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Abstract In this paper, a viscous regularization is derived for the non-equilibrium seven-
equation two-phase flow model (SEM). This regularization, based on an entropy condition,
is an artificial viscosity stabilization technique that selects a weak solution satisfying an
entropy-minimum principle. The viscous regularization ensures nonnegativity of the entropy
residual, is consistent with the viscous regularization for Euler equations when one phase
disappears, does not depend on the spatial discretization scheme chosen, and is compat-
ible with the generalized Harten entropies. We investigate the behavior of the proposed
viscous regularization for two important limit-cases. First, a Chapman–Enskog expansion
is performed for the regularized SEM and we show that the five-equation flow model of
Kapila is recovered with a well-scaled viscous regularization. Second, a low-Mach asymp-
totic limit of the regularized seven-equation flow model is carried out whereby the scaling of
the non-dimensional numbers associated with the viscous terms is determined such that an
incompressible two-phase flow model, with a properly scaled regularization, is recovered.
Both limit-cases are illustrated with one-dimensional numerical results, including two-phase
flow shock tube tests and steady-state two-phase flows in converging-diverging nozzles. A
continuous finite element discretization is employed for all numerical simulations.
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1 Introduction

Compressible two-phase fluid flows are found in numerous industrial applications. Their
numerical solution is an ongoing area of research in modeling and simulation. A variety
of two-phase models, with different levels of mechanical and thermodynamical non-
equilibrium, has been developed, e.g., the five-equationmodel of Kapila [25,29,44], themore
traditional six-equation models [45], and the fully non-equilibrium seven-equation model
(SEM) [5,6,9,43]. These models are obtained by integrating the one-phase flow Hyperbolic
Conservative System of Equations (HCSE), i.e., Euler equations, weighted by a character-
istic or indicator function for each phase [6,17]. The resulting systems of two-phase flow
equations contain non-conservative terms and relaxation terms that describe the interactions
between phases, and are supplemented by equations for the volume fraction. These systems
of equations are described as Hyperbolic Non-Conservative System of Equations (HNCSE)
and are usually solved using discontinuous discretization schemes (e.g., finite volume and
discontinuous Galerkin approaches). By assuming that the non-conservative system of equa-
tions is hyperbolic, an exact Riemann solver could be used but is often ruled out because of its
complexity due to the number of equations involved. Instead, approximate Riemann solvers,
a well-established approach for single-phase flows, are employed, see [3,41–43,49], while
ensuring the correct low-Mach limit and a consistent discretization for the non-conservative
terms [1,41].

In review of solutions to nonlinear, hyperbolic, initial boundary value problems, it is well
known that, evenwith smooth initial data, the existence of a globally smooth solutionmay not
occur because of the nonlinearity of the flux functions. For hyperbolic conservative systems
of equations (HCSE), the concept of a weak solution was introduced by Lax to guarantee the
existence of a global solution [31]; however, uniqueness of the solution is lost because the
problemmayallow infinitelymanyweak solutions.Thus, an additional condition, the“entropy
condition,” is usually imposed to ensure convergence to a unique solution, the “entropy solu-
tion”. Although there are several different ways to define the entropy condition, it is generally
hoped that they are all equivalent in the sense that they select the same entropy solution (this
can be demonstrated for Burgers equations, see [18,35]). For numerical schemes, the entropy
condition and solution are sought through the utilization of so-called conservative formula-
tions of the governing laws, along with the addition of an appropriately specified physical
or artificial viscosity, either added directly to the governing equations or implied by the dis-
cretization employed (truncation error). That is, a regularization is selected, or built, which
is consistent with the entropy condition, thereby guaranteeing that the numerical compu-
tation captures the physically relevant solution. However, except for the discrete equation
method (DEM) for two-phase flows, [6] and the references contained therein, which reverses
the order of model construction and solution so that only conservative equations are used,
for hyperbolic non-conservative systems of equations (HNCSE) such as the seven-equation
two-phase flow model, the theory of Lax cannot be invoked to establish weak and entropy
solutions in the sense of distributions. Instead, the work by Del Maso–LeFloch–Murat [12]
must be used whereby the non-conservative products are defined as a bounded Borel mea-
sure by introducing a Lipschitz family of paths. Generally speaking, the main idea consists
in specifying values for the solution at points of discontinuity so that the non-conservative
products present in the governing laws are well-defined, hence allowing for the existence
of a weak solution. For instance, the notion of weak and entropy solutions are extended to
HNCSE in [32,33], leading to the derivation of a generalized Rankine–Hugoniot jump con-
dition that is path-dependent. Furthermore, the notion of rarefaction and shocks waves has
also been extended to HNCSE, see [34]. It can be shown that the classical Rankine–Hugoniot
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jump condition for conservative systems [31] is recovered from the its generalization to non-
conservative systems. Hence, the case of conservative systems of equations can be seen as
a subset of non-conservative systems. For the five-equation two-phase model of Kapila et
al. [29] the non-conservative nature of the volume fraction evolution equation is treated in
a novel manner in [8,44] with a construction of Riemann or approximate Riemann solvers
with an augmented system.

Another approach, followed in this paper, to establish the existence of a weak solution of
non-conservative terms, consists in considering the vanishing viscosity solution obtained by
adding a parabolic viscous regularization to the HNCSE. This approach was first studied by
Bianchini et al. [10] and further generalized by Alouges et al. [2]. In their work, Bianchini et
al. demonstrate that the solution to the vanishing viscosity system is unique as the vanishing
viscosity tends to zero (Theorem 1, p. 229 in [10]). Moreover, Le Floch generalized the
notion of entropy condition to non-conservative systems of equations in the space of bounded
functions of bounded variation by introducing an entropy function and an associated entropy
inequality to ensure convergence of the numerical solution to the entropy solution [32].

In this paper, we derive a viscous regularization for the non-equilibrium seven-equation
two-phase flow model of [6] by using an entropy condition under the form of an inequality.
The foundation for this work can be traced back to viscous regularizations for single-phase
Euler and Navier-Stokes equations, notably [24] and the references therein. The proposed
viscous regularization for the seven-equation model is consistent with the minimum entropy
principle and Harten’s generalized entropies. The minimum entropy principle states that
the entropy of a fluid parcel is constant along its pathline and only increases upon cross-
ing a shock wave, a viscous layer, or a thermal conduction region. Numerically computing
shockwave solutions without proper stabilization leads to non physical spurious oscillations.
When adding viscosity in the vicinity of the shockwave, one replaces the physical effect of
the entropy production of the shockwave with the equivalent entropy increase of a viscous
layer. If the viscous coefficient is not set appropriately the resulting entropy production will
not be equivalent to that of the true shock and the numerical scheme may even create a train
of oscillations in the solution, radiating away from the shock/viscous layer, and whose gra-
dients will indeed attempt to produce an entropy production equivalent to that of the shock
jump. One needs to properly set the viscosity coefficient along with the jump conditions for
the given mesh size in order to produce a monotonic solution increase through the viscous
layer with as little smearing as possible, but with an entropy production matching that of the
true shock. Tadmor [46] gives an alternative statement (more useful for constructing numer-
ical methods and proofs) of the minimum entropy principle by transforming the Lagrangian
statement above into that of an Eulerian reference frame. Further discussion may also be
found in Guermond and Popov [24].

In the work presented here, we also ensure that the proposed viscous regularization scales
appropriately in two limits of both practical and theoretical importance: the multi-phase
low-Mach regime and the reduced multiphase mechanical equilibrium model (treated as
a Chapman–Enskog type expansion). First, a two-phase low-Mach asymptotic analysis is
carried out to determine the conditions that need to be satisfied by the artificial dissipative
terms in order to yield a well-scaled regularization in the low-Mach case; see [14] for the
single-phase analog. Second, we investigate the behavior of the viscous regularization when
the seven-equation two-phase flow model devolves to the five-equation model of Kapila [29]
through a Chapman–Enskog expansion [15,25].We show that the regularized seven-equation
model yields a regularized five-equation model of Kapila.

One of the key aspects of the viscous regularization derived here is that it is agnostic of the
spatial discretization scheme, unlike approximate Riemann solvers. Therefore, this viscous
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regularization may be employed to stabilize numerical schemes based on either continuous
or discontinuous spatial approximations. For examples of prior applications of the technique
to the single-phase Euler equations, we refer the reader to [14,24] (for finite volume, con-
tinuous Galerkin, and spectral FEM discretizations) and to [50] (for discontinuous Galerkin
discretizations).

The remainder of the paper is as follows. In Sect. 2, the seven-equation two-phase flow
model (SEM) is recalled along with its main physical andmathematical properties. In Sect. 3,
a viscous regularization is derived for the SEM and a Chapman–Enskog expansion of the
regularized SEM is carried out to yield a regularized version of the five-equation two-phase
flow model of Kapila. In Sect. 4, a low-Mach asymptotic study for the regularized SEM is
performed and possible definitions for artificial viscosity coefficients are proposed in order
to ensure well-scaled dissipative terms over a wide range of Mach numbers. Our theoret-
ical approach is illustrated in Sect. 5 with one-dimensional numerical results. Finally, we
conclude in Sect. 6.

2 The Seven-Equation Two-Phase Flow Model (SEM): Physical and
Mathematical Properties

In this section, we recall the seven-equation two-phase flow model and discuss some of its
main mathematical and physical properties.

2.1 Governing Equations

The seven-equation two-phase flow model employed in this paper is obtained by assuming
that each phase satisfies the single-phase Euler equations (with phase-exchange terms) and
by integrating the latter over a control volume after multiplication by a phasic characteristic
function. The detailed derivation of the governing equations for a phase k in interaction with
a phase j can be found in [6]. In the SEM, each phase obeys a mass, a momentum and an
energy balance equation, supplemented by an equation for the volume fraction. The SEM
equations are given in Eq. (1).

