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Abstract In this paper, we study semi-discrete central-upwind difference schemes with a
modified multi-dimensional limiting process (MLP) to solve two-dimensional hyperbolic
systems of conservation laws. In general, high-order central difference schemes for conser-
vation laws involve no Riemann solvers or characteristic decompositions but have a tendency
to smear linear discontinuities. To overcome this drawback of central-upwind schemes, we
use a MLP that uses multi-dimensional information for slope limitation to control the oscil-
lations across discontinuities for multi-dimensional applications. Some numerical results are
provided to demonstrate the performance of the proposed scheme.
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1 Introduction

In this study, we consider the central-upwind difference schemes [13,14] with multi-
dimensional limiting functions [4,10,11,32] to solve the two-dimensional (2D) hyperbolic
conservation law

ut + f (u)x + g(u)y = 0, x ∈ R, t ≥ 0,

u(x, y, 0) = u0(x, y),
(1.1)

with proper boundary conditions. This equation is of practical importance with applications
ranging from a variety of physical phenomena to mathematical financial modeling. Since
solutions of the hyperbolic PDEs (1.1) may develop steep gradients, shock waves, and con-
tact discontinuities in finite time, it is often impossible to find the analytic solution; hence
robust shock-capturing schemes that do not create spurious oscillations are required. The
development of stable, accurate, and effective numerical schemes for solving conservation
laws (1.1) requires analyses of a variety of physical phenomena as well as achievement of a
qualitative understanding of the behavior of their solutions. Over the past several decades,
various numerical schemes have been proposed to solve such equations (1.1).

The most popular numerical methods for hyperbolic systems of conservation laws are
the upwind schemes proposed by Godunov [6] and extended to second-order accuracy by
van Leer [16]. An alternative to the Godunov-type upwind scheme is the Lax-Friedrichs
(LxF) central difference scheme introduced by Lax and Fridrichs in [3,15], in which no
Riemann solvers or characteristic decompositions are involved. This has the advantage of
simplicity compared with the first-order upwind scheme of Godunov [6]; however, the LxF
scheme, yields a large numerical dissipation, which leads to a poor resolution of shock
discontinuities and rarefaction waves. In order to reduce numerical dissipation, Nessyahu
and Tadmor proposed a second-order extension of the LxF scheme (referred to as the NT
scheme) in [24], based on a staggered form of the LxF scheme. The NT scheme replaces
the first-order piecewise constant solution with van Leer’s MUSCL-type piecewise-linear
solution to construct a second-order approximation that avoids oscillations at discontinuities
and achieves a sharp and accurate shock capture. The NT scheme retains the simplicity
of the Riemann-free LxF framework and avoids the disadvantage of the excessive first-
order dissipation of the LxF scheme. In 2000, Kurganov and Tadmor [14] proposed the
CU-KT scheme, which contains modifications to the NT scheme with a smaller amount of
numerical viscosity than that in the original NT scheme. The second-order KT schemes with
a semidiscrete formulation were based on integration over Riemann fans of variable sizes
and the use of more precise information regarding the local propagation speeds. Extensions
to multidimensional problems were introduced in [9].

Later, a generalization of the CU-KT schemes was proposed by Kurganov et al. [13],
who utilized one-sided local speeds of propagation (referred to as the CU-KNP scheme).
The numerical flux of the KT scheme used only the maximum wave speed, whereas the
CU-KNP scheme used both the maximal and minimal wave speeds to reduce the numerical
viscosity. Higher-than-second-order schemes were by Liu and Osher [21] based on non-
oscillatory third-order reconstruction and Liu and Tadmor [23] with staggered evolution
of the reconstructed cell averages. High-order essentially non-oscillatory (ENO) [7] and
weighted ENO (WENO) [8,22] reconstructions were combined with central schemes by
Bianco et al. [1]. Modifications of the central schemes of Bianco, Puppo, and Russo [1] were
introduced in [17] as a central WENO reconstruction. Other central schemes with WENO
are presented in [18,25], and extensions to multi-dimensional problems can be found in
[19,20]. The higher-order reconstructions of central schemes yielded decreasing numerical
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dissipations and greater resolution of shocks, rarefactions, and other spontaneous evolution of
large-gradient phenomena, which were almost as sharp as those of comparable higher-order
upwind schemes.

Most numerical schemes for hyperbolic conservation laws have been developed on the
basis of one-dimensional (1D) flow physics, so that extension of 2D flows is straightforward
by dimensional splitting. Although this approach allows the rigorous analysis of numerical
schemes, 1D limiters may fail to achieve a good shock resolution if the shock is located in a
direction diagonal to the computational grid. These numerical schemes lead to insufficient or
excessive numerical dissipation because of the essential limitations of accurate and efficient
calculations for multi-dimensional flows. Over the last two decades, there has been research
toward controlling numerical oscillation and designing multi-dimensional limiter functions
[2,28,30]. In successive studies, Kim and Kim extended the 1D monotonic condition to 2D
flow and proposed amulti-dimensional limiting process (MLP) for the 2D compressible Euler
equation [11]. They proposed an MLP in the same article that used multi-dimensional infor-
mation for slope limitation to control oscillations across discontinuities formulti-dimensional
applications. Later, improvedMLP limiters were devised [4,10,12,32] and they could be effi-
ciently implemented in three-dimensional space. The main focus of the MLP methods is to
eliminate excessive numerical dissipation and upgrade solution accuracy by predicting the
physical distributions of flow variables in multi-space dimensions.

