〉 − b(v, p) = 〈 f , v〉 for all v ∈ X
b(u, q) = 0 for all q ∈ Q,

(2.5)

with f ∈ X∗ = W−1,r ′
(�), A : W1,r

0 (�) → W−1,r ′
(�) is given by

〈A(u), v〉 = ν(|D(u)|r−2D(u), D(v)),

and b : X × Q → R is given by b(u, p) = (p, divu).
We also know that u is the solution of the optimization problem{

Find u ∈ Xdiv(�) such that

J (u) ≤ J (w) for all w ∈ Xdiv(�),
(2.6)

where

J (w) = ν

r
‖D(w)‖rLr − 〈 f ,w〉 and Xdiv(�) = {w ∈ X , divw|� = 0}.

One readily observes that (2.6) is equivalent to{
Find u ∈ Xdiv(�) such that

〈A(u),w〉 = 〈 f ,w〉 for all w ∈ Xdiv(�).
(2.7)

To show the existence and uniqueness of solution of (2.5), we recall below some classical
results

Lemma 2.1 (see [25])) Suppose r ∈ (1,∞), � ⊂ R
d , with d ≥ 1 and � bounded. Then

W1,r (�) ⊂ L2(�) is compact for r ∈ (2d/(d + 2),∞). Moreover, for every r ∈ [2d/(d +
2),∞), there is a constant C = C(�, d, r) such that for all v ∈ X ,

C‖v‖ ≤ ‖v‖1,r .
Next, the following lemma is proved in [4,8,30].

Lemma 2.2 There exist positive constants α = α(r, d) and β = β(r, d), such that the
following inequalities hold:
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If r ∈ (1, 2), then for all u, v in X ,

α‖u − v‖21,r ≤ 〈A(u) − A(v), u − v〉 (‖u‖1,r + ‖v‖1,r
)2−r

,

‖A(u) − A(v)‖−1,r ′ ≤ β‖u − v‖r−1
1,r .

If r ∈ (2,∞), then for all u, v in X ,

α‖u − v‖r1,r ≤ 〈A(u) − A(v), u − v〉,
‖A(u) − A(v)‖−1,r ′ ≤ β‖u − v‖1,r

(‖u‖1,r + ‖v‖1,r
)r−2

.

Now, using the classical Browder-Minty theory (see J.L. Lions [25]), with Lemma 2.1 and
Lemma 2.2, one can show that;

Lemma 2.3 [5,8] The mixed variational problem (2.5) admits a unique solution (u, p) ∈
X × Q, which moreover satisfies the following bound

‖u‖ + ‖u‖1,r ≤ C‖ f ‖1/(r−1)
−1,r ′ (2.8)

‖p‖Lr ′ ≤ C‖ f ‖−1,r ′ . (2.9)

To present the mixed formulation associated with the penalized form (1.5), one observes that
the pressure p and trial function q must be in M = Lr

0(�) ∩ Lr ′
0 (�) because of (1.5)2. We

then introduce the bilinear form c : M × M → R given by

c(p, q) =
∫

�

pqdx.

Following what we did earlier, the penalized formulation reads: Find (uε, pε) ∈ X×M such
that

〈A(uε), v〉 − b(v, pε) = 〈 f , v〉 for all v ∈ X
b(uε, q) + εc(pε, q) = 0 for all q ∈ M

(2.10)

To prove the existence and uniqueness of (2.10), it suffices to apply once again the classical
Browder–Minty theory (see J.L. Lions [25]). This theory together with Lemma 2.1 and
Lemma 2.2 leads to

Lemma 2.4 The mixed variational problem (2.10) admits a unique solution (uε, pε) ∈
X × M, which moreover satisfies the following bound

‖uε‖1,r ≤ C‖ f ‖1/(r−1)
−1,r ′ (2.11)

‖divuε‖2 ≤ Cε‖ f ‖r/(r−1)
−1,r ′ (2.12)

‖pε‖Lr ′ ≤ C‖ f ‖−1,r ′ . (2.13)

Moreover, denoting by (u, p) the weak solution of (2.5), constructed in Lemma 2.3, one has;
for 1 < r < 2,

‖u − uε‖1,r ≤ Cε
1

2(3−r)

‖p − pε‖Lr ′ ≤ Cε
r−1

2(3−r) ,
(2.14)

and for 2 < r < ∞
‖u − uε‖1,r ≤ Cε

1
r

‖p − pε‖Lr ′ ≤ Cε
1
r .

(2.15)
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Proof The a priori estimates (2.11)–(2.13) are standard, see [5,8], where similar results are
obtained.

From the inf-sup condition on the bilinear form b(·, ·), one obtains

‖p − pε‖Lr ′ ≤ C sup
v∈W1,r

0 (�)

b(v, p − pε)

‖v‖1,r . (2.16)

Subtracting (2.5) from (2.10), yields

b(v, p − pε) = 〈A(u) − A(uε), v〉 for all v, (2.17)

which inserting into (2.16) and using continuity, gives

‖p − pε‖Lr ′ ≤ C‖A(u) − A(uε)‖−1,r ′ . (2.18)

Then with the help of Lemma 2.2, we have

‖p − pε‖Lr ′ ≤
{
C‖u − uε‖r−1

1,r 1 < r < 2
C‖u − uε‖1,r 2 < r < ∞ .

(2.19)

First, for 1 < r < 2, we take v = u − uε in (2.17) and since b(u, q) = 0, we have

〈A(u) − A(uε), u − uε〉 = −b(uε, p − pε) . (2.20)

Using Lemma 2.2, (2.20), (2.8), (2.11) and (2.12) we have

‖u − uε‖21,r ≤ C〈A(u) − A(uε), u − uε〉 (‖u‖1,r + ‖uε‖1,r
)2−r

≤ C |b(uε, p − pε)| (‖u‖1,r + ‖uε‖1,r
)2−r

≤ C‖p − pε‖Lr ′ ‖divuε‖r
≤ C‖p − pε‖Lr ′ ‖divuε‖
≤ C‖u − uε‖r−1

1,r ε
1
2 ,

which leads to (2.14). Next, for 2 < r < ∞, we take v = u− uε in (2.17) and using the fact
that b(bu − uε, p − pε) = εc(pε, p − pε), we obtain

〈A(u) − A(uε), u − uε〉 = εc(pε, p − pε)

that is

〈A(u) − A(uε), u − uε〉 + εc(pε, pε) = εc(pε, p) .

