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Abstract In this paper, based on the previous work (Shi and Guo in Phys Rev E 79:016701,
2009), we develop a multiple-relaxation-time (MRT) lattice Boltzmann model for general
nonlinear anisotropic convection–diffusion equation (NACDE), and show that the NACDE
canbe recovered correctly from the presentmodel through theChapman–Enskog analysis.We
then test the MRT model through some classic CDEs, and find that the numerical results are
in good agreement with analytical solutions or some available results. Besides, the numerical
results also show that similar to the single-relaxation-time lattice Boltzmann model or so-
called BGK model, the present MRT model also has a second-order convergence rate in
space. Finally, we also perform a comparative study on the accuracy and stability of theMRT
model and BGK model by using two examples. In terms of the accuracy, both the analysis
and numerical results show that a numerical slip on the boundary would be caused in the
BGKmodel, and cannot be eliminated unless the relaxation parameter is fixed to be a special
value, while the numerical slip in the MRT model can be overcome once the relaxation
parameters satisfy some constrains. The results in terms of stability also demonstrate that the
MRT model could be more stable than the BGK model through tuning the free relaxation
parameters.
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1 Introduction

In the past decades, the lattice Boltzmann (LB) method, as a numerical approach originated
from the lattice gas automata or developed from the simplified kinetic models, has gained
great success in the simulation of the complex flows [1–3], and has also been extended to solve
some partial differential equations, including the diffusion equation [4,5], wave equation [6],
Burgers equation [7], Fisher equation [8], Poisson equation [9], isotropic and anisotropic
convection–diffusion equations (CDEs) [10–41]. However, most of these available works
related to CDEs mainly focused on the linear CDE for its important role in the study of
the heat and mass transfer [10–34]. Recently, through constructing a proper equilibrium
distribution function, Shi and Guo [35] proposed a single-relaxation-time (SRT) LB model
or the Bhatnagar–Gross–Krook (BGK) model for nonlinear convection–diffusion equations
(NCDEs) where the nonlinear convection and diffusion terms are included. Although the
model has a second-order convergence rate in space [35,36], and can also be considered as
an extension to some available works, it still has some limitations. The first is that when the
BGK model is used to solve the NCDEs where the diffusion coefficient is very small, the
relaxation parameter would be close to its limit value, thus the model may suffer from the
stability or accuracy problem [22,31]. Secondly, theBGKmodel is usually limited to solve the
nonlinear isotropic CDEs since it does not have sufficient relaxation parameters to describe
the anisotropic diffusion process, while the multiple-relaxation-time (MRT) LB model with
more relaxation parameters seems more suitable and more reasonable in solving NCDE with
anisotropic diffusion process. And finally, it is also well known that in the BGKmodel, only a
single relaxation process is used to characterize the collision effects, which means all modes
relax to their equilibria with the same rate, while from a physical point of view, these rates
corresponding to different modes should be different from each other during the collision
process [2,42]. To overcome these deficiencies inherent in the BGK model, Ginzburg [37–
41] developed two-relaxation-time (TRT) and MRT models for nonlinear anisotropic CDEs
(NACDEs), while to recover the correct NACDEs, some assumptions on the convection and
related terms have been made [37,38], and these assumptions may be not satisfied for some
specialNACDEs, as pointed out inRef. [35]. In thisworkwewill present aMRTLBmodel for
more general NACDEs, and show that, through the Chapman–Enskog analysis, the NACDE
with a source term can be recovered without any additional assumptions. Besides, it is also
found that, similar to our previous BGK model [35,36], the present MRT model also has a
second-order convergence rate in space, while it could be more stable and more accurate than
the BGK model through tuning the relaxation parameters properly.

The rest of the paper is organized as follows. In Sect. 2, the MRT model for the general
NACDEwith a source term is first presented, and then some special cases and distinct charac-
teristics of the present model are also discussed. In Sect. 3, the accuracy and convergence rate
of the MRTmodel are tested through some classic CDEs, followed by a comparison between
the present MRT model and BGK model, and finally, some conclusions are given in Sect. 4.

2 Multiple-Relaxation-Time Lattice Boltzmann Model for General
Nonlinear Anisotropic Convection–Diffusion Equations

2.1 Nonlinear Anisotropic Convection–Diffusion Equation

The general n-dimensional (n-D) nonlinear anisotropic convection–diffusion equation with
a source term can be written as
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∂tφ + ∇ · B(φ) = ∇ · [K · (∇ · D(φ, x, t))] + R(φ, x, t), (1)

whereφ is a scalar variable and is a function of time and space,∇ is the gradient operator,K =
K(φ, x, t) is the diffusion tensor. B(φ) and D(φ, x, t) are two differential tensor functions,
R(φ, x, t) is the source term. It should be noted that Eq. (1) can be viewed as a general
form of some important partial differential equations [31,35,36], such as the (anisotropic)
diffusion equation, Burgers equation, Burgers–Fisher equation, Buckley–Leverett equation,
nonlinear heat conduction equation, (anisotropic) convection–diffusion equation, and so on.

2.2 Multiple-Relaxation-Time Lattice Boltzmann Model

Generally, the models in the LB method can be classified into three kinds based on collision
operator, i.e., the lattice BGKmodel [43,44], the two relaxation-time model [40,45], and the
MRT model [42,46]. In this work, we will focus on the MRT model for its superiority on the
stability and accuracy both in the study of fluid flows [42,47] and solving CDEs [22,31].

The MRT model with DnQq lattice (q is the number of discrete directions) [43] for the
NACDE [Eq. (1)] is considered here, and the evolution equation of the model can be written
as

φk(x + ckδt, t + δt) = φk(x, t) − (M−1SM)k j

[
φ j (x, t) − φ

(eq)
j (x, t)

]

+
(

δt + δt2

2
D̄k

)
Rk(x, t), (2)

where δt is time step, D̄k = θ∂t +γ ck ·∇ with θ and γ being two parameters to be determined
in the following part.φk(x, t) is the distribution function associatedwith the discrete velocity
ck at position x and time t , φ(eq)

k (x, t) is the equilibrium distribution function, and is defined
as [35]

φ
(eq)
k (x, t) = ωk

[
φ + ck · B

c2s
+ (C + dc2sD − c2sφI) : (ckck − c2s I)

2c4s

]
, (3)

where I is the unit matrix, d is a positive parameter related to the diffusion tensor K [see
Eq. (29)], ck and ωk are discrete velocity and weight coefficient, and in different lattice
models, they can be defined as
D1Q3:

c = (0, 1,−1)c, (4a)

