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Abstract We develop systematically a numerical approximation strategy to discretize a
hydrodynamic phase field model for a binary fluid mixture of two immiscible viscous flu-
ids, derived using the generalized Onsager principle that warrants not only the variational
structure but also the energy dissipation property. We first discretize the governing equations
in space to arrive at a semi-discretized, time-dependent ordinary differential and algebraic
equation (DAE) system in which a corresponding discrete energy dissipation law is pre-
served. Then, we discretize the DAE system in time to obtain a fully discretized system using
a structure preserving finite difference method like the Crank–Nicolson method, which sat-
isfies a fully discretized energy dissipation law. Alternatively, we solve the first order DAE
system using the integration factor method after the algebraic equation is solved firstly. The
integration factor method, which treats the linear, spatial derivative terms explicitly. Finally,
two numerical examples are presented to compare the efficiency and accuracy of the two
proposed methods.
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1 Introduction

In this paper, we consider numerically solving a hydrodynamic phase field model for binary
fluid mixtures of two immiscible viscous fluids, derived using the generalized Onsager prin-
ciple [37,38,46,47]. The hydrodynamic model consists of the following coupled partial
differential equations:

⎧
⎪⎨

⎪⎩

ρ(∂tv + v · ∇v) = −∇ p + ∇ · (σ d + σ e),

∇ · v = 0,

∂tφ + ∇ · (φv − �∇μ) = 0,

(1.1)

where we denote the mass averaged velocity as v, the volume fraction of one fluid as φ, the
hydrostatic pressure as p, μ = δ f

δφ
is the chemical potential, f is the free energy density

function, � is the mobility coefficient that is a function of phase variable φ,

σ d = 2ηD, (1.2)

is the viscous stress tensor with viscosity η, D = 1
2 (∇v + ∇vT ) is the rate of strain tensor,

and

σ e
αβ = ( f − μφ)δαβ − ∂ f

∂(∂βφ)
∂αφ, (1.3)

is the Ericksen stress tensor.
This hydrodynamic phase field model satisfies an energy dissipation law:

d

dt

∫

V

[ρ

2
|v|2 + f

]
dx = −

∫

V

[
2ηD : D + �|∇μ|2] dx, (1.4)

subject to the following boundary condition:

• v|∂V = 0, n · ∇φ|∂V = n · ∇μ = 0.
• Or, the periodic boundary condition.

When developing numerical methods for such a model, one property that we would like to
preserve is the energy dissipation property in the discrete approximation.

The numerical method that can preserve some structural properties of the model is called
the geometric integrator or structure-preserving numerical method. There is no question that
a structural preserving numerical scheme is a token of success in the numerical approxima-
tion. In numerical approximation of conservative, ordinary differential equations (ODEs),
development of structure preserving schemes has achieved a remarkable success [14,19],
where various symplectic methods have been generalized for Hamiltonian partial differential
equations (PDEs) to preserve the multi-symplectic conservation law [3,44].

In recent years, there has been an increasing emphasis on constructing numerical methods
for continuous dynamical systems to preserve certain invariant quantities of the continu-
ous systems. A large number of works have been focused on the energy-preserving method
to preserve the energy of the system. For example, Strauss and Vazquez developed such
a method for the nonlinear Klein–Gordon equation [41], Delfour et al. [9] did it for the
nonlinear Schrödinger equation, Huang [21] for the Korteweg-de Vries equation, Fei and
Vazquez [13] for the sine-Gordon equation, and Hyman [22] for the Maxwell’s equations.
In early 1990s, Li and Vu-Quoc [31] gave a survey of energy-preserving methods for PDEs
and their applications, especially, to nonlinear stability. Later, Furihata [15] presented the
discrete variational derivative methods for a large class of PDEs that inherit energy conserva-
tion or dissipation properties. Matsuo and Furihata [35] generalized the discrete variational
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derivative methods for complex valued nonlinear PDEs. Based on this method, they obtained
a series of energy preserving schemes [16]. Recently, Dahlby and Owren [8] developed the
concept of the discrete variational derivative and a general framework for deriving integral-
preserving numerical methods for PDEs. In addition, Celledoni et al. [5] used the average
vector field method to construct a systematic energy-preserving or energy dissipation method
for a class of PDEs. Gong et al. [17] presented some new structure-preserving methods for
multi-symplectic Hamiltonian PDEs. It is worth pointing out that the works along this line
have been primarily concerned with a scalar PDE system.

In the meantime, Shen and Yang have developed a series of semi-discrete, linear energy
stable numerical schemes for incompressible Navier–Stokes (NS) equation and multiphase
fluid flows governed by the NS equation together with an Allen–Cahn equation [40]. In
these schemes, the time derivatives are discretized using finite difference methods aided by a
stablizer. Thiswork has recently been extended to a host of complex fluid flowswith one of the
authors involved, including liquid crystal flows [48–50]. In these numerical approximations
of the hydrodynamic models, the spatial discretization is followed by a finite difference
method. In some cases, linear and decoupled schemes are obtained [48–50].

We note that the hydrodynamic models governing viscous fluid and complex fluids flows
can be derived using the generalized Onsager principle, which warrants the variational struc-
ture and the total energy dissipation. So, if we can develop a systematic strategy to discretize
the governing partial differential equations in the hydrodynamic models firstly in space to
preserve the total energy dissipation structure and secondly in time to retain the energy dis-
sipation property, we would end up with a fully discretized numerical scheme that respect
the total energy dissipation. This strategy follows the idea alluded to early for Hamiltonian
systems of scalar PDEs.

In this paper,wewill articulate the systematic approachusing the hydrodynamic phasefield
model for a binary viscous fluid mixture. It would be the first one applied to hydrodynamic
models of incompressible complex fluids flows. The numerical scheme thus developed is
known as the energy stable method (ESM). In the hydrodynamic phase field model, the fully
discretized scheme obtained this way often yields a system of nonlinear algebraic equations.
Iterative methods are then employed to arrive at a solution, in which FFT is employed to
speed up the computation on linear differential operators in the equations.