In this present paper, we study a multi-dimensional limiting process introduced by Yoon
et al. [32] and derive a central scheme that incorporates a modification of the MLP. Since the
CU-KNP scheme has low computational effort and high numerical stability, the combination
of both approaches hold the potential for good monotone shock-capturing capabilities and
good convergence behavior at a relatively low computational cost. Certain improvements in
comparison to CU-KNP [13] shall be provided and a modified CU-KNP scheme (referred to
as CU-MLP) shall be presented. We see that this modification yields better results than the
original CU-KNP schemes. Some numerical experiments are conducted to demonstrate the
performance of the proposed scheme.

The outline of this paper is designed as follows. In Sect. 2, we present reviews of central-
upwind schemes. After a brief description of MLP limiters suggested by Yoon et al. [32]
in Sect. 3, we introduce a modified MLP limiter along with the construction of a central-
upwind scheme in Sect. 4. Finally, the concluding numerical results are provided in Sect. 5
to illustrate the advantages of the proposed scheme.

2 Review of the Central-Upwind Schemes in 2-D

In this section, the semi-discrete central-upwind scheme for 2D compressible flow that was
suggested by Kurganov at el. [13] is briefly reviewed. We consider hyperbolic conservation
laws in 2D space as

ut + f (u)x + g(u)y = 0. (2.1)

Central-upwind schemes can be easily implemented knowing only the physical flux func-
tions and extremal eigenvalues of the flux Jacobian associated with a hyperbolic system
of conservation laws. We discretize the conservation laws using a Cartesian grid with
uniform spacing �x(= xi − xi−1) and �y(= y j − y j−1), and the intermediate points
x j± 1

2
= xi ± �x

2 and y j± 1
2

= y j ± �y
2 . We define the cell averages based on spatial cells

[xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
],
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ūni j = 1

�x�y

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

u(x, y, tn)dydx . (2.2)

To advance the computation to the next time level at t = tn+1, we reconstruct a piecewise
linear polynomial, ũ(x, y, tn), of the form

ũ(x, y, tn) =
∑
i, j

[
ūni j + (ux )

n
i j (x − xi ) + (uy)

n
i j (y − y j )

]
χi j (x, y) (2.3)

where

(ux )
n
i j = 1

�x
minmod

(
α�ūi+1/2, j ,

1

2
(�ūi+1/2, j + �ūi−1/2, j ), α�ūi−1/2, j

)
,

(uy)
n
i j = 1

�y
minmod

(
α�ūi, j+1/2,

1

2
(�ūi, j+1/2 + �ūi, j−1/2), α�ūi, j−1/2

)
,

with α ∈ [1, 2] and �ūi+1/2, j = ūi+1, j − ūi j . Here, χi j (x, y) represents the characteristic
functions of the corresponding interval, [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
], and the multivariable

minmod function is defined by

minmod(x1, x2, . . .) =

⎧⎪⎨
⎪⎩
min{xi } if xi > 0 for all i,

max{xi } if xi < 0 for all i,

0 otherwise.

The piecewise linear interpolant, ũ, may have discontinuities along the lines x = xi± 1
2
and

y = y j± 1
2
which propagatewith different right- and left-going localwave speeds. To compute

the corresponding local wave speeds, one may use

a+
i+ 1

2 , j
= max

[
λN

(
∂ f

∂u

(
uL
i+ 1

2 , j

))
, λN

(
∂ f

∂u

(
uR
i+ 1

2 , j

))
, 0

]
,

a−
i+ 1

2 , j
= min

[
λ1

(
∂ f

∂u

(
uL
i+ 1

2 , j

))
, λ1

(
∂ f

∂u

(
uR
i+ 1

2 , j

))
, 0

]
,

b+
i, j+ 1

2
= max

[
λN

(
∂g

∂u

(
uL
i, j+ 1

2

))
, λN

(
∂g

∂u

(
uR
i, j+ 1

2

))
, 0

]
,

b−
i, j+ 1

2
= min

[
λ1

(
∂g

∂u

(
uL
i, j+ 1

2

))
, λ1

(
∂g

∂u

(
uR
i, j+ 1

2

))
, 0

]
,

(2.4)

where λN and λ1 denote the largest and the smallest eigenvalues of the Jacobians ∂ f
∂u and ∂g

∂u ,
respectively. The point values of the piecewise linear reconstruction (2.1) are given by :

uL
i+ 1

2 , j
= ūi j + 0.5(ux )

n
i j�x,

uR
i+ 1

2 , j
= ūi+1, j − 0.5(ux )

n
i+1, j�x,

uL
i, j+ 1

2
= ūi j + 0.5(uy)

n
i j�y,

uR
i, j+ 1

2
= ūi, j+1 − 0.5(uy)

n
i, j+1�y.