ω0 = 2/3, ω1 = ω2 = 1/6, (4b)

D2Q9:

c =
(
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

)
c (5a)

ω0 = 4/9, ωk=1−4 = 1/9, ωk=5−8 = 1/36, (5b)

D3Q19:

c =
⎛
⎝
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1

⎞
⎠ c (6a)

ω0 = 1/3, ωk=1−6 = 1/18, ωk=7−18 = 1/36, (6b)
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where c = δx/δt with δx representing lattice spacing, usually it is not equal to 1 and can be
adjusted based on different lattice spacing and time step, which would be more convenient in
the study of the convergence rate of MRT model (see the following results shown in Sect. 3),
c2s = c2/3. To recover the correct NACDE from present MRT model, the second-order
differential tensor C in Eq. (3) should satisfy

C ′
αβ(φ) = B ′

α(φ)B ′
β(φ) or Cαβ(φ) =

∫
B ′

α(φ)B ′
β(φ)dφ. (7)

M in Eq. (2) is a transformationmatrix, and can be used to project the distribution function φk

and equilibrium distribution function φ
(eq)
k in the discrete velocity space onto macroscopic

variables in the moment space through following relations [42,48],

m := M�, m(eq) := M�(eq), (8)

where � = (φ0, . . . , φq−1)
�, �(eq) = (φ

(eq)
0 , . . . , φ

(eq)
q−1)

�. S is the relaxation matrix,
Rk(x, t) is the discrete source term, and is defined by

Rk(x, t) = ωk

(
1 + ck · B̃

c2s

)
R(x, t), (9)

where B̃ is a differential tensor to be determined below. To derive correct NACDE, i.e.,
Eq. (1), the following conditions also need to be satisfied,

∑
k

φk =
∑
k

φ
(eq)
k = φ,

∑
k

Rk = R, (10a)

∑
k

ckφ
(eq)
k = B(φ),

∑
k

ckckφ
(eq)
k = C + dc2sD(φ),

∑
k

ck Rk = B̃(φ)R. (10b)

In addition, we would also like to point out that the weight coefficient ωk and discrete
velocity ck defined by Eqs. (4), (5) and (6) can be generalized by the following equation,

∑
k

ωk = 1,
∑
k

ωkckα = 0,
∑
k

ωkckαckβ = δαβc
2
s , (11a)

∑
k

ωkckαckβckγ = 0,
∑
k

ωkckαckβckγ ckθ = Δαβγ θc
4
s , (11b)

where δαβ and Δαβγ θ = δαβδγ θ + δαγ δβθ + δαθ δβγ are the Kronecker tensors.

2.3 The Chapman–Enskog Analysis

In this part, we will present the Chapman–Enskog analysis on how to derive the NACDE
from the present MRT model. In the Chapman–Enskog analysis, the distribution function,
the time and space derivatives, and the source term can be expressed as [22]

φk = φ
(0)
k + εφ

(1)
k + ε2φ

(2)
k + · · · , (12a)

∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1, R = εR1, (12b)
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where ε is a small parameter. Substituting Eqs. (12) into Eq. (2) and using the Taylor expan-
sion, we can obtain zero, first and second-order equations in ε,

ε0 : φ
(0)
k = φ

(eq)
k , (13a)

ε1 : D1kφ
(0)
k = − 1

δt
(M−1SM)k jφ

(1)
j + R(1)

k , (13b)

ε2 : ∂t2φ
(0)
k + D1iφ

(1)
k + δt

2
D2
1kφ

(0)
k = − 1

δt
(M−1SM)k jφ

(2)
j + δt

2
D̄1k R

(1)
k , (13c)

where D1k = ∂t1 + ck · ∇1, D̄1k = θ∂t1 + γ ck · ∇1, and to derive Eq. (13a), we have made
an assumption that M−1SM is non-singular. If we rewrite Eqs. (13) in a vector form, and
multiply M on both sides of them, we can obtain the corresponding equations in moment
space, x

ε0 : m(0) = m(eq), (14a)

ε1 : D1m(0) = − 1

δt
Sm(1) + MR(1), (14b)

ε2 : ∂t2m
(0) + D1(I − S

2
)m(1) = − 1

δt
Sm(2) + δt

2
M ¯̄D1MR(1), (14c)

where D1 = I ∂t1 + M diag(c0α∇1α, . . . , c(q−1)α∇1α)M−1, ¯̄D1 = (θ − 1)I ∂t1 + (γ −
1)M diag(c0α∇1α, . . . , c(q−1)α∇1α)M−1, R(1) = (R(1)

0 , . . . , R(1)
q−1)

�, m(1) = M�(1) and

m(2) = M�(2) with �(k) = (φ
(k)
0 , . . . , φ

(k)
q−1)

�. It should be noted that to obtain Eqs. (14c),
(13b) has bee adopted. Actually, if we multiply D1k on both sides of Eq. (13b), one can
rewrite Eq. (13b) with the following form,

D2
1kφ

(0)
k = − 1

δt
D1k(M−1SM)k jφ

(1)
j + D1k R

(1)
k , (15)

then substituting Eq. (15) into Eq. (13c), we can rewrite Eq. (13c) as

∂t2φ
(0)
k + D1k(I − M−1SM

2
)k jφ

(1)
j = − 1

δt
(M−1SM)k jφ

(2)
j + δt

2
(D̄1k − D1k)R

(1)
k . (16)

Rewriting Eq. (16) in a vector form, and multiplying M on both sides of it, one can finally
obtain Eq. (14c).