When developing numerical methods for solving dissipative hydrodynamic system of
equations, one major challenge is how to efficiently handle the high-order spatial derivatives
coupled with nonlinear terms. When an explicit scheme is applied to solve such a system, the
time step relies heavily on the stiffness of the reaction terms and numerical treatment of the
high-order spatial derivatives. On the other hand, implicit schemes, like the Crank–Nicolson
method, can be employed to remove the stability constraints on time steps.However, it usually
requires solving a large coupled system of nonlinear equations for each time step, like we do
for the fully discretized energy stable scheme.

Alternatively, integrating factor (IF) or exponential differencing time (ETD) methods can
serve as an effective approach to deal with temporal stability constraints associatedwith high-
order spatial derivatives and nonlinear reactive terms [7,27,28]. By treating the highest order
spatial derivatives exactly in time integration, the IF or ETD methods can provide excellent
temporal stability with desired accuracy for reaction-diffusion equations and Cahn-Hilliard
equations with constant diffusivity or mobility coefficients [10,11,27,29].

In the IF method, the dominant computational cost comes from storage and calculation
of exponentials of matrices resulted from discretizing the spatial derivatives. To resolve
this issue in high dimension in space, compact representation of the discretized matrices
can be introduced in the context of the implicit integrating factor (IIF) method [36]. In the
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compact implicit integrating factor (cIIF) method in high dimension in space, the discretized
matrix for each spatial direction has the same size as the classic IIF in one dimension. In
addition, the cIIF method is robust when implemented and can be combined with other
spatial and temporal discretization schemes at least for reaction-diffusion systems with a
constant diffusivity. For example, it can handle general curvilinear coordinates and the bi-
Laplacian operator with various boundary conditions as well as combining with adaptive
mesh refinement in a straightforward way [25,32]. One can also apply the cIIF method
to stiff reaction and diffusion equations coupled with other specialized hyperbolic solvers
(e.g. theWENOmethod [24,33]) for convective terms to solve reaction-diffusion-convection
equations efficiently [51]. For the system with nonlinear high order derivatives and/or with
unstructured meshes, the exponential matrix-vector multiplication can be calculated using
the Krylov subspace method to save storage space and to reduce the computational cost [6].
To better deal with high dimension in space, the array compact implicit integrating factor
(AcIIF) method has been introduced [43] and sparse grid technique incorporated into the
integrating factor method [42].

The IF method was designed and tested primarily for reaction-diffusion equations in pre-
vious studies. In this paper, we extend the IF method to solve the dissipative hydrodynamic
equation system for incompressible fluid mixture flows (1.1) with more complex mathemat-
ical structures. We apply the IF strategy after we have discretized the system in space into a
large differential and algebraic equation (DAE) system, which respects the total energy dis-
sipation. In this approach, all the linear high-order spatial derivatives are explicitly handled.
The discretized matrix arising from a compact representation with standard second order
differences is circular and thus can be diagonalized so that the computational cost can be
dramatically reduced through the use of discrete Fourier transform (DFT) [26,45]. We will
compare the IF method with ESM in two examples to show the efficiency of the IF and its
numerical stability and energy dissipation property.

Compared with the semi-discrete linear ESM developed previously for a similar system
[49], the fully discretized ESM developed here is more accurate in preserving the energy
dissipation rate. As a trade-off, it is more costly when computed due to the unpredictability in
nonlinear iterations. Whereas, IF method perhaps renders a comparable numerical efficiency.

The rest of paper is organized as follows. In Sect. 2, two different free energy functions
are introduced and the associated total energy is defined with which the energy dissipation
law is established. In Sect. 3, the system of equations is discretized in space preserving the
discrete energy dissipation law in the semi-discretized form. Next, two different temporal
discretized schemes with good stability properties are discussed in Sect. 4. In Sect. 5, two
numerical examples are presented to illustrate the efficiency and accuracy of the proposed
methods. Finally, we give a concluding remark.

2 Hydrodynamic Phase Field Model and Energy Dissipation

The free energy density of the binary viscous fluid system (1.1) is given by a functional of
phase variable φ and its gradient. For instance, to study drops of one fluid within the matrix
of the other, the free energy is usually chosen as the following double-well potential:

f = γ
( ε

2
|∇φ|2 + 1

ε
φ2(1 − φ)2

)
, (2.1)

where γ is a surface tension coefficient. If we study mixing dynamics of two miscible
polymeric fluids, the extended Flory-Huggins free energy would be adopted:
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f = γ1|∇φ|2 + γ2

(
φ

N1
lnφ + 1 − φ

N2
ln(1 − φ) + χφ(1 − φ)

)

, (2.2)

where N1 and N2 are the polymerization index of polymer 1 and 2, respectively, χ is the
mixing parameter, γ1 is the strength of the conformational entropy and γ2 is the strength of
the bulk mixing energy. The two free energy densities can be written in a generic form:

f = c|∇φ|2 + g(φ),

where c is a parameter and g is a function of φ.
System (1.1) can be written equivalently to the following form due to ∇ · v = 0:

⎧
⎪⎪⎨

⎪⎪⎩

ρ
(
∂tv + 1

2

(
v · ∇v + ∇ · (vv)

)) = −∇ p + η�v − φ∇μ,

∇ · v = 0,

∂tφ + ∇ · (φv − �∇μ) = 0,

(2.3)

where μ = g′(φ) − 2c�φ. For simplicity, we adopt the periodic boundary condition in
this study. The effect of various boundary conditions on the numerical scheme warrants a
completely new consideration and treatment.