∂αk A

∂t
+ Auint · ∇αk = AμP (Pk − Pj ) − Sk→ j , (1a)

∂ (αρ)k A

∂t
+ ∇·[(αρu)k A] = −Γk→ j , (1b)

∂ (αρu)k A

∂t
+ ∇·[αk A (ρu ⊗ u + PI)k

] = Pint A∇αk + Pkαk∇A

+ Aλu(u j − uk) − Mk→ j , (1c)

∂ (αρE)k A

∂t
+ ∇·[αkuk A (ρE + P)k

] = PintAuint · ∇αk − P̄int AμP (Pk − Pj )

+ Aλuūint · (u j − uk) − Ek→ j , (1d)

where αk , ρk , uk and Ek denote the volume fraction, the density, the velocity vector, and the
total specific energy of phase k, respectively. The volume fraction, mass, momentum, and
energy exchange terms from phase k to phase j are denoted by the symbols Sk→ j , Γ k j ,
Mk→ j and Ek→ j , respectively, and are set consistently with the second law of thermody-
namics [5,39], thus only yielding entropy producing terms. They also obey to the following
closure relations:
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S1→2 + S2→1 = 0, (2a)

Γ1→2 + Γ2→1 = 0, (2b)

M1→2 + M2→1 = 0, (2c)

E1→2 + E2→1 = 0. (2d)

We have adopted a standard convention for vector and tensor operations: consider vector a
with entries (ai )i=1,...,dim; (a⊗b)i j = aib j ;∇·a = ∂x j a j ; (∇a)i j = ∂xi a j ; for order-2 tensors
g,wehave (∇·g) j = ∂xi gi j , (g·a)i = gi j a j ,g : h = gi j hi j ; summation is impliedwhenever an
index is repeated.Thephasic pressure Pk is computed froman equation of state that is assumed
given as a function of the density ρk and the phasic internal energy ek = Ek − 1

2u
2
k . The A

variable is geometric in nature and, in this work, is only spatially dependent. For example, in
one-dimension A denotes the “cross-sectional flow area” of a channel or nozzle, while in two-
dimensions A can denote a spatially variable “depth”. In three-dimensions A could represent
a spatially varying porosity. A is included for completeness of the presentation and is set to 1
in many applications. The interfacial pressure and velocity and their corresponding average
values are denoted by Pint , uint , P̄int and ūint , respectively; they are defined in Eq. (3).

Pint = P̄int + Zk Z j

Zk + Z j

∇αk

||∇αk || · (u j − uk), (3a)

P̄int = Z j Pk + Zk Pj

Zk + Z j
, (3b)

uint = ūint + ∇αk

||∇αk ||
Pj − Pk
Zk + Z j

, (3c)

ūint = Zkuk + Z ju j

Zk + Z j
. (3d)

The interfacial variables Pint and uint control the phase dynamics at the macro level because
they specify velocity transport and forces acting upon volume fraction gradients, while the
interfacial variables P̄int and ūint , which specify average transport velocity and pressure
force, control the phase dynamics at the micro level. Note that the definitions of the interfa-
cial variables Pint and uint are not unique, see [5,7,19], for instance. The results presented
in this paper apply to Eq. (1), regardless of the definitions for the interfacial variables as long
as the entropy inequality given in Eq. (10) holds. Following [6], the pressure and velocity
relaxation coefficients, μP and λu respectively, are functions of the acoustic impedances
Zk = ρkck and the specific interfacial area Aint , as shown in Eq. (4).

μP = Aint

Zk + Z j
, (4a)

λu = 1

2
μP Zk Z j . (4b)

The specific interfacial area (i.e., the interfacial surface area per unit volume of a two-phase
mixture), Aint , is typically dependent upon flow regime conditions, is not unique, and can be
provided as a correlation. In [6], Aint is chosen to be a function of the liquid volume fraction:

Aint = Amax
int

[
6.75

(
1 − αliq

)2
αliq

]
, (5)

with Amax
int = 5100 m2/m3. With this definition, the interfacial area is zero in the limits

αk = 0 and αk = 1.
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The set of equations satisfied by phase j are simply obtained by substituting k by j and
j by k in Eq. (1), keeping the same definition of the interfacial variables and using Eq. (2).
The equation for the volume fraction of phase j is simply replaced by the algebraic relation

α j = 1 − αk, (6)

which reduces the number of partial differential equations from eight to seven and yields the
seven-equation two-phase flow model (SEM).

2.2 Mathematical Properties and Entropy Equation for the SEMWithout Viscous
Regularization

Some properties of the seven-equationmodel are discussed next. A set of 5+2dim (with dim
the geometry’s dimension) waves is present in the model: two acoustic waves per phase, one
contact wave per phase per domain dimension, and one volume fraction wave propagating
at the interfacial velocity uint . These waves (eigenvalues of the Jacobian for the inviscid flux
terms) are as follows for each phase k:

λ1,k = uk · n̄ − ck

λ2,k = uk · n̄ + ck

λ2+d,k = uk · n̄ for d = 1 . . .dim

λ3+dim = uint · n̄, (7)

where n̄ is an unit vector pointing to a given direction. The eigenvalues given in Eq. (7)
are unconditionally real (as long as the equation of state yields a real-valued sound speed)
but not necessarily distinct. However, the seven-equation model admits a set of linearly
independent eigenvectors under thenon-resonance condition (uk−uint )2 �= c2k for each phase
k (see proposition 2.1 in [11]), thus ensuring hyperbolicity of the model. Hyperbolicity is an
extremely valuable property for the development of numerical methods since it is required
of well-posed hyperbolic systems.

One may relax the seven-equation two-phase flow model to the ill-posed classical six-
equation model, where a single pressure is used for both phases; this is accomplished by
letting the pressure relaxation coefficient μP become very large, i.e., by letting it approach
infinity. Note that as the pressure relaxation coefficient increases, so should the velocity
relaxation coefficient λu ; see Eq. (4). However, the six-equation model only relaxes the
pressure parameter of the SEM and results in an ill-posed system of equations that can
present unstable numerical solutions with sufficiently fine spatial resolution [6,28]. If one
lets both the pressure and the velocity relaxation parameters tend to infinity, this further
relaxes, or reduces, the seven-equation two-phase flow model to the hyperbolic and well-
posed mechanical equilibrium five-equation model of Kapila [29].

Next, we investigate the sign of the phasic and total entropy equations without viscous
regularization present. The total entropy equation is simply obtained by summing over the
phasic entropy equations. Because the exchange source terms are set consistently with the
second law of thermodynamics [5,39], they only yield entropy producing terms (i.e., positive
terms in the right-hand side of the total entropy equation) and are omitted here. Thus, we
consider hereafter the SEM model with only pressure and velocity relaxation terms:

∂αk A

∂t
+ Auint · ∇αk = AμP (Pk − Pj ), (8a)

∂ (αρ)k A

∂t
+ ∇·[(αρu)k A] = 0, (8b)
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∂ (αρu)k A

∂t
+ ∇·[αk A (ρu ⊗ u + PI)k

] = Pint A∇αk + Pkαk∇A + Aλu(u j − uk), (8c)

∂ (αρE)k A

∂t
+ ∇·[αkuk A (ρE + P)k

]

= Pint Auint · ∇αk − P̄int AμP (Pk − Pj ) + Aλuūint · (u j − uk). (8d)

An entropy equation can be derived for each phase k of system Eq. (8) and the sign of the
entropy material derivative can be proved positive. The entropy function for a phase k is
denoted by sk and is a function of the phasic density ρk and phasic internal energy ek . The
full derivation is given in “Appendix 1” and only the final result is recalled here. The entropy
of phase k satisfies the following equation:

(se)
−1
k αkρk A

Dsk
Dt

= μP
Zk

Zk + Z j
(Pj − Pk)

2 + λu
Z j

Zk + Z j
(u j − uk)

2

+‖∇αk‖ Zk
(
Zk + Z j

)2

[
Z j (u j − uk) + ∇αk

‖∇αk‖ (Pk − Pj )

]2
, (9)

where D(·)
Dt = ∂t (·) + uk · ∇(·) is the material derivative. The right-hand side of Eq. (9) is

unconditionally positive or zero since all terms are squared. Furthermore, the partial derivative
of sk with respect to the internal energy ek , denoted by (se)k , is shown to be equal to the
inverse of the temperature of phase k, as in the case of the single-phase Euler equations
[13,24], and thus is also a positive term. Equation (9) is valid for both phases {k, j}, ensuring
positivity of the total entropy equation obtained by summation over the phases:

∑

k

(se)
−1
k αkρk A

Dsk
Dt

=
∑

k

(se)
−1
k αkρk A (∂t sk + uk · ∇sk) ≥ 0. (10)

From a physical perspective, Eq. (10) states that the total entropy of the system increases as a
function of time as long as the product αkρk remains positive. From a numerical perspective,
the pressure and velocity relaxation terms add dissipation to the system of equations [see
Eq. (9)].

Note that when one phase disappears, Eq. (10) degenerates to the single-phase entropy
equation obtained for the single-phase Euler equations [6,13].

3 A Viscous Regularization for the Seven-Equation Two-Phase Flow
Model

The objective of this section is to derive a viscous regularization for the SEM presented in
Sect. 2. First, we present themethodology used, then derive the phasic entropy equation when
accounting for the presence of dissipative terms, and employ the resulting phasic entropy
equation to prove the minimum entropy principle. Finally, the scaling of the dissipative
terms is investigated in the limit where the seven-equation two-phase flow model devolves,
or reduces, to the five-equation two-phase flow model of Kapila [29] when considering large
relaxation coefficients μP and λu [15].

3.1 Methodology

Wewish to obtain a viscous regularization for the seven-equation two-phase flowmodel given
in Eqs. (1) using the same methodology employed for the (single-phase) Euler equations
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[14,24]. The method consists in adding dissipative terms to the system of equations under
consideration and in deriving an entropy equation for the regularized system. By adequately
choosing these artificial viscous fluxes, one can show that the sign of the entropy equation
remains positive, resulting in an entropy inequality of the form dsk

dt ≥ 0. When considering
HCSE (such as Euler equations), such an entropy inequality serves as the entropy condition
and ensures convergence of the numerical solution to the physical or entropy solution [31].
However, the theory developed by Lax for HCSE [31] is not applicable for non-conservative
systems (HNCSE), as reviewed in Sect. 1. Instead the theory developed by Del Maso–
LeFloch–Murat is used to generalize the notions of weak solutions by introducing a path
in order to define the non-conservative product at points of discontinuity [12]. Bianchini et
al. extended the notion of vanishing viscosity solution to HNCSE (see Theorem 1. on page
229, [10]). Le Floch linked the notion of vanishing viscosity solution and the DLM theory to
the notion of path (Theorem 3.2 on page 14, [33]). An entropy condition for HNCSE that is
equivalent to Lax’ admissibility criterion was introduced by LeFloch in [32] and examples
of its application to gas dynamics and elastodynamics systems were provided in Sect. 4 of
[32]. The generalization of the entropy condition to non-conservative systems (HNCSE) is
of great importance for the seven-equation model, as it provides the theoretical foundations
for a viscous regularization based on a minimum entropy principle. Namely, we will be able
to demonstration that our derived viscous regularization for the SEMmodel (1) is consistent
with an entropy inequality and (2) ensures convergence of the numerical solution to the
physical or entropy solution. Furthermore, it is emphasized in [10,12,33] that the theory
developed for HNCSE remains valid for HCSE: this remark is of importance since it will
guarantee, from a theoretical perspective, that the viscous stabilization for the two-phase flow
model will consistently devolve to the single-phase viscous stabilization when the SEM (a
HNCSE) devolves to the Euler equations (a HCSE).

Because of the addition of the dissipative terms, the entropy equation obtained in Eq. (9)
will be altered and will contain additional terms of yet unknown sign. By carefully choosing
a definition for each of the dissipation terms, the sign of this new entropy equation can be
determined (and kept positive).Derivation of the viscous regularization for the seven-equation
model can be achieved by considering either the phasic entropy equation (Eq. 9) or the total
entropy equation (Eq. 10). In the latter case, the minimum entropy principle can be verified
for the whole two-phase flow system but may not ensure positivity of the entropy equation
for each phase. However, positivity of the total entropy equation can also be achieved by
requiring that the minimum entropy principle holds for each phase; this is the approach we
have followed. This stronger requirement will also ensure consistency with the single-phase
Euler equations when one of the phases disappears in the limit αk → 0 or αk → 1.