If we take the D2Q9 lattice model as an example, the transportation matrix M can be
written as

M = CdM0, (17)

where Cd = diag(c0, c2, c4, c1, c3, c1, c3, c2, c2) is a diagonal matrix and M0 is given by
[42]

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)
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Consequently, one can also obtain m(eq) from Eq. (8),

m(eq) = (φ,−4φc2 + 3C2, 3φc
4 − 3C2c

2, Bx ,−Bxc
2, By,−Byc

2, C̄xx − C̄yy, C̄xy)
�,(19)

whereC2 = C̄xx +C̄yy , C̄αβ = ∑
k ckαckβφ

(eq)
k = Cαβ +dc2s Dαβ(φ). For this lattice model,

the relaxation matrix S can be defined as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 0 0 0 0 0 0 0 0
0 s1 0 0 0 0 0 0 0
0 0 s2 0 0 0 0 0 0
0 0 0 s3 0 s35 0 0 0
0 0 0 0 s4 0 0 0 0
0 0 0 s53 0 s5 0 0 0
0 0 0 0 0 0 s6 0 0
0 0 0 0 0 0 0 s7 0
0 0 0 0 0 0 0 0 s8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where the diagonal element sk is the relaxation parameter corresponding to kth moment
mk = ∑

j Mk jφ j , and the off-diagonal components (s35 and s53) correspond to the rotation
of the principal axis of anisotropic diffusion [31]. Besides, based on Eq. (17), one can easily
obtain the following equation,

M−1SM = M−1
0 SM0, (21)

and simultaneously, the evolution Eq. (2) can be rewritten as

φk(x + ckδt, t + δt) = φk(x, t) − (M−1
0 SM0)k j [φ j (x, t) − φ

(eq)
j (x, t)]

+
(

δt + δt2

2
D̄k

)
Rk(x, t). (22)

Based on Eq. (14b), we can rewrite the first-order equations in ε, but here we present
the first, fourth, and sixth ones since only these three equations are useful in the following
process of obtaining NACDE,

∂t1φ + ∂1x Bx + ∂1y By = R(1), (23a)

∂t1Bx + ∂1x C̄xx + ∂1yC̄xy = B̃x R
(1) − s3m

(1)
3 + s35m

(1)
5

δt
, (23b)

∂t1By + ∂1x C̄xy + ∂1yC̄yy = B̃y R
(1) − s53m

(1)
3 + s5m

(1)
5

δt
. (23c)

If we introduce a matrix A and a vectorm(1)
35 , which are defined as

A =
(
s3 s35
s53 s5

)
, m(1)

35 =
(
m(1)

3

m(1)
5

)
, (24)

then Eqs. (23b) and (23c) can be rewritten in a vector form,

∂t1B + ∇1 · C̄ = B̃R(1) − 1

δt
Am(1)

35 . (25)

Similarly, we can also use Eq. (14c) to derive the second-order equations in ε, but only the
first one corresponding to the conservative variable φ is presented,

∂t2φ + ∇1 ·
[(

I − A
2

)
m(1)

35

]
= δt

2
(θ − 1)∂t1 R

(1) + δt

2

[
(γ − 1)∇1 · (B̃R(1))

]
. (26)
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Substituting Eq. (25) into Eq. (26), we have

∂t2φ + δt∇1 ·
[
−

(
I − A

2

)
A−1(∂t1B + ∇1 · C̄ − B̃R(1))

]

= δt

2
(θ − 1)∂t1 R

(1) + δt

2

[
(γ − 1)∇1 · (B̃R(1))

]
, (27)

with the aid of Eqs. (7) and (23a), we can rewrite Eq. (27) as

∂t2φ = ∇1 ·
[(

A−1 − 1

2
I
)
dc2s δt∇1 · D

]
+ δt

2
(θ − 1)∂t1 R

(1)

+δt∇1 ·
{[(γ

2
I − A−1

)
B̃ − (

1

2
I − A−1)B

′
]
R(1)

}
, (28)

where the diffusion tensor K is given by

K = dc2s

(
A−1 − 1

2
I
)

δt. (29)

From above equation, it is clear that, for a fixed diffusion tensor, the parameter d can be used
to adjust the relaxation parameters.

Through combining the results at t1 and t2 scales, i.e., Eqs. (23a) and (28), we can recover
the following NACDE,

∂tφ + ∇ · B = ∇ · [K · (∇ · D)] + R

+ δt

2
(θ − 1)∂t R + δt∇ ·

{[(γ

2
I − A−1

)
B̃ − (

1

2
I − A−1)B

′
]
R

}
.

(30)

To derive correct NACDE, the parameter θ and the tensor B̃ should be set as

θ = 1, B̃ =
(γ

2
I − A−1

)−1
(
1

2
I − A−1

)
B

′
. (31)

We noted that although above analysis is only carried out for the two-dimensionalMRTmodel
with D2Q9 lattice, it can be extended to three-dimensional model without any substantial
difficulties.

Now we give some remarks on the present model.

Remark I We first want to present some discussion on the diffusion tensor K. Actually, if
the diffusion tensor K is taken by K = κI with κ being a constant or variable, the NACDE
[Eq. (1)] would be reduced to the NCDE considered in the previous work [35], and can still
be solved in the framework of the BGK model. However, if K is a diagonal matrix or full
matrix where the element κi j is a function of space, the MRT model rather than BGK model
should be adopted. We would also like to point out that for the special case where K is a
diagonal matrix,

K =
(

κxx 0
0 κyy

)
, (32)

the relaxation matrix S and the matrix A are also diagonal matrices (s35 = s53 = 0), then the
tensor B̃ and the relation between the nonzero elements of K and relaxation parameters can
be written in simple forms,
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B̃ =
(

λ1 0
0 λ2

)
B

′
, λ1 = s3 − 2

γ s3 − 2
, λ2 = s5 − 2

γ s5 − 2
, (33a)

κxx = dc2s

(
1

s3
− 1

2

)
δt, κyy = dc2s

(
1

s5
− 1

2

)
δt. (33b)

Remark II Based on the choice of the parameter γ , two special schemes of the present model
can be obtained.

Scheme A (γ = 0): B̃ = (I − 1
2A)B

′
. For this special case, a time derivative is included in

second term of the right hand side of the evolution equation [see Eq. (2)], and thus we need
to use the finite-difference method to compute the time derivative term ∂t Rk(x, t). Here for
simplicity an explicit finite-difference scheme, i.e., ∂t Rk(x, t) = [Rk(x, t)−Rk(x, t−δt)]/δt ,
is adopted.Although a little largermemory costwould be needed for this scheme, the collision
process can still be conducted locally.

