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Abstract A Jacobi spectral collocation method is proposed for the solution of a class of
nonlinear Volterra integral equations with a kernel of the general form P (z—x)"% g(y(x)),
where a € (0, 1), B > 0 and g(y) is a nonlinear function. Typically, the kernel will contain
both an Abel-type and an end point singularity. The solution to these equations will in
general have a nonsmooth behaviour which causes a drop in the global convergence orders
of numerical methods with uniform meshes. In the considered approach a transformation of
the independent variable is first introduced in order to obtain a new equation with a smoother
solution. The Jacobi collocation method is then applied to the transformed equation and a
complete convergence analysis of the method is carried out for the L™ and the L? norms.
Some numerical examples are presented to illustrate the exponential decay of the errors in
the spectral approximation.
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1 Introduction

This work is concerned with the numerical solutions to a general class of nonlinear second
kind Volterra integral equations

z B

y(@) = f(z) —/ xiag(y(X))dx, O<a<l, >0, z€I[0,T], ey
0o (z—x)

which have important applications in nonlinear problems of heat conduction, boundary layer

heat transfer, chemical kinetics and theory of superfluidity (see e.g. [4,6,17-19]). The above

class of equations has been considered by the authors in [1]. The kernel of these equations,

xP(z — x)"%g(y(x)), with & € (0,1) and B > 0, possesses two types of singularities

(depending on the value of ) and their solutions are typically not regular.

In previous works a particular case of (1), with to @« = 2/3, 8 = 1/3, f(z) = 1
and g(y) = y* was considered. We will refer to it as Lighthill’s equation. The derivative
of its solution behaves like y'(r) ~ t~173, near the origin (cf. Example 1). As it would be
expected, the typical nonsmooth properties of y cause a drop in the global convergence orders
of numerical methods based on uniform meshes like collocation and product integration
methods [3]. Some classical techniques can be used to recover the optimal convergence
orders and this was done for Lighthill’s equation. A collocation method with graded meshes
was proposed in [10]; the application of a hybrid collocation method, where the basis for the
approximating space also includes some fractional powers, was considered in [22]; the use of
extrapolation techniques combined with low order methods was investigated in [12]. We also
refer to [2], where a Nystrom-type method was applied after a smoothing transformation.

Recently, in [1], a method has been used for the general equation (1) where an initial
integral over a small interval is calculated analytically, by using a series solution available near
the origin; this combined with a product integration-type method leads to optimal convergence
rates. In the present work we consider spectral approximations.

In the last decade the use of spectral methods for the solution of Volterra integral equations
(VIEs) has raised more attention from researchers. We refer to [23] for a comprehensive study
on the topic of spectral approximations and associated algorithms. It is known that an expo-
nential convergence order can be achieved with spectral approximations in the case of linear
and nonlinear Volterra integral equations with smooth kernels (see [24], [28]). This is also
true for linear VIEs of the second kind with weakly singular kernel (z — x)™*,0 < u < 1,
under the assumption that the underlying solution is smooth enough ([8],[7]). In 2010, Chen
and Tang [9] developed their work by analyzing a Jacobi spectral collocation method for
linear VIEs of the second kind with weakly singular kernel (z — x)™*,0 < u < 1, and
with nonsmooth solutions. Some function transformations and variable transformations were
employed to change the equation into a new one defined on the standard interval [—1, 1], so
that the solution of the new equation possessed better regularity properties and the Jacobi
orthogonal polynomials theory could be applied. In [15], Li and Tang analyzed a spectral
Jacobi-collocation approximation for the particular case of the Abel-Volterra integral equa-
tion, that is, with singular kernel (z — x)_l/ 2. where nonsmooth solutions were considered.
In their convergence analysis, unlike in [9], only a coordinate transformation (and no solu-
tion transformation) is used. We also refer to [27] where some spectral and pseudo-spectral
Jacobi-Galerkin approaches were considered for the smooth linear second kind Volterra inte-
gral equation. More recently, in [16], this work has been extended to linear Abel-type VIEs
with nonsmooth solutions.

In the present work, we investigate the application of the Jacobi collocation method to
the general equation (1). First a variable transformation is used on the original equation so
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that a new equation with a smoother solution is obtained. We note that the use of smoothing
techniques for (linear) integral equations with Abel-type kernels was first considered in [11].
In the present case, it happens that the integral term in the transformed equation is suitable
for the application of a Gauss-type quadrature with Jacobi weights. Finally, a Jacobi-type
collocation condition is imposed on the transformed integral equation [cf. (25)].

The paper is organized as follows. In Sect. 2 first the regularity properties of the solution to
equation (1) are discussed. Then the Jacobi collocation method is described. In Sect. 3 some
auxiliary results are presented and in Sect. 4 a complete convergence analysis of the method
is carried out for the L°° and the L? norms. In order to illustrate the theoretical results some
numerical examples are considered in Sect. 5.

Throughout the text, the same letter C will be used for all the constants, with different
values.

2 The Jacobi-Collocation Method
2.1 Smoothness of the Solution

In [1] it is shown that if 0 < ¢ < 1, B > 1 — «, f is bounded and g satisfies a local
Lipschtiz condition then (1) has a unique continuous (local) solution y(z) on some interval
[0, T']. Furthermore, if g(z) is a positive nonlinear function then it can be shown that, under
certain conditions, this interval can be extended to [0, +00). If g(z) < O then the solution
may blow up at some finite z. The theoretical results of Sects. 3—4 are valid independently
of the sign of g.

The following lemma concerns Volterra integral equations which can be expressed in
terms of the so-called “cordial” operators, which were introduced by Vainikko in [25].