We define the inner product (·, ·) and norm ‖ · ‖ for matrix functions as follows:

(F, G) =
∑

m

∑

n

∫

V
Fm,nGm,ndx, ‖F‖ = (F, F)1/2, (2.4)

where V is the domain that the binary fluid occupies, F and G are matrix functions or 2nd
order tensor functions defined in V . With the periodic boundary conditions, we have the
following integration-by-parts formulae:

( f, ∂αg) + (∂α f, g) = 0, α = x or y, (2.5)

( f,∇ · v) + (∇ f, v) = 0, (2.6)

and

(v,∇ · F) + (∇v, F) = 0. (2.7)

By a simple calculation, it is readily to show that

(u, v · F) = (uv, F), (2.8)

where u is a vector-valued function defined in V .

Theorem 2.1 With periodic boundary conditions, system (2.3) satisfies the following energy
identity

dE

dt
+ η‖∇v‖2 + (�∇μ,∇μ) = 0, (2.9)

where E is the total energy of system (2.3) defined by

E = ρ

2
‖v‖2 + c‖∇φ‖2 + (g(φ), 1). (2.10)

Proof The proof is straightforward and is thus omitted. ��
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Remark 2.1 The theorem also holds for the following boundary conditions in a rectangular
domain V = [0, Lx ] × [0, Ly]:

v|0,Ly = 0, n · ∇φ|0,Ly = 0, n · ∇μ|0,Ly = 0, (2.11)

and the periodic boundary condition in the x direction. Throughout this paper, the results
are proved with periodic boundary conditions; but they are valid equally well with the above
physical boundary conditions.

3 Structure Preserving Spatial Discretization

In this section, we devise three spatial, semi-discrete, finite difference methods for the two-
dimensional hydrodynamic system (2.3) with periodic boundary conditions in a rectangular
domain V = [0, Lx ] × [0, Ly]. These schemes preserve a semi-discrete energy dissipation
law.

Let Nx , Ny be two positive integers. The domain V = [0, Lx ] × [0, Ly] is uniformly
partitioned with mesh size hx = Lx/Nx , hy = Ly/Ny and

Vh = {(x j , yk)|x j = jhx , yk = khy, 0 ≤ j ≤ Nx , 0 ≤ k ≤ Ny
}
.

To approximate the periodic boundary conditions, let x−1 = −hx , y−1 = −hy . A grid
function f = { f j,k | − 1 ≤ j ≤ Nx ,−1 ≤ k ≤ Ny

}
is called periodic if

(x-periodic) f−1,k = fNx−1,k, f0,k = fNx ,k; (y-periodic) f j,−1 = f j,Ny−1, f j,0 = f j,Ny .

For convenience, we define the following discrete difference operators,

δ+
x f j,k = f j+1,k − f j,k

hx
, δ−

x f j,k = f j,k − f j−1,k

hx
, δx f j,k = δ+

x + δ−
x

2
f j,k,

δ+
y f j,k = f j,k+1 − f j,k

hy
, δ−

y f j,k = f j,k − f j,k−1

hy
, δy f j,k = δ+

y + δ−
y

2
f j,k,

∇+
h =

(
δ+
x

δ+
y

)

, ∇−
h =

(
δ−
x

δ−
y

)

, ∇h = ∇+
h + ∇−

h

2
, �h = δ+

x δ−
x + δ+

y δ−
y .

The discrete inner product and norm are defined respectively as follows

(F, G)h =
∑

m,n

Nx−1∑

j=0

Ny−1∑

k=0

(Fm,n) j,k(Gm,n) j,khxhy, ‖F‖h = (F, F)
1/2
h .

The following summation-by-parts formulas are analogous to the integration-by-parts for-
mulas (2.5)–(2.7)

( f, δ−
α g)h + (δ+

α f, g)h = 0, (3.1)

( f, δαg)h + (δα f, g)h = 0, (3.2)

( f,∇−
h · v)h + (∇+

h f, v)h = 0, (3.3)

( f,∇+
h · v)h + (∇−

h f, v)h = 0, (3.4)

( f,∇h · v)h + (∇h f, v)h = 0, (3.5)

(v,∇+
h · F)h + (∇−

h v, F)h = 0, (3.6)

(v,∇−
h · F)h + (∇+

h v, F)h = 0, (3.7)
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(v,∇h · F)h + (∇hv, F)h = 0, (3.8)

where α = x or y. In addition, we have

(u, v · F)h = (uv, F)h . (3.9)

Next, we devise three semi-discrete schemes for system (2.3).
Scheme I:
⎧
⎪⎪⎨

⎪⎪⎩

ρ
(
d
dt v j,k + 1

2

(
v j,k · ∇+

h v j,k + ∇−
h · (v j,kv j,k)

))= − ∇+
h p j,k + η�hv j,k − φ j,k∇+

h μ j,k ,

∇−
h · v j,k=0,
d
dt φ j,k + ∇−

h · (φ j,kv j,k) − ∇−
h · (� j,k∇+

h μ j,k) = 0.

(3.10)

Scheme II:
⎧
⎪⎪⎨

⎪⎪⎩

ρ
(
d
dt v j,k + 1

2

(
v j,k · ∇−

h v j,k + ∇+
h · (v j,kv j,k)

)) = −∇−
h p j,k + η�hv j,k − φ j,k∇−

h μ j,k ,

∇+
h · v j,k=0,
d
dt φ j,k + ∇+

h · (φ j,kv j,k) − ∇−
h · (� j,k∇+

h μ j,k) = 0.

(3.11)

Scheme III:
⎧
⎪⎪⎨

⎪⎪⎩

ρ
(
d
dt v j,k + 1

2

(
v j,k · ∇hv j,k + ∇h · (v j,kv j,k)

))= − ∇h p j,k + η�hv j,k − φ j,k∇hμ j,k ,

∇h · v j,k = 0,
d
dt φ j,k + ∇h · (φ j,kv j,k) − ∇−

h · (� j,k∇+
h μ j,k) = 0.

(3.12)

For all the above schemes, μ j,k = g′(φ j,k) − 2c�hφ j,k and j = 0, 1, . . . , Nx − 1, k =
0, 1, . . . , Ny − 1.