Since εc(pε, pε) ≥ 0, we get from Lemma 2.2

‖u − uε‖r1,r ≤ C〈A(u) − A(uε), u − uε〉 ≤ Cε‖pε‖Lr ‖p‖Lr ′
and obtain (2.15) from (2.9) and (2.13). ��

3 Finite Element Approximation of the Penalty Method

3.1 Preliminaries and Existence of Solution

In this section, we analyze the finite element discretization of the penalty method (2.10). We
assume that Th is a regular partition of � in the sense introduced in [31]. The diameter of an
element K ∈ Th is denoted by hK , and the mesh size h is defined by h = maxK∈Th hK .
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Let Xh ⊂ X and Qh ⊂ Q be two conforming finite element spaces that will be made
precise later. The mixed weak formulation for the finite element discretization of the penalty
method (2.10) reads: Find (uε

h, p
ε
h) ∈ Xh × Qh such that

〈A(uε
h), vh〉 − b(vh, pε

h) = 〈 f , vh〉 for all vh ∈ Xh

b(uε
h, qh) + εc(pε

h, qh) = 0 for all qh ∈ Qh .
(3.1)

For the existence and uniqueness of (3.1), it is then manifest that, we need to apply the
discrete version of Browder-Minty theory, with the special requirement that the constant in
the discrete counterpart of the inf-sup condition on b(·, ·) be independent of h. Indeed, the
reader can consult [1,2], where many examples of elements pair that satisfy the discrete
version of that condition are given. To summarize, we have the following result

Lemma 3.1 The finite element formulation (3.1) has a unique solution (uε
h, p

ε
h)which more-

over satisfies;

‖uε
h‖1,r ≤ C‖ f ‖1/(r−1)

−1,r ′ (3.2)

‖pε
h‖Lr ′ ≤ C‖ f ‖−1,r ′ , (3.3)

where C > 0 is a generic constant independent on ε and h.

Proof First adding (3.1)1 and (3.1)2 and letting vh = uε
h and qh = pε

h , we obtain

〈A(uε
h), u

ε
h〉 + εc(pε

h, p
ε
h) = 〈 f , uε

h〉
which by Lemma 2.2 leads to

C‖uε
h‖r1,r ≤ ‖ f ‖−1,r ′ ‖uε

h‖1,r .
Next from the discrete inf-sup condition on b(·, ·) and (3.1)1, one obtains

‖pε
h‖Lr ′ ≤ C sup

vh∈Xh

b(vh, pε
h)

‖vh‖1,r
= C sup

vh∈Xh

〈A(uε
h), vh〉 − 〈 f , vh〉

‖vh‖1,r
≤ C(‖A(uε

h)‖−1,r ′ + ‖ f ‖−1,r ′),

and deduce the result by applying Lemma 2.2 and (3.2). ��
We now state and prove one of the the main result of this work about the uniform con-

vergence of the penalty finite element approximations (uε
h, p

ε
h) given by (3.1). It should be

mentioned that the convergence results obtained in [17,18] are not uniform with respect to ε.
The proof is based on direct application of Babuska-Brezzi’s theory for mixed formulations
together with Lemmas 2.1 and 2.2.

3.2 Abstract Convergence Result

We first recall this result which will be useful in this subsection

|
m∑
i=1

ai |β ≤ C(m, β)

m∑
i=1

|ai |β for all ai ≥ 0 and for all β ≥ 0 (3.4)

where C(m, β) is a positive constant which depends on m and β.
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Theorem 3.1 Suppose that � is a bounded convex domain in R
2 and assume that f ∈

W−1,r ′
(�). For 0 < ε << 1, let (uε, pε) be the unique solution of (2.10) and (uε

h, p
ε
h) the

unique solution of (3.1). Then there exists a generic positive constant C independent of h
and ε such that for all wh ∈ Xh and qh ∈ Qh, there hold;

• For 1 < r < 2,

‖uε − uε
h‖1,r ≤ C

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖uε − wh‖r−1
1,r + ‖uε − wh‖r/21,r + ‖uε − wh‖

1
(3−r)
1,r

+‖pε − qh‖
1

(r−1)

Lr ′ + ε1/2‖pε − qh‖Lr ′ + ε1/r‖pε − qh‖2/rLr ′

+ε
1

(3−r)(r−1) ‖pε − qh‖
1

(3−r)(r−1)

Lr ′

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

(3.5)

‖pε − pε
h‖Lr ′ ≤ C

{
‖uε − uε

h‖(r−1)
1,r + ‖pε − qh‖Lr ′

}
.

• For 2 < r < ∞,

‖uε − uε
h‖r1,r ≤ C

⎧⎨
⎩

‖uε − wh‖21,r + ‖uε − wh‖r ′
1,r

+ε‖pε − qh‖2Lr ′ + εr
′ ‖pε − qh‖r ′

Lr ′

⎫⎬
⎭ ,

(3.6)

‖pε − pε
h‖Lr ′ ≤ C

{‖uε − uε
h‖1,r + ‖pε − qh‖Lr ′

}
.