Here we consider a partial result from [26] which will be useful in our analysis.

Lemma 1 Consider the following nonlinear Volterra integral equation
4
u(z) = f(2) +/ e /Dgx, zou(x)dx, 0<z<T, )
0

where ¢ € L'(0,1). Let Ay = {(x,2) : 0 < x < z < T}, and assume that f € C"([0, T1)
and g € C"(Ar x 2),2 C R, foranm € N. Let u* € C([0, T)) be a solution of (2) on
[0, T'] and define

a(x,z) =[0g(x, z, u)/duly=y*x), (x,2) € Ar, 3)
so that a(0,0) = 0. Then u* is also in C™ ([0, T]).

It will be of interest to consider the application of the previous lemma to the following
nonlinear Volterra integral equation, of which (1) is a particular case with y =1,

z xﬂ
y(@) = f(2) _/0 mg(y(X))dx, z€[0,T], 4
with B > 0, ay — B < 1. It can be rewritten as

Z
y(@) = f(2)+ /0 (/) g (x, 2, y(x))), y(x)dx, 5)
which is of the form (2), with
o(r) =rP(1 =)™ e L10,T), g(x,z,y(x) = =277 g(y(x)). (©6)

@ Springer



676 J Sci Comput (2016) 69:673-695

Using (3), we have
a(x,2) = [08(x, 2, Y)/0V]y=yw) = =2 P77 (y(0)),

which yields a(0, 0) = 0. Here y is the unique solution of (4) on [0, T].

Now Lemma 1 can be applied to draw some conclusions on the regularity properties of
the solution to (1). We consider y = 1 an analyze the function z7, n = 1 4+ 8 — «, for the
values of interest, that is, for0 < o < 1, 8 > 0.

— Casel Letn > 1,thatis, 8 —a > 0, and let 8 — « be an integer. Then z" will be in the
class C*°. By Lemma 1, we may conclude that if f € C™ ([0, T]) and g € C"(2) then
the solution of equation (1) satisfies y € C" ([0, T']).

— Case I Let Let n > 1 with n not being an integer. This corresponds to § — o > 0 but
with 8 — o not in Z. Let m denote the integer part of 8 — «. Then the function z7 will
only have m + 1 continuous derivatives on A7. Therefore, Lemma 1 can be applied with
fe€C™([0,T]) and g € C"™(2), form <m + 1.

— Caselll Let0 < n < 1,thatis,0 < 8 < « < 1. In this case, z" is just continuous and
the function g(x, z, y) = —z”ﬂ*”‘g(y) [cf. (6) ] will not be smooth with respect to z.

Remark 1 We consider the following equation

l—n

TR (s)
y(t):l—C/ Tds, t >0, (7)
0 (r—s)Tn

where C > 0, u < 1. We see that (7) is of the form (1), with

1
y:]a :7<17 o= ———, g(s):sma
1+ u

therefore it falls into Case III. It can be shown ([10]) that the exact solution y to (7) is such
"

that its first derivative satisfies y’(¢) ~ ¢~ T+ near the origin. Below we will generalize this
result. We note that the first example of Sect. 5 (Lighthill’s equation) is of the type (7), with

w=1/2.
A variable transformation
Defining
x=s% and z=1t°, o>1,0€N, )

then (1) is transformed into the following integral equation

o t S/SU+G—1
yt)=f(t)—o Wg(y(s))ds, 1el0,TV9), 0<a<1, B>0, (9
) (17 —
where
YO =y, f@)=f0). (10)

It can be shown that (9) has a unique continuous solution on the interval [0, T/ ?1]. We now
analyze the regularity of the transformed equation (8).
Since (9) is of the form (4), therefore it admits the representation
t
OENIOR: /0 oG )8, s, Y(s)ds, (11)
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where
QD(V) — rﬁ0+0*1(1 _ ra)fol c Ll(o7 Tl/a)7
(1,5, 3(5) = —ot” 1D g(3(s)).

Let us consider the case when a €]0,1[ and 0 < I + 8 —« < 1 and let f €
c™([o, Tl/“]) g(y) € C"([0, T1/9)), for a certain m. Let o be an integer satisfying
0 > 7155 Theng € C"(Arye x Z) and, by Lemma 1, it follows that 3 € C" ([0, T/7))
(m > 1).

If there exist p,qg € N, ¢ > 2 (p, g coprimes), such that 1 + 8 — «a = p/q, then we
simply take o = ¢.

Remark 2 In particular, by taking into account (10) we can also conclude that, in the case
0 <1+ B —«a < 1, the first derivative of the solution of (1) satisfies, for r € (0, T],

Y = LTIV, 022, (12)

The case when only some derivatives of y are continuous (Case II), can be dealt with in
a similar way.

2.2 The Collocation Method

Before we define the Jacobi collocation method, we need to introduce some notations. Let
A =[—1,1]and ©*"P1(x) = (1 — x) (1 + x)P! be a weight function, for 1, B; > —1.
The Jacobi polynomials, denoted as {J), o1 ()}3—p» form a complete Lial 5, (A) orthogonal

system, where L2 (A) is a weighted space defined by

w®1-P1
al 4 (A) = {v : v is measurable and |[v]| a5, < 00}, (13)

equipped with the norm

1 2
[E ( / EOIRPRNE (x)dx) (14)
-1
and the inner product
1
(U, V) o181 =/1u(x)v(x)a)“"ﬂ‘(x)dx, Vu,ve L2, 5 (A). (15)
For a given positive integer N, we denote by {x,} im0 = ¥ o1, A1 }N o the points of the

ar, i
JN-H ’

while the weights of the formula will be denoted by {w;} lN=0 = {w*" A (xi)} 1N=O' Thus the
Gauss-Jacobi quadrature rule with N + 1 points has the form:

Gauss-Jacobi quadrature formula, which are the roots of the Jacobi polynomial

1
/ u(x)w*" A (x)dx ~ szu(xt uel LV1 p (A).

i=0
Let &y denote the space of all polynomials of degree not exceeding N. Forany v € C(A),

we can define the Lagrange interpolating polynomial I;‘,"ﬁ 'v e Py as

N
Igl,ﬂlv(x) — zv(xi)L,‘(x), (16)

i=0
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where the set {L; (x)}lN= o 1s the Lagrange interpolation basis associated with the zeros of the
Jacobi polynomial of degree N + 1, that is, the points {x; }lN: 0

In order to apply the theory of orthogonal polynomials, we consider the variable transfor-
x+1 T+ 1

2

mations t = T/ Tl/” 5 (x, T € [—1, 1]), so that (9) becomes

1\ o(B—a+l)
To X 1 po+o—1 Y
) / t+1) sY@)

Y(X)ZF(X)_G(Z (G D)7 — @+ Do)

a7

where
1 1
Y (x) =y(T”“%), F(x) = f(T‘/"’HZr )

Using the formula a” —b" = (a —b)(a" ™! +a"2b+-- -4+ b""1), we can rewrite equation
(17) as follows

Y(x)=F(x) — /x (x — t)faicv(x, 0)gY(r))dr, xe[-1,1], (18)
-1

with the kernel k being given by

~ T% o(f-ath) (t + 1)/30+afl
k(x,7)=o0 ——— O<a<l1, >0, 0>2, (19)

2 (Py—1(x, 7))
where
Poit, D) =G+ D" "+ x4+ D2+ D+ +x+DE+ D" 2+ @+ 1)L

Then by using the linear transformation 1%9 + XT_I =1t(x,0), x,60 ¢e[—1,1], werewrite
the integral term in (18) in the form

X 1
/ (x — 1) % (x, T)g (Y (2))dt = / (1—6%) “k(x,0)g(Y (x(x,0)))d6b,
—1 -1

where
(x+DT7 7o (1 + @)B+Do+a—1
k(x,0) =0 —— - - o)
2 20T +20°2(1+0) + -+ (1 +6)° 1]
Hence, the equation (18) becomes
Yx) = F@x)— / (1= 0% "k(x,0)g(Y (x(x,0))d0, xe[-1,11. (2

In the Jacobi-collocation method we seek an approximate solution Uy (x) € Py, such that
U y (x) satisfies the equation (21) at the collocation points x;:

1
Un(xi) = F(x;) —/ (1— 6% “k(xi, 0)8(Un(t(x;, 0)))d6, (22)
-1
where x;, i =0, 1,..., N, are the zeros of the Jacobi polynomial of degree N + 1.
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The integral term in the above equation can be approximated by an (N + 1)-point Gauss
quadrature formula with the Jacobi weights w; = w™* *(x;) = (1 — sz)_“ =(1-
) A+x)"*j=0,1,...,N:

1 N
/1 (1= 0% “k(xi, 0)8(Un (z(x;.0)))dO ~ ijk(xi, x)EUN(T(xi, x)))). (23)
_ iz

In order to linearize the scheme (22), we shall use Lagrange interpolation to approximate the
nonlinear part of the kernel

N
g(UN(t(x;,0)) ~ Zg(UN(T(xi, XONLi(z(xi,0)) = Iy (¢ (Un(t(xi.6)))) .
k=0
(24)

where the operator / ;“’_O‘ is defined by (16). Then from (23) and (24), the full collocation
scheme becomes

N

Un(xi) = F(xi) = D wik(xi, x)) Iz g(Un(t(xi,x)))), i=0,1,....N. (25
j=0

After solving (25), an approximate solution of (21) will be given by
N
Y(x) ~ Un(x) = > Uy (xi)Li(x), (26)
i=0

where the functions L;(x) are defined as in (16).

3 Some Preliminaries and Useful Lemmas
In this section we obtain some preliminary results that will be needed in the convergence

analysis of the method. First we introduce some weighted Hilbert spaces. Let 8!6{ v denote the
kth order derivative of v(x). For a non-negative integer m, define

2 .
iy () = {0 € L0y () [0l g < 00

with
1
m 2
k 2
Wl goer = |050] s IVl o = (Z |v|k,wa1,ﬂ1) :
k=0
where the norm || || ,.4 is defined by (14). We also introduce the seminorms
" ) 1/2
ol ymy = > v 27)
WA k=min (m,N+1) 1Al
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For any u, v € C(A), adiscrete and a continuous inner product are defined, respectively,
by

N
<V, p>N = Z ij(Xj)¢(Xj)
=0
and

1
<V, @> 018 :/ w“l’ﬂ‘(x)v(x)qf)(x)dx.
-1

The first lemma gives error estimates for the interpolation polynomial and for the Gauss-
Jacobi quadrature formula.

Lemma2 Letve H™

a1 Bl (A), m > 1. The following error estimates hold

< CN7" [l v (28)

21:81

ar,Bi
HU—IN v‘

w®1:P1
|<U7 O>per.p1 — <V, ¢>N| <CN" |U|HM:Nﬂ A e 1 s
»¥1:P1

Vo € Py. (29)
From [5] we have the following results concerning the Lebesgue constant.