3.2 Entropy Equation for the SEM with Viscous Regularization

We start with the system of equations given in Eq. (8), where exchange terms have been
omitted as explained in Sect. 2.2, and regularize this system by adding dissipation terms
(viscous fluxes) to each equation, yielding:

∂t (αk A) + Auint · ∇αk = AμP
(
Pk − Pj

) + ∇·lk (11a)

∂t (αkρk A) + ∇·(αkρkuk A) = ∇· fk (11b)

∂t (αkρkuk A) + ∇·[αk A (ρkuk ⊗ uk + PkI)]

= αk Pk∇A + Pint A∇αk + Aλu
(
u j − uk

) + ∇·gk (11c)
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∂t (αkρk Ek A) + ∇·[αk Auk (ρk Ek + Pk)]

= Pint Auint · ∇αk − μP AP̄int
(
Pk − Pj

)

+Aλuūint · (
u j − uk

) + ∇·(hk + u · gk) (11d)

where fk , gk , hk and lk are phasic viscous terms, yet to be determined. The terms underlined
in Eqs. (11) are part of the inviscid SEM model, see the unregularized system of equations
(Eqs. (8)); these terms are entropy-producing and we refer the reader to “Appendix 1” for
a detailed derivation of the entropy equation without viscous regularization present. In this
section, we deal with the regularized system of equations for the SEM model and the above
underlined terms will later be ignored in the derivation for brevity. The next step consists in
deriving the entropy equation for the phase k, in a similar fashion as “Appendix 1” but with
dissipative terms now present. The steps are as follows:

1. Derive the density and internal energy equations from Eqs. (11).
2. Assuming that the phasic entropy sk is a function of density ρk and internal energy ek ,

derive the entropy equation using the chain rule:

Dsk
Dt

= (
sρ

)
k

Dρk

Dt
+ (se)k

Dek
Dt

. (12)

The terms (se)k and (sρ)k denote the partial derivatives of sk with respect to ek and ρk ,
respectively.

3. Isolate the terms of interest and choose an appropriate expression for each of the viscous
fluxes in order to ensure positivity of the entropy residual.

We first derive the density equation expressed in terms of the primitive variable ρk by com-
bining Eqs. (11a) and (11b) to obtain:

αk A [∂tρk + uk · ∇ρk] + ρkαk∇·(Auk) + Aρk (uk − uint ) · ∇αk

= −AρkμP
(
Pk − Pj

) + ∇· fk − ρk∇·lk . (13)

To derive an equation for the phasic internal energy, the phasic velocity equation is obtained
by subtracting the density equation (multiplied by uk) from the phasic momentum equation:

αkρk A [∂t uk + (uk · ∇)uk] + ∇·(αkρk APkI)

= αk Pk∇A + Pint A∇αk + Aλu
(
u j − uk

) + ∇·gk − uk∇· fk (14)

After multiplying Eq. (14) by velocity uk , the resulting phasic kinetic energy equation is
subtracted from the phasic total energy equation to obtain the internal energy equation for
phase k:

αkρk A [∂t ek + uk · ∇ek] + αk Pk∇·(Auk)
= Pint A (uint − uk) · ∇αk − P̄int AμP

(
Pk − Pj

)

+Aλu
(
u j − uk

) · (ūint − uk) − (
ek − 1

2‖uk‖2
) ∇· fk + ∇·hk + gk : ∇uk . (15)

As stated earlier, the underlined terms in Eqs. (13) and (15), also present in the derivation of
the entropy equation for the SEM without regularization, have been shown to yield entropy-
producing terms (see “Appendix 1”). Because the focus of this Section is the verification of
the minimum entropy principle for the SEM model when viscous regularization is added,
we will omit the underlined terms for brevity in the remainder of the derivation. The phasic
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entropy equation is now obtained by combining the density equation (Eq. 13) and the phasic
internal energy equation (Eq. 15) through the chain rule given in Eq. (12) to yield:

αkρk A
Dsk
Dt

+ αk
(
ρ2
k (sρ)k + Pk(se)k

) ∇·(Auk)
= (

(ρsρ)k − (ese)k
) ∇· fk − ρ2

k (sρ)k∇·lk + (se)k
[∇·hk + gk : ∇uk + 1

2‖uk‖2∇· fk
]
.

(16)

The second law of thermodynamics for phase k is

Tkdsk = dek − Pk
dρk
ρ2
k

, (17a)

which implies

(se)k = T−1
k and (sρ)k = −(se)k

Pk
ρ2
k

, (17b)

that is,

ρ2
k (sρ)k + Pk(se)k = 0. (17c)

Using Eqs. (17c), (16) can be rearranged as

αkρk A
Dsk
Dt

= (
(ρsρ)k − (ese)k

) ∇· fk − ρ2
k (sρ)k∇·lk

+ (se)k ∇·(hk + 1
2‖uk‖2 fk

) + (se)k (gk − fk ⊗ uk) : ∇uk, (18)

which is the phasic entropy equation obtained when the viscous regularization terms are
included. In order to complete the proof of the minimum entropy principle, one needs to
show that the phasic entropy residual Re,k := Dsk

Dt is positive, which requires (1) positivity
of the phasic product αkρk and (2) positivity of the right-handside of Eq. (18). Section 3.4
is devoted to proving positivity of the right-handside of Eq. (18) by choosing an adequate
expression for the viscous fluxes. We also show that αkρk remains nonnegative under certain
conditions. Then, in Sect. 3.5, the minimum entropy principle is proved by using results from
Sect. 3.4.

3.3 Definitions of the Viscous Fluxes Based on the Entropy Condition

The right-hand side of Eq. (18) can be further simplified by introducing the viscous fluxes
f̃k and h̃k and a viscous tensor F(uk) as a function of fk , gk , hk and lk as follows:

f̃k = fk − ρklk (19a)

αkρk AμkF(uk) = gk − fk ⊗ uk (19b)

h̃k = hk + 1
2‖uk‖2 fk − (ρe)klk, (19c)

whereμk is a positive viscosity coefficient for phase k. The functional form of the dissipative
terms given in Eqs. (19) are derived later in this section. Substituting the expressions of
Eq. (19) into Eq. (18) yields:

αkρk A
Dsk
Dt

= (
(ρsρ)k − (ese)k

) ∇· f̃k + (se)k ∇·h̃k
+ (se)k αkρk AμkF(uk) : ∇uk + ρklk · ∇sk, (20)
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or, after using the chain rule to combine partial derivatives,

αkρk A
Dsk
Dt

= ∇·
[
(se)k h̃k +

(
(ρsρ)k − (ese)k

)
f̃k

]

︸ ︷︷ ︸
R0

−
(
h̃k · ∇(se)k + f̃k · ∇ [

(ρsρ)k − (ese)k
]

︸ ︷︷ ︸
R1

)

+ (se)k αkρk AμkF(uk) : ∇uk︸ ︷︷ ︸
R2

+ ρklk · ∇sk︸ ︷︷ ︸
R3

. (21)

We now split the right-hand-side of Eq. (21) into several residuals denoted by R0 through
R3 and we analyze the sign of each of them separately.

The term R3 is a function of the gradient of the entropy. At the location of the minimum
entropy, this gradient is zero; therefore,R3 has no effect on the minimum entropy principle.
Thus, we observe that the minimum entropy principle will be verified independently of the
definition of the dissipation term lk used in the volume fraction equation, Eq. (11a); this is a
noteworthy differencewith respect to the derivation of the single-phase viscous regularization
of [14,24]. We will later provide a possible definition for lk .

Since (se)k := T−1
k is defined as the inverse of the temperature and is thus positive, the

sign of R2 is conditioned by the choice of the function F(uk) so that its product with the
tensor ∇uk is positive. As in [14,24], F(uk) is chosen to be proportional to the symmetric
gradient of the velocity vector uk (rate of deformation),

F(uk) = ∇suk . (22)

With such a choice, the viscous regularization is also rotationally invariant.
We now focus on the term denoted byR1, which is identical to the right-hand side of the

single phase entropy equation for Euler equations (see “Appendix 2” in [14]). R1 is known
to be positive when (i) assuming concavity of the entropy function sk with respect to the
internal energy ek and the specific volume 1/ρk and (ii) when using the following definitions
for the dissipative fluxes h̃k and f̃k :

f̃k = αk Aκk∇ρk (23a)

h̃k = αk Aκk∇ (ρe)k , (23b)

where κk is another positive viscosity coefficient. Finally, using Eqs. (23), the R0 can be
recast as a function of the phasic entropy as follows:

R0 = ∇·(αk Aκkρk∇sk) . (24)

The entropy residual equation for phase k can now be written in its final form:

αkρk A
Dsk
Dt

− fk · ∇sk − ∇·(αk Aρkκk∇sk)=−αkρk Aκk Qk + (se)kαk Aρkμk∇suk : ∇uk,

(25)

where Qk is :

Qk = XT
k ˚kXk

with Xk =
[∇ρk
∇ek

]
and ˚k =

[
ρ−2
k ∂ρk (ρ

2
k ∂ρk sk) ∂ρk ,ek sk

∂ρk ,ek sk ∂ek ,ek sk

]
.
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Aswith the single-phase Euler equations, one can demonstrate that˚k is a symmetric negative
definite quadratic formwhen sk is concavewith respect to ek andρ−1

k [14,24].Wehave proved
the following:

Lemma 1 When the seven-equation model is regularized as shown in Eq. (11) and the
corresponding entropy equation given in Eq. (25) holds, then the left-hand side of Eq. (25)
is non-negative if and only if (i) the phasic entropy function sk is concave with respect to ek
and ρ−1

k and (ii) the following expressions for the viscous fluxes are employed:

fk = αk Aκk∇ρk + ρklk (26)

gk = αk Aμkρk∇suk + fk ⊗ uk (27)

hk = αk Aκk∇ (ρe)k − ‖uk‖2
2

fk + (ρe)klk (28)

where κk and μk are positive viscous coefficients.

Equation (25) is constructed to satisfy the minimum entropy principle for the SEM with
viscous regularization. At a location xmin(t) where sk reaches its minimum value at time t ,
the gradient, ∇sk , and Laplacian, Δsk , of the entropy are zero and positive at this particular
location, respectively. Because the terms on the right-hand-side of Eq. (25) have been shown
to be either positive or zero when the entropy reaches its spatial minimum, one concludes
that αkρk

Dsk
Dt ≥ 0. For the minimum entropy principle to hold for each phase k, i.e., Dsk

Dt ≥ 0,
positivity of the product αkρk is also required. To prove positivity of αkρk , we need to derive
an expression for the dissipative term lk since it is present in the phasic continuity equation
Eq. (11b); this is described in the next paragraph. Note that at an entropy extremum, the
inequality αkρk

Dsk
Dt ≥ 0, holds independently of the definition of the dissipative term lk

utilized in the volume fraction equation.