Theorem 3.1 All schemes I − I I I preserve the same discrete energy identity

dEh

dt
+ η‖∇+

h v‖2h + (�∇+
h μ,∇+

h μ)h = 0, (3.13)

where Eh is the discrete energy functional defined as

Eh = ρ

2
‖v‖2h + c‖∇+

h φ‖2h + (g(φ), 1)h .

Proof Here we take Scheme I as an example to show the discrete energy identity (3.13). The
proof for the other two cases are analogous.

From (3.7) and (3.9), we have
(
v, v · ∇+

h v + ∇−
h · (vv)

)

h = (vv,∇+
h v)h + (v,∇−

h · (vv)
)

h = 0, (3.14)

and

(v,�hv)h = (v,∇−
h · ∇+

h v)h = −‖∇+
h v‖2h . (3.15)

By a straightforward calculation, we obtain

dEh

dt
= ρ(vt , v)h + 2c(∇+

h φt , ∇+
h φ)h + (φt , g

′(φ))h

= ρ(vt , v)h − 2c(φt , �hφ)h + (φt , g
′(φ))h

= ρ(vt , v)h + (φt , μ)h

= −(∇+
h p, v)h + η(�hv, v)h − (φ∇+

h μ, v)h + (∇−
h · (�∇+

h μ), μ)h − (∇−
h · (φv), μ)h
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= (p, ∇−
h · v)h − η‖∇+

h v‖2h − (∇+
h μ, φv)h − (�∇+

h μ, ∇+
h μ)h − (∇−

h · (φv), μ)h

= −η‖∇+
h v‖2h − (�∇+

h μ, ∇+
h μ)h ,

which directly leads to (3.13). ��

Remark 3.1 Theorem 3.1 implies that the discrete energy of all the schemes are dissipative
in time. Note that both Scheme I and II are first order, while Scheme III is second order in
space. In the following, we will focus on the second order scheme, so only Scheme III is
considered in the next section.

4 Time-Discretization Methods

In this section, we introduce two temporal schemes with nice stability properties for Scheme
III to arrive at fully discretized schemes. One is the Crank–Nicolsonmethod, which preserves
the energy dissipation law at the fully discrete level, and the other is the integrating factor
(IF) method, which can not be proven to preserve energy dissipation theoretically for the
time being. But, we show numerically it does. For the sake of simplicity, we set ρ = 1 and
� a constant in the following discussion.

4.1 Crank–Nicolson Method

For a positive integer Nt , we define time-step �t = T/Nt , tn = n�t, 0 ≤ n ≤ Nt . We
denote

δ+
t f n = f n+1 − f n

�t
, f n+1/2 = f n+1 + f n

2
.

Applying the Crank–Nicolson method in time to system (3.12), we obtain
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ+
t vnj,k + 1

2

(
vn+1/2
j,k · ∇hvn+1/2

j,k + ∇h · (vn+1/2
j,k vn+1/2

j,k )
)= − ∇h p

n+1/2
j,k + η�hvn+1/2

j,k

− φ
n+1/2
j,k ∇hμ

n,n+1
j,k ,

∇h · vnj,k = 0,

δ+
t φn

j,k + ∇h · (φ
n+1/2
j,k vn+1/2

j,k ) − ��hμ
n,n+1
j,k = 0,

(4.1)

where

μ
n,n+1
j,k =

⎧
⎨

⎩

g(φn+1
j,k ) − g(φn

j,k )

φn+1
j,k − φn

j,k
− 2c�hφ

n+1/2
j,k , if φn+1

j,k �= φn
j,k,

g′(φn
j,k) − 2c�hφ

n+1/2
j,k , if φn+1

j,k = φn
j,k .

When g is a polynomial of φ, μn,n+1
j,k can be simplified. In particular, for the drop problem

to be simulated in this study, we have

μ
n,n+1
j,k = γ

ε

(
φn
j,k(1 − φn

j,k) + φn+1
j,k (1 − φn+1

j,k )
)
(1 − φn

j,k − φn+1
j,k ) − γ ε�hφ

n+1/2
j,k .

Theorem 4.1 The fully discretized scheme (4.1) preserves the discrete energy identity

En+1
h − En

h

�t
+ η‖∇+

h vn+1/2‖2h + �‖∇+
h μn,n+1‖2h = 0, (4.2)
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where

En
h = 1

2
‖vn‖2h + c‖∇+

h φn‖2h + (g(φn), 1)h . (4.3)

Proof Analogous to the proof of Theorem 3.1, we have

(
vn+1/2, vn+1/2 · ∇hvn+1/2 + ∇h · (vn+1/2vn+1/2)

)

h = 0, (4.4)

and

(vn+1/2,�hvn+1/2)h = −‖∇+
h vn+1/2‖2h . (4.5)

Using (3.5), (4.1), (4.4), (4.5) and the following identity

δ+
t (un · vn) = δ+

t un · vn+1/2 + un+1/2 · δ+
t vn,

we obtain

En+1
h − En

h

�t

= (δ+
t vn, vn+1/2)h + 2c(∇+

h δ+
t φn,∇+

h φn+1/2)h +
(

δ+
t φn,

g(φn+1) − g(φn)

φn+1 − φn

)

h

= (δ+
t vn, vn+1/2)h − 2c(δ+

t φn,�hφ
n+1/2)h +

(

δ+
t φn,

g(φn+1) − g(φn)

φn+1 − φn

)

h

= (δ+
t vn, vn+1/2)h + (δ+

t φn, μn,n+1)h

= − (∇h p
n+1/2, vn+1/2)h + η(�hvn+1/2, vn+1/2)h − (φn+1/2∇hμ

n,n+1, vn+1/2)h

+�(�hμ
n,n+1, μn,n+1)h − (∇h · (φn+1/2vn+1/2), μn,n+1)h

= (pn+1/2,∇h · vn+1/2)h − η‖∇+
h vn+1/2‖2h − (∇hμ

n,n+1, φn+1/2vn+1/2)h

−�‖∇+
h μn,n+1‖h − (∇h · (φn+1/2vn+1/2), μn,n+1)h

= −η‖∇+
h vn+1/2‖2h − �‖∇+

h μn,n+1‖h .
This completes the proof. ��

This fully discretized system is a nonlinear algebraic system. We will solve it using an
iterativemethod.Wewill comeback to the detailwhenwediscuss the twonumerical examples
in the next section.