(2.5)

The 2D semi-discrete schemes can be written in the conservation form:

d

dt
ui j = −

f̂i+ 1
2 , j (t) − f̂i− 1

2 , j (t)

�x
−

ĝi, j+ 1
2
(t) − ĝi, j− 1

2
(t)

�y
(2.6)
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where the numerical flux functions are

f̂i+ 1
2 , j (t) =

a+
i+ 1

2 , j
f

(
uL
i+ 1

2 , j

)
− a−

i+ 1
2 , j

f

(
uR
i+ 1

2 , j

)

a+
i+ 1

2 , j
−a−

i+ 1
2 , j

+
a+
i+ 1

2 , j
a−
i+ 1

2 , j

a+
i+ 1

2 , j
−a−

i+ 1
2 , j

[
uR
i+ 1

2 , j
−uL

i+ 1
2 , j

]
,

ĝi, j+ 1
2
(t) =

b+
i, j+ 1

2
g

(
uL
i, j+ 1

2

)
− b−

i, j+ 1
2
g

(
uR
i, j+ 1

2

)

b+
i, j+ 1

2
−b−

i, j+ 1
2

+
b+
i, j+ 1

2
b−
i, j+ 1

2

b+
i, j+ 1

2
−b−

i, j+ 1
2

[
uR
i, j+ 1

2
−uLi, j+1/2

]
.

(2.7)

We have presented above the CU-KNP semi-discrete approximation of the spatial discretiza-
tion for systems of conservation laws. For the time discretization, we can employ several
methods for solving the ordinary differential equation(ODE):

ut = L(u, t).

Here, we have used a 3rd-order TVD Runge-Kutta type discretization for time stepping to
solve the ODE [27]:

u(1) = un + �tL(un),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL(u(1)),

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL(u(2)).

(2.8)

3 Multidimensional Limiting Process

In this section, we describe the basic concept of the MLP limiter in 2D space [32]. Gener-
ally, most numerical methods of 2D or three-dimensional hyperbolic conservation laws are
obtained through dimensional splitting. This approach is an efficient computational meth-
ods; however it is insufficient for controlling oscillations near a shock discontinuity and may
fail to achieve a good shock resolution if the shock is a located in a direction diagonal to
the computational grid in multi-dimensional space. When the TVD concept is extended to
multi-dimensional flow by dimensional splitting, it cannot be guaranteed monotonic solu-
tions. In this respect, it needs to be modified or extended with appropriate consideration to
control the oscillation in a multi-dimensional space situation. To overcome this drawback,
MLP was proposed by Kim et al. [11] and Yoon et al. [32] to reinforce oscillation control in
multi-dimensional flow. MLP is referred to as a conventional second order limiter like super-
bee or minmod, but includes diagonal volume information. Before introducing the MLP, we
consider the cell-interface value, u, with a symmetric MUSCL-type TVD limiter:

uLi+1/2, j = ūi j + 0.5φ(r Lx )�ūi−1/2, j ,

uR
i+1/2, j = ūi+1, j − 0.5φ(r Rx )�ūi+3/2, j ,

(3.1)

with �ūi−1/2, j = ūi j − ūi−1, j , r
L
x = �ūi+1/2, j

�ūi−1/2, j
, and r Rx = �ūi+1/2, j

�ūi+3/2, j
. Here, φ(r) is a lim-

iting function and satisfies the symmetric condition φ(r) = rφ(1/r), so that we can obtain

uR
i−1/2, j = ūi j − 0.5φ(r Lx )�ūi−1/2, j .
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The cell interface values of Eq. (3.1) may be interpreted as a first-order upwind representation
plus an additional anti-diffusive term.

The Sweby’s TVD zone [29] of a 1D limiting condition is given by

0 ≤ φ(r) ≤ min(2r, 2). (3.2)

Since the extension of (3.2) by dimensional splitting is insufficient to prevent oscillations in
multi-dimensional flow, it needs to be modified and extended with appropriate consideration
of the multidimensional situation. The MLP needs to obtain a monotonic solution in multi-
dimensional space and satisfy the discrete maximum principle:

ūmin
nbd ≤ u ≤ ūmax

nbd , (3.3)

where u is the estimated value at a vertex point, and ūmin
nbd and ū

max
nbd are theminimum andmax-

imum values, respectively, among the neighboring cell-averaged values sharing the vertex.
The vertex point values are then expressed in terms of cell-averaged values and variations
within a cell. A physical property at each vertex is then estimated by summing the monotonic
variations along each coordinate direction, and the MLP condition of (3.3) is applied. To
obtain the TVD regions of multi-dimensional space, a detailed analysis is performed using
one-dimensional limiter functions. We have

0 ≤ φ(r) ≤ min(αr, α). (3.4)

α is themulti-dimensional restriction coefficient that determines the baseline variable limiting
region. From (3.2) to (3.4), one can see that theMLP limiting region is determined depending
on local multi-dimensional flow physics, while TVD provides a fixed limiting region. For
practical reasons, the range of α is in [0, 2]. Because of φ(r) = 0 for r < 0, the limiter
switches to first-order accuracy if r becomes negative. This is the case for any extreme point.

For the third- and higher-order reconstructions, Kim et al. [11] used the local slope β

and a filtering of the unlimited values by the MLP conditions of (3.3) and (3.4). They, also
introduced the MLP function φ(rx ) in the x-direction as

φL(R)(rx ) = max
(
0,min

(
αx , αxrx , β

L(R)
x

))
. (3.5)