Scheme B (γ = 1): B̃ = B
′
. Under the present choice of the parameter γ , D̄k = Dk =

∂t + ck · ∇, both the time derivative and the space derivative are contained in the evolution
equation. Although we can still use explicit finite-difference schemes to calculate time and
the space derivatives (∂t + ck · ∇)Rk , which is similar to the approach used in Scheme A,
the collision process cannot be performed locally. To solve the problem, an implicit finite-
difference scheme can be applied to compute Dk Rk(x, t),

Dk Rk(x, t) = Rk(x + ckδt, t + δt) − Rk(x, t)
δt

, (34)

which not only can result in that the collision process can be implemented locally, but also
cause the implementation of present model to be explicit. Substituting Eq. (34) into the
evolution equation, we can obtain

φk(x + ckδt, t + δt) − φk(x, t) = −(M−1SM)k j [φ j (x, t) − φ
(eq)
j (x, t)]

+ δt

2
[Rk(x + ckδt, t + δt) + Rk(x, t)] . (35)

To avoid the implicitness, a new variable is introduced [49],

φ̄k = φk − δt Rk/2, (36)

then one can rewrite evolution equation as

φ̄k(x + ckδt, t + δt) = φ̄k(x, t) − (M−1SM)k j [φ̄ j (x, t) − φ
(eq)
j (x, t)]

+ δt

[
M−1(I − S

2
)M

]

k j
R j (x, t). (37)

which is the same as the evolution appeared in Ref. [22]. Based on the Eqs. (10a) and (36),
the variable φ in Scheme B can be calculated by

φ =
∑
k

φk =
∑
k

φ̄k + δt

2
R. (38)

Here it should be noted that if the source term R is a function of φ, usually one needs to use
some other methods to solve the algebraic equation (38).
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Remark III We noted that there is still a limitation in the applications of above MRT model
since it may be difficult or impossible to derive the function C analytically [see Eq. (7)].
Following the idea presented in the work [17], however, one can solve the problem through
adding a new source term Gk in the evolution equation, i.e.,

φk(x + ckδt, t + δt) = φk(x, t) − (M−1SM)k j [φ j (x, t) − φ
(eq)
j (x, t)]

+
(

δt + δt2

2
D̄k

)
Rk(x, t) + δtGk(x, t), (39)

where Gk is defined as

Gk = ωk
ck · (I − 1

2A)∂tB

c2s
, (40)

and meanwhile, the equilibrium distribution function φ
(eq)
k (x, t) can be simplified as

φ
(eq)
k (x, t) = ωk

[
φ + ck · B

c2s
+ (dD − φI) : (ckck − c2s I)

2c2s

]
, (41)

which can be derived from Eq. (3) through setting C = 0. Through the Chapman–Enskog
analysis, one can also find that Eq. (1) with a more general B(φ, x, t) can be recovered
correctly from Eq. (39). In addition, we would also like to point out that if D = φI and
d = 1, the DnQ(2n) and DnQ(2n + 1) lattice models can also be used, and Eq. (11) can be
simplified by

∑
k

ωk = 1,
∑
k

ωkck = 0,
∑
k

ωkckαckβ = c2s δαβ . (42)

Remark VI Although there are many LB models for CDEs [10–41,51], most of them are
limited to the linear CDEswith isotropic diffusion [10–29,35,36,51], andwhat is more, some
of them cannot give correct CDE [10,13,20,27,28,37,51]. Actually in the past decade, some
LB models for anisotropic CDEs have also been developed [27,30–34,37,41], but usually
they can only be used to solve anisotropic CDEs where the convection term B or diffusion
term D is a linear function of φ [27,30–34]. We also note that the LB model proposed by
Ginzburg [37] can be used to solve the CDEs with nonlinear convection and diffusion terms,
but some additional assumptions have been adopted to recover the correct CDE, as stated
previously. Recently, Shi and Guo proposed a new BGK model for NCDE [35], but the
model is usually used to solve the isotropic NCDE, and cannot be directly applied to solve
the NACDE. From above discussion, it is clear that the present MRT model can be viewed
as a general LB model for the NACDE.

3 Numerical Results and Discussion

To test the accuracy and stability of presentMRTmodel for NACDEs, some classic examples,
including the isotropic CDE with a constant velocity, Burgers–Fisher equation, Buckley–
Leverett equation, the isotropic CDE with nonlinear convection and diffusion terms, and
anisotropic CDEs, will be considered in this section. In our simulations, the following global
relative error (GRE) defined by Eq. (43) is used to test the accuracy of the present MRT
model,
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GRE =
∑

x |φa(x, t) − φn(x, t)|∑
x |φa(x, t)| , (43)

where the subscripts a and n denote the analytical and numerical solutions. The distribution
function φk is initialized by its equilibrium distribution function φ

(eq)
k , i.e.,

φk(x, t = 0) = φ
(eq)
k |t=0. (44)

Unless otherwise stated, the parameter d appeared in the equilibrium distribution function
is set to be 1.0, the Scheme B is adopted since the computation of the time derivative in
Scheme A can be avoided, and meanwhile, the non-equilibrium extrapolation scheme [50]
is adopted since it can be used to treat different boundary conditions and also has a second-
order convergence rate in space. In addition, it should be noted that, besides the relaxation
parameters (s3, s35, s5 and s53) related to diffusion tensor, the other relaxation parameters are
simply taken as [22]

s0 = 0, s1 = s2 = s4 = s6 = s7 = s8 = 1.0. (45)

3.1 Isotropic Convection–Diffusion Equation with a Constant Velocity

We first consider a simple two-dimensional isotropic CDE with a constant velocity, which
can be expressed as

∂tφ + ux∂xφ + uy∂yφ = κ(∂xxφ + ∂yyφ) + R, (46)

where ux and uy are constants, and are set to be 0.1, κ is the diffusion coefficient. R is the
source term, and is given by

R = exp[(1 − 2π2κ)t]{sin[π(x + y)] + π(ux + uy) cos[π(x + y)]}. (47)

Under the periodic boundary conditions adopted on the domain [0, 2] × [0, 2] and the fol-
lowing initial condition,

φ(x, y, t = 0) = sin[π(x + y)], (48)

we can derive the analytical solution of the problem,

φ(x, y, t) = exp[(1 − 2π2κ)t] sin[π(x + y)]. (49)

When the present MRT model is used to study this problem, the function B, C, D and the
diffusion tensor K should be given by B = φu with u = (ux , uy)

�, C = φuu, D = φI and
K = κI.