3.4 Nonnegativity of the Phasic Density and the Phasic Volume Fraction

We now provide a possible expression for lk by considering the volume fraction equation,
Eq. (11a), by itself. It is an hyperbolic equation whose eigenvalue (speed) is uint . An entropy
relation can be derived for that equation alone (by multiplying it by αk). Following the work
of Guermond et al. for linear advection and Burgers’ equations [22,23], it can be shown that
a dissipative term ensuring selection of the entropy solution for the volume fraction equation
is of the form lk = βk A∇αk , where βk is a positive viscosity coefficient. The dissipative term
is made proportional to the area A for consistency with the other definitions of the viscous
terms. Now that an expression for the dissipative term lk is known, we can show that (i)
the phasic volume fraction αk is bounded within the interval [0, 1] and (ii) the product αkρk
remains nonnegative under certain conditions. The regularized volume fraction equation is
as follows:

∂t (αk A) + uint A∇αk = ∇·(Aβk∇αk) . (29)

Let us assume that phasic volume fraction is initially bounded within the interval [0, 1]
and that a maximum is reached at a given point r0 such as ∂dαk = 0 and ∂ddαk ≤ 0 for
1 ≤ d ≤ dim. At the point where the maximum is reached, the regularized volume fraction
equation becomes:

∂tαk = βkΔαk ≤ 0, (30)
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(βk ≥ 0) which means that the volume fraction locally decreases as a function of time and
thus remains bounded from above. Similarly, if a minimum is reached in r0 (i.e., ∂dαk = 0
and ∂ddαk ≥ 0), it can be shown that the volume fraction is also bounded from below. As
a result, with the above regularization, the volume fraction should remain bounded in time
within the given initial interval [0, 1], which yields the following lemma:

Lemma 2 Assume the phasic volume fraction is regularized, Eq. (29), by a viscous flux
denoted by lk . The phasic volume fraction converges to a weak solution and is bounded if
only if the viscous flux lk is defined as

lk = βk A∇αk,

where βk is a positive viscous coefficient.

Remark 1 Note a viscous regularization of the phasic volume fraction equation is needed, as
illustrated in the following example. Consider a domain with uniform initial phasic pressure,
velocity, temperature and an initial step discontinuity in the volume fraction. Under such
conditions and using the definitions given in Eq. (3), the interfacial pressure and velocity
are equal to the phasic pressure and velocity, respectively. Also, each equation of Eq. (8)
now devolves to the regularized volume fraction equation Eq. (29). Assuming that the phasic
volume fraction equation is not stabilized by a viscous term, i.e., if lk = 0, then this example
case with the above initial condition would result in a numerical solution with spurious
oscillations in the vicinity of the discontinuity.

Now thatwe have derived an expression for the dissipative term lk , we consider the regularized
phasic continuity equation to prove that the quantity αkρk remains nonnegative. Using the
above definition of lk , the regularized continuity equation is as follows:

∂t (αkρk A) + ∇·(αkρkuk A) = ∇·[κkαk∇ρk + βkρk∇αk] . (31)

In the particular casewhere βk = κk , the dissipative terms in Eq. (31) become∇·(κk∇ (αkρk))

and the resulting continuity equation is identical to the regularized continuity equation for
single-phase when letting ρ̂k = αkρk :

∂t
(
ρ̂k A

) + ∇·(ρ̂kuk A
) = ∇·(κk∇ρ̂k

)
. (32)

Following Lemma 3.1 of [24] and using Eq. (32), a nonnegative density principle can be
proved for the quantity ρ̂k . Thus, we conclude that the quantity αkρk remains nonnegative
under the assumption βk = κk . Note that unlike Lemma 3.2 of [24], the density ρ̂k cannot be
shown to be strictly positive because the phasic volume fraction αk may locally be equal to
zero.

3.5 Minimum Entropy Principle

In this section, theminimumentropy residual is proved for each phase. In the previous section,
we have shown that (i) the phasic volume fraction αk remains bounded within a given interval
(ii) the quantity αkρk is nonnegative, and (iii) the right-hand side of Eq. (25) leads to entropy
production (that is, the right-hand side is positive). As a result, the phasic entropy residual
remains nonnegative, i.e. Re,k ≥ 0 and that the minimum entropy principle holds for each
phase and thus for the two-phase flow system as well:
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Theorem 1 (Minimum entropy principle) Assume that Lemmas 1 and 2 hold and that
the product αkρk is non-negative. Assume that the solution of Eq. (11) is smooth, then the
minimum entropy principle holds,

sk(x, t) ≥ inf sk,0(x) and
∑

k

sk(x, t) ≥
∑

k

inf sk,0(x).

At this point, some remarks are in order. All of the dissipative terms have now been defined
and are recalled here:

lk = βk A∇αk (33a)

fk = αk Aκk∇ρk + ρklk (33b)

gk = αk Aμkρk∇suk + fk ⊗ uk (33c)

hk = αk Aκk∇ (ρe)k − ‖uk‖2
2

fk + (ρe)klk (33d)

1. The definition of the dissipative term lk contains a viscosity coefficient βk that is inde-
pendent of the other viscosity coefficients,μk and κk . Its definition should account for the
eigenvalue uint and the entropy equation associated with the volume fraction equation.

2. The dissipative term fk is a function of lk . Thus, all of the other dissipative terms are also
functions of lk .

3. The partial derivatives (se)k and (sρk )k can be computed using the definition provided in
Eq. (17a) and are functions of the phasic thermodynamic variables: pressure, temperature
and density.

4. All of the dissipative terms are chosen to be proportional to the void fraction αk and
the cross-sectional area A (except for lk that is only proportional to A). Thus, when
one of the phases disappears, the dissipative terms for that phase vanish, as expected for
consistency. Similarly, when αk goes to one, the regularized single-phase Euler equations
with variable area are recovered.

5. By choosing βk = μk = κk and F(uk) = ∇uk , the viscous flux expressions simplify to
yield:

∂t (αk A) + Auint · ∇αk = AμP
(
Pk − Pj

) + ∇·[Aκk∇αk] (34a)

∂t (αkρk A) + ∇·(αkρkuk A) = ∇·[Aκk∇ (αρ)k
]

(34b)

∂t (αkρkuk A) + ∇·[αk A (ρkuk ⊗ uk + PkI)]

= αk Pk∇A + Pint A∇αk + ∇·[Aκk∇ (αρu)k
]

(34c)

∂t (αkρk Ek A) + ∇·[αk Auk (ρk Ek + Pk)]

= Pint Auint · ∇αk − μP P̄int
(
Pk − Pj

)

+Aλuūint · (
u j − uk

) + ∇·[Aκk∇ (αρE)k
]
. (34d)

This particular choice of viscous regularization is analogous to the parabolic regular-
ization for Euler equations [40]. Note that if one chooses F(uk) = ∇uk , the viscous
regularization is no longer rotationally invariant.

6. Compatibility of the viscous regularization proposed in Eq. (33) with the generalized
entropies identified in Harten et al. [27] is demonstrated in “Appendix 2”.

At this point, we have derived a viscous regularization for the seven-equation two-phase
flow model that ensures nonnegativity of the entropy residual, convergence of the numerical
solution to the entropy solution when assuming concavity of the phasic entropy sk , and
consistency with the viscous regularization derived for Euler equations [14,24] in the limit
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αk → 0, 1. The viscous regularization involves a set of three positive viscosity coefficients
for each phase,μk , κk , and βk . The definition of these viscosity coefficients should be inferred
from the scaled SEM in order to ensure well-scaled dissipative terms for a wide range of
Mach numbers (subsonic, transonic and supersonic flows) and is the topic of Sect. 4. But
first, we investigate, in the next paragraph, the effect of the viscous regularization in the case
where the SEM devolves to the five-equation model of Kapila [29].

Remark 2 In Sect. 3.5, the phasic entropy residual has been shown to be nonnegative. How-
ever, when numerically computed, one can observe that the phasic entropy residual Re,k ,
exhibits some negative variation in the vicinity of a shock, as previously noted in [21]: this is
due to the fact that the phasic entropy residual becomes a Dirac measure in the shock region
and that this quantity is numerically sampled (numerical artifacts due to mesh/quadrature).
We refer the reader to Sect. 4 of [21] for additional discussions. As a consequence, the
absolute value of the entropy residual is used in computational results.

3.6 A Chapman–Enskog Expansion of the Regularized Seven-Equation
Two-Phase Flow Model

The five-equation two-phase flow model of Kapila [29] is obtained from the non-regularized
SEM by performing a Chapman–Enskog expansion. The steps of the derivation are well
detailed in the literature and can be found in [15,25], for instance. The objective of this section
is to perform a Chapman–Enskog expansion of the regularized SEM derived in Sect. 3.5 and
to investigate the behavior of the dissipative terms: we wish to ensure that the dissipative
terms remain well-scaled and can efficiently stabilize the resulting system of equations. Only
themain results of the derivation are given here and have been obtained following a procedure
similar to [15,25]. First, the pressure and velocity relaxation coefficients are scaled by a small
coefficient ε that describes the strength of the perturbation: μP → μP

ε
and λu → λu

ε
. Then,

each variable is expanded in powers of ε, as shown, for instance, in Eq. (35).

Pk = Pk,0 + Pk,1ε + Pk,2ε
2 + . . . (35)

These expansions are inserted in the SEM equations Eqs. (11) with the dissipative fluxes
obtained in Eqs. (33), yielding a hierarchy of equations for each power of ε. The dissipative
terms derived in Sect. 3.5 do not depend the relaxation coefficients μP and λu and thus
have the same scaling as the inviscid fluxes. From the leading-order momentum and energy
equations (terms in powers of ε−1), we determine that the leading-order phasic pressures and
velocities are equal in each phase:

Pk,0 = Pj,0 = P0 and uk,0 = u j,0 = u0. (36)

This also implies that

Pint,0 = P̄int,0 = P0 and uint,0 = ūint,0 = u0. (37)

Using these results, the next-leading order equations (terms in ε0) yield the regularized
five-equation model of Kapila, which we recall in Eq. (38) where we have defined ρu =∑

i=k, j αiρi ui and ρE = ∑
i=k, j αiρi Ei as the mixture momentum and the mixture energy,

respectively.

∂αk,0A

∂t
+ Au0 · ∇αk,0 = AKk∇·u0 + ∇·(βk∇αk)0 , (38a)

∂ (αρ)k,0 A

∂t
+ ∇·[(αρ)k,0u0A

] = ∇· fk,0, (38b)
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∂ (αρ) j,0 A

∂t
+ ∇·[(αρ) j,0u0A

] = ∇· f j,0, (38c)

∂ (ρu)0 A

∂t
+ ∇·[A (ρu ⊗ u + PI)0

] = P0∇A +
∑

i=k, j

∇·gi,0, (38d)

∂ (ρE)0 A

∂t
+ ∇·[uA (ρE + P)0

] =
∑

i=k, j

∇·(hi,0 + u0 · gi,0
)
. (38e)

Themixture pressure is defined as P = ∑
i=k, j αi Pi and is a function of the phasic pressures.