Finally we summarized the MLP methods proposed by [32] for 2D compressible flow. The
cell-interface value of u is obtained as follows:

uLi+1/2, j = ūi j + 0.5φL
((

r Lx
)
i j

)
�ūi−1/2, j ,

uR
i−1/2, j = ūi j − 0.5φR

((
r Rx

)
i j

)
�ūi+1/2, j ,

(3.6)

where the MLP limiter functions, φ(·), are shown as

φL
((

r Lx
)
i j

)
= max

(
0,min(αx )i j , (αx )i j

(
r Lx

)
i j

,
(
βL
x

)
i j

)
,

φR
((

r Rx
)
i j

)
= max

(
0,min(αx )i j , (αx )i j

(
r Rx

)
i j

,
(
βR
x

)
i j

)
,

(3.7)

where
(
αL
x

)
i j = (αx )i j ,

(
αR
x

)
i j = (αx )i j ,

(
r Lx

)
i j

= (rx )i j , and
(
r Rx

)
i j

= 1/(rx )i j . The

(αx )i j is defined by

(αx )i j =
∣∣∣∣ 2max{1, (rx )i j }
{1 + (rxy)i j }�ūi+1/2, j

∣∣∣∣min

[∣∣∣∣ūmax
κx ,κy

− ūi j

∣∣∣∣,
∣∣∣∣ūmin

κ ′
x ,κ

′
y
− ūi j

∣∣∣∣
]

, (3.8)
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Table 1 Convergence order

Order of accuracy 3 5

(
βL
x

)
i j

(
1 + 2(rx )i j

)
/3 (−2/(rx )i−1, j + 11 + 24(rx )i j − 3(rx )i j (rx )i+1, j )/30

(
βR
x

)
i j

(
1 + 2

(
r Rx

)
i j

)
/3

(
−2/

(
r Rx

)
i+1, j

+ 11 + 24
(
r Rx

)
i j

− 3
(
r Rx

)
i j

(
r Rx

)
i−1, j

)
/30

where (rx )i j = �ūi+1/2, j

�ūi−1/2, j
, (rxy)i j =

�ū y
i, j+κy/2

�ūxi+κx/2, j
and

ūmin
κ ′
x ,κ

′
y

= min(ūi j , ūi+κ ′
x , j , ūi, j+κ ′

y
, ūi+κ ′

x , j+κ ′
y
),

ūmax
κx ,κy

= max(ūi j , ūi+κx , j , ūi, j+κy , ūi+κx , j+κy ).
(3.9)

Here, the cell-averaged values �ūxi+κx/2, j
and �ū y

i, j+κy/2
are expressed as

�ūxi+κx /2, j = u∗
i+κx/2, j − ūi j ,

�ū y
i, j+κy/2

= u∗
i, j+κy/2 − ūi j ,

(3.10)

where u∗
i+κx/2, j

and u∗
i, j+κy/2

are temporary cell-interface values at (i +κx/2, j) and (i, j +
κy/2), respectively. For the computational efficiency,

rxy ≈
∣∣∣∣ ūi, j+1 − ūi, j−1

ūi+1, j − ūi−1, j

∣∣∣∣
is a reasonable choice and (βL

x )i j and (βR
x )i+1, j are determined by the third- or fifth-

order polynomial interpolations given in Table 1. Numerical fluxes in the y-direction can
be obtained similarly.

4 Central-Upwind with Modified MLP

In the MUSCL-type linear reconstruction, local extrema occur at the vertex, and thus, only
the vertex value is limited by the MLP condition. By considering all the neighboring cells
sharing a vertex, the range of the multi-dimensional slope limiter can be obtained. From the
basic premise of the MLP, the limiting condition in multi-dimensional space is satisfied by

ūmin
κx ,κy

≤ ui+κx/2, j+κy/2 ≤ ūmax
κx ,κy

, (4.1)

where ui+κx/2, j+κy/2 is a vertex point value. Indeed, the limiting condition, (4.1), is applied to
the four vertex points (i + κx/2, j + κy/2), κx , κy = ±1. ūmin

κx ,κy
and ūmax

κx ,κy
are, respectively,

theminimumandmaximumcell-averaged values around the vertex point (i+κx/2, j+κy/2).
The vertex point value is calculated by the cell-averaged value and variations within a cell:

ui+κx/2, j+κy/2 = ūi j + �uxi+κx/2, j + �uy
i, j+κy/2

. (4.2)

The variations (3.10) combined with MLP condition (3.4) can be defined by

�uxi+κx /2, j = 0.5κxφ(rx )�ūi−1/2, j ,

�uy
i, j+κy/2

= 0.5κyφ(ry)�ūi, j−1/2.
(4.3)
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Fig. 1 Main concept of the MLP: in general, applying 1D TVD-limiting with dimensional splitting doesn’t
guarantee theTVDproperty along the diagonal direction.a Initial profile.bTVD-limiting along the x-direction.
c TVD-limiting along the y-direction. d TVD-limiting along the xy-direction. e Appropriate choices of αx , αy
to satisfy the maximum principle

Using variations and employing the TVD-MUSCL limiting, we obtain (4.4) from (4.2),

ui+κx/2, j+κy/2 = ūi j + 0.5κxφ(rx )�ūi−1/2, j + 0.5κyφ(ry)�ūi, j−1/2. (4.4)

Since the vertex point values of (4.4) do not satisfy the limiting condition of (4.1) at all
vertex points, we need to restrict the range of the limiter function φ for the TVD regions. In
the limiter function in (4.4) and (3.5), if the parameters αx and αy , respectively, are taken
as 2, the 1D TVD property could be satisfied; however, it is not guaranteed that the TVD
property in 2D space would be satisfied (see Fig.1). As a result, to control φ(rx ) and φ(ry) to
satisfy the multi-dimensional limiting condition of the MLP, we have to suitably determine
the parameters αx and αy . In [32], Yoon et al. introduced the single values of parameters
αx and αy . Later, Gerlinger suggested the different parameter values for both coordinate
directions in [4] to satisfy the maximum property (4.1), to avoid local extrema at the corner
points of a volume, and to prevent excessive numerical dissipation. The parameters αx and
αy , however, are smaller than those required by theMLP condition, and the numerical results
are more dissipative than necessary near discontinuities. In contrast to previous parameters,
the maximized αx and αy are introduced here to reduce the dissipation near discontinuities
by modifying the limiting condition.