Proof Subtracting (3.1) from (2.10) with v = vh and q = qh = th we obtain

〈A(uε) − A(uε
h), vh〉 − b(vh, pε − pε

h) = 0 ∀vh ∈ Xh

b(uε − uε
h, th) + εc(pε − pε

h, th) = 0 ∀th ∈ Qh .
(3.7)

From (3.7)1, we have

b(vh, p
ε
h − qh) = 〈A(uε) − A(uε

h), vh〉 − b(vh, p
ε − qh),

which together with the discrete version of the inf-sup condition on b(·, ·), and after using
Hölder’s inequality, leads to

β‖pε
h − qh‖Lr ′ ≤ sup

wh∈Xh

|〈A(uε) − A(uε
h),wh〉 − b(wh, pε − qh)|

‖wh‖1,r
≤ C(‖Auε − Auε

h‖−1,r ′ + ‖pε − qh‖Lr ′ ) .

Next, using ‖pε − pε
h‖Lr ′ ≤ ‖pε − qh‖Lr ′ + ‖qh − pε

h‖Lr ′ , yields
C‖pε − pε

h‖Lr ′ ≤ ‖Auε − Auε
h‖−1,r ′ + ‖pε − qh‖Lr ′

whereC is a generic constant independent of h and ε. Now if we apply Lemma 2.2 we obtain

C‖pε − pε
h‖Lr ′ ≤

{ ‖uε − uε
h‖r−1

1,r + ‖pε − qh‖Lr ′ 1 < r < 2

‖uε − uε
h‖1,r + ‖pε − qh‖Lr ′ 2 < r < ∞ .

(3.8)

From (3.7)1, by adding and subtracting A(wh), we have

〈A(uε) − A(wh), vh〉 + 〈A(wh) − A(uε
h), vh〉 − b(vh, p

ε − pε
h) = 0 ∀vh,wh ∈ Xh .

(3.9)
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From (3.9), by taking vh = wh − uε
h and adding and subtracting qh gives

〈A(uε) − A(wh),wh − uε
h〉 + 〈A(wh) − A(uε

h),wh − uε
h〉−b(wh − uε

h, p
ε − qh) − b(wh − uε

h, qh − pε
h) = 0.

(3.10)

Equation (3.7)2 can be written as

b(uε − wh, th) + b(wh − uε
h, th) + εc(pε − qh, th) + εc(qh − pε

h, th) = 0 ,

which by taking th = qh − pε
h implies that

b(uε − wh, qh − pε
h) + b(wh − uε

h, qh − pε
h) + εc(pε − qh, qh − pε

h)

+ εc(qh − pε
h, qh − pε

h) = 0 (3.11)

Now performing (3.10)+(3.11), and observing that εc(qh − pε
h, qh − pε

h) ≥ 0 together with
the fact that the nonlinear operator A(·) is monotone, we have

〈A(wh) − A(uε
h),wh − uε

h〉
≤ −〈A(uε) − A(wh),wh − uε

h〉 + b(wh − uε
h, p

ε − qh)

−b(uε − wh, qh − pε
h) − εc(pε − qh, qh − pε

h)

≤ ‖Auε − Awh‖−1,r ′ ‖wh − uε
h‖1,r + C‖pε − qh‖Lr ′ ‖wh − uε

h‖1,r
+C‖pε

h − qh‖Lr ′ ‖wh − uε‖1,r + ε‖pε − qh‖Lr ′ ‖pε
h − qh‖Lr ′ . (3.12)

At this step, we distinguish two possibilities.
• 1 < r < 2

We use the first part of Lemma 2.2 both to the left hand side of (3.12), and to first term of the
right hand side of (3.12) and get

‖wh − uε
h‖21,r ≤ C

(‖wh‖1,r + ‖uε
h‖1,r

)2−r{ ‖wh − uε‖r−1
1,r ‖wh − uε

h‖1,r + ‖pε − qh‖Lr ′ ‖wh − uε
h‖1,r

+‖pε
h − qh‖r ′ ‖uε − wh‖1,r + ε‖pε − qh‖Lr ′ ‖pε

h − qh‖Lr ′ .

}
(3.13)

• 2 < r < ∞
We use the second part of Lemma 2.2 on both the left hand side and to first term of the

right hand side of (3.12). We find

‖wh − uε
h‖r1,r

≤
{
C(‖wh‖1,r +‖uε

h‖1,r )r−2‖wh−uε‖1,r‖wh−uε
h‖1,r +‖pε −qh‖Lr ′ ‖wh−uε

h‖1,r
+‖pε

h − qh‖Lr ′ ‖uε − wh‖1,r + ε‖pε − qh‖Lr ′ ‖pε
h − qh‖Lr ′ .

}

(3.14)

Next, using the triangle inequalities

‖uε − uε
h‖1,r ≤ ‖uε − wh‖1,r + ‖wh − uε

h‖1,r‖wh‖1,r ≤ ‖uε − wh‖1,r + ‖uε‖1,r
‖pε − pε

h‖Lr ′ ≤ ‖pε − qh‖Lr ′ + ‖qh − pε
h‖Lr ′ ,

(3.15)

123



1068 J Sci Comput (2016) 69:1058–1082

the relation (3.4), the bounded relations (2.11), (3.2) and (3.8)1 in (3.13), we obtain for
1 < r < 2

C‖uε − uε
h‖21,r

≤ 2‖uε − wh‖21,r + ‖uε − wh‖r1,r + 2‖uε − wh‖r−1
1,r ‖uε − uhε‖1,r

+‖uε −wh‖1,r‖pε − qh‖Lr ′ +‖uε −uε
h‖1,r‖pε −qh‖Lr ′ + ‖uε − wh‖1,r‖uε − uε

h‖r−1
1,r

+ε‖pε − qh‖2Lr ′ + ε‖pε − qh‖Lr ′ ‖uε − uε
h‖r−1

1,r + ‖uε − wh‖1,r‖uε − uε
h‖1,r

+‖pε − qh‖Lr ′ ‖uε − wh‖3−r
1,r + ‖uε − wh‖2−r

1,r ‖pε − qh‖Lr ′ ‖uε − uε
h‖1,r (3.16)