We now performed some simulations under different time and different Péclet numbers
(Pe = Lux/κ , L = 2.0 is characteristic length, ux = uy = 0.1 is characteristic velocity),
and presented the results in Fig. 1 where c = 1.0, the lattice size is 201×201, κ or relaxation
parameters s3 and s5 can be determined by the specified Pe. As seen from the figure, the
numerical results are in good agreement with analytical solutions. We also measured the
deviation between the numerical results and analytical solutions, and found that the values
of GRE at time T = 3.0 are 3.265 × 10−4 for Pe = 100 and 1.709 × 10−4 for Pe = 1000.
In addition, to test capacity of present MRT model for the problem with a large Pe, we
also conducted some simulations, and presented the results of Pe = 107 and 109 in Fig. 2.
From this figure, one can clearly observe that the numerical results are still very close to the
analytical solutions. To quantitatively measure the deviation between the analytical solutions
and numerical results, we also calculated GREs at time T = 3.0, and found that they are less
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Fig. 1 Profiles of scalar variable φ at different time and Péclet numbers (a Pe = 100, b Pe = 1000; solid
lines analytical solutions, symbols numerical results)
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Fig. 2 Profiles of the scalar variableφ at different time and different Péclet numbers (a Pe = 107,b Pe = 109;
solid lines analytical solutions, symbols numerical results)
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Fig. 3 The global relative errors at different lattice sizes (δx = L/500, L/400, L/300, L/200 and L/100),
the slope of the inserted line is 2.0, which indicates the present MRT model has a second-order convergence
rate in space

than 2.0 × 10−4, which indicates that the present MRT model is also accurate even for the
case with a much larger Pe = 109.

Finally, this problem is also applied to test the convergence rate of the present model since
the boundary effect can be eliminated by the periodic boundary conditions adopted. To this
end, we conducted a number of simulations with the same parameters (Pe, κ and all relaxation
parameters) used for the results in Fig. 1, and computed the GREs under different lattice
resolutions. As shown in Fig. 3 where numerical simulations are suspended at time T = 3.0,
and the lattice spacing is varied from L/500 to L/100 with a fixed δx2/δt = 1.0 × 10−2, it
is clear that present MRT model has a second-order convergence rate in space.

3.2 The Two-Dimensional Burgers–Fisher Equation

The two-dimensional Burgers–Fisher equation, as a special case of the NACDEs, can be
written as [35,52]

∂tφ + aφδ∂xφ = κ(∂xxφ + ∂yyφ) + R, (50)

where R = bφ(1 − φδ) is the source term, δ, a, b and diffusion coefficient κ are constants.
Compared to the first problem considered above, the present problem is more complicated
since it is nonperiodic and nonlinear, but we can still obtain its analytical solution under the
proper initial and boundary conditions,

φ(x, y, t) =
{
1

2
+ 1

2
tanh[A(x + y − ωt)]

} 1
δ

, (51)
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where A and ω are two parameters, and are defined by

A = − aδ

4κ(δ + 1)
, ω = a2 + 2bκ(δ + 1)

a(δ + 1)
. (52)

Compared with the NACDE defined by Eq. (1), the function B(φ) should be given by

B(φ) = φδ+1
(

a

δ + 1
, 0

)�
. (53)

Based on Eq. (7), one can further derive the tensor C in Eq. (3),

C =
(

a2
2δ+1φ

2δ+1 0
0 0

)
. (54)

The diffusion tensor K and tensor D can be simply determined as

K = κI, D = φI. (55)

We now consider how to use present MRTmodel to solve the Burgers–Fisher equation. If the
SchemeB is adopted to solve Eq. (50), one needs to use some othermethods to solve nonlinear
equation (36) since the source term R is a nonlinear function of φ. To avoid such process, the
Scheme A is applied to solve the Burgers–Fisher equation with a = 4.0, b = 1.0, δ = 1.5
and a computational domain [−1, 2] × [−1, 2]. We first performed some simulations at
Pe = 100 and 1000, and presented numerical results and corresponding analytical solutions
under different time and different modified Péclet numbers (Pe = La/κ with L = 3.0
being the characteristic length) in Fig. 4 where c = 1.0, the lattice size is 301 × 301, and
κ or relaxation parameters s3 and s5 can be obtained from the specified Pe. As seen from
the figure, the numerical results agree well with corresponding analytical solutions, and the
values of GRE at time T = 1.0 are about 5.044× 10−4 for Pe = 100 and 9.830× 10−4 for
Pe = 1000.

We note that this problem is nonperiodic and the boundary effect cannot be excluded,
thus it can be used to test the convergence rate of the MRT model coupling with the non-
equilibrium extrapolation scheme. To this end, we also carried out some simulations with
different lattice resolutions (the lattice spacing is changed from L/900 to L/300 with a
constant δx2/δt = 1.0× 10−2), and presented the GREs in Fig. 5 where the simulations are
suspended at time T = 1.0. As shown in this figure, the present MRT model coupling with
non-equilibrium extrapolation scheme also has a second-order convergence rate in space.

3.3 The Two-Dimensional Buckley–Leverett Equation

We also consider the two-dimensional Buckley–Leverett equation [36,53,54]

∂tφ + ∂x f (φ) + ∂yg(φ) = κ(∂xxφ + ∂yyφ), (56)

with the following initial condition,

φ(x, y, 0) =
{
1, x2 + y2 < 0.5,
0, x2 + y2 ≥ 0.5,

(57)

where κ is the diffusion coefficient. f (φ) and g(φ) are a function of φ, and are defined as

f (φ) = φ2

φ2 + (1 − φ)2
, g(φ) = f (φ)[1 − 5(1 − φ)2]. (58)
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Fig. 4 Profiles of the scalar variable φ at different time and modified Péclet numbers (a Pe = 100, b
Pe = 1000; solid lines analytical solutions, symbols numerical results)
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Fig. 5 The global relative errors at different lattice sizes (δx = L/900, L/750, L/600, L/450 and L/300),
the slope of the inserted line is 2.0, indicating that the present MRT model has a second-order convergence
rate in space

We note that, similar to the Burgers–Fisher equation considered previously, the Buckley–
Leverett equation is also a special NACDE, but there is no analytical solution to this problem.