For the variable-limiting regions, it is necessary to select appropriate values of the para-
meters α and β in the limiter function to prevent overestimating the features that disturb
TVD. For the purpose of computational efficiency in choosing the αx and αy , we attempt to
lessen the corresponding computational effort through the use of several propositions.

Proposition 4.1 Whenever rxy < 0 in (3.8), (4.1) is satisfied automatically.

Proof Without loss of generality, we may assume that

�uxi+κx/2, j > 0 and �uy
i, j+κy/2

≤ 0.
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Then we have

ūi j + �uy
i, j+κy/2

≤ ui+κx/2, j+κy/2

= ūi j + �uxi+κx/2, j + �uy
i, j+κy/2

≤ ūi j + �uxi+κx /2, j .

Since the variations �uxi+κx/2, j
,�uy

i, j+κy/2
are derived by the 1D TVD limiter,

ūi, j+κy ≤ ūi j + �uy
i, j+κy/2

,

ūi j + �uxi+κx/2, j ≤ ūi+κx , j .

Therefore,

ūmin
κx ,κy

≤ ūi, j+κy ≤ ui+κx/2, j+κy/2 ≤ ūi+κx , j ≤ ūmax
κx ,κy

.

�	
Proposition 4.2 When �uxi+κx/2, j

> 0 (≤ 0) and �uy
i, j+κy/2

> 0 (≤ 0) (i.e., max(min)
vertex), the left(right) inequality in (4.1) is satisfied.

Proof

ūmin
κx ,κy

≤ ūi j ≤ ūi j + �uxi+κx/2, j + �uy
i, j+κy/2

= ui+κx/2, j+κy/2.

�	
Since vertex point values other than the maximum and minimum satisfy (4.1), it is enough

to show the following:

ui+κx/2, j+κy/2 ≤ max(ūi, j , ūi+κx , j , ūi, j+κy , ūi+κx , j+κy )

when ui+κx/2, j+κy/2 is a maximum vertex,
(4.5)

min(ūi, j , ūi+κ ′
x , j , ūi, j+κ ′

y
, ūi+κ ′

x , j+κ ′
y
) ≤ ui+κ ′

x/2, j+κ ′
y/2

when ui+κ ′
x/2, j+κ ′

y/2 is a minimum vertex,
(4.6)

for (4.4) and Yoon et al. computed parameters αx , αy satisfying (4.5) and (4.6) in [32].
We now introduce the relieved maximum property to a simple modification of the original

maximum property to control the contributions of the MLP parameters αx and αy , which
require the MLP condition and reduce the dissipation near discontinuities. We construct the
new MLP parameters from the relieved maximum property,

ūi j − c ≤ ui+κx/2, j+κy/2 ≤ ūi j + c (4.7)

with c = 1
2 (ū

max
κx ,κy

− ūmin
κ ′
x ,κ

′
y
). In order to determine the parameters αx and αy that satisfy

(4.7), we have the following equation using (4.4):

ūi j − c ≤ ūi j + �uxi+κx /2, j + �uy
i, j+κy/2

≤ ūi j + c. (4.8)

We obtain ∣∣∣∣(1 + rxy)�uxi+κx /2, j

∣∣∣∣ ≤ c (4.9)
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with rxy =
�uy

i, j+κy/2

�uxi+κx/2, j
. We now assume that ui+κx , j+κy is the maximum vertex, rxy > 0

and �uxi+κx/2, j
> 0. By the definition of the deviation term, we have

∣∣∣κx
2

φ(rx )�ūi−1/2, j

∣∣∣ ≤ c

1 + rxy

and

max(0,min(αx , αxrx )) ≤ 2c

κx (1 + rxy)�ūi−1/2, j
.

We may assume that r Lx > 0, so we have

αx min(1, r Lx ) ≤
∣∣∣∣ 2c

κx (1 + rxy)�ūi−1/2, j

∣∣∣∣ .

Thus we obtain

αx ≤
∣∣∣∣∣
2cmax

(
1, 1/r Lx

)
(1 + rxy)�ūi−1/2, j

∣∣∣∣∣
=

∣∣∣∣∣
2cmax

(
1, 1/r Lx

)
r Lx

(1 + rxy)�ūi−1/2, j r Lx

∣∣∣∣∣
=

∣∣∣∣
2cmax

(
1, r Lx

)
(1 + rxy)�ūi+1/2, j

∣∣∣∣

(4.10)

with c = 1
2 (ū

max
κx ,κy

− ūmin
κ ′
x ,κ

′
y
). In the case where ui+κx/2, j+κy/2 is a minimum, by the sym-

metry of (4.9), it is easy to check whether (4.10) is derived. It is a simple observation that
ui−κx/2, j−κy/2 is a minimum if ui+κx/2, j+κy/2 is a maximum facilitate vertex. Choosing the
maximum αx , finally, we have

αx =
∣∣∣∣∣∣

(
ūmax

κx ,κy
− ūmin−κx ,−κy

)
max

(
1, r Lx

)
(1 + rxy)�ūi+1/2, j

∣∣∣∣∣∣ .