Remark 4.1 Comparing the fully discretized scheme developed here with the semi-
discretized scheme developed in [49] after an analogous spatial discretization, the current
scheme yields the energy dissipation rate exactly while the previous scheme gives an energy
inequality with a modified energy. This discrepancy is due to the stabilizer added in the other
scheme.

4.2 Compact Explicit Integrating Factor Method

To present the integrating factor method, here we use the drop problem as an example. The
integrating factor method for solving other problems can be similarly derived. The semi-

123



930 J Sci Comput (2016) 69:921–945

discrete system (3.12) in two-dimensional space can be written as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt v1 j,k = −δx p j,k + η�hv1 j,k − g1 j,k ,
d
dt v2 j,k = −δy p j,k + η�hv2 j,k − g2 j,k ,

δxv1 j,k + δyv2 j,k = 0,
d
dt φ j,k = 2γ�

ε
�hφ j,k − γ ε��2

hφ j,k − g3 j,k ,

(4.6)

where

g1 j,k = 1

2

[
v1 j,k δxv1 j,k + v2 j,k δyv1 j,k + δxv

2
1 j,k

+ δy(v1 j,kv2 j,k )
]

+ φ j,kδxμ j,k,

g2 j,k = 1

2

[
v1 j,k δxv2 j,k + v2 j,k δyv2 j,k + δx (v1 j,kv2 j,k ) + δyv

2
2 j,k

]
+ φ j,kδyμ j,k,

g3 j,k = 2γ�

ε
�h
(
3φ2

j,k − 2φ3
j,k

)+ ∇h · (φ j,kv j,k),

μ j,k = 2γ

ε
(φ j,k − 3φ2

j,k + 2φ3
j,k) − γ ε�hφ j,k, v = (v1, v2)

T .

By combining the first three equations in (4.6), we obtain the following equivalent system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt v1 j,k = −δx p j,k + η�hv1 j,k − g1 j,k ,
d
dt v2 j,k = −δy p j,k + η�hv2 j,k − g2 j,k ,

δ2x p j,k + δ2y p j,k = −δx g1 j,k − δyg2 j,k ,

d
dt φ j,k = 2γ�

ε
�hφ j,k − γ ε��2

hφ j,k − g3 j,k .

(4.7)

To derive the integrating factormethod for system (4.7),we define amatrix of the following
form

A =

⎛

⎜
⎜
⎜
⎝

a0 a1 · · · an−1

an−1 a0 · · · an−2
...

...
. . .

...

a1 a2 · · · a0

⎞

⎟
⎟
⎟
⎠

.

Such a matrix is called a circulant matrix [18]. Because the whole matrix A is determined by
the entries in the first row only, the matrix can be denoted as

A = C(a0, a1, . . . , an−1).

Lemma 4.1 ([18]). For a real circulant matrix A = C(a0, a1, . . . , an−1), all eigenvalues of
A are given by

f (εk), k = 0, 1, . . . , n − 1,

where f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1 and εk = ei
2kπ
n .

In addition, A is diagonalizable:

A = F−1
n · � · Fn, (4.8)

where Fn is the discrete Fourier transform with elements (Fn) j,l = e−i 2πn jl , F−1
n is

the inverse discrete Fourier transform with elements (F−1
n ) j,l = 1

n e
i 2πn jl , and � =

diag( f (ε0), f (ε1), . . . , f (εn−1)).
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Set

A1 = 1

2hx
C(0, 1, 0, . . . , 0,−1
︸ ︷︷ ︸

Nx

), A2 = 1

h2x
C(−2, 1, 0, . . . , 0, 1
︸ ︷︷ ︸

Nx

),

B1 = 1

2hy
C(0, 1, 0, . . . , 0,−1
︸ ︷︷ ︸

Ny

), B2 = 1

h2y
C(−2, 1, 0, . . . , 0, 1
︸ ︷︷ ︸

Ny

),

and

V = (v j,k)Nx×Ny =

⎛

⎜
⎜
⎜
⎝

v0,0 v0,1 · · · v0,Ny−1

v1,0 v1,1 · · · v1,Ny−1
...

...
. . .

...

vNx−1,0 vNx−1,1 · · · vNx−1,Ny−1

⎞

⎟
⎟
⎟
⎠

, etc.

Define two operators x© and y© as follows:

(A x©V) j,k =
Nx−1∑

l=0

A j,lvl,k = A · V,

(B y©V) j,k =
Ny−1∑

l=0

Bk,lv j,l = V · BT .

Note that these two operators possess the following properties:

A x©B y©V = B y©A x©V,

A1 x©A2 x©V = (A1A2) x©V,

B1 y©B2 y©V = (B1B2) y©V.

Then, system (4.7) can be rewritten into the following compact form:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt V1 = −A1 x©P + η(A2 x©V1 + B2 y©V1) − G1,
d
dt V2 = −B1 y©P + η(A2 x©V2 + B2 y©V2) − G2,

A2
1 x©P + B2

1 y©P = −A1 x©G1 − B1 y©G2,
d
dt � = 2γ�

ε
(A2 x©� + B2 y©�) − γ ε�

(
A2
2 x©� + 2A2 x©B2 y©� + B2

2 y©�
)− G3.