+‖uε − wh‖3−r
1,r ‖pε − qh‖Lr ′ + ‖uε − wh‖3−r

1,r ‖uε − uε
h‖r−1

1,r

+2ε‖uε − wh‖2−r
1,r ‖pε − qh‖2Lr ′ + ε‖uε − wh‖2−r

1,r ‖pε − qh‖Lr ′ ‖uε − uε
h‖r−1

1,r ,

which with Young’s inequality, leads to the desired bound for 1 < r < 2.
Likewise, when 2 < r < ∞, using the triangle inequalities (3.15), the relation (3.4), the

inequalities (2.11), (3.2) and (3.8)2 in (3.14), we obtain

C‖uε − uε
h‖r1,r ≤ ‖uε − wh‖r1,r + ‖uε − wh‖21,r + ‖uε − wh‖r−1

1,r ‖uε − uε
h‖1,r

+‖uε − wh‖1,r‖uε − uε
h‖1,r + ‖uε − wh‖1,r‖pε − qh‖Lr ′ (3.17)

+‖uε − uε
h‖1,r‖pε − qh‖Lr ′ + ε‖pε − qh‖2Lr ′

+ ε‖pε − qh‖Lr ′ ‖uε − uε
h‖1,r ,

which again with the help of Young’s inequality yields the desired bound for 2 < r < ∞. ��
3.3 Rate of Convergence

Let us consider in this section some finite element approximations defined in J.W. Barrett and
W.B. Liu [8]. We state the following assumptions for integers n,m ≥ 1 and any α ∈ [1,∞).

(H1): Approximation property of Xh

There is a continuous linear operator πh : W1,α
0 (�) → Xh such that for k = 0, · · · , n,

‖w − πhw‖1,α ≤ Chk‖w‖k+1,α ∀w ∈ W k+1,α(�) ∩ W1,α
0 (�) . (3.18)

(H2): Approximation property of Qh

There is a continuous linear operator ρh : Lα(�) → Qh such that for all k = 0, · · · ,m,

‖q − ρhq‖Lα ≤ Chk‖q‖k,α ∀q ∈ Wk,α(�) . (3.19)

(H3): The spaces Qh and Xh satisfy the inf-sup condition; there is a constant C independent
of h such that

C‖qh‖Lr ′ ≤ sup
vh∈Xh

b(vh, qh)

‖vh‖1,r for all qh ∈ Mh .

Theorem 3.2 Assume that the unique solution of (2.10) is such that (uε, pε) be in
W k+1,r (�) × Wk,r ′

(�). Let (uε
h, p

ε
h) be the unique solution of (3.1). Assume that (H1),

(H2) and (H3) hold. Then for k = 0, · · · ,m we have:
For 1 < r < 2

‖uε − uε
h‖1,r ≤ C(‖uε‖k+1,r‖pε‖k,r ′)

{
hk(r−1) + ε

2
3−r

}
‖pε − pε

h‖r ′ ≤ C(‖uε‖k+1,r , ‖pε‖k,r ′)
{
hk(r−1)2 + ε

2(r−1)
3−r

}
.

(3.20)
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For 2 < r < ∞
‖uε − uε

h‖1,r ≤ C(‖uε‖k+1,r , ‖pε‖k,r ′)
{
h

k
r−1 + ε

2
r−1

}
‖pε − pε

h‖r ′ ≤ C(‖uε‖k+1,r , ‖pε‖k,r ′)
{
h

k
r−1 + ε

2
r−1

}
,

(3.21)

where C(‖uε‖k+1,r , ‖pε‖k,r ′) is a generic constant depending on ‖uε‖k+1,r , ‖pε‖k,r ′ and
independent of h and ε.

Proof Taking wh = πhu and qh = ρhu in (3.5), (3.6) and applying (3.18) and (3.19), we
obtain:

For 1 < r < 2

‖uε − uε
h‖1,r ≤ C(‖uε‖k+1,r , ‖pε‖k,r ′)

{
hk + hkr/2 + hk(r−1) + hk/(3−r)

+ hk/(r−1) + ε1/2hkε1/r h2k/r + ε
1

(3−r)(r−1) h
k

(3−r)(r−1)

}
≤ C(‖uε‖k+1,r , ‖pε‖k,r ′)

{
hk(r−1) + ε

2
3−r

}
,

where Young’s inequality has been used.
For 2 < r < ∞

‖uε − uε
h‖1,r ≤ C(‖uε‖k+1,r , ‖pε‖k,r ′)

{
hk+h2k/r +hk/(r−1) + ε1/r h2k/r + ε

1
(r−1) h

k
(r−1)

}
≤ C(‖uε‖k+1,r , ‖pε‖k,r ′)

{
hk/(r−1) + ε

2
r−1

}
,

where the last expression is obtained by the same techniques as above. ��
Remark 3.1 It should be noticed that our result goes along the same lines as those obtained
previously by [6,7] using the direct approach. Of course, from triangle’s inequality one
deduces that

‖u − uh‖1,r ≤ ‖u − uε‖1,r + ‖uε − uε
h‖1,r + ‖uε

h − uh‖1,r ,
‖p − ph‖r ′ ≤ ‖p − pε‖r ′ + ‖uε − uε

h‖1,r + ‖uε
h − uh‖1,r .

4 Numerical Experiments

In this section, we formulate and implement two strategies for the resolution of (3.1). Since
(3.1) is a nonlinear problem, iterative methods such as Newton’s or fixed point algorithm
may be used to solve it, but we prefer the strategy pioneered by Roland Glowinski [27]. It
consist of the following steps

Step 1. associate to the weak formulation (3.1) an initial value problem in Xh × Qh .
Step 2. Use operator splitting to time discretize the above initial value problem.

Section 4.1 presents those numerical strategies and their mathematical merits, while Sect.
4.2 is concerned with the numerical experiments.