To summarize the overall process, the formulae used to implement CU-MLP are presented
as the following Algorithm 1:

5 Numerical Results

In this section, we present numerical results of the central-upwind scheme with a modified
MLP limiter.We examine the numerical performance of the proposed scheme. The numerical
presentation of this section starts with the solution of the 2-dimensional advection equation,
followed by the solution of burgers’ equation and 2DEuler system of equationswith Riemann
initial-value problems. First, we apply our schemes to the scalar 2 D advection equation with
appropriate initial conditions to test the propagation of arbitrary initial profiles containing
jump discontinuities and corner points.
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Algorithm 1 Evaluation the cell-interface values with MLP
κx = sign(�ui−1/2, j ), κy = sign(�ui, j−1/2)

rxy =
∣∣∣∣∣
ūi, j+1 − ūi, j−1

ūi+1, j − ūi−1, j

∣∣∣∣∣ , ryx = 1
rxy

=
∣∣∣∣∣
ūi+1, j − ūi−1, j

ūi, j+1 − ūi, j−1

∣∣∣∣∣

(αx )i j = max

⎛
⎝1, min

⎛
⎝

∣∣∣∣∣∣

(
umax
κx ,κy − umin−κx ,−κy

)
max(1, (rx )i j )

(1 + rxy)�ūi+1/2, j

∣∣∣∣∣∣ , 2

⎞
⎠

⎞
⎠ if (rx )i j > 0, (4.11)

(αy)i j = max

⎛
⎝1, min

⎛
⎝

∣∣∣∣∣∣

(
umax
κx ,κy − umin−κx ,−κy

)
max(1, (ry)i j )

(1 + ryx )�ūi, j+1/2

∣∣∣∣∣∣ , 2

⎞
⎠

⎞
⎠ if (ry)i j > 0, (4.12)

Finally, we have the CU-MLP algorithm as following :
Step1 : Construct the piecewise linear approximation

uLi+1/2, j = ūi j + 0.5φL
((

r Lx
)
i j

)
�ūi−1/2, j

uRi−1/2, j = ūi j − 0.5φR
((

r Rx
)
i j

)
�ūi+1/2, j

uLi, j+1/2 = ūi j + 0.5φL
((

r Ly
)
i j

)
�ūi, j−1/2

uRi, j−1/2 = ūi j − 0.5φR
((

r Ry
)
i j

)
�ūi, j+1/2

(4.13)

with

φL
((

r Lx
)
i j

)
= max

(
0,min(αx )i j , (αx )i j

(
r Lx

)
i j

,
(
βL
x

)
i j

)
,

φR
((

r Rx
)
i j

)
= max

(
0,min(αx )i j , (αx )i j

(
r Rx

)
i j

,
(
βR
x

)
i j

)
.

Step2 : Substitute (4.13) to (2.6) and (2.7).

5.1 Linear Advection Equation

We apply the CU-MLP schemes to the scalar advection equation with a discontinuous initial
condition to compare the behavior of the proposed schemes at discontinuities. We consider
the follow the linear advection equation,

qt + qx + qy = 0, (x, y) ∈ [0, 1] × [0, 1], (5.1)

with the initial condition,

q(x, y, 0) = q0(x, y) =
{
1, (x, y) ∈ Q
0.1, (x, y) ∈ Qc (5.2)

where Q = [0.25, 0.75] × [0.25, 0.75]. We solve the Eq. (5.1) up to t = 2 to investigate
the stability and the amount of smearing at discontinuities of the proposed scheme. The
computational results are shown in Fig. 2. We can see that discontinuities smear less for
CU-MLP than for CU-KNP.
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Fig. 2 CU-KNP (a, c) and CU-MLP (b, d) with �x = �y = 1/100 at t = 4

5.2 Burger’s Equation

We approximate solutions to the inviscid Burgers’ equation

qt +
(
q2

2

)
x

+
(
q2

2

)
y

= 0, (x, y) ∈ [0, 1] × [0, 1], (5.3)

with the initial condition where Q = [0.1, 0.6] × [0.1, 0.6]. Figure 3 shows the solutions at
time t = 2. The CU-KNP schemes smear the shock slightly more than the proposed CU-MLP
schemes.

5.3 2D Euler System of Equations for Compressible Flow

In this subsection,we test the proposed scheme by applying to 2D compressible Euler systems
of the below form:

qt + f (q)x + g(q)y = 0, (5.4)

where

q = (ρ, ρu, ρv, E)T ,

f (q) = (ρu, ρu2 + p, ρuv, u(E + p))T ,
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Fig. 3 2D Burgers’ CU-KNP (left) and CU-MLP(right) with �x = �y = 1/100 at t = 4

g(q) = (ρv, ρvu, ρv2 + p, v(E + p))T ,

p = (γ − 1)

(
E − 1

2
ρ(u2 + v2)

)
.

Here, ρ, u, v, p, and E are the density, components of velocity in the x and y coordinate
directions, pressure and total energy, respectively. q is the vector of conservative variables,
f (q) the x-wise-flux component, and g(q) the y-wise-flux component.