(4.9)

According to Lemma 4.1, we have

A1 = F−1
Nx

· Dx1 · FNx , A2 = F−1
Nx

· Dx2 · FNx , (4.10)

B1 = F−1
Ny

· Dy1 · FNy , B2 = F−1
Ny

· Dy2 · FNy , (4.11)

Table 1 Mesh refinement test of scheme (4.1) for u (or v)

τ N Error Order CPU(s)

L∞ L2 L∞ L2

0.004 32 8.5421e−03 3.5490e−03 – – 3.6050

0.002 64 2.2162e−03 9.0968e−04 1.9465 1.9640 23.4220

0.001 128 5.5291e−04 2.2808e−04 2.0030 1.9959 185.0330

0.0005 256 1.3815e−04 5.7052e−05 2.0009 1.9992 1480.0610
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Table 2 Mesh refinement test of
scheme (4.1) for φ

τ N Error Order

L∞ L2 L∞ L2

0.004 32 4.1748e−02 8.8515e−03 – –

0.002 64 5.4621e−03 1.5202e−03 2.9342 2.5417

0.001 128 1.3863e−03 3.6102e−04 1.9783 2.0741

0.0005 256 3.4734e−04 8.9454e−05 1.9968 2.0129

Table 3 Mesh refinement test of scheme (4.18) for u (or v)

τ N Error Order CPU(s)

L∞ L2 L∞ L2

0.004 32 4.5553e−02 1.8607e−02 – – 2.6890

0.002 64 5.6182e−03 2.3415e−03 3.0194 2.9903 21.1100

0.001 128 1.4024e−03 5.8136e−04 2.0022 2.0099 167.7650

0.0005 256 3.5108e−04 1.4553e−04 1.9981 1.9982 1366.1870

Table 4 Mesh refinement test of
scheme (4.18) for φ

τ N Error Order

L∞ L2 L∞ L2

0.004 32 2.8795e−01 6.8852e−02 – –

0.002 64 2.5072e−02 5.6706e−03 3.5217 3.6019

0.001 128 2.8136e−03 6.5409e−04 3.1556 3.1159

0.0005 256 4.6101e−04 1.1291e−04 2.6096 2.5343

where

Dx1 = diag(dx10 , dx11 , . . . , dx1Nx−1), dx1j = i

hx
sin

2 jπ

Nx
,

Dx2 = diag(dx20 , dx21 , . . . , dx2Nx−1), dx2j = − 4

h2x
sin2

jπ

Nx
,

Dy1 = diag(dy1
0 , dy1

1 , . . . , dy1
Ny−1), dy1

k = i

hy
sin

2kπ

Ny
,

Dy2 = diag(dy2
0 , dy2

1 , . . . , dy2
Ny−1), dy2

k = − 4

h2y
sin2

kπ

Ny
.

Let Ṽ1 = FNy y©FNx x©V1 etc. Then, system (4.9) can be transformed into
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt Ṽ1 = −Dx1 x©P̃ + η(Dx2 x©Ṽ1 + Dy2 y©Ṽ1) − G̃1,
d
dt Ṽ2 = −Dy1 y©P̃ + η(Dx2 x©Ṽ2 + Dy2 y©Ṽ2) − G̃2,

D2
x1 x©P̃ + D2

y1 y©P̃ = −Dx1 x©G̃1 − Dy1 y©G̃2,

d
dt �̃ = 2γ�

ε (Dx2 x©�̃ + Dy2 y©�̃) − γ ε�
(
D2
x2 x©�̃+2Dx2 x©Dy2 y©�̃+D2

y2 y©�̃
)− G̃3.

(4.12)

This is a differential-algebraic equation system. Noticing dx10 = dx1Nx/2
= dy1

0 = dy1
Ny/2

= 0,
we derive from the third equation of system (4.12)
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Fig. 1 Coalescence of two drops simulated using ESM with N = 128, τ = 0.01

Fig. 2 Coalescence of two drops simulated using IFM with N = 128, τ = 0.0001

P̃ j,k = − dx1j

(dx1j )2 + (dy1
k )2

G̃1 j,k − dy1
k

(dx1j )2 + (dy1
k )2

G̃2 j,k ,

j �= 0 or j �= Nx/2 or k �= 0 or k �= Ny/2. (4.13)

Since P̃0,0, P̃0,Ny/2, P̃Nx/2,0 and P̃Nx/2,Ny/2 don’t work for the system (4.12), we can
eliminate P̃ from system (4.12) by using (4.13) and obtain an ordinary differential equation
system
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Fig. 3 The evolution of the velocity field obtained using ESM with N = 128, τ = 0.01. The maximum of
|v| at t = 2, 5, 20, 200 are 3.6699e−2, 9.3829e−3, 1.9715e−3, 1.5626e−5, respectively

⎧
⎪⎨

⎪⎩

d
dt Ṽ1 = η(Dx2 x©Ṽ1 + Dy2 y©Ṽ1) + H1,
d
dt Ṽ2 = η(Dx2 x©Ṽ2 + Dy2 y©Ṽ2) + H2,
d
dt �̃ = 2γ�

ε
(Dx2 x©�̃ + Dy2 y©�̃) − γ ε�

(
D2
x2 x©�̃ + 2Dx2 x©Dy2 y©�̃ + D2

y2 y©�̃
)− G̃3,

(4.14)

where

H1 j,k =
⎧
⎨

⎩

− (dy1
k )2

(dx1j )2+(dy1
k )2

G̃1 j,k + dx1j d y1
k

(dx1j )2+(dy1
k )2

G̃2 j,k , j �= 0, Nx/2;
−G̃1 j,k , other;

H2 j,k =
⎧
⎨

⎩

dx1j d y1
k

(dx1j )2+(dy1
k )2

G̃1 j,k − (dx1j )2

(dx1j )2+(dy1
k )2

G̃2 j,k , k �= 0, Ny/2;
−G̃2 j,k , other.

Set C = (c j,k)Nx×Ny with c j,k = dx2j + dy2
k . Here, we define an operation “(e∗)” by

taking element-by-element exponentials as follows:

(e∗)C = (ec j,k )Nx×Ny .
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Fig. 4 The evolution of the velocity field obtained using IFM with N = 128, τ = 0.0001. The maximum of
|v| at t = 2, 5, 20, 200 are 3.6620e−2, 9.8207e−3, 2.0297e−3, 1.5820e−5, respectively

Define another operator “�” for taking element-by-element multiplication between two
matrices with the same size in the following:

(M � L) j,k = m j,kl j,k,

where M = (m j,k) and L = (l j,k). Then, (4.14) can be rewritten as follows
⎧
⎪⎪⎨

⎪⎪⎩

d
dt Ṽ1 = ηC � Ṽ1 + H1,
d
dt Ṽ2 = ηC � Ṽ2 + H2,

d
dt �̃ =

(
2γ�

ε
C − γ ε�C � C

)
� �̃ − G̃3.