When the presentMRTmodel is used to solve the problem, the evolution equation [Eq. (2)]
can bewrittenmore simply since there is no source term included in the the Buckley–Leverett
equation,

φk(x + ckδt, t + δt) = φk(x, t) − (M−1SM)k j [φ j (x, t) − φ
(eq)
j (x, t)], (59)

then from Eqs. (1) and (7), one can further determine the functions B, C, D and diffusion
tensor K,

B = [ f (φ), g(φ)]�, C =
(
Cxx Cxy

Cyx Cyy

)
, D = φI, K = κI, (60)

where the elements of the matrix C are given as

Cxx = 1

2
arctan(2φ − 1) + 1

6A3

(
2 − A + 3A2)(φ − 1

2

)
, (61a)

Cxy = Cyx = 1

2
arctan(2φ − 1) + 5

4
ln(

A

2
)

+ 1

2A
(2 + φ) + 1

12A2 (
17 − 4φ

2
+ −7 + 4φ

A
), (61b)

Cyy = −17

8
arctan(2φ − 1) + 5

2
ln(

A

2
) + 25φ

[
1

4
− φ

2
+ φ2

3

]

+ 1

16A
(−89 + 258φ) + 1

16A2 (13 + 14φ) + 1

24A3 (1 − 42φ). (61c)

In our simulations, the computational domainof the problemand the lattice size are set to be
[−1.5, 1.5]×[−1.5, 1.5] and 301×301.We performed simulations at two different diffusion
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Fig. 6 Contours (a) and distribution (b) of the scalar variable φ at the time T = 0.5 and Pe = 30

coefficients (κ = 0.1 and 0.01) or equivalently two different Péclet numbers (Pe = LU/κ =
30 and 300, L = 3.0 is the characteristic length, U = 1.0 is the characteristic velocity), and
presented the results at time T = 0.5 in Figs. 6 and 7 where c = 10. As expected, when the
Pe is smaller or the diffusion coefficient is larger, the role of the diffusion becomes dominant,
and thus the distribution of scalar variable φ is more smooth (see Fig. 6a). Besides, to show
more details on the distributions of scalar variable φ at different time, we also conducted
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Fig. 7 Contours (a) and distribution (b) of the scalar variable φ at the time T = 0.5 and Pe = 300, c, d are
the results reported in Ref. [54]

some simulations, and presented the results of φ along the vertical centreline in Fig. 8. As
seen from the figure, with the increase of time, the distribution of the scalar variable with a
small Pe becomes more smooth.

We note that although the problem has no analytical solution, the present results (see
Fig. 7a, bwhereκ = 0.01) agreewellwith those reported in someprevious studies [36,53,54],
which can also be used to conclude that the present MRT model is also accurate in solving
the Buckley–Leverett equation.

3.4 Anisotropic Convection–Diffusion Equation with Constant Velocity and
Diffusion Tensor

We now consider the problem of the Gaussian hill with constant velocity and diffusion tensor,
which is also a classic benchmark example and has also been used to validate LB models for
anisotropic CDEs [29,31,34,37]. The CDE for this problem can be written as

∂tφ + ∇ · (φu) = ∇ · (K · ∇φ), (62)

where u = (ux , uy)
� is a constant velocity, K is the constant diffusion tensor, and can be

defined as

K =
(

κxx κxy
κyx κyy

)
. (63)
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Fig. 8 Profiles of the scalar variable φ at different time and Péclet numbers (a Pe = 30, b Pe = 300)

Under the proper initial and boundary conditions, one can also derive the analytical solution
of the problem,

φ(x, y, t) = φ0

2π | det(σ )|1/2 exp

{
−σ−1 : [(x − ut)(x − ut)]

2

}
, (64)

where x = (x, y)�, σ = σ 2
0 I + 2Kt , σ−1 is inverse matrix of σ , | det(σ )| is the absolute

value of the determinant of σ .
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Actually, there are two approaches that can be adopted to study the Gaussian hill problem.
The first is that we directly use the MRT model to solve Eq. (62) with an anisotropic form,
and set the functions B, C, and D as

B = (φux , φuy)
�, C =

(
φu2x φuxuy

φuxuy φu2y

)
, D = φI. (65)

While in the second approach, we first need to write Eq. (62) in an isotropic form,

∂tφ + ∇ · (φu) = ∇ · [κ(∇ · D)]. (66)

which is then solved by the MRTmodel. In addition, it should be noted that Eq. (66) can also
be solved by the previous BGK model [35]. Based on Eq. (66), one can also find that the
functions B and C should be the same as those appeared in Eq. (79), but the tensor D should
be given by D = Kφ/κ with κ being a positive constant.

Similar to some previous works [31,34], we also considered the Gaussian hill problem
in a bounded domain [−1, 1] × [−1, 1], and adopted the periodic boundary condition on all
boundaries. In our simulations, σ0 = 0.01 which is small enough to ensure that the periodic
boundary condition adopted is reasonable and accurate at a finite time T , φ0 = 2πσ 2

0 ,
ux = uy = 0.01, and the lattice size is 401 × 401. To test the capacity of the present MRT
model in solving the anisotropic CDEs, the following three types of diffusion tensor are
considered,

K =
[(

1 0
0 1

)
,

(
1 0
0 2

)
,

(
1 1
1 2

)]
× 10−3, (67)

which are usually denoted as isotropic, diagonally anisotropic and fully anisotropic diffusion
problems.

We conducted some simulations by using above two approaches, and presented numerical
results at the time T = 10 in Figs. 9, 10 and 11 where c = 1.0 and κ = 10−3 is used in
the second approach. As seen from these figures, the numerical results qualitatively agree
with analytical solutions. To quantitatively measure the deviations between numerical results
and analytical solutions, the GREs of isotropic, diagonally anisotropic and fully anisotropic
diffusion problems are computed, and the values of them are 1.199 × 10−4, 3.853 × 10−4

and 6.531 × 10−4 for the first approach, while they are 1.199 × 10−4, 2.118 × 10−4 and
4.572×10−4 for the second approach, which illustrate that the presentMRTmodel is accurate
in studying these problems. Besides, the convergence rate of the MRT model for anisotropic
CDEs is also investigated, and the results are shown in Fig. 12 where the lattice size is varied
from 201 × 201 to 801 × 801 with δx2/δt = 5.0 × 10−3. From this figure, one can find
that, similar to some available MRT models for anisotropic diffusion problems [31,34], the
present MRT model also has a second-order convergence rate in space.

3.5 Anisotropic Convection–Diffusion Equation with Constant Velocity and
Variable Diffusion Tensor

In this part, we will consider the following anisotropic CDE with a constant velocity u =
(ux , uy)

� and a variable diffusion tensor K,

∂tφ + ∇ · (φu) = ∇ · (K · ∇φ) + R. (68)

where R is the source term.We note that the problem is more complicated since the diffusion
tensor K can be a function of space x and scalar variable φ. For this reason, it is difficult or
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Fig. 9 Distributions of the scalar variable φ at the time T = 10 [isotropic diffusion problem: numerical
solution (a), analytical solution (b)]

impossible to write Eq. (68) in an isotropic form, and thus the problem could not be solved
directly by the previous BGK model [35].