4.1 Numerical Procedures

Applying themethodology described,we obtain Step 1 by associatingwith (3.1) the following
initial value problem: Given u0 ∈ X , and assuming that f ∈ X∗ independent of time, we
consider the following problem:
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Find (uε
h(t), p

ε
h(t)) ∈ Xh × Qh such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
〈∂tuε

h(t), vh〉 + 〈Auε
h(t), vh〉 − b(vh, pε

h(t)) = 〈 f , v〉 ∀vh ∈ Xh

b(uε
h(t), qh) + ε c(pε

h(t), qh) = 0, ∀qh ∈ Qh

uε
h(0) = u0 ,

(4.1)

and we are interested in the limiting behavior of (uε
h(t), p

ε
h(t)) as t → ∞. Of course, the

choice of u0 is equally important and will be discussed below.
(4.1) is a system of ordinary differential equations, hence the existence of solution is

standard and the interested reader may consult J.L. Lions [25]. Assume that (4.1) admits a
unique solution (uε

h(t), p
ε
h(t)) ∈ Xh × Qh . Then from the properties on A(·) and b(·, ·), it

can be shown that

‖uε
h(t)‖1,r ≤ C(‖u0‖1,r , ‖ f ‖−1,r ′). (4.2)

The next result is crucial and in fact it is the reason why only the long term effect should be
considered in the implementation of (4.1). We claim that

Theorem 4.1 The solution uε
h(t) of (4.1) converges to uε

h solution of (3.1) exponentially as
t goes to infinity. More precisely, we have:

‖uε
h(t) − uε

h‖ ≤ ‖u0 − uε
h‖ exp (−Cνt) , for all t ≥ 0 (4.3)

where C is a generic positive constant independent of ε and h.

Proof We first set vh = uε
h(t) − uε

h in (4.1)1 and vh = uε
h − uε

h(t) in (3.1)1 and putting
together the results, we obtain:

〈∂tuε
h(t), u

ε
h(t) − uε

h〉 + 〈Auε
h(t) − Auε

h, u
ε
h(t) − uε

h〉 − b(uε
h(t) − uε

h, p
ε
h(t) − pε

h) = 0 .

Subtracting (4.1)2 from (3.1)2 and taking qh = pε
h(t) − pε

h one obtains:

b(uε
h(t) − uε

h, p
ε
h(t) − pε

h) + εc(pε
h(t) − pε

h, p
ε
h(t) − pε

h) = 0

by adding these two equations above, we have

〈∂tuε
h(t), u

ε
h(t) − uε

h〉 + 〈Auε
h(t) − Auε

h, u
ε
h(t) − uε

h〉 + εc(pε
h(t) − pε

h, p
ε
h(t) − pε

h) = 0 .

Let us set wh(t) = uε
h(t) − uε

h , using the fact that εc(pε
h(t) − pε

h, p
ε
h(t) − pε

h) ≥ 0 and
Lemma 2.2, it turns out that:

For 1 < r < 2

d

dt
‖wh(t)‖2 + 2Cν(‖uε

h(t)‖1,r + ‖uε
h‖1,r )r−2‖wh(t)‖21,r ≤ 0,

and for 2 < r < ∞
d

dt
‖wh(t)‖2 + 2Cν‖wh(t)‖r1,r ≤ 0.

Integrating each differential inequality having in mind (4.2), and Poincare’s inequality one
obtains the desired result. ��

Finally, concerning Step 2, we propose the following temporal semi-implicit schemes, but
we acknowledge that other temporal approximation are possible.
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Let N ∈ N
∗ and set k = T/N . Given (uε0

h , pε0
h ) which is a suitable approximation of

(u0, p0), and knowing (uεm−1
h , pεm−1

h ), we compute (uεm
h , pεm

h ) in Xh × Qh solution of:

scheme1

⎧⎪⎪⎨
⎪⎪⎩
1

k
(uεm

h − uεm−1
h , vh) + ν(|D(uεm−1

h )|r−2D(uεm
h ), D(vh))+

−b(vh, pεm
h ) = ( f , vh) ∀vh ∈ Xh

b(uεm
h , qh) + εc(pεm

h , qh) = 0, ∀qh ∈ Qh,

(4.4)

or

scheme2

⎧⎪⎪⎨
⎪⎪⎩
1

k
(uεm

h − uεm−1
h , vh) + ν(|D(uεm−1

h )|r−2D(uεm
h ), D(vh))+

μ(δ)(D(uεm
h ), D(vh)) − b(vh, pεm

h ) = ( f , vh) ∀vh ∈ Xh

b(uεm
h , qh) + εc(pεm

h , qh) = 0, ∀qh ∈ Qh .

(4.5)

where μ(δ) should be regarded as artificial viscosity such that

0 < μ(δ) << 1 and lim
δ→0

μ(δ) = 0. (4.6)

The introduction of the coercive termμ(δ)(D(uεm
h ), D(vh)) in (4.5) has the effect of bringing

stability/smoothness to the system. This way of adding artificial viscosity is known in the
literature as vanishing viscosity method, and has been used for establishing existence of
solutions for partial differential equations by J.L Lions in [25]. But it is the first time as far
as the authors are aware that such technique is used in this context. It should be observed
that the solution technique via (4.4), though easy to implement is less obvious as far as its
convergence analysis is concerned. The reason being the lack of coercivity and hence the
introduction of the scheme (4.5). At this point one can anticipate that because of the “extra
diffusion” added in scheme (4.5), the numerical simulations via (4.5) should produce more
smoothness and better results than solutions obtained via (4.4). But the natural question
arising from the scheme (4.5) is the following one: can one recover the solution (uε

h, p
ε
h)

of (4.1) from the solution (uεm
h , pεm

h ) of (4.5) as m tends to infinity? We claim that indeed,
the scheme (4.5) provides a reliable solution as m → ∞, and our goal now is to show that
assertion. For that purpose, we follow R. Temam [23]. One first observe that since (4.5) is a
linear system of equations, by rearranging terms, it quickly turns out that it is a square linear
system in finite dimension; hence uniqueness implies existence of solution. Uniqueness of
uεm
h follows from the estimations obtained in Lemma 4.1, while uniqueness of pεm

h is the
consequence of the discrete version of the inf-sup condition on b(·, ·). The convergence result
we want to prove can be obtained in two steps. First, one obtains some energy estimates, next
we use compactness results and pass to the limit.