Example 5.1 (2D Problem for 2D Euler-four-shocks)We consider numerical solutions of the
2D Riemann problems originally defined in [26]. This problem is solved on a square domain
given by [0, 1] × [0, 1], which is divided into four quadrants by lines x = 0.8 and y = 0.8.
We take the initial condition to be constant states in each of the four quadrants and compute
this initial data up to time t = 0.8. The Riemann problems are defined by initial constant
states in each quadrant:

(ρ, u, v, p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1.5, 0, 0, 1.5) if 0.8 ≤ x ≤ 1, 0.8 ≤ y ≤ 1,

(0.5323, 1.206, 0, 0.3) if 0 ≤ x < 0.8, 0.8 ≤ y ≤ 1,

(0.138, 1.206, 1.206, 0.029) if 0 ≤ x < 0.8, 0 ≤ y < 0.8,

(0.5323, 0, 1.206, 0.3) if 0.8 < x ≤ 1, 0 ≤ y < 0.8.

We set the gas constant to γ = 1.4. To the best of our knowledge, the exact solution has
not yet been elucidated for this 2D problem. We compare the numerical performance of
the CU-KNP scheme with that of the proposed scheme in Fig. 4. An examination of the
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Fig. 4 2D Problem for 2D Euler-four-shock. a CU-KNP and b CU-MLP with �x = �y = 1/400 and c
CU-KNP and d CU-MLP with �x = �y = 1/800 at t = 0.8

results reveals that the proposed scheme displays a better resolution of the structure than that
appearing in the CU-KNP scheme.

Example 5.2 (Two-dimensional Rayleigh–Taylor instability) Taylor instability in 2D incom-
pressible fluids occurs on an interface between two fluids of different densities, where the
lighter fluid is pushing the heavier fluid. Several experimental investigations of this phe-
nomenon have been reported extensively in the literature (e.g. [5] and [33]). This problem
is solved on a computational domain given by [0, 0.25] × [0, 1], with the following initial
conditions:

(ρ, u, v, p) =
{

(2, 0,−0.025a cos(8πx), 2y + 1) if 0 ≤ y < 0.5,(
1, 0,−0.025a cos(8πx), y + 3

2

)
if 0.5 ≤ y < 1.

Here, a = √
γ p/ρ and γ = 5/3 are the speed of sound and the ratio of specific heats,

respectively. Adding ρ and ρv to the right-hand sides of the third and fourth equations,
respectively, allows modeling of the gravitational effect. Reflective boundary conditions are
applied to the left and right boundaries, and
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Fig. 5 Density profiles of Rayleigh–Taylor instability. a CU-KNP and b CU-MLP with �x = �y = 1/240
and c CU-KNP and d CU-MLP with �x = �y = 1/480 at t = 1.95
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Fig. 6 Density profiles of the Double-Mach reflection of a strong shock [31] at t = 0.2 with �x = �y =
1/480 (top CU-KNP, bottom CU-MLP)

(ρ, u, v, p) =
{

(2, 0, 0, 2.5) top boundary,

(1, 0, 0, 1) bottom boundary.

The simulation time is t = 1.95. From the density contours with �x = �y = 1/480
plotted in Fig. 5, it can be seen that the proposed scheme obtains more complex structures
than the CU-KNP schemes.

Example 5.3 (Double-Mach reflection of a strong shock) The considered test case is the
two-dimensional Double-Mach reflection of a shock-off of an oblique surface, which is also
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Fig. 7 Contour plots of density profile of a Mach 3 wind tunnel with a step at t = 4 with �x = �y =
1/240 (top CU-KNP, bottom CU-MLP)

a very popular test case for high resolution schemes [31]. The whole computational domain
is given by [0, 4] × [0, 1], with equally spaced grid points. Initially, a right-moving shock
with Mach number 10 is located at the bottom of the computational domain of the x-axis at
x = 1

6 , inclined at a 60◦ angle with respect to the x-axis. A reflective boundary condition
is applied along the bottom wall, and the top boundary of the problem is set to describe
the exact motion of the Mach 10 shock. See [31] for a detailed description of this problem.
We display the results in the [0, 3] × [0, 1] domain, as is customary. Figure 6 shows the
details at the Mach stem of the density variable at the final time, t = 0.2, with γ = 1.4 and
�x = �y = 1/480. We can clearly see that the proposed scheme resolves the instabilities
around the Mach stem.

Example 5.4 (AMach 3 wind tunnel with a step) This 2Dmodel problemwas first presented
by Woodward and Collella [31]. This test begins with uniform Mach 3 flow in a wind tunnel
that spans a domain of [0, 3] × [0, 1]. A forward-facing step is located at (0.6, 0.2). Inflow
boundary conditions are applied at the left boundary, where the flow enters the wind tunnel
at a right-going Mach 3 with a density of 1.4 and a pressure of unity. Reflective boundary
conditions are applied along the walls of the tunnel. Inflow and outflow boundary conditions
are applied at the left and right boundaries, respectively. The simulation is run until a time
of 4, and the ratio of specific heats is given by 1.4. For the treatment of the singularity at the
corner of the step, we adopt the same technique used in [31]. The results of the proposed
scheme are compared with those obtained by the central-upwind scheme with a KNP flux
function. We solve it with �x = �y = 1/240. We display the density profiles obtained by
these two schemes in Fig. 7.
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6 Conclusion

In this paper, a central-upwind methods with a modified multi-dimensional limiting process
(CU-MLP) has been introduced for the approximate solutions of 2D hyperbolic conser-
vation laws. Even though central-upwind schemes have the advantage of simplicity while
being Riemann-free with second order accuracy they have slighter larger dissipations than
second-order upwind schemes. To overcome this drawback, we apply the MLP limiter to the
central-upwind scheme and obtain excellent performances in all test cases. Compared to the
originalMLP parameter, α, themodifiedMLP parameter for central-upwindmethods sharply
resolves discontinuitieswhilemaintaining its non-oscillatory performance. The improvement
is attributed to the ability of the proposed scheme to detect complicated solution structures.