(4.15)

Solving it using the integrating factor technique, we arrive at
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
(
Ṽ1�(e∗)−ηCt

)

dt = H1 � (e∗)−ηCt ,

d
(
Ṽ2�(e∗)−ηCt

)

dt = H2 � (e∗)−ηCt ,

d

(

�̃�(e∗)−
(
2γ�

ε C−γ ε�C�C
)
t
)

dt = −G̃3 � (e∗)−
(
2γ�

ε
C−γ ε�C�C

)
t
.

(4.16)
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Fig. 5 Comparison between the result obtained using ESM with N = 128, τ = 0.01 and that obtained using
IFM with N = 128, τ = 0.0001 in the drop coalescence example. a The evolution of energy. b The rate of
energy dissipation. c The residual of energy identity. d The evolution of ∇ · v

Integrating both sides of system (4.16) from tn to tn+1, we obtain
⎧
⎪⎪⎨

⎪⎪⎩

Ṽn+1
1 = Ṽn

1 � (e∗)ηC�t + ∫ tn+1
tn

H1 � (e∗)ηC(tn+1−t)dt,

Ṽn+1
2 = Ṽn

2 � (e∗)ηC�t + ∫ tn+1
tn

H2 � (e∗)ηC(tn+1−t)dt,

�̃
n+1 = �̃

n � (e∗)
(
2γ�

ε
C−γ ε�C�C

)
�t − ∫ tn+1

tn
G̃3 � (e∗)

(
2γ�

ε
C−γ ε�C�C

)
(tn+1−t)

dt.

(4.17)

This is the exact solution of the ODE system in one step. To obtain an approximate form of
the integrals, one can directly apply the Lagrange interpolation polynomial of degree r at
tn, tn−1, . . . , tn−r [39]. For instance, the second order scheme with r = 1 can be written as
⎧
⎪⎪⎨

⎪⎪⎩

Ṽn+1
1 = (Ṽn

1 + 3
2�tHn

1) � (e∗)ηC�t − 1
2�tHn−1

1 � (e∗)2ηC�t ,

Ṽn+1
2 = (Ṽn

2 + 3
2�tHn

2) � (e∗)ηC�t − 1
2�tHn−1

2 � (e∗)2ηC�t ,

�̃
n+1 = (�̃

n − 3
2�tG̃n

3) � (e∗)
(
2γ�

ε
C−γ ε�C�C

)
�t + 1

2�tG̃n−1
3 � (e∗)2

(
2γ�

ε
C−γ ε�C�C

)
�t

.

(4.18)
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Fig. 6 Coalescence of two drops simulated using ESM with N = 256, τ = 0.01

Fig. 7 Coalescence of two drops simulated using IFM with N = 256, τ = 0.0001

Remark 4.2 Apparently, we can obtain the high order discretization in time using the IF
method. However, we can’t prove it preserves the energy dissipation law theoretically for
the time being due to the nonlinearity in the system. We will show numerically in the
next section that the discrete energy does decay in time in all our simulations using the IF
method.
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Fig. 8 The evolution of flow field obtained using ESM with N = 256, τ = 0.01. The maximum of |v| at
t = 2, 5, 20, 200 are 5.2193e−2, 1.6161e−2, 1.7931e−3, 7.1346e−6, respectively

5 Numerical Results and Discussion

In this section, we present some numerical results to illustrate the efficiency and accuracy of
the proposed methods. We notice that the proposed scheme (4.1) given by Crank–Nicolson
discretization in time leads to a nonlinear algebraic system,which can be solved using a simple
fixed-point iterative method. For every iteration step, the discrete system can be transformed
into a form similar to (4.12) that can be solved by the Fast Fourier Transform.

5.1 Mesh Refinement

In order to test the convergence rate, we first consider the system (2.3) in a rectangular domain
V = [0, 1]2 with the free energy defined in (2.1). We make the following functions exact
solution of the system modified by some appropriate forcing functions
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Fig. 9 The evolution of flow field obtained using IFM with N = 256, τ = 0.0001. The maximum of |v| at
t = 2, 5, 20, 200 are 5.5253e−2, 1.4889e−2, 6.3219e−4, 7.1756e−6, respectively

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x, y, t) = π sin2(πx) sin(2πy) sin(t),

v(x, y, t) = −π sin(2πx) sin2(πy) sin(t),

φ(x, y, t) = cos(2πx) cos(2πy) cos(t),

p(x, y, t) = cos(2πx) sin(2πy) sin(t).

(5.1)

The parameter values are chosen as ρ = η = γ = 1, ε = 0.01, � = 1.0e−7. Here, we
choose the number of the spatial grids as Nx = Ny = N . In Tables 1, 2, 3 and 4, we compare
the numerical solution with the exact solution at t = 1, and compute the L2 and L∞ errors of
velocity u and phase variable φ by varying the grid size in space and time. From Tables 1, 2,
3 and 4, we observe that the two schemes are at least second-order accurate in both time and
space for all variables, and the numerical solutions for the velocity u and phase variable φ by
the energy stable method (ESM) (4.1) are slightly more accurate than those by the integrating
factor method (IFM) (4.18). We also notice that the computational cost for both methods are
in fact comparable on smooth solutions since ESM normally iterates 2–3 times at each time
step compared with 1 step in IFM.
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Fig. 10 Comparison between ESMwith N = 256, τ = 0.01 and IFMwith N = 256, τ = 0.0001 in the drop
coalescence example. a The evolution of energy. b The rate of energy dissipation. c The residual of energy
identity. d The evolution of ∇ · v