Lemma 3 Let {L.,-}?/:0 be the N-th order Lagrange interpolation polynomials associated

with the Jacobi collocation points {xi}lN:O. Then

N
b o [ 0g(N), —1 <, B = —1/2,
1y oo = gleajizo ILj0)l = [ O (NYT1/2) |y = max{ay, Bi}, otherwise. (30)
=

Lemmad4 Let {L j}j-V:O be the N-th order Lagrange interpolation polynomials associated

with the Jacobi collocation points {x,-}lN:O. For every bounded function v, there exists a
constant C independent of v such that

N
sup ZL/'()C)U(X/') < Clv]leo- 3D
N ;

Jj=0 w®1-P1

Given r > 0 and « € [0,1] ,4"*(A) will denote the space of functions whose rth

derivatives are Holder continuous with exponent «, endowed with the usual norm

9 v(x) — 3w
ol = max max Phoco + sup 10D HVO)
s 0<k<r xeA X,yed,xty |X _ y|

For any function v € €7 (A), we have the following density result ([20], [21]):

Lemma 5 Let r be a non-negative integer and « € (0, 1). Then, there exists a constant
¢rx > 0 such that, for any function v € €™ (A), there exists a polynomial function Iyv €
PN satisfying

v = Tyvllos < cre N~ 0]l . (32)
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Now, we need to prove the compactness of the linear weakly singular integral operator
M v, from C(A) into CO¥ (A), defined by

X

(V) (x) = / (x — s)f‘)‘;cv(x, s)v(s)ds, (33)
1

forany 0 < ¥ < 1 — « < 1 and where k is defined in (19).

Lemma 6 Let .# be defined by (33). Then, for any function v € € (A), there exists a positive
constant C such that

[-Zvlloe < Cllvlloo, 0<k <l—a, ac(©]1), (34)

where ||.||co is the standard norm in C (A).
Proof In order to prove (34), we only need to show that .# is Holder continuous with

exponent «, that is,

| (Av) (x1) — (Av) (x2)]

|xp — x2|*

< Clvllees —1=x1 <x2 =1,
for0 < k < 1 —«a. Letus analyze .#v(x) — .#v(xp), with —1 < x; < xo» < 1. We have
X1 ~ X2 ~
(A ) (x1) — (A V) (x2) :/ (x1 — ) "k (x1, s)v(s)ds —/ (x2 — ) "k(x2, s)v(s)ds
-1 -1
X1
N c*/ (s + DO (4 D7 = (s + D7) u(s)ds
-1

x

— c*/ (s + DHPoto-l ((xz +1)7 — (s + 1)”)70‘ v(s)ds
-1

= E| + E»,

Tl o(B—a+1)
where ¢* = o( 5 ) and

X1
E; = C*/ ([ 4+ D7 = (s + D717

-1
—[(2+ D7 = (s + D717%) (s + D77 Nu(s)ds,

Ey =" /Xz[(XZ + 17 = (s + D717 + DT y(s)ds.

X1

Using the variable transformation ¢ = (s 4+ 1) we obtain the following bounds for | E1|:

(x1+D7 o o |
T A (R R e (R I EC L

1 o(l—a) 1 o(l—a) 1)° — 1)° -«
Scf(xﬁl),sa((xlt ) _(xw; 70 (@t : (1 + D7)
— — —

X[Vl oo
(2 —x)" + (x2 — x1)17¢

< ¢+ )P -

vlloos
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where n = min{l, 0 (1 —«)} and o (1 — ) > 1 — . From the last error inequality, and using
the factthat o > 1, —1 <x; <x» <land 0 < k¥ < 1 — &, we obtain

E; X1 = X176 + [xg — x| 7K
B < 2’306**| | | | Vo < Clivlico- (35)
|x1 — x2|* l -«

A bound for | E>| can be obtained as follows

(x2+1)? B
|Ex| SCT/ (2 +1)7 =) *sPu(c"” — 1ds
(x1+1)7
14 x2)7B v _
= CT% (2 +1)7 = @ + 1))
IR

From the above inequality and by similar arguments to the ones used to bound | E1|, it follows
that

|E3| [x1 — x2|1_“_K
T ST T Ty e < Clvlee. (36)
From (35) and (36) we obtain (34). O

We now need a result on the regularity of the kernel k(x, €), defined by (20).
Lemma 7 Consider (9), with f € C™ ([0, T'°1), g € C"™ (Ao x 2),m > 1. Let {x;}]_,

be the set of the N + 1 zeros of the Jacobi polynomial J /;-7-1 % of degree N + 1. Then, we
have that

aP 2
—pk(x,-, ) €L, oo(A), p=0,1,...,m.

20
Thus, there exist K; >0, p=0,1,...,m, and K** so that
* 97 ?
Kp = OrgniaéxN aTPk(x"’ 0) e , p=0,1,....m 37
and
Or;a;xN |k (x;, ')lHlTi'X,,a < K*. (38)

Proof Let ¢ = (B + 1)o +a — 1 — m. From Sect. 2, we know that the integer o can be

chosen to satisfy o > L, which implies
1+8—«
(m—+1) a(B+2—a+m)
= 1 —l—-m> ND———Fa—-l-m=——"— "7
S=(+Dota—l-m=@+ Dy g ta—l-m —

Since o €]0, 1[, then from the last inequality we obtain ¢ > 0. Then it is straightforward to
P

0
prove that the functions Baﬁk(xi’ 0), p=0,1,...,m,are continuous.
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00»

We have
J— 2 -
H 89Pk(xl’ / (1—-07)"° d9
< _ p2\—«
_eerP—al)%ll 861’k(x“9)‘/ (16746
rda—
- SO (1— ) 9)‘

max
= T(3/2—a) vel-

and this gives (37). The inequality (38) is easily obtained by using the definition of seminorm
in (27). o

4 Convergence Analysis

In this section we analyze the convergence of the approximate solution obtained by the Jacobi
collocation scheme (25) to the exact solution of the integral equation (21).