Acknowledgments Youngsoo Ha and Chang Ho Kim were supported by National R&D Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Sci-
ence and Technology (NRF-2014M1A7A1A03029872), also Youngsoo Ha was supported by the National
Research Foundation of Korea (NRF) (NRF-2013R1A1A2013793). Myungjoo Kang was supported by NRF
(2014R1A2A1A10050531, 2015R1A5A1009350) and MOTIE (10048720).

References

1. Bianco, F., Puppo, G., Russo, G.: High order central schemes for hyperbolic systems of conservation
laws. SIAM J. Sci. Comput. 21, 294–322 (1999)

2. Colella, P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87,
171–200 (1990)

3. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7, 345–
392 (1954)

4. Gerlinger, P.: Multi-dimensional limiting for high-order schemes including turbulence and combustion.
J. Comput. Phys. 231, 2199–2228 (2012)

5. Glimm, J., Grove, J., Li, X., Oh, W., Tan, D.C.: The dynamics of bubble growth for Rayleigh–Taylor
unstable interfaces. Phys. Fluids 31, 447–465 (1988)

6. Godunov, S.K.: A finite difference method for the numerical computation of discontinuous solutions of
the equations of fluid dynamics. Mat. Sb. 47, 271–290 (1959). in Russian

7. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-
oscillatory schemes. J. Comput. Phys. 71, 231–303 (1987)

8. Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228
(1996)

9. Jiang, G.S., Tadmor, E.: Non-oscillatory central schemes for multidimensional hyperbolic conservation
laws. SIAM J. Sci. Comput. 19, 1892–1917 (1998)

10. Kang, H.M., Kim, K.H., Lee, D.H.: A new approach of a limiting process for mult-dimesnional flows. J.
Comput. Phys. 229, 7102–7128 (2010)

11. Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimenional com-
pressible flows. Part II: Multi-dimensional limiting process. J. Comput. Phys. 208, 570–615 (2005)

12. Kim, S., Lee, S., Kim, K.H.: Wavenumber-extended high-order oscillation control finite volume schemes
for multi-dimensional aeroacoustic simulations. J. Comput. Phys. 227, 4089–4122 (2008)

13. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation
laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

14. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and
convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

15. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun.
Pure Appl. Math. 7, 159–193 (1954)

16. Leer, B.V.: Towards the ultimate conservative difference scheme V: a second-order sequel to Godunov’s
method. J. Comput. Phys. 32, 101–136 (1979)

17. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws.
Math. Model. Numer. Anal. 33, 547–571 (1999)

123



J Sci Comput (2016) 69:274–291 291

18. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation
laws. SIAM J. Sci. Comput. 22, 656–672 (2000)

19. Levy, D., Puppo, G., Russo, G.: A third order central WENO scheme for 2D conservation laws. Appl.
Numer. Math. 33, 415–421 (2000)

20. Levy, D., Puppo, G., Russo, G.: A fourth-order central WENO scheme for multidimensional hyperbolic
systems of conservation laws. SIAM J. Sci. Comput. 24, 480–506 (2002)

21. Liu, X.D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock
capturing schemes I. SIAM J. Numer. Anal. 33, 760–779 (1996)

22. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 15, 200–
212 (1994)

23. Liu, X.-D., Tadmor, E.: Third order nonoscillatory central scheme for hyperbolic conservation laws.
Numer. Math. 79, 397–425 (1998)

24. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Com-
put. Phys. 87, 408–463 (1990)

25. Qiu, J., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order
central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

26. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-
dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414 (1993)

27. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes.
J. Comput. Phys. 77, 439–471 (1988)

28. Sidikover, D.: Multidimensional upwinding and multigrid. AIAA Pap. 95, 1759 (1995)
29. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J.

Numer. Anal. 21, 995–1011 (1984)
30. van Ransbeeck, P., Hirsch, C.: New upwind dissipation models with a multidimensional approach. AIAA

Pap. 92, 0436 (1992)
31. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks.

J. Comput. Phys. 54, 115–173 (1984)
32. Yoon, S.H., Kim, C., Kim, K.H.: Multi-dimensional limiting process for three-dimensional flow physics

analyses. J. Comput. Phys. 227, 6001–6043 (2008)
33. Young, Y.-N., Tufo, H., Dubey, A., Rosner, R.: On the miscible Rayleigh–Taylor instability: two and three

dimensions. J. Fluid Mech. 447, 377–408 (2001)

123


	Application of a Multi-dimensional Limiting Process to Central-Upwind Schemes for Solving Hyperbolic Systems of Conservation Laws
	Abstract
	1 Introduction
	2 Review of the Central-Upwind Schemes in 2-D
	3 Multidimensional Limiting Process
	4 Central-Upwind with Modified MLP
	5 Numerical Results
	5.1 Linear Advection Equation
	5.2 Burger's Equation
	5.3 2D Euler System of Equations for Compressible Flow

	6 Conclusion
	Acknowledgments
	References