In this example, the diffusion tensor K is simply given by a diagonal matrix,

K = κ

(
2 − sin(2πx) sin(2πy) 0
0 1

)
, (69)

where κ is a constant, and is fixed to be 1.0 × 10−3. The source term R is defined as

R = exp[(1 − 12π2κ)t]{sin(2πx) sin(2πy) + 4κπ2 cos(4πx) sin2(2πy)

+ 2π[ux cos(2πx) sin(2πy) + uy sin(2πx) cos(2πy)]}. (70)

123



376 J Sci Comput (2016) 69:355–390

Fig. 10 Distributions of the
scalar variable φ at the time
T = 10 [diagonally anisotropic
diffusion problem: first approach
(a), second approach (b),
analytical solution (c)]
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Fig. 11 Distributions of the
scalar variable φ at the time
T = 10 [fully anisotropic
diffusion problem: first approach
(a), second approach (b),
analytical solution (c)]
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Fig. 12 The global relative errors at different lattice sizes (δx = L/800, L/600, L/500, L/400, L/300 and
L/200, L = 2.0 is the characteristic length), the slope of the inserted line is 2.0, which indicates that the
present MRT model has a second-order convergence rate in space

Under the periodic boundary conditions on the physical region [0, 1]×[0, 1] and the following
initial condition,

φ(x, y, t = 0) = sin(2πx) sin(2πy), (71)

one can derive the exact solution of the problem,

φ(x, y, t) = exp[(1 − 12π2κ)t] sin(2πx) sin(2πy). (72)

Based onEq. (68), one can determine the functionsB,C andD, which are the same as those
appeared in Eq. (79).We now performed some simulations with a fixed lattice size 401×401,
and presented the results at the time T = 3.0 and different Péclet numbers (Pe = Lux/κ ,
L = 1.0 is the characteristic length, ux = uy = 0.1 is the characteristic velocity) in Figs. 13
and 14 where c = 1.0, Pe = 100 and 1000. As seen from these figures, the numerical results
are very close to the analytical solutions. To quantitatively measure the deviations between
numerical results and corresponding analytical solutions, we also computed the GREs of
these two cases, and found that the values of them are 6.207×10−4 and 9.831×10−5, which
are small enough and can be used to demonstrate that the present MRT model is accurate in
the study of the anisotropic CDE with a variable diffusion tensor.

To show the convergence rate of the present MRT for such complicated problem, we
also carried out a number of simulations under different lattice resolutions, and presented
the results in Fig. 15 where the lattice size is varied from 201 × 201 to 801 × 801 with
δx2/δt = 2.5 × 10−4. As shown in this figure, the present MRT model also has a second-
order convergence rate for this special problem.
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Fig. 13 Distributions of the scalar variable φ at the time T = 3 and Pe = 100 (a numerical solution,
b analytical solution)

3.6 Convection–diffusion Equation with Nonlinear Convection and Diffusion
Terms

We would like to point out that all of above nonlinear CDEs are only limited to the cases
with a nonlinear convection term. In this part, we will consider a more general NACDE with
nonlinear convection and diffusion terms, which can be given by the following equation,

∂tφ + ∇ · (φmu) = ∇ · [κ(∇ · D(φ))] + R, (73)

where m is a constant, κ is the diffusion coefficient. D(φ) is and nonlinear diffusion term,
and is given by

D(φ) =
(

φnx 0
0 φny

)
, (74)
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Fig. 14 Distributions of the scalar variable φ at the time T = 3 and Pe = 1000 (a numerical solution,
b analytical solution)

where nx and ny are two constants. R is the source term, and is defined by

R = exp (−At){A cos(2πx) cos(2πy)

+ 4nxπ
2κφnx−2[(nx − 1) exp(−At) sin2(2πx) cos2(2πy) + φ cos(2πx) cos(2πy)]

+ 4nyπ
2κφny−2[(ny − 1) exp(−At) sin2(2πy) cos2(2πx) + φ cos(2πx) cos(2πy)]

+ 2πmφm−1[ux sin(2πx) cos(2πy) + uy cos(2πx) sin(2πy)]}. (75)

Actually, Eq. (73) can be rewritten as

∂tφ + ∇ · (φmu) = ∇ · [K · (∇φ)] + R, (76)

where K is the diffusion tensor,

K = κ

(
nxφnx−1 0
0 nyφny−1

)
. (77)
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Fig. 15 The global relative errors at different lattice sizes (δx = L/800, L/600, L/500, L/400, L/300
and L/200), the slope of the inserted line is 2.0, indicating that the present MRT model has a second-order
convergence rate in space

Under the proper initial and periodic conditions, we can derive the exact solution of this
problem,

φ(x, y, t) = α − exp (−At) cos(2πx) cos(2πy). (78)

Where α is a constant. When the present MRT model is applied to solve equation (76), the
functions B, C and D can be determined by

B = (φmux , φ
muy)

�, C = m2φ2m−1

2m − 1

(
u2x uxuy

uxuy u2y

)
, D = φI. (79)

We carried out several simulationswith a fixed lattice size 401×401, and presented the results
at time T = 3.0 and different Péclet numbers (Pe = Lux/κ , L = 1.0 is the characteristic
length, ux = uy = 0.1 is the characteristic velocity) in Figs. 16 and 17 where α = 1.1,
A = 1.0, m = 2.0, nx = 2.0, ny = 3.0, c = 1.0, Pe = 100 and 1000. From these figures,
one can observe that the numerical results agree with exact solutions, and theGREs are about
2.865 × 10−3 and 7.162 × 10−4.

Then the convergence rate of the MRT model for this problem is also considered, and
the GREs under different lattice spacings are shown in Fig. 18 where δx2/δt is fixed to
be 2.5 × 10−4. As seen from this figure, the present MRT model also has a second-order
convergence rate for this nonlinear CDE.