Error estimate in L

Theorem 1 Assume that in (1) the nonlinear function g and all its derivatives up to order
m satisfy a local Lipschitz condition. In (9) let f € C™([0, T"°]), g € C"(Apije X D),
for some m € N.

Let Y be the exact solution of the Volterra integral equation (18) and let Uy be the
approximate solution of (18) obtained by the Jacobi collocation scheme (25).
Then forY € H)' , o (A) N H - (A) we have

CN—tl=myp, O<a<1/2,
_ 1
IY = Unlloe = § CNZ™", a=13, (39)
Clog(N)N2"x1, 1/2 <a < 1,

where xo, x1 and x> are given by (67) and (69), respectively, and can be bounded by some
constants that does not depend on N.

Proof At the collocation points x = x; we have Uy (x;) = U N (x;). Then, by subtracting
(25) from (21) we obtain

Y(x;) — Un(xi) = — (k(xi, 0), g(Y (T (xi, 0)))) - + <k(xi7 D Iy e(Un(z(xi, -)))>N

— (kCxi, 0). g(¥ (x(xi, ) = I3 g (Un (2 (31, )

w YT

(ki 0, Iy g Un (0, ) = (ki 0), 1y g Un (i, 1))

W=

(40)
Lete(x) = Y(x) — Uy (x), then we will have
e(x)) = = (k(i. 0). g(¥ (t(x7.0))) = Iy “gUn(x(. ) + i
@1
where

Ji = (e 0 Iy g U (e ) = (kG 00, 1y g U (i, 0))
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Multiplying L;(x) on both sides of (41) and summing up fromi =0toi = N yields
7Y =Un) () = 17 (Y(x) = Uy (x) =

N x
DL - 1 ( / K ne =07 (0 ()~ 1" g Un () dr) :

i=0
“2)
Let
7 = [ w6 -0 (sUn@) — [ Un () dr “3)
and
o = [ o= 07 (0 (@) ~ gy (o e (44)

Then, after adding and subtracting ¢ (x), ¢(x) and Y (x) onto the right-hand side of (42), it
follows that

le(x)| = /1 k(x, D)I(x — ) “|g(¥Y (1)) — g(Un(1)ldT

+ 1Y) = "M@+ [9(0) — Iy @ 0]+ [§(x0)]

N
> Lix)Jif.

i=0

+ lo(x) = Iy (@) +

Using the fact that the nonlinear function g satisfies a local Lipschitz condition on [0, 7] we
have

le()] < L/1 k(x, D)I(x = 1) le(D)ldT + N1(x) + L(x) + 3(x) + La(x) + I5(x),

45)
where
L) =Y () = ¥ 7))l (46)
N
hx) =1 Li(x)Jl, (47)
i=0
L(x) = |5(x) = [ 7@ )], (48)
La(x) = lp(x) = Iy~ (@)(x)], (49)
I5(x) = 1§ (x)]. (50)

For o > 1 the kernels E(x, 7) and k(x, 0), defined by (19) and (20), respectively, are contin-
uous for T € [—1, x]and 6, x € A, which implies that they are bounded in their respective
domains. Thus, from (45) we have
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X
leloo <L max |k(x, r)l/ (x =) Yllellocdt
(x,T)EAXA —1

+ (M1lleo + 1 12llc0 + 1531lo0 + 4 llco + [ 5]lo0) -

Then, using a standard Gronwall inequality we have

llelloe = C (Hilloo + I12lloe + 113lloo + 1alloo + 1 /5]l00) - (6D
In what follows we bound ||/j|l, j = 1,..., 5.

1 1
In order to simplify the notation, we must consider two cases: 3 <a<landD <o < —.

1
- Case1:§§a<1

Bound for || 7} |0

In order to bound ||/} || .o We use a result from [5]. Let Iﬁ Y € &y be the interpolant of Y
at any of the three families of Chebyshev-Gauss points. Then, from [5] we have

1
1Y = I$Y oo < C N2 "I L (52)

where wC (x) = w™ 2"~ (x) is the Chebyshev weight function.
Noting that ;% “p(x) = p(x), V p € Py and by adding and subtracting 1SY, we
obtain, for% <a<l,

Milloe = 1Y = Iy* ¥ lloo = ¥ = 1Y + 137 (1GY) = 1§ ¥l

< (1 R Noo) 1Y = I§Y s

Using Lemma 3 and inequality (52) leads to

1
1lloo < Clog(N)NT'”IYIHm:CN- (53)
Thus
CNE|Y| e a=1
1110 < liurfl 1
Clog(N)N2"|Y|ymn, 3 <a <1
UJC

Bound for || 15|

Recall from (41) that

Ji= 9 @) = (kG ) T g Un G ) = (ki 0), 1y g (Un (i, 0)))

w*&,*ﬂ
Hence, by using (29) and (31), we have
. —m . . —— ; —a,—a
omax, [J(xi))| < CN omax, Ik(xz,Q)IHZz;gia omax, 1™ " gUn (T (xi, D)l e
< CN™"K™ max [|g(Un(t(xi, 0)))lloo
0<i<N
< CK*N™ (Lllelloo + I8V llo0) » (54

where K** is defined in Lemma 7.
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Thus, combining (54) with Lemma 3, yields

N
12l = | 2oL i = € max il Hy*“lloo
i=0 )
< CK*N™"1og(N) (Lllelloo + 8(¥)lo0) (55)

Bound for || 3]

Let us consider the operator .# defined by (33) with u = —« and v(x) = g(Un (x)) —
Iy g(UN (x)).