The notation ( f g)0 means that we only keep the 0th order terms in the product f g. The
function denoted by Kk in Eq. (38a) is given in Eq. (39) and is derived from the Chapman–
Enskog expansion.

Kk = αkα j
ρ j c2j − ρkc2k

α jρkc2k + αkρ j c2j
(39)

From the leading-order equations, we conclude that the regularized seven-equation model
yield a suitably regularized five-equation model of Kapila derived via a Chapman–Enskog
expansion: to leading order, the phasic pressure and velocity remain equal in each phase. In
addition, we observe that the dissipative terms of the viscous regularization scale appropri-
ately in the five-equation model limit, see Eqs. (38).

4 The Scaled Seven-Equation Two-Phase Flow Model with Viscous
Regularization

In the previous section, we have presented a viscous regularization for the seven-equation
two-phase flow model. However, two-phase fluids may be found in various flow regimes,
from extremely low-Mach subsonic situations to supersonic cases. In this section, we write
the non-dimensionalized version of the SEM to carry out a low-Mach asymptotic analysis. In
order to recover the low-Mach incompressible equations, some requirements on the scaling
of the viscous fluxes will be presented.We then propose an all-Mach scaling in order to obtain
an appropriately scaled viscous regularization for many flow regimes (subsonic, transonic
and supersonic flows).

When employing artificial viscosity techniques, one needs to ensure that sufficient artificial
viscosity is present in the shock and discontinuity regions to prevent spurious oscillations
from forming in the numerical solution while little to no dissipation is added when the
solution is smooth. A low-Mach asymptotic limit needs to be performed on the regularized
SEM system of equations in order to properly scale the viscosity coefficients and to recover
the incompressible asymptotic equations [26,47,48]. The purpose of this section is to derive
the scaled SEM equations and investigate the scaling of the dissipative terms. First, the scaled
SEM are derived. Then, two limit cases will be considered to determine appropriate scaling
for the viscosity coefficients so that the dissipative terms remain well-scaled for:

1. (a) the isentropic low-Mach limit where the seven-equation model devolves to an incom-
pressible system of equations, and

2. (b) the non-isentropic limit where shocks can occur.

Because each phase can experience different flow regimes, e.g., supersonic gas and subsonic
liquid, we elect to keep distinct the three viscosity coefficients for each phase, μk , κk , and
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βk . The study is performed for the seven-equation model using the Stiffened Gas Equations
of State (SGEOS) [37] given in Eq. (40).

Pk = (γk − 1) ρk(ek − qk) − γk Pk,∞ (40)

Note that the ideal gas equations of state can be recovered by letting Pk,∞ = qk = 0.

4.1 Derivation of the Non-dimensionalized Seven-Equation Two-Phase Flow
Model

We consider the case where the relaxation coefficients, representing the micro scale or local
phase interaction effects, and the gradient of volume fraction ∇αk , representing the macro
scale phase interaction effects, are eliminated (i.e., set to zero); that is, the two phases do not
interact and the volume fraction of each phase remains constant over time [see Eq. (34a)].
Thus, the seven-equation model degenerates to two sets of Euler equations with a pseudo
cross-sectional area αk A. In the remainder of this section, we assume that the volume fraction
of each phase is non-zero. The first step in the study of the two limit cases (a) and (b) is to re-
write each system of equations using non-dimensionalized variables. To do so, the following
variables are introduced for each phase k:

ρ∗
k = ρk

ρk,∞
, u∗

k = uk
uk,∞

, P∗
k = Pk

ρk,∞c2k,∞
, e∗

k = ek
c2k,∞

, E∗
k = Ek

c2k,∞
,

α∗
k = αk

αk,∞
, x∗ = x

L∞
, t∗k = tk

L∞/uk,∞
, μ∗

k = μk

μk,∞
, κ∗

k = κk

κk,∞
, (41)

where the subscript ∞ denotes the far-field or stagnation quantities and the superscript ∗
stands for the non-dimensional variables. The far-field reference quantities are chosen such
that the dimensionless flowquantities are of order 1. The stagnation quantities for the pressure
and velocity interfacial variables will be specified for each case. The reference phasic Mach
number is given by

Mk,∞ = uk,∞
ck,∞

. (42)

With the scaling introduced in Eq. (41), the scaled equations for phase k with viscous regu-
larization are as follows (the volume fraction equation is omitted because the volume fraction
is assumed constant for each phase):

∂t∗ (αkρk A)∗ + ∇∗ · (αkρkuk A)∗

= 1

Péκ
k,∞

∇∗ · (Aκkαk∇ρk)
∗ + 1

Péβ
k,∞

∇∗ · (Aβkρk∇αk)
∗ (43a)

∂t∗ (αkρkuk A)∗ + ∇∗ · [αk A (ρkuk ⊗ uk)]
∗ + 1

M2
k,∞

∇∗ (
αk AP

∗
k

)

= 1

M2
k,∞

α∗
k P

∗
k ∇∗A∗ + 1

Rek,∞
∇∗ · (

αk Aμkρk∇suk
)∗

+ 1

Péκ
k,∞

∇∗ · (αk Aκk∇ρk ⊗ uk)
∗ + 1

Péβ
k,∞

∇ · (Aβkρk∇αk ⊗ uk)
∗ (43b)

∂t∗
(
α∗
k Aρk Ek

)∗ + ∇∗ · [
α∗
k Au

∗
k (ρk Ek)

∗] + ∇∗ · (
α∗
k Auk Pk

)∗
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= 1

Péκ
k,∞

∇∗ · (αk Aκk∇ (ρkek))
∗ + M2

k,∞
Péκ

k,∞
∇∗ ·

(
Aαkκk

||uk ||2
2

∇ρ

)∗

+ M2
k,∞

Rek,∞
∇∗ · (

αk Aμkρkuk : ∇suk
)∗ + 1

Péβ
k,∞

∇∗ · (ρkek Aβk∇αk)
∗ (43c)

where the phasic numerical Reynolds number (Rek,∞) represents the ratio of fluid inertia
force to viscous forces and the Péclet numbers (Péκ

k,∞ and Péβ
k,∞) represent the ratio of

advection rate to diffusion rate. These numbers are defined as:

Rek,∞ = uk,∞L∞
μk,∞

,Péκ
k,∞ = uk,∞L∞

κk,∞
and Péβ

k,∞ = uk,∞L∞
βk,∞

. (44)

The numerical Reynolds and Péclet numbers are obviously related to the viscosity coefficients
μk,∞, κk,∞ and βk,∞. Thus, once a scaling (in terms of powers of Mk,∞) is obtained for
Rek,∞, Péκ

k,∞, and Péβ
k,∞ in the two limit cases (a) and (b) given above, it will impose a

condition upon the definition of the phasic viscosity coefficients μk , κk , and βk . For brevity,
the superscripts ∗ are omitted in the remainder of this section.

4.2 Scaling of Rek,∞, Péκ
k,∞ and Péβ

k,∞ in the Low-Mach Asymptotic Regime
(Case a)

In the low-Mach isentropic limit, the seven-equation model converges to an incompressible
system of equations that is characterized, for each phase, by pressure fluctuations of orderM2

k
and a divergence-free constraint on the velocity, ∇·(αk Auk) = 0. When adding dissipative
terms as a viscous regularization of the flow equations, the main properties of the low-Mach
asymptotic limit must be preserved. In the low-Mach limit, the two phases are assumed
not to interact and, thus, the volume fraction of each phase remains constant. We begin by
expanding each variable in powers of the Mach number. As an example, the expansion for
the pressure is given by:

Pk(r, t) = Pk,0(r, t) + Pk,1(r, t)Mk,∞ + Pk,2(r, t)M
2
k,∞ + . . . (45)

By studying the resulting momentum equations for various powers of M∞, we note that the
leading- and first-order pressure terms, Pk,0 and Pk,1, are spatially constant if and only if
Rek,∞ = Péκ

k,∞ = Péβ
k,∞ = O(1) (i.e., scale as 1). In this case, remembering that ∇αk = 0

and αk �= 0, we have at order M−2
k,∞:

A∇ (αk Pk)0 = 0 �⇒ ∇Pk,0 = 0 (46a)

and at order M−1
k,∞

A∇ (αk Pk)1 = 0 �⇒ ∇Pk,1 = 0. (46b)

From Eqs. (46) we infer that the leading- and first-order pressure terms are spatially inde-
pendent which ensures that the pressure variations are of order Mach number squared, as
expected in the low-Mach asymptotic limit. Using the scaling Rek,∞ = Péκ

k,∞ = Péβ
k,∞ = 1,

the second-order momentum equations and the leading-order expressions for the continuity
and energy equations are:

∂t (αk Aρk)0 + ∇·(αk Aρkuk)0 = ∇·(αk Aκk∇ρk)0 + ∇·(Aβk∇αk)0 (47a)

∂t (αk Aρkuk)0 + ∇·(αk Aρkuk ⊗ uk)0 + A∇ (αk Pk)2
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= ∇·[αk A
(
μkρk∇suk + κkuk ⊗ ∇ρk

)]
0 + ∇·(Aβkρu∇αk)0 (47b)

∂t (αk Aρk Ek) + ∇·(αk Aukρk Ek)0 + ∇· (αk Auk Pk)0
= ∇·[αk Aκk∇ (ρkek)]0 + ∇·[Aρkekβk∇αk]0 (47c)

where the notation ( f g)0 means that we only keep the 0th-order terms in the product f g.
Recall that Eqs. (47) are written with the assumptions of Sect. 4.1, that is, that the micro
and macro scale interaction effects are neglected. The set of equations given in Eq. (47) is
similar to the single-phase Euler equations with variable area when interpreting αk A as a
pseudo-area [14]. The leading-order of the Stiffened Gas Equation of State (Eq. (40)) is also
given by

Pk,0 = (γk − 1)ρk,0(Ek,0 − qk) − γ Pk,∞ = (γk − 1)ρk,0(ek,0 − qk) − γk Pk,∞. (48)

Using Eq. (48), the energy equation can be recast as a function of the leading-order pressure,
P0, as follows:

Aαk,0 [∂t Pk + uk · ∇Pk]0 + (γk − 1)∇· [αk Auk Pk]0
+ (

Pk,0 + γk Pk∞
) ∇·(αk Auk)0 = ∇·(αk Aκk∇Pk)0 + ∇·(APkβk∇αk)0 . (49)

From Eq. (46a), we infer that P0 is spatially constant. Thus, Eq. (49) becomes

αk,0A

γk
(
Pk,0 + Pk,∞

)
dPk,0
dt

= −∇·(αk Auk)0 (50)

and, at steady state, we have the divergence-free constraint on velocity

∇·(αk Auk)0 = 0. (51)

That is, the leading-order of the product of velocity and area is divergence-free, which reduces
to the standard divergence-free velocity field for a constant area A and volume fraction αk ,
i.e., ∇·uk,0 = 0. Finally, recall that Eq. (50) was written for the stiffened gas law; to retrieve
standard result for the ideal gas law, simply set Pk,∞ = 0. The same reasoning can be applied
to the leading-order of the continuity equation (Eq. 47a) to show that the material derivative
of the density variable is stabilized with appropriately scaled dissipative terms (the resulting
regularization does not depend on the Mach number):

∂t (αk Aρ)0 + ∇·(αk Aρkuk)0 = ∇·[αk Aκk∇ρ + Aβkρk∇αk]0 . (52)

Therefore, we conclude with the following lemma:

Lemma 3 (Low-Mach asymptotic limit) Assume the seven-equation model is regularized,
Eq. (8), with the viscous fluxes defined in Eq. (33). Then, the regularized seven-equation
model yields the correct incompressible limit in low-Mach situations if only if the phasic
numerical numbers Rek,∞, Prκk,∞ and Prβk,∞ scale as one.