We first recall the following [23]:

‖∇uh‖Lr ≤ S(h)‖uh‖Lr for all uh ∈ Pk(T ), (4.7)

where; S(h) → ∞ as h → 0. We will also need the following version of the Sobolev’s
inequality which states that for p = 2 and q with 1 ≤ q ≤ ∞, there is C such that

‖v‖Lq ≤ C‖v‖1 for all v ∈ H1(�). (4.8)

Step 1: Energy estimates Note that uε0
h is chosen to satisfy

‖uε0
h ‖ ≤ C‖u0‖

In the sequel, C denotes a positive constant independent of k and h.
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Lemma 4.1 There exists C such that for every k > 0 and h > 0

‖uεm
h ‖2 ≤ ‖u0‖2

(1 + Ckμ(δ))m
+ CS2(h)

μ2(δ)
‖ f ‖2−1,r ′

[
1 − (1 + Ckμ(δ))−m] ∀m ≥ 0.

(4.9)

If moreover
S(h)

μ(δ)
= 0(1), then

‖uεm
h ‖2 ≤ C‖u0‖2 + C‖ f ‖2−1,r ′ ∀m ≥ 0. (4.10)

For p = 1, 2, . . . , n, one has

n∑
m=p

‖uεm
h − uεm−1

h ‖2+kμ(δ)

n∑
m=p

‖D(uεm
h )‖2+2νk

n∑
m=p

∫
�

|D(uεm−1
h )|r−2|D(uεm

h )|2dx

≤ C‖u0‖2 + C‖ f ‖2−1,r ′ + CS(h)(n − p + 1)k‖ f ‖2−1,r ′ . (4.11)

Proof Take vh = uεm
h and qh = pεm

h using the fact −b(uεm
h , pεm

h ) = εc(pεm
h , pεm

h ) ≥ 0,
together with 2(a − b, a) = |a|2 − |b|2 + |a − b|2, one obtains

‖uεm
h ‖2 − ‖uεm−1

h ‖2 + ‖uεm
h − uεm−1

h ‖2 + 2kμ(δ)‖D(uεm
h )‖2

+2νk
∫

�

|D(uεm−1
h )|r−2|D(uεm

h )|2dx ≤ 2k〈 f , uεm
h 〉 (4.12)

The right hand side of (4.12) is treated using (4.7) and (4.8) and (2.4) as follows

2k( f , uεm
h ) ≤ 2Ck‖ f ‖−1,r ′ ‖∇uεm

h ‖r
≤ 2CS(h)k‖ f ‖−1,r ′ ‖uεm

h ‖Lr
≤ 2CS(h)k‖ f ‖−1,r ′ ‖∇uεm

h ‖
≤ 2CS(h)k‖ f ‖−1,r ′ ‖D(uεm

h )‖,
which combined with (4.12) and Young’s inequality leads to

‖uεm
h ‖2 − ‖uεm−1

h ‖2 + ‖uεm
h − uεm−1

h ‖2 + kμ(δ)‖D(uεm
h )‖2

+2νk
∫

�

|D(uεm−1
h )|r−2|D(uεm

h )|2dx ≤ CS2(h)k

μ(δ)
‖ f ‖2−1,r ′ . (4.13)

Applying (2.4), and (2.3)–(4.13) and dropping some positive terms we find

‖uεm
h ‖2 ≤ 1

1 + Ckμ(δ)
‖uεm−1

h ‖2 + CS2(h)k

μ(δ)(1 + Ckμ(δ))
‖ f ‖2−1,r ′ . (4.14)

Using (4.14) recursively, we find

‖uεm
h ‖2 ≤ 1

(1 + Ckμ(δ))m
‖uε0

h ‖2 + CS2(h)k

μ(δ)
‖ f ‖2−1,r ′

m∑
i=1

1

(1 + Ckμ(δ))i

≤ ‖uε0
h ‖2

(1 + Ckμ(δ))m
+ CS2(h)

μ2(δ)
‖ f ‖2−1,r ′

[
1 − (1 + Ckμ(δ))−m]

, (4.15)

which proves (4.9). (4.10) is a direct consequence of (4.9).
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Now adding up (4.13) for m = p, . . . , n, and dropping some positive terms yields;

n∑
m=p

‖uεm
h − uεm−1

h ‖2+kμ(δ)

n∑
m=p

‖D(uεm
h )‖2+2νk

n∑
m=p

∫
�

|D(uεm−1
h )|r−2|D(uεm

h )|2dx

≤ ‖uεp−1
h ‖2 + CS2(h)(n − p + 1)k

μ(δ)
‖ f ‖2−1,r ′

which implies (4.11). ��
Step 2: weak convergence/passage to the limit Let uε

hk ∈ C0([0, T ], X) be affine in each
subinterval [tm−1, tm] with uε

hk(tm) = uεm
h for 1 ≤ m ≤ N . Let uεr

hk , u
εl
hk be the piecewise

constant function such that

uεr
hk |[tm−1,tm [ = uεm

h uεl
hk |]tm−1,tm ] = uεm−1

h .

Next, from the estimations obtained in Lemma 4.1, one gets

uε
hk, uεr

hk, uεl
hk remain in a bounded set of L∞(tm−1, tm; L2(�))

uεr
hk is remain in a bounded set of L2(tm−1, tm;W1,r

0 (�)).
(4.16)

Furthermore, from (4.11), we have

‖uεr
hk − uεl

hk‖L2(tm−1,tm ;L2(�)) ≤ Ck1/2

‖uε
hk − uεr

hk‖L2(tm−1,tm ;L2(�)) ≤ Ck1/2
(4.17)

Then we can extract a subsequence k′ ⊂ k still denoted k such that

uεr
hk → uεr

h weakly* in L∞(tm−1, tm; L2(�))

uεl
hk → uεl

h weakly* in L∞(tm−1, tm; L2(�))

uε
hk → uε

h weakly* in L∞(tm−1, tm; L2(�))

uεr
hk → uεr

h weakly in L2(tm−1, tm;W1,r
0 (�))

and from (4.17), one obtains uεr
h = uεl

h = uε
h .