From Lemma 6 the function .Zv is Holder continuous with exponent 0 < ¥ < 1 — «.
Then .#v € ¢°¢ (A), and from Lemma 5 there exists a constant cp , and a polynomial
function Jy (#v) € Ly such that (32) is valid, thus we obtain

577w =[5 1) oo ],

o (14 115" lloo) N7t V]o.x.

[REYIPS

IA

From Lemma 6, with 0 < x < 1 — «, it follows

I31l0e = cox(1+ 1" o) N Ng(UN) = Iy* " g(UN)llso- (56)

By using the same procedure as in the bounding of || /1 || o We can obtain the following bound

1
o CN2"g(UN) g a=3,
lg(Un) — Iy " 8g(Un)lloo < v
§ o8 7 | croemNE g Uy, L <a <1
U,’C
By using the definition of seminorm (27) we have
1
m akg 2 2
= > —(Uy—Y) +1g@)mn. (57
0 k C H C
k=min (m,N+1) ® v
Since the nonlinear function g and its derivatives of orders 1, 2, ..., m satisfy a Lipschitz
condition, we have
ok g
T8 WU -1 <LillUy—YI2c, mnm N+ <k<m (58
ay WC @
Therefore, combining (58) with (57) yields
|g(UN)|Hm:CN =< L,”e”LZC(A) + Ig(Y)IHm;CN
< L"|lelloc + Ig(Y)IHm;CN- (59

From (57), (59) and Lemma 3, we obtain
lg(Un) = IN*"“gUN) lloo <

Clog(N)N+ " (L”||e||oo+|g(Y>|Hm:c~), 1< a<l,

C N2 (L”nenoo + |g(Y>|Hm;~) , a=1
wC
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Finally, using (60) and Lemma 5 in (56), we have

1
C N27" *log(N) (L”||e||oo+|g(Y)|HmeN)y o= %,
13lloe < 1
C(log(N))ZNl/zjfmflC (L//HEHOO + |g(Y)|Hm;N) s % <a<l.
wC
Bound for || /4]0

Similarly to || I3]| 0, We again consider the operator .# defined by (33), with © = —« but
now with v(x) = g(Y(x)) — g(Un(x)). Then we can rewrite 14 as follows

Iy= (I3 = 1) (a0 (0 = (I = 1) (A0 = (a0 (). (62)
From (62) and Lemma 5, with » = 0 and « € (0, 1 — «), we have
Malloo < coue (14 113" lloo) N~ [ #vl0.c- (63)

On the other hand, from Lemmas 3 and 6, with 0 < k < 1 — «, and using the fact that g is
Lipschitz continuous, yields

Halloo < coe (141" o) N “NIg(Y) = g(UN) o
< o N+ " Ml Lllelloo
< CN " log(N)llellco- (64)

Bound for || /5]«

We have
15l0c = H / Ko 0= 07 (g (0) = 13" “g(Un(0)) de
-1 00
l—a
1 a llg(Un) = Iy g(UN)lloo-
where K = max |?(x, 7)|. From (60) we obtain

(t,x)e[—1,x]xA

1
27

CNI (L”nenoo + |g<Y>|H~uN) , p
I15]l00 < (65)

Clog(N)N+~" (L”nenoo - |g(Y)|Hm&~) op<a<l

Finally, using the bounds (53), (55), (61), (64) and (65) in (51), then, for sufficiently large
N, we obtain that

_ 1
lelloo < | CXONZ @=7 (66)
CxiN2™log(N), 3 <a <1,

with xo and x; given by

- _1 _
%0 = ¥ |y +10g(NIN "2 [g(V)lloo + N~ Tog(N)[g (V)] ey + 18(E) .

w

- -1 -
X1 = 1Yy + N2 g(¥)]loc + N7* log(N)[g(X)] v + 18X i (67)

and the desired result follows.
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1
—Case2:0<a<§

In this case, attending to Lemma 3 and using similar arguments to the ones employed for
Case 1, we obtain the following estimates:

Hilloo < CNT" =T Y ] in,
uyc
Cm—oa L
[Blloe < CK*N™"7%F2 (Llelloo + 118V lso) »
1. g+l
I3]0 < CN27"K(N79F2)2 (L“llelloo+|g(Y)|Hm;CN),
gl
[14llo0 < CNT*F27 | oc,

Islloe < CN'=7 (L”nenoo + |g<Y>|Hm:CN) :

Therefore, using the above inequalities in (51) we obtain the desired result:

1
elloo = C)oN""777, O<a < =,
lelloo < CxaN =17, 0 5 (68)
with x, given by
vi -1 —k—a+1 a—1
X2 = IYIHm:CN + N 2g(V) e + N 2 Ig(Y)IHm:CN +CN Ig(Y)IHm:CN- (69)
The proof of Theorem 1 is now complete. O

Error estimate in L2(A)

To obtain an error estimate in the weighted L2 norm, we need a generalized Hardy inequal-
ity with weights [8].

Lemma 8 For all measurable functions f > 0, the generalized Hardy’s inequality

1/p

b 1/q b
(/ I(Tf)(X)I”’u(x)dx) EC(/ If(X)I”v(X)dX) (70)

holds if and only if

b 1q , .y / 1/ »
sup (/ u(t)dt) (/ vl=r (t)dt) <00, p=—— 1<p<g<oo
a<x<b \Jx a p—1

Here T is an operator of the form

(Tf)(X)=/ k(x, 1) f(t)dt,

a

where k(x, t) is a given kernel, u and v are weight functions, and —oo < a < b < oo.
We will need the following Gronwall’s inequality [15].