4.3 Scaling of Rek,∞, Péκ
k,∞ and Péβ

k,∞ for Non-isentropic Flows (Case b)

Next, we consider the non-isentropic case. Recall that even subsonic flows can present shocks
(for instance, a step initial condition in the pressure will trigger a shock formation, indepen-
dently of the Mach number). The non-dimensional form of the seven-equation model given
in Eq. (43) provides some insight on the dominant terms as a function of the Mach number.
This is particularly obvious in the momentum equation, Eq. (43b), where the gradient of
pressure is scaled by 1/M2

k,∞. However, in the non-isentropic case, we can no longer expect

123



J Sci Comput (2016) 69:764–804 783

∇(αk Pk )
M2

k,∞
= ∇ (αk Pk)2 at the leading order and, therefore, the pressure gradient termmay need

to be stabilized by some dissipative terms scaling as 1/M2
k,∞ so as to prevent spurious oscil-

lations from forming in the numerical solution. By inspecting the dissipative terms present in
the momentum equation, we note that by imposing that one of the dissipative terms scales as
1/M2

k,∞ will lead to a total of eight different options (a scaling of either 1 or M2
k,∞ for each

number, Rek,∞, Péκ
k,∞, and Péβ

k,∞). Three of these options are discussed next; the five other
options are omitted for brevity and we leave it to the reader to verify that they can indeed be
ruled out by following the same reasoning given below. The three options analyzed here are:

(i) Rek,∞ = 1,Péκ
k,∞ = M2

k,∞ and Péβ
k,∞ = 1,

(i i) Rek,∞ = 1,Péκ
k,∞ = 1 and Péβ

k,∞ = M2
k,∞ or

(i i i) Rek,∞ = M2
k,∞,Péκ

k,∞ = 1 and Péβ
k,∞ = 1.

Any of these choices will also affect the stabilization of the volume fraction, continuity,
and energy equations. For instance, using Péclet numbers equal to M2

k,∞ may effectively
stabilize the volume fraction and continuity equations in the shock region but this may also
add an excessive amount of dissipation for subsonic flows at the location of the contact
wave. Such a behavior may not be suitable for accuracy purpose, making options (i) and
(i i) inappropriate. The same reasoning, left to the reader, can be carried out for the energy
equation (Eq. 43c) and results in the same conclusion. The remaining choice, option (i i i), has
the proper scaling: in this case, only the dissipation terms involving ∇s,∗u∗

k scale as 1/M
2
k,∞

because Rek,∞ = M2
k,∞, leaving the regularization of the volume fraction and continuity

equations unaffected because Péβ
k,∞ = Péκ

k,∞ = 1.

Lemma 4 (Non-isentropic flows) Assume the seven-equation model is regularized, Eq. (8),
with the viscous fluxes defined in Eq. (33). Then, the regularized seven-equation model is
efficiently stabilized in all Mach situations when experiencing non-isentropic flows if only if
the phasic numerical numbers Rek,∞, Prκk,∞ and Prβk,∞ scale as follows:

Rek,∞ = M2
k,∞,Péκ

k,∞ = 1 and Péβ
k,∞ = 1 (53)

Remark 3 In the above, the Péclet number Péκ
k,∞ was set to one to avoid adding an excessive

amount of dissipation in contact waves (presence of a 1/Péκ
k,∞ term in Eq. (43a)). However,

if one can distinguish contact waves from shock / rarefaction waves (in a numerical scheme,
for instance), then there is the possibility of having the local Péclet number Péκ

k,∞ set to one

in contact waves and to M2
k,∞ in shock waves. As such, this option would allow stabilizing

shock waves (Péκ
k,∞ scales as M2

k,∞) and would not be over-dissipative in the contact region
(Péκ

k,∞ scales as 1):

Rek,∞ = M2
k,∞,

Péκ
k,∞ =

{
1 in the contact region

M2
k,∞ in the shock region

,

Péβ
k,∞ = 1.
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Fig. 1 Two-phase flow shock tube results using a LLF viscosity, (t = 473 μs). a Velocity, b density,
c pressure, d volume fraction
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Fig. 1 continued

5 Numerical Illustrations

We recall that the seven-equation model for two-phase flow with viscous regularization is
given in Eq. (11), with definitions for the artificial viscous fluxes from Eq. (33). When the
pressure and velocity relaxation parameters are large, Eq. (11) become equivalent to the
regularized five-equation model given by Eq. (38) and for which the phasic pressures and
velocities are equal.

In our numerical simulations, the seven-equation model given is discretized using a con-
tinuous Galerkin finite element method. This is in contrast with the typical discretizations
schemes adopted for two-phase flow computations and HNCSE in general. The reasons are
two-fold. First, we wish to illustrate that the proposed viscous regularization is effective and
agnostic of the discretization scheme and thus have opted for a less traditional discretiza-
tion technique for HNCSE; note that when employing continuous finite elements, interfacial
numerical fluxes need not be defined, which simplifies the implementation. Second, several
open-source, parallel, continuous finite element libraries are available (e.g., MOOSE [20]
which was employed here), thus possibly enabling the dissemination of multi-phase flow
simulations using such tools. For temporal discretization, we use BDF2 [4], a second-order
accurate backward differencing scheme. A Jacobian-free Newton Krylov (JFNK) solver is
employed to solve the nonlinear system of discrete equations at the end of each time step.
An approximate full Jacobian matrix is used as a preconditioner and is computed by finite
difference (this is one of the options available in MOOSE and is reasonably efficient for 1-D
simulations).

We illustrate the ability of the proposed viscous regularization to stabilize the seven-
equation two-phase flow equations using three test cases. The first test is a shock tube
configuration where we show that the viscous regularization prevents undershoots and over-
shoots near shocks and discontinuities. The second set of tests aims at illustrating the
low-Mach asymptotic limit study performed in Sect. 4 by investigating the steady-state solu-
tion of a two-phase flow in a converging-diverging nozzle. Finally, in the third series of tests,
we consider a shock tubewith nearly pure phases on both side of the initial membrane (almost
pure liquid to the left of it, almost pure vapor to the right). In all tests, the phasic pressure is
computed using the Stiffened Gas equation of state [37]:
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Fig. 2 Two-phase flow shock tube results using a LLF viscosity, mesh refinement study (t = 473 μs). a
Density, b volume fraction

Pk = (γk − 1)ρk(ek − qk) − γk P∞,k and ρk = Pk + P∞,k

Cv,k(γk − 1)Tk
, (54)

where the parameters γk , qk and P∞,k are fluid-dependent and will be specified for each test.
Note that the Ideal gas law is recovered by setting qk = P∞,k = 0 in Eq. (54).

5.1 Shock Tube Test Case

In this example, we set the relaxation coefficients μP and λu to large values; the pressures
and velocities in each phase should become identical, as expected by performing a Chapman–
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Fig. 3 Shock tube results: liquid and vapor densities computed using three different viscosity types at
t = 473 μs. a Liquid density, b vapor density

Enskog expansion.We consider two fluids, denoted by the subscripts 1 and 2, and employ the
ideal gas law with the following parameters γ1 = 3 and γ2 = 1.4. The numerical illustration
consists of a 1-D shock tube of length 1 meshed with 400 cells and containing two-phase
mixtures separated by a membrane placed at x = 0.5. The initial left/right values of the
pressures are (Pk,le f t = 105) and (Pk,right = 104) (for k = 1, 2). The initial density and
volume fraction are uniform and set to ρ1 = 10, ρ2 = 1 andα = 0.5, respectively. Both fluids
are initially at rest. The relaxation coefficients μP and λu are computed from Eq. (4a) and
Eq. (4b), respectively, alongwith Eq. (5) and Amax

int = 4×103 m−1. At t = 0, themembrane is
suddenly removed and the simulation is ran until t = 473μs with aCFL of one. In Sect. 5.1.1,
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Fig. 4 Liquid volume fraction obtained using three different viscosity types at t = 473 μs

Table 1 Stiffened gas equation
of state parameters for steam and
liquid water

Fluid γk Cv,k (J kg−1 K−1) P∞,k (Pa) qk (J kg−1)

Liquid 2.35 1816 109 −1167 × 103

Vapor 1.43 1040 0 2030 × 103

numerical results are presented when defining the phasic viscosity coefficients proportional
to the local maximum eigenvalues which we refer to as Lax-Friedrichs-like scheme. Then, a
grid-convergence study is performed in Sect. 5.1.2 using the same definitions for the phasic
viscosity coefficients as in Sect. 5.1.1. Then in Sect. 5.1.3, the influence of the dissipative
terms present in the phasic volume and continuity equations onto the numerical solutions is
investigated as an illustration of Remark 1.

5.1.1 Numerical Solution with a Lax-Friedrichs-Like Viscosity

In order to test the proposed viscous regularization, we need to define the phasic viscosity
coefficients βk , μk , and κk that appear in Eq. (33). Following Guermond et al. (Section 2.2
in [24]), we employ μk = κk = βk = h

2 (||uk || + ck) where h is the grid size and ||uk || + ck
is the largest eigenvalue for phase k. With this choice of viscosity, the numerical scheme is
equivalent to a local Lax-Friedrichs (LLF) scheme which is known to be over-dissipative.
The numerical results are given in Fig. 1.