3.7 A Comparison Between the MRT Model and BGKModel

As reported in some available works [2,22,29,31,34], through tuning the relaxation parame-
ters properly, the MRT model could be more accurate and more stable than the BGK model.
To show the superiority of the MRT model over the BGK model, a comparison between two
models is also conducted.
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Fig. 16 Distributions of the scalar variable φ at the time T = 3 and Pe = 100 (a numerical solution,
b analytical solution)

We first performed a comparison of accuracy between the BGK model and MRT model
through adopting a simple problem defined in a physical region [0, L] × [0, L], which can
be described by the following CDE and boundary conditions,

∂tφ + ∇ · (φu) = ∇ · (κ∇φ) + R, (80a)

φ(t, x, 0) = φ0, φ(t, x, L) = φL , (80b)

where κ is a constant diffusion coefficient, u = (ux , uy)
� is a constant velocity with uy = 0,

φ0 and φL are two constants, R = 2κΔφ/L2 is the source term with Δφ = φL − φ0. Under
an assumption that the problem is steady and unidirectional, i.e., φ is only a function of y,
we can derive analytical solution of the problem,

φ(y) = φ0 + Δφ
y

L

(
2 − y

L

)
. (81)
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Fig. 17 Distributions of the scalar variable φ at the time T = 3 and Pe = 1000 (a numerical solution,
b analytical solution)

The reason for choosing this problem is that, following a similar procedure reported in Ref.
[55], one can readily derive the analytical solutions of the BGK model and MRT model
(Scheme Bwith s1 = s2 = s4 = s6 = s7 = s8) with adopting the anti-bounce back boundary
condition [22,26,38,51],

φ j = φ0 − Δφ ȳ j (2.0 − ȳ j ) + φs, (82)

where ȳ j = ( j − 1/2)/N with N representing the grid number used in y direction, φs is
numerical slip caused by the model adopted, and can be given by

φs,BGK = Δφ

12N 2

[
4(

2

sBGK
− 1)2 − 3

]
, (83a)

φs,MRT = Δφ

12N 2s1s3
[s1s3 − 8(s1 + s3) + 16] . (83b)
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Fig. 18 The global relative errors at different lattice sizes (δx = L/800, L/600, L/500, L/400, L/300 and
L/200), the slope of the inserted line is 2.0, which indicates that the present MRT model has a second-order
convergence rate in space

Based onEq. (83a), one canfind that although theBGKmodel has a second-order convergence
rate for this simple problem, the numerical slip of the scalar variable φ cannot be eliminated
unless sBGK = 4(2 − √

3). While for the MRT model, we can make the solution of MRT
model [Eq. (83b)] consistent with that of the physical problem [Eq. (81)] through setting φs

to be zero, which means that the relaxation parameters s1 and s3 should satisfy the following
relation,

s1 = 8(s3 − 2)

s3 − 8
. (84)

We noted that above relation is not only consistent with the result of the MRT or TRT model
coupling with halfway bounce-back for Poiseuille flow [39,56], but also can be viewed as
the limiting result of the TRT model for anisotropic CDEs [39].

From above analysis, it is clear that the MRT model can be more accurate than the BGK
model through tuning the free relaxation parameter s1. In addition, similar to the procedure
used in above examples, the functions B, C and D, the diffusion tensor K, and the source
term Ri used in our model can also be determined,

B = φu, C = φuu, D = φI, K = κI, Ri = ωi

(
1 + ci · u

c2s

)
R. (85)

To validate above analysis and confirm our statement, we also performed some simulations
with different lattice resolutions and relaxation parameters (s3), and presented the results in
Fig. 19 where L = 1.0, ux = 0.1, φ0 = 0, φL = 1.0, and the diffusion coefficient κ is set to
be 0.1. As seen from Fig. 19, the numerical results obtained by the MRT model are in good
agreement with the analytical solution (Eq. 81) even with a coarse grid (e.g., N = 4), while
the results given by the BGKmodel deviate from the analytical solution unless the relaxation
parameter sBGK is fixed to be s3 = 4(2 − √

3), which is consistent with above analysis.
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Fig. 19 Comparisons between
the BGK model and MRT model
under different lattice sizes and
relaxation parameters (a
s3 = 0.1, b s3 = 0.6, c
s3 = 4(2 − √

3), d s3 = 1.9)
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Fig. 20 A comparison between
the BGK model and MRT model
for fully anisotropic diffusion
problem (κ = 10−3) (a BGK
model, b MRT model, c
analytical solution]
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Fig. 21 A comparison between the numerical result ofMRTmodel and analytical solution of fully anisotropic
diffusion problem (κ = 10−4) (aMRT model, b analytical solution)

Then we would also like to point out that there are some available works on the stability
of LB models for CDEs [28,29,40], and it may be a tremendous work for us to perform
such a stability analysis on present MRT model for NACDEs. For simplicity, here we only
conducted a simple comparison of stability between the BGKmodel andMRTmodel through
using the Gaussian hill problem, which has been investigated previously. We take the fully
anisotropic diffusion problem as an example, and the second approach presented in Sect. 3.4
[the anisotropic CDE is written in an isotropic form, see Eq. (66)] is adopted. In the following
simulations, the diffusion tensor K is taken as

K = κ

(
1 1
1 2

)
, (86)

from which one can further determine the function D = Kφ/κ in the second approach [see
Eq. (79)]. κ is a constant, and is varied to test the stability of the BGK model and MRT
model. The lattice speed c is equal to 1.0, the velocity u is fixed to be u = (0.1, 0.1)�. For
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the relaxation parameters appeared in the MRT model, s3 and s5 can be determined from κ ,
and the others are fixed through the following equation,

s0 = 0, s1 = s2 = s4 = s6 = s7 = s8 = s, (87)

where s can be varied in a proper range to ensure that the MRT model is stable, but for
simplicity, only a special case s = 0.6 is considered. The other parameters used in simulations
are the same as those appeared in Sect. 3.4 except for time T = 5.0.

We first conducted simulations with κ = 10−3, and presented the results in Fig. 20. As
shown in this figure, both numerical results obtained by the BGK model and MRT model
are close to the analytical solution. However, when κ is decreased to 10−4, the BGK model
is unstable, while the MRT model can give a stable solution (see Fig. 21), and the GRE is
about 4.438 × 10−2. From above discussion, it is clear that, through tuning the relaxation
parameters properly, the MRT could be more accurate and more stable than the BGK model.

4 Conclusions

In this work, a multiple-relaxation-time lattice Boltzmann model for the general nonlinear
anisotropic convection–diffusion equations is proposed, and is then tested by some classic
NACDEs, including the simple linear CDE, nonlinear Burgers–Fisher equation, nonlinear
Buckley–Leverett equation and some anisotropic CDEs. The numerical results show that the
present MRT model is efficient and accurate in solving the NACDEs, and also has a second-
order convergence rate in space. Besides, we also conducted a comparison between the BGK
model and MRT model, and found that the present MRT model could be more accurate and
more stable than BGKmodel through tuning the relaxation parameters properly. And finally,
wewould also like to point out that, based on the superiority of theMRTmodel and the role of
the NACDEs in describing the physical phenomena caused by the convection and diffusion
processes, the present work may promote the MRT model in the study of heat and mass
transfer [2], multiphase flows and crystal growth based on phase-field models [15,23,57].
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