5.2 Drop Dynamics

In this example, we consider model (2.3) with the free energy defined by (2.1) to study
coalescence of two drops. The initial conditions are given by

u(x, y, 0) = v(x, y, 0) = 0, (x, y) ∈ [0, 1]2,

φ(x, y, 0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, r1 ≤ 0.2 − δ or r2 ≤ 0.2 − δ,

tanh
(
(0.2 + δ − r1)/δ

)
, 0.2 − δ < r1 < 0.2 + δ,

tanh
(
(0.2 + δ − r2)/δ

)
, 0.2 − δ < r2 < 0.2 + δ,

0, other,

(x, y) ∈ [0, 1]2,

where r1 = √
(x − 0.3 + δ)2 + (y − 0.5)2, r2 = √

(x − 0.7 − δ)2 + (y − 0.5)2 and δ =
0.01. The parameters are taken as ρ = η = γ = 1, ε = 0.01, � = 1.0e−7.
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To compare ESM with IFM, we denote the energy dissipation rate by

Rn
D = η‖∇+

h vn+1/2‖2h + �‖∇+
h μn,n+1‖2h,

and the residual of the energy identity by

Rn
E =

∣
∣
∣
∣
En+1
h − En

h

�t
+ Rn

D

∣
∣
∣
∣.

Figures 1 and 2 present the evolution of drops obtained using ESM (4.1) with N = 128, τ =
0.01 and IFM (4.18) with N = 128, τ = 0.0001, respectively. These figures show that
the evolution of drops by IFM is essentially identical to that by ESM. The two equal-sized
circular drops eventuallymerge into a single one. However, in this example, IFMneeds to take
a much smaller time step, which implies that it possesses a considerable time discretization
error that can only be controlled using smaller step size. Figures 3 and 4 depict the velocity
field at a few selected time slots with respect to the simulations in Figs. 1 and 2, respectively.
Figures 5 shows the evolution of the energy, energy dissipation rate, residual of the energy
identity and divergence of velocity field. As can be seen from Fig. 5a, the energy decays
numerically in both cases. Figure 5b indicates that the energy dissipation rate predicted by
the two methods is essential indistinguishable in the end. In Fig. 5c, the discrete energy
identity is conserved very well using ESM, confirming Theorem 4.1. However, it is not
approximated very well initially by IFM. As time goes by, the approximation improves
significantly. Figure 5d confirms that both the ESM and IFM preserve divergence free very
well. The results obtained using ESM with N = 256, τ = 0.01 and the IFM with N =
256, τ = 0.0001 are also given in Figs. 6, 7, 8, 9, 10. Through numerical experiments, we
find that ESM is numerically better than the IFM in this case, owing to the discrete energy
dissipation law (Fig. 10).

The comparison shows that IFMneedsmore resolution to resolve the drop detail compared
to ESM. This is consistent with the observation we had in [20].

5.3 Phase Separation and Mixing Dynamics in Blends of Two Polymeric Liquids

Here, we use the phase field model system (2.3) with the free energy defined in (2.2) to study
phase separation dynamics in blends involving two polymeric liquids. The initial conditions
are given by

u(x, y, 0) = v(x, y, 0) = 0,

φ(x, y, 0) = 0.5 + 0.45 sin(4πx) sin(4πy).

The parameter values are chosen as ρ = η = 1, γ1 = 0.0001, γ2 = 1, N1 = 1, N2 = 2, χ =
2, � = 1.0e-4.

The two phases are not well-separated initially in the given initial condition. Over time,
they quickly separate and coarsen into one phase in droplets immersed in the other phase. We
use the same number of spatial discretized points and same time step size. The simulations
show a reasonable agreement between the results predicted by the two methods. Since IFM
is an explicit method, it computes faster than ESM in this example ( see Figs. 11, 12, 13).
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Fig. 11 Phase separation and coarsening dynamics simulated using ESM with N = 128, τ = 0.01

Fig. 12 Phase separation and coarsening simulated using IFM with N = 128, τ = 0.01

6 Conclusions

We develop systematically a strategy to discretize the governing system of hydrodynamic
equations for the binary fluid mixture of two immiscible viscous fluids, first in space and
then in time. In the spatial discretization, the energy dissipation property is retained. Then,
we discretize the equations in time using two methods: one is the energy stable scheme
(ESM) and the other is the integrating factor method (IFM). For the time discretization,
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Fig. 13 Comparison between ESM and IFM at N = 128, τ = 0.01. a The evolution of energy. b The rate of
energy dissipation. c The residual of energy identity. d The evolution of ∇ · v

only the energy stable method preserves the discrete energy dissipation property while the
same property can not be established theoretically for IFM. The coupled nonlinear algebraic
system resulted from the energy stable discretization is solved iteratively aided with FFT. The
integrating factor method is introduced to reduce the computational cost by avoiding solving
a large coupled nonlinear algebraic system for each time step. Two numerical examples are
presented to illustrate the efficiency and accuracy of the two methods. The energy stable
method needs less grid points to resolve the fine detail in both cases. Whereas the integrating
factor method, as an explicit method, may need more spatial points and finer time steps to
arrive at the same resolution of details. For smooth solutions, IFM delivers a faster solver
than ESM as expected.

Although the proposed methods have been presented only in the context of two space
dimensions with periodic boundary conditions, they can be readily extended to higher spatial
dimensions with physical boundary conditions. In addition, the present methods based on
the finite difference approach for spatial discretization can also be extended to other means
of discretization such as the finite volume [12,23,30], finite element, or spectral method
[4,34]. Overall, the proposed schemes provide a systematic approach for solving a wide
range of problems arising from physical applications, whose governing systems of equations
possess a clearly identifiable variational structure together with the total energy dissipation
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property. Given their effectiveness in implementation and fine stability properties, the meth-
ods are adaptable to local adaptive mesh refinement [1,2,32], which will be explored in the
future.
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