The viscous numerical solutions do not display any instability in the vicinity of the shock
region (x  0.73 at t = 473μs). In Fig. 1b, the contact wave (x  0.6) is smeared because of
the over-dissipative nature of the viscosity coefficients. This example shows that the viscous
regularization developed in this paper can efficiently stabilize the numerical solution. We
observe that the phasic pressures and velocities are indeed identical for large values of the
relaxation parameters.
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Fig. 5 Numerical and analytical steady-state vapor-phase solutions for the divergent-convergent two-phase
flow nozzle problem. a Velocity. b Density. c Pressure. d Mach number
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Fig. 5 continued

5.1.2 A Grid Convergence Study

The proposed regularization is grid-dependent, i.e., the phasic viscosity coefficients are set
proportional to the grid size h. Thus, it is of interest to investigate the behavior of the numerical
solution as the mesh is refined, especially in the vicinity of the contact (around x = 0.6) and
shock (around x = 0.7) waves where the use of a LLF viscosity led to excessive smearing
as shown in the density and the volume fraction profiles in Fig. 1b, d, respectively. Thus, we
propose to run the same test as before using three different mesh resolutions: 200, 400 and
800 cells. The numerical solutions of the phasic densities and the phasic volume fractions
obtained are displayed in Fig. 2a, b, respectively. From the phasic density profiles in Fig. 2a,
it is observed that the contact and the shock waves are better resolved as the mesh is refined,
as expected, indicating that the numerical solution converges, at least formally, to a weak
solution. Similar observations can be drawn for the phasic volume fraction profiles, as shown
in Fig. 2b, and were also observed for the other phasic variables, i.e., pressure and velocity
(not shown).

5.1.3 Numerical Solutions with an Incomplete Viscous Regularization

In this test, we investigate the influence of regularizing some or all of the equations on the
numerical solution, as an illustration of Remark 1. We use again the previous shock test case
and select the LLF viscosity and consider the following 3 cases:

1. all viscosity coefficients non zero, i.e., the local Lax-Friedrichs scheme already shown
in Fig. 1 (viscosity type 1),

2. the definitions for μk and κk are unchanged but βk is set to zero (viscosity type 2). In
doing so, we assess the effect of the viscous stabilization on the volume fraction, and

3. the viscosity coefficients κk and βk are set to zero while μk is unchanged (viscosity type
3). In doing so, no stabilization is present in both the volume fraction and continuity
equations.

For each case, the density and volume fraction profiles are presented in Figs. 3 and 4. In cases
(1) and (2), the numerical solutions do not display any instability in the density profiles. Case
(3) displays oscillations, which is expected since the continuity equations are not regularized
(similarly to the results obtained in the single-phase case, [24]).
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Fig. 6 Numerical and analytical steady-state liquid-phase solutions for the divergent-convergent two-phase
flow nozzle problem. a Velocity, b density, c pressure. d Mach number
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Fig. 6 continued

When inspecting the volume fraction profiles near the contact region (see Fig. 4), one
notices that as soon as βk = 0 (cases (2) and (3)), the simulations exhibit spurious oscillations
in the contact region. In case (3), the continuity and the volume fraction equations are both
no longer regularized (κk = βk = 0); this leads to the formation of instabilities in the pre-
contact region, the presence of an undershoot in the density profile and an overshoot in the
volume fraction profile in the post-contact region as shown in Figs. 3 and 4, respectively.

5.2 Multi-Mach Mixture Flow Test Case

To illustrate the low-Mach asymptotic study presented in Sect. 4, a 1-D converging-diverging
nozzle problem is considered for a two-phase flow where the relaxation coefficients μP and
λu are set to zero (independent phases). The variable area expression for the nozzle is given
by A(x) = 1 + 1

2 cos(2πx/L) with length L = 1 m. At the inlet, the stagnation pressure
and temperature are set to P0 = 1 MPa and T0 = 453 K , respectively. At the outlet,
only the static pressure is specified: Ps = 0.5 MPa. Initially, the two phases are at rest;
their temperatures are uniform and equal to their stagnation temperatures; their pressures
linearly decrease from the stagnation pressure inlet value to the static pressure outlet value.
The volume fraction αk is set to 0.5. The stiffened gas equation of state, Eq. (54), is used
to model the liquid and vapor with the parameters provided in Table 1. This test case is
of interest for multiple reasons: (a) a steady state is reached, (b) an analytical solution is
available [6,36], (c) due to the different compressibilities between the phases, the vapor
phase will become supersonic and will develop a steady shock while the liquid phase will
simultaneously be low-Mach flow (Mliquid ≈ 10−2). We illustrate the low-Mach asymptotic
study of Sect. 4 with two cases. In case (1), the nozzle problem is run using the same phasic
viscosity coefficients that were used for the previous shock tube test case (Sect. 5.1), i.e.,
μk = κk = βk = h

2 (||uk || + ck) (note that the dissipative term in the volume fraction
is not active because the volume fraction remains constant here). Using these definitions
for the viscosity coefficients in the the expressions for the Reynolds and Péclet numbers,
Eq. (44), we obtain: Rek = Péκ

k = Péβ
k = 2Mk/(1 + Mk). Such a scaling will efficiently

stabilize the vapor flow that becomes supersonic in the nozzle (Mk ∼ 1). On the other hand,
the liquid phase will reach a low-Mach steady-state flow and the above definitions of the
viscosity coefficients are ill-scaled because they lead to Rek = Péκ

k = Péβ
k ∝ Mk while the
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Fig. 7 Shock tube with nearly pure phases, 1000 cells, at time 2 × 10−4 s. a Volume fractions, b velocities,
c pressures. d Densities
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Fig. 7 continued
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Fig. 8 continued

low-Mach asymptotic analysis of Sect. 4.2 requires that these non-dimensionalized numbers
scale as 1 in the low-Mach regime (i.e., the local Lax-Friedrichs viscosities are too large in
the low-Mach regime). Hence, the correct steady-state solution should not be obtained for
the liquid phase using these viscosity definitions. In case (2), we propose a fix to the ill-
scaling effects observed in the liquid phase by having non-dimensionalized numbers scaling
as 1 for low-Mach flows. Hence, the following definitions of the phasic viscosity are used:
μk = κk = βk = Mk × h

2 (||uk || + ck). Now, in the low-Mach regime, we have Rek , Péκ
k ,

and = Péβ
k scaling as 1. Note that in the supersonic case, the viscous stabilization of the

scheme is not altered since Mk  O(1).
The steady-state numerical solutions for liquid and vapor phases are presented in Figs. 5

and 6, respectively, for the above cases (1) and (2).
InFig. 5, the numerical solutions obtained for the vapor phase in cases (1) and (2) are almost

identical, as expected, because the Mach number is of order 1 (see Mach plot in Fig. 5d).
The numerical and exact solutions match well, except in the vicinity of the shock where
smoothing occurs due to the over-dissipative nature of the local Lax-Friedrichs viscosity. As
the mesh is refined, it is observed (not shown) that the numerical solution converges to the
exact solution.

The steady-state numerical solution of the liquid phase is shown in Fig. 6. In case (1)
(LLF viscosity without a low-Mach fix), the numerical solution does not match the exact
solution; this illustrates the ill-scaling effect of the dissipative terms for low-Mach flows
(see Mach plot in Fig. 6d). The numerical solution obtained in case (2) (LLF viscosity with
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low-Mach fix, i.e., properly scaled LLF viscosity) converges to the exact solution and the
correct low-Mach asymptotic limit is recovered.

5.3 Shock Tube with Nearly Pure Phases

Finally, we conclude with a liquid-gas shock tube where the two phases are initially in their
nearly pure state (αl = ε = 5 × 10−4 for x < 0.5 and αl = 1 − ε for x > 0.5). The
initial conditions are: Pleft = 2 × 108 Pa, Pright = 105 Pa; the densities are uniform, ρl =
1000 kg/m3, ρg = 50 kg/m3. We use the stiffened gas equation of state with the following
parameters: γg = 1.4, γl = 4.4, Pl,∞ = 6 × 108 Pa, Pg,∞ = 0 Pa , qg = ql = 0 J/kg. The
pressure and velocity relaxation coefficients, μP and λu are large (we use Amax

int = 106 in
Eq. (5)). We employ 1000 mesh cells. The results are shown in Fig. 7 at time 200 × 10−6 s.

To show mesh convergence of the results, the same computation is now made on a mesh
involving only 200 cells. These results are shown in Fig. 8, where it is clear that the method
is spatially converging.

6 Conclusions

We have derived a viscous regularization for the hyperbolic seven-equation two-phase flow
Model. The regularization ensures nonnegativity of the phasic entropy residual, convergence
of the numerical solution to an entropy solution for concave phasic entropy functions sk ,
and is consistent with the viscous regularization derived for Euler equations when one of
the phases disappears. We have also demonstrated that the proposed viscous regularization
is compatible with the generalized Harten entropies that were initially derived for Euler
equations.

The viscous regularization for the SEM equations involves a set of two positive viscosity
coefficients for each phase, μk and κk , and one for the volume fraction equation, βk . Using
non-dimensionalized equations, we have shown that the scaling of these viscosities is related
to the numerical Reynolds and Péclet numbers, Rek , Pé

μ
k , and Pé

κ
k . Adequate scaling of these

numbers has been devised for two important limit-cases: the low-Mach asymptotic limit and
for non-isentropic flows. In the low-Mach regime, we show that the incompressible equations
are recovered when all of the non-dimensional numbers scale as one. The study of the non-
isentropic case shows that the scaling of the non-dimensionalized numbers is Mach-number
dependent to ensure well-scaled dissipative terms in the vicinity of the shock. Based on these
results, a proper scaling of the viscosity coefficients can be derived for all Mach numbers, as
was the case for single-phase flows (see [14]). We have also shown that the regularized SEM
equations yields a regularized version of the five-equation flow model of Kapila by means
of a Chapman–Enskog expansion.

The ability of the proposed regularization to stabilize the SEM equations was numerically
demonstrated using a shock tube problem, with the definitions of the artificial viscosity
coefficients borrowed from the local Lax-Friedrichs scheme. We have also performed a grid-
convergence and analyzed the effect of removing stabilization from the volume fraction and
the continuity equations. The scaling effect of the viscous regularization on the numerical
solution in the low-Mach asymptotic limitwas numerically illustrated using a1-Dconverging-
diverging nozzle. The proposed viscous regularization is agnostic of the spatial discretization
scheme and all of our numerical examples employed a continuous finite element method.
Shock-tube simulations with nearly pure phases have been successfully performed.
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As an extension of this work, the two-phase flow viscous regularization presented here
should be utilized and tested with high-order, less dissipative, artificial viscosities, such as
the entropy viscosity method (e.g., see [23] for single-phase supersonic flows and [14] for
single-phase subsonic and transonic flows).We also note that the proposed regularization can
also be employed using definitions of viscosity coefficients traditionally used in single-phase
flows, e.g., the Lapidus viscosity [16,30] and pressure-based viscosity, for two-phase flows
[38]. We intend on reporting on these findings in a subsequent publication.
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Appendix 1: Entropy Equation for the Multi-dimensional Seven Equation
Model Without Viscous Regularization

This appendix provides the steps that lead to the derivation of the phasic entropy equation of
the seven-equation two-phase flow Model [6]. For the purpose of this appendix, two phases
are considered with no interphase mass or heat transfer and denoted by the indexes j and
k. In the seven-equation two-phase flow Model, each phase obeys to the following set of
equations (Eq. (55)):

∂t (αk A) + Auint · ∇αk = AμP
(
Pk − Pj

)
(55a)

∂t (αkρk A) + ∇·(αkρkuk A) = 0 (55b)

∂t (αkρkuk A) + ∇·[αk A (ρkuk ⊗ uk + Pk I)]

= αk Pk∇A + Pint A∇αk + Aλu
(
u j − uk

)
(55c)

∂t (αkρk Ek A) + ∇·[αk Auk (ρk Ek + Pk)]

= Pint Auint · ∇αk − AμP P̄int
(
Pk − Pj

)

+ ūint Aλu
(
u j − uk

)
(55d)

where ρk , uk , Ek and Pk denote the density, velocity, specific total energy, and pressure
of phase k, respectively. μP and λu and the pressure and velocity relaxation parameters,
respectively. We recall that we assume that the cross section A is only function of space:
∂t A = 0 (a value of A �= 1 is mostly of practical important for 1D nozzle problems).
Variables with subscript int correspond to the interfacial variables; their definitions are given
in Eq. (56).