Note that uεr
hk , u

εl
hk and uε

hk verify:

(∂tuε
hk, vh) + ν(|D(uεl

hk)|r−2D(uεr
hk), D(vh)) + μ(δ)(D(uεr

hk), D(vh))

+1

ε
(ρh(divuεr

hk), ρh(divvh)) = ( f , vh) ∀vh ∈ Xh
(4.18)

where ρh is the orthogonal projection of L2(�) onto Qh . The weak convergence above
allows us to pass to the limit in all bilinear terms in (4.18). But as far as the nonlinear term
is concerned, we advise the reader to see the results in [25], where a similar expression has
been analyzed.

Note that establishing convergence of the pressure is more delicate because it involves
convergence of the time derivative of the velocity whose proof is fairly long and intricate; cf.
Lions [25] and Temam [23].

4.2 Numerical Simulations

In this subsection we check through numerical simulations the robustness of the algorithms
presented in Sect. 4.1. We also elucidate certain properties of non-Newtonian flow studied.

In all examples discussed in this paragraph we assert the performance of the time stepping
algorithms formulated in (4.4) and (4.5). The result in Theorem 4.1 shows that the time
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dependent problem behaves like the stationary problem for long term behavior. This property
is check below with two numerical simulations. The divergence-free constraint is imposed
via penalization with penalty parameter ε. But is should be pointed out that the analysis of
Sect. 3 clearly indicate in the discrete (and continuous) setting that the penalized and normal
solutions are identical in some senses as along as ε goes to zero. In all the examples presented,
the velocity and pressure will be approximated by P2 − P1 element on uniform mesh. The
systems of equations obtained via (4.4) and (4.5) are solved by extending the Matlab code
proposed in [32], which is a direct solver.

We note that (4.4) and (4.5) are time stepping procedures, hence one needs initial condi-
tion to generate a sequence of solutions. The choice of initial condition in this case is less
complicated because the variational problem (4.1) has a unique solution for all values of r
in (1,∞). So based on Theorem 4.1, the convergence is guaranteed for all initial solution
u0. Hence in order to consolidate the convergence of (3.1), we suggest the solution of Stokes
equations {

ν(D(uh), D(vh)) − b(vh, ph) = ( f , vh) ∀vh ∈ Xh

b(uh, qh) + εc(ph, qh) = 0, ∀qh ∈ Qh,
(4.19)

as initial condition for (4.4) and (4.5).
First, the convergence of the algorithms (4.4) and (4.5) are considered with a view of

computing the rate of convergence to consolidate the theoretical results obtained in Sect.
3.3. Next, the dependence of ε in the convergence is tested. Thirdly, the performance and
qualitative features of the algorithm (4.5) are tested via two classical planar benchmark
problems: the driven cavity flow and a flow past a circular cylinder. For these problems,
the velocity profile inside the domain of interest is very important. Hence the full set of
equations must be solved. These problems are popular in computational analysis of non-
Newtonian flows because; the abrupt contraction is a common feature of many polymer

Table 1 Error on the velocity field using (4.5) and ε = 10−3

h ‖ure f − uh‖L3 ‖ure f − uh‖1,3 Convergence rate with L3 Convergence rate with W 1,3

1/5 1.8856e−6 3.6437e−5

1/10 5.9096e−7 2.2989e−5 1.6739 0.6645

1/15 3.0086e−7 1.7549e−5 1.6595 0.6635

1/20 1.8629e−7 1.4487e−5 1.6655 0.6662

1/25 1.2844e−7 1.2485e−5 1.6676 0.6654

Table 2 Error on the velocity field using (4.4) and ε = 10−3

h ‖ure f − uh‖L3 ‖ure f − uh‖1,3 Convergence rate with L3 Convergence rate with W 1,3

1/5 2.0292e−6 3.6982e−5

1/10 8.2823e−7 2.4949e−5 1.2928 0.5678

1/15 5.8916e−7 2.1557e−5 0.8417 0.3756

1/20 4.5360e−7 2.0445e−5 0.8686 0.2872

1/25 3.5566e−7 1.9660e−5 0.8863 0.2521
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with applications, the numerical difficulties that one encounters, the possibility of observing
singularities at the re-entrant corner, etc. In all simulations below, we have taken T = 10.

4.2.1 Convergence Check

In this first set of numerical simulations, we would like to test the convergence result obtained
in Sect. 3 by; (a) computing the rate of convergence with Lr and W1,r -norms, (b) showing
that the error is uniform with respect to ε.

For this purpose, we let ν = 0.4, the exterior force to be unity and � = (0, 1)2. It
is also assumed that the velocity at the boundary is zero. Since we do not have the exact
solution of the model problem, we compute the error using Lr -norm and W1,r -norm of the
difference of the solution obtained for h = 1

N/2 and h′ = 1
N ′/2 , where N + 1 is the number

of grid points of [0, 1] and N ′ + 1 = 2(N + 1) − 1. For these simulations we take r = 3,
k = 1/100, μ(δ) = 1/500. The results are reported in Tables 1, 2, 3 and 4. Of course the
rate of convergence is computed using the formula

α = log e2/e1
log h2/h1

.