Lemma 9 Suppose that L > 0,0 < « < 1. Let v(x) be a non-negative, locally integrable
Sunction defined on A satisfying

u(x) <v(x) + L/X (x — ) %u(r)dr.
-1
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Then, there exists a constant C such that
X
u(x) <vx) + C/ (x—1) %v(t)dr, —1<x<l.
-1

Theorem 2 Assume that in (1) the nonlinear function g and all its derivatives up to order
m satisfy a local Lipschitz condition. In (9) let f € C" ([0, T'/°)), g € C"(Arie X D),
for some m € N.

Let Y be the exact solution of the Volterra integral equation (18) and let Uy be the
approximate solution of (18) obtained by the Jacobi collocation scheme (25). Then, for
Y € Hg—a,—a AN HZ‘C (A) we have

CplN%_m, % <a <1,

1Y = Unlly-s = <} CooNZ™, @ =1, (71

CopN—HI=m 0 <o < %,

where po, p1 and py are given by (81), (82) and (83), respectively, and can be bounded by
some constant that does not depend on N.

Proof Using the generalization of Gronwall’s inequality (see Lemma 9) in (45), we obtain
X
el < L/ [fCr, 0| @ =D U+ B+ I+ I+ 1) (@)
-1

+ 1I1(x) + I(x) + 3(x) + La(x) + I5(x), (72)
with I, 1>, I3, 14 and I5 defined by (46), (47), (48), (49) and (50), respectively. Then

X
lellyee < L H /
—1

+C (M lly-ee + 1 2lly-e-e + 13 lp-a-o + [ allya-s + [ 5]l y-a-a) -

Fo )| @ = 7+ D+ I+ T+ 1) (@)

W

(73)
Now, by using Hardy’s inequality (70), we will have the following bound
lelly-a-a < CUIIp-a—a + 1 12lly-a-a + 1131l y-a-a
+ I ally-e-a + 15 ]l y-a—a). (74)
Bound for || /] ,-o.—«
From (28) it follows
(T —_— HY - 1;“*“1/”1”_&_“ <CNT"Ylym . (75)
Bound for | I5|| )—e.—«
From (55), (54) and Lemma 4 we obtain
00
12l yeme = | D Li(x)J (x) < ClJ oo
i=0 W=
< CNT"K™ (Lllelloo + 1€Vl s0) » (76)

with K** defined by (38).
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Bound for || /3] ,-o.—«

Letv(x) = g(Un (x))— 15" "% (g(Un(x)). Similarly to the arguments used for the infinity
norm, for o € [%, 1), we use (60) and Lemma 3 to obtain

Msllyee = |3 = DCtt0 = Ty (aw)| =< Clldto = Ty.tvlog

< CN™*|Avllp <CN*

gUN) — 15U
oo

CN%_m_K (L”||e||00+|g(Y)|H”'3N)7 o = %7
< 1 wC 7
Clog(N)N3 ¥ (L”nenoo + |g(Y>|Hm;N) C d<a<1,
wC
On the other hand, if @ € (0, %), from Lemma 3 it follows that
| 3llyee < CN7OFI (L”ueuoo + |g<Y1>|Hm:C~) : (78)

Bound for || /4], -o.~«
By similar arguments to the ones used to bound | /3]|,,~«.-«, but now with v(x) =
g(Y (x)) — g(Un(x)), we obtain
Mallyee = |3~ = DCtto = Ty (av)| = Cldtv = Tn.vllog
< CN“|Avllg,e < CN"F[lg(Y (7)) — g(UN(D))lloo < CN"|lello-(79)

Bound for || /5] ,-o.~«

By using the inequalities (28) and (59), it follows that

I5lly-e-e < CKGlIg(UN) — IN* " g(UN) [l oo < CN*mKS‘Ig(UN)IHmiL

< CN"K} (LH||€||C>o +18(V) e _w) : (80)

whith K} defined by (37). Then, using (75), (76), (77), (79) and (80) in (74), we obtain, for
sufficiently large N, that

1
CoiN27™,

lelly-a—« <{ P
CpoN27",

o=
A
.\)"—‘ k.

with pg, p1 given by

1
po = C(N‘Z(IYIHmisz + 1Moo + |g(Y)|H”’fZ » )

+ NGV v + (N—m L NTTmK N‘K) )Zo), 81
_1
= C(NTE(¥ [+ 180 log + D] )
+ N log(N)|g(¥)] ymn + (N_”’ +log(N).NZ~"% 4 N_K) log(N))Zl).

(82)
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On the other hand, for« € (0, %), using (75), (76), (78), (79) and (80) in (74), for sufficiently
large N, we have

llelly-a—o < CooN~H=m,

with p, given by

p =c(ne! (|Y|Hm32 18 Wlog + 18 i )
+N—K|g(Y)|HmC;N + (N_m 4 Nl—e—m—x N—K) 22) (83)

The proof of Theorem 2 is complete. O

5 Numerical Results

The Jacobi collocation method has been considered for three examples on the interval [0, T'],
with 7 = 1. The numerical results on the tables together with the semi-logarithmic error
graphs illustrate the performance of the Jacobi collocation method. In the first two examples
the exact solution is not known. Therefore, in order to compute the absolute errors |Y (x) —
Unvx)| = |y(@) — Uy ()|, with t = Trrl "J{l, we have taken as the exact solution y(¢) the
approximation Uy (¢), obtained by the Jacobi collocation method with N = 32. To estimate
the L error, we have computed the absolute error at the points x; = —1 + 2%, i =
1, .., 1001.
The first example is given by Lighthill’s equation [17].