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pint = P̄int − ∇αk||∇αk ||
Zk Z j
Zk+Z j

(
uk − u j

)

P̄int = Zk Pj+Z j Pk
Zk+Z j

uint = ūint − ∇αk||∇αk ||
Pk−Pj
Zk+Z j

ūint = Zkuk+Z j u j
Zk+Z j

(56)

where Zk = ρkck and Z j = ρ j c j are the impedances of phases k and j , respectively. The
speed of sound is denoted by the symbol c.
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The first step in proving the entropy minimum principle for Eq. (55) consists of recasting
these equations using the primitive variables (αk, ρk, uk, ek), where ek is the specific internal
energy of phase k. We introduce the material derivative D(·)

Dt = ∂t (·)+uk ·∇(·) for simplicity.
The continuity equation can be expressed as follows:

αk A
Dρk

Dt
+ ρk AμP

(
Pk − Pj

) + ρk A (uk − uint ) · ∇αk + ρkαk∇·(Auk) = 0. (57)

The momentum and continuity equations are combined to yield an equation for the velocity:

αkρk A
Duk
Dt

+ ∇ (αk APk) = αk Pk∇A + Pint A∇αk + Aλu
(
u j − uk

)
. (58)

A kinetic energy equation is obtained by taking the vector scalar product of the previous
results with uk to yield:

αkρk A
D

(
u2k/2

)

Dt
+ uk∇ (αk APk) = uk

(
αk Pk∇A + Pint A∇αk + Aλu

(
u j − uk

) )
. (59)

The internal energy equation is obtained by subtracting the above kinetic energy equation
from the total energy equation:

αkρk A
Dek
Dt

+ αk Pk∇·(Auk) = Pint A (uint − uk) · ∇αk − P̄int AμP
(
Pk − Pj

)

+ Aλu
(
u j − uk

) · (ūint − uk) . (60)

In the next step, we assume the existence of a phasic entropy sk that is function of the
density ρk and the internal energy ek . Using the chain rule,

Dsk
Dt

= (sρ)k
Dρk

Dt
+ (se)k

Dek
Dt

, (61)

we combine the density and internal energy equations (ρk(sρ)k×Eq. (57)+(se)k×Eq. (60))
to obtain the following entropy equation:

αkρk A
Dsk
Dt

+ αk
(
Pk(se)k + ρ2

k (sρ)k
) ∇·(Auk)

︸ ︷︷ ︸
(a)

= (se)k A
[
Pint (uint − uk) · ∇αk − P̄int AμP (Pk − Pj ) + Aλu(ūint − uk) · (u j − uk)

]

− ρ2
k (sρ)k

[
μP A(Pk − Pj ) + A(uk − uint ) · ∇αk

]
(62)

where (se)k and (sρ)k denote the partial derivatives of entropy sk with respect to the inter-
nal energy ek and the density ρk , respectively. The term denoted by (a) on the left-hand
side of Eq. (62) can be set to zero by invoking the Gibbs relation from the second law of
thermodynamics:

Tkdsk = dek − Pk
ρ2
k

dρk with (se)k = 1

Tk
and (sρ)k = − Pk

ρ2
k

(se)k (63)

which yields

Pk(se)k + ρ2
k (sρ)k = 0. (64)

Finally, Eq. (62) is as follows:

((se)k)
−1αkρk

Dsk
Dt

= [Pint (uint − uk) + Pk(uk − uint )] · ∇αk︸ ︷︷ ︸
(b)

+μP (Pk − Pj )(Pk − P̄int )︸ ︷︷ ︸
(c)
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+ λu(u j − uk) · (ūint − uk)︸ ︷︷ ︸
(d)

(65)

The right-hand side of Eq. (65) has been split into three terms, (b), (c), and (d); next we
analyze each of these terms separately. The terms (c) and (d) can be easily recast by using
the definitions of ūint and P̄int given in Eq. (56):

μP (Pk − Pj )(Pk − P̄int ) = μP
Zk

Zk + Z j
(Pj − Pk)

2,

λu(u j − uk) · (ūint − uk) = λu
Z j

Zk + Z j
(u j − uk)

2. (66)

By definition, μP , λu , and Zk are all positive. Thus, the above terms (c) and (d) are uncon-
ditionally positive.

We now inspect term (b). Once again, we use the definitions of Pint and uint and the
following relations:

uint − uk = Z j

Zk + Z j
(u j − uk) − ∇αk

‖∇αk‖
Pk − Pj

Zk + Z j
,

Pint − Pk = Zk

Zk + Z j
(Pj − Pk) − ∇αk

‖∇αk‖
Zk Z j

Zk + Z j
(uk − u j ).

Then, term (b) becomes:

[Pint (uint − uk) + Pk(uk − uint )] · ∇αk = (Pint − Pk)(uint − uk) · ∇αk

= Zk
(
Zk + Z j

)2 ∇αk ·
[
Z j (u j − uk)(Pj − Pk) + ∇αk

‖∇αk‖ Z
2
j (u j − uk)

2

+ ∇αk

‖∇αk‖ (Pk − Pj )
2 + ∇αk · ∇αk

‖∇αk‖2 (Pk − Pj )Z j (uk − u j )

]
(67)

The above equation is factorized by ‖∇αk‖ and then recast under a quadratic form using
∇αk ·∇αk
‖∇αk‖2 = 1. This yields:

[(uint − uk)Pint + (uk − uint )Pk]∇αk

= ‖∇αk‖ Zk
(
Zk + Z j

)2

[
Z j (u j − uk) + ∇αk

‖∇αk‖ (Pk − Pj )

]2
(68)

Thus, using Eq. (65), Eq. (66), Eq. (67) and Eq. (68), the entropy equation obtained in [6]
holds and is recalled here for convenience:

(se)
−1
k αkρk A

Dsk
Dt

= μP
Zk

Zk + Z j
(Pj − Pk)

2 + λu
Z j

Zk + Z j
(u j − uk)

2

+‖∇αk‖ Zk
(
Zk + Z j

)2

[
Z j (u j − uk) + ∇αk

‖∇αk‖ (Pk − Pj )

]2
.

Appendix 2: Compatibility of the Viscous Regularization for the Seven-
Equation Two-Phase Model with the Generalized Harten Entropies

We investigate in this appendix whether the viscous regularization of the seven-equation
two-phase model derived in Sect. 3 is compatible with some or all generalized entropies
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identified in Harten et al. [27]. Considering the single-phase Euler equations, Harten et al.
[27] demonstrated that a function ρH (s) is called a generalized entropy and is strictly
concave if H is twice differentiable and

H ′(s) ≥ 0, H ′(s)c−1
p − H ′′ ≥ 0, ∀ (ρ, e) ∈ R2+, (69)

where cp (ρ, e) = T ∂T s (ρ, e) is the specific heat at constant pressure (T is a function of e and
ρ through the equation of state). Because the seven-equation two-phase model was initially
derived by assuming that each phase obeys the single-phase Euler equation, we want to
investigate whether the above property still holdswhen considering the seven-equationmodel
with viscous regularization included. To do so, we consider a phasic generalized entropy,
Hk(sk) and a phasic specific heat at constant pressure, cp,k (ρk, ek) = Tk∂Tk sk (ρk, Tk)
characterized by Eq. (69). The objective is to find an entropy inequality verified by ρkHk(sk).

We start from the entropy inequality verified by sk ,

αkρk A
Dsk
Dt

= fk · ∇sk + ∇·(αk Aρkκk∇sk) − αkρk Aκk Qk + (se)kαk Aρkμk∇suk : ∇uk .

(70)

Eq. (70) is multiplied by H ′
k (sk) to yield:

αkρk A
DHk(sk)

Dt
= ∇·(αk Aρkκk∇Hk(sk)) − H ′′

k (sk)αk Aκkρk‖∇sk‖2

+H ′
k (sk) fk · ∇sk − H ′

k (sk)αkρk Aκk Qk

+H ′
k (sk)(se)kαk Aρkμk∇suk : ∇uk (71)

Let us now multiply the continuity equation of phase k by Hk(sk) and add the result to the
above equation to obtain:

∂t (αkρk AHk(sk)) + ∇·(αkρkuk AHk(sk))

−∇·[αk Aρkκk∇Hk(sk) + αk AκkHk(sk)∇ρk +AκkρkHk(sk)∇αk]

= −H ′′
k (sk)αk Aκkρk‖∇sk‖2 − H ′

k (sk)αk Aκkρk Qk︸ ︷︷ ︸
T0

+ H ′
k (sk)(se)kαk Aρkμk∇suk : ∇uk︸ ︷︷ ︸

T1

. (72)

As in Sect. 3, the left-hand side of Eq. (72) is split into two residuals denoted by T0 and T1

in order to study the sign of each of them. Obviously the sign of T1 is positive since it is
assumed that H ′

k (sk) ≥ 0. To investigate the sign of T0, we use Eq. (69) to get:

− T0 ≤ H ′
k (sk)αk Aκkρk

(
c−1
p,k‖∇sk‖2 + Qk

)
. (73)

The right-hand side of Eq. (73) is a quadratic form that was already defined in Appendix 5
of [24] and can be recast in the matrix form Xt

kSXk where S is a 2× 2 matrix and the vector
Xk was previously defined in Sect. 3. In [24], matrix S is shown to be negative semi-definite
which allows us to conclude thatT0 is unconditionally positive using Eq. (73). Then, knowing
the sign of the two residuals T0 and T1, we conclude that:

∂t (αkρk AHk(sk)) + ∇·(αkρkuk AHk(sk))

−∇·[αk Aρkκk∇Hk(sk) + αk AκkHk(sk)∇ρk + AκkρkHk(sk)∇αk] ≥ 0.
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Subsequently, we conclude that an entropy inequality is satisfied for all generalized entropies
ρkHk(sk) when using the viscous regularization derived in Sect. 3 for the seven-equation
two-phase model. Note that the above inequality holds as well for the total entropy of the
system (i.e., summation over the phasic entropy statements).
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