Table 3 Velocity error with
W 1,3 and (4.5) h ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

1/5 6.9982e−6 3.6437e−5 1.2905e−4 3.4996e−5

1/10 4.7822e−6 2.2989e−5 7.9548e−5 2.2019e−5

1/15 3.8624e−6 1.7549e−5 6.0990e−5 1.7051e−5

1/20 3.3851e−6 1.4487e−5 5.1881e−5 1.4106e−5

1/25 3.0171e−6 1.2485e−5 4.4996e−5 1.1589e−5

Table 4 Rate of convergence for
the velocity with W 1,3 and (4.5) h ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

h = 1/5

h = 1/10 0.6109 0.6645 0.6780 0.6684

h = 1/15 0.6348 0.6659 0.6552 0.6306

h = 1/20 0.6602 0.6665 0.6623 0.6591

h = 1/25 0.6344 0.6665 0.6381 0.6180

Table 5 ε-rate of convergence for the velocity with W 1,3 and (4.5)

ε h = 1/5 h = 1/10 h = 1/15 h = 1/20 h = 1/25

ε = 10−2

ε = 10−3 0.6166 0.5819 0.6574 0.5314 0.6168

ε = 10−4 0.5449 0.5391 0.5410 0.5540 0.5568

ε = 10−5 0.5667 0.5578 0.5535 0.5656 0.5891
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Fig. 1 Driven cavity description u
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Fig. 2 Non-Newtonian Stokes flow with r=3, ν = 0.1
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Fig. 3 Non-Newtonian Stokes flow with r=3/2, ν = 0.1

In Tables 1 and 2, the convergence of the algorithms (4.5) and (4.4) are tested. It is
apparent that we have a superior rate of convergence in Table 1 for both L3 and W 1,3 norms
respectively.These results also demonstrate that the convergence is sub-optimal. Furthermore,
in term of CPU time, for a mesh of 25 elements per side, the convergence with algorithm
(4.5) is faster than the convergence with algorithm (4.4). We believe the good behavior
of (4.5) is due to the coercive term μ(δ)(D(uε,m

h ), D(vh)) introduced. Note also that the
stiffness matrix obtained with the scheme (4.4) has a complicated structure compare to the
one obtained with the scheme (4.5). Having obtained better results with algorithm (4.5), we
turn to the sensitivity of the error with respect to ε with that algorithm. In Table 3, the error
with respect to W 1,3 is computed for various values of ε. It is manifest that, the error is
uniform with respect to ε. In Table 4, the rate of convergence for values of ε are calculated.
One observes that these values of ε, the rate is almost the same. In Table 5, we fix the
discretization parameter h, and compute the rate of convergence with respect to ε. It should
be observed that Tables 4 and 5 are obtained from Table 3. Hence from Tables 3, 4 and 5,
one concludes the numerical results are in agreement with the results obtained in Sects. 3.2
or 3.3.

4.2.2 Driven Cavity Flow

This classical problem has become a standard benchmark for assessing the performance of
algorithms for many flow problems and it has been studied in the context of Navier Stokes
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Fig. 4 ν = 0.01, Non-Newtonian Stokes flow with r=3/2

in [33–35]. The configuration is as depicted in Fig. 1. It corresponds to a flow in a box
� = (0, 1)2, with the boundary ∂� = � ∪ S with

� = {(0, y)/0 < y < 1} ∪ {(x, 0)/0 < x < 1} ∪ {(1, y)/0 < y < 1}
S = {(x, 1)/0 < x < 1}.

We are interested in plotting the stream function, the velocity and pressure distributions for
various value of r , and ν, when k = 10−2, μ(δ) = 10−4, ε = 10−4 and h = 1/(N + 1)
with N = 256 being the number of elements in the triangulation. For ν = 0.1, the initial
configuration is obtained by solving (4.19). Figure 2 represents the flow when r = 3, while
Fig. 3 is the situation when r = 3/2. No singularity is developed as it is expected from the
physics of the problem. Similar patterns are observed when ν = 0.01, see Figs. 4 and 5.

4.2.3 Flow Past a Circular Cylinder

This is a popular test problem and has been simulated by many researchers [35,36]. The
geometry is given in Fig. 6, andwe are interested in themotion of the fluid around the cylinder.
In nature this is a time dependent problem, and consequently the non-dimensionalized version
of algorithm (4.5) should be able to predict the evolution of the flow. A cylinder is immersed
in an incompressible flow, the center of the circle is situated at the coordinate (0.25, 0.2) and
the diameter is 0.1. The inflow and outflow conditions (on left/right boundaries) are
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Fig. 5 ν = 0.01, Non-Newtonian Stokes flow with r=3

Γ
in Γ

out

2.2m

0.41m

Fig. 6 Geometry and boundary conditions

⎧⎨
⎩
u1 = 0.3/0.412 ∗ 4y(0.41 − y), u2 = 0 on �in = {0} × (0, 0.41),

u1 = 0.3/0.412 ∗ 4y(0.41 − y), u2 = 0 on �out = {2.2} × (0, 0.41) .

(4.20)

Of course it is assumed that on the other part of the boundary of �, homogeneous boundary
conditions are prescribed. For this test problem, the viscosity is ν = 10−3, k = 10−2,
μ(δ) = 10−2, ε = 10−4. The initial solution/configuration is obtained by solving (4.19).
Figures 7 and 8 are the Non-newtonian Stokes problem with r = 1.5 and r = 3 respectively.
The effect of the nonlinearity is marginal and the features predicted by the physics are
captured.
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Fig. 7 Non-Newtonian Stokes flow around a cylinder with r=3/2

Streamlines
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Fig. 8 Non-Newtonian Stokes flow around a cylinder with r=3

5 Conclusions

In this article, we have first discussed the uniform convergence with respect to the penalized
parameter ε of the finite element solution. Next, we have formulated, and implemented two
solution strategies. Our results on uniform convergence generalize and complement those
obtained in [17,18]. Here we take systematic advantage of sufficient conditions for existence
of solutions. As far as the implementation of the finite element presented goes, we have
adapted the well knownmethodology consisting to associate to a stationary problem an initial
value problem in which the focus is on the behavior of the solution of the later problem when
the time is big enough. But in order to improve the rate of convergence, we have added a
stabilizing term to the initial value problem (numerical computations confirm the predictions).
This approach leads naturally to solution methods based on time discretization; it has also an
advantage of being easily implementable, but much progress has to be made for a systematic
way of choosing the initial flow.
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