Example 1

7 54
y(z):l—ﬁ Md

Zdx, zel0,1]. (84)
TJo (z—x)3

In [10] it is shown that y is smooth away from zero. Near the origin it admits the following
series solution:
v(2) = 1 — 1.46099873 + 7.24941675 — 46.4497387> 4 332.7552322% +---  (85)

for z € [0, R), where R is a positive number satisfying R < 0.070784. By using the variable
transformation x = s3, and then setting z = £3, we obtain

33 s

) =1-
y(0) 7 Jo @5

ds, tel0,1], (86)

where y(¢) = y(t3). Then, the solution of the transformed equation (86) is smooth near the
origin, therefore the Jacobi collocation method can be applied to the new equation.

Example 2

R
y(z):l—/ BV e a0 87)
0 (z—x)2
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Table 1 Example 1. The Jacobi
collocation method with N + 1
collocation points N

Equation (84) Equation (86)

L error L2 error L error L2 error

2 1.84x 1071 258 x 1072 4.60 x 1072 5.30 x 102
4 993x 1072  677x1073  7.82x1073  8.60 x 103
6 625x 1072 278x 1073  92x 1074 7.90 x 1074
8 425x 1072 141x1073  134x107% 1.5x107*

10 3.03x1072  805x 1074 229x1075 1.86x 107>
12 258x1072  500x107% 326x107% 336x107°
14 677x1073  330x107% 6.17x1077 498 x 10~/
16 278x 1073  226x 1074 848 x1078 839x 1078
18 141x1073 159x107% 1.60x1078 142x1078
20 805x107% 1.13x107% 241x107% 222x107°

L% and L? errors

. . . N . : . % N
5 10 15 20 5 10 15 20

Fig.1 Example 1. The logarithms of L2 errors (stars) and L errors (dots) versus N. Left results for Ligthill’s
equation (84). Right results for the transformed equation (86)

In this case it can be shown that y(r) ~ >/ for ¢ near the origin (cf. [1]). By using the
variable transformation x = s° and setting z = 1°, then (87) can be rewritten as

_ LTy

y(i)=1-— 6/ ——ds, te]l0,1], (88)
0 (t6 _ s6)7

where y(t) = y(t6).

Example 3

y(@) =z +

1
2142 “xay’
V2 2_/ ) gk e, (89)
0

— Ttz
32 (z—x)3

This example has been taken from [2] and the exact solution of (89) is y(z) = +/z. Thus,
using the variable transformation x = s% and setting z = 12, then (89) is transformed into

2142 53y
y(t)=t+[nt4—2/”@)3
0

ds, t €[0,1], (90)
32 (t2 _ SZ)Z

with 3(t) = y(t?) = 1.
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Table 2 Examples 2 and 3

Equation (88) Equation (90)
N Lo error L error Lo error L error
2 8.72 x 1072 8.61 x 1072 3.6 x 1072 5.2 x 1072
4 1.39 x 1072 1.40 x 1072 1.86 x 1077 2.62 x 1077
6 3.64 x 1073 2.78 x 1073 4.47 x 1079 6.28 x 1072
8 9.04 x 1074 574 x 1074 1.28 x 10710 1.79 x 10710
10 221 x 1074 123 x 1074 8.87 x 10712 124 x 1071
12 5.46 x 1077 2.76 x 1073 1.06 x 10712 1.49 x 10712
14 1.33 x 1073 6.31 x 107° 1.81 x 10713 254 x 10713
16 3.25 x 1070 1.46 x 1076 3.97 x 10714 557 x 10714
18 7.90 x 1077 3.42 x 1077 1.05 x 10714 147 x 10714
20 1.91 x 1077 8.06 x 1078 3.4 x 10715 453 x 10715

Lo and L errors for the Jacobi collocation method with N + 1 collocation points

error error
oF

N . - y == N

Fig.2 Examples 2 and 3. The logarithms of L2 errors (stars) and the L™ errors (dots) versus the number of
collocation points (N + 1). Left Logarithm of errors for the equation (88). Right Logarithm of errors for the
equation (90)

The results in Table 1 illustrate the performance of the Jacobi collocation method applied
to equations (84) and (86), respectively. The values displayed show, as it was expected, a
big improvement when we apply the Jacobi collocation method to the transformed equation
(whose solution is smooth). In Fig. 1, the logarithms of the absolute errors in both L> and L?>
norms, versus N (the number of collocation points) are displayed. Again the exponential rate
of convergence is observed for both nonlinear problems. The results confirm the exponential
rate of convergence of the method for equation (86).

In order to obtain approximate solutions to the equations (87) and (89), the Jacobi col-
location method has been applied to their respective transformed equations: (88) (with

1 3
ap =P =— 5) and (90) (witha; = 1 = — Z). Table 2 shows the errors of the approximate

solutions of (88) and (90) in L and weighted L? norms. In Fig. 2, for Examples 2 and 3,
we have plotted the logarithm of the absolute errors in both L and L? norms, versus N.
Again the exponential rate of convergence is observed for both nonlinear problems.
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6 Conclusions

In this work we have considered a spectral Jacobi-collocation approximation for a class of
nonlinear Volterra integral equations defined by (1), which has recently been introduced in
[1]. When the underlying solutions of the VIEs have a nonsmooth behaviour at the origin, we
first use an appropriate change of the independent variable in order to obtain an equivalent
equation with smooth solution. Then the proposed method is applied to the transformed
equation. We have provided a convergence analysis of the method in the weighted L? and
L®° norms and numerical results were presented to confirm the theoretical prediction of the
exponential rate of convergence.
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