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Abstract We consider conforming finite element approximations for the time-dependent
Oberbeck–Boussinesq model with inf-sup stable pairs for velocity and pressure and use
a stabilization of the incompressibility constraint. In case of dominant convection, a local
projection stabilization method in streamline direction is considered both for velocity and
temperature. For the arising nonlinear semi-discrete problem, a stability and convergence
analysis is given that does not rely on a mesh width restriction. Numerical experiments
validate a suitable parameter choice within the bounds of the theoretical results.
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1 Introduction

In this paper, we consider non-isothermal incompressible flow using the Oberbeck–
Boussinesq approximation [1,2]. This model is applicable if only small temperature
differences occur and hence, the density is constant. The equations read:
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∂tu − νΔu + (u · ∇)u + ∇ p + βθ g = f u in (0, T ) × Ω,

∇ · u = 0 in (0, T ) × Ω,

∂tθ − αΔθ + (u · ∇)θ = fθ in (0, T ) × Ω (1)

together with initial and boundary conditions in a domainΩ ⊂ R
d , d ∈ {2, 3}, with boundary

∂Ω . Here u : [0, T ] × Ω → R
d , p : [0, T ] × Ω → R and θ : [0, T ] × Ω → R denote

the unknown velocity, pressure and temperature fields for given viscosity ν > 0, thermal
diffusivity α > 0, thermal expansion coefficient β > 0, external forces f u , fθ , gravitation
g.

Discretizations using finite elementmethods (FEM) often suffer from spurious oscillations
in the numerical solution that arise for example due to dominating convection, internal shear
or near boundary layers or poor mass conservation.

The so-called grad-div stabilization is an additional element-wise stabilization of the
divergence constraint. It enhances the discrete mass conservation and reduces the effect of
the pressure error on the velocity error (cf. [3,4]). It plays an important role for robustness.

A common way for dealing with oscillations due to dominating convection is the use of
residual-based stabilization methods [5–7]. The idea is to add consistent stabilization terms
to the variational formulation in the sense that the additional terms vanish for the exact strong
solution. In particular, they penalize the residual of the differential equation. The bulk of non-
symmetric form of the stabilization terms and the occurrence of second order derivatives in
the residual are drawbacks regarding the efficiency of this method.

That is the reason why we consider another approach here. Local projection based stabi-
lization (LPS) methods rely on the idea to separate the discrete function spaces into small
resolved and large resolved scales and to add stabilization terms only on the small scales.
In [8], LPS methods are analyzed for the stationary Oseen problem, where an additional
compatibility condition between the approximation and projection velocity ansatz spaces is
assumed. Thus, stability and error bounds of optimal order can be established. Furthermore,
suitable simplicial and quadrilateral ansatz spaces are suggested that fulfill the compatibil-
ity condition. In the paper [9], the authors provide an overview regarding stabilized FEM
for the Oseen problem, in particular for local projection stabilization (LPS) methods using
inf-sup stable pairs. The unified representation gives an overview over suitable ansatz spaces
including parameter design.

In [10] and [11], conforming finite element approximations of the time-dependent Oseen
and Navier–Stokes problems with inf-sup stable approximation of velocity and pressure are
considered. For handling the case of high Reynolds numbers, local projection with streamline
upwinding (LPS SU) and grad-div stabilizations are applied and stability and convergence
are shown. For general LPS variants, a local restriction of themesh width is required to obtain
methods of (quasi-)optimal order; this can be circumvented by using the compatibility con-
dition from [8]. The positive effect of additional element-wise stabilization of the divergence
constraint becomes apparent in the analysis as well as in the numerical experiments. Recent
results from [12] for the time-dependent Oseen problem reinforce the benefits and stabilizing
effects of grad-div stabilization for inf-sup stable mixed finite elements. The authors show
that the Galerkin approximations can be stabilized by adding only grad-div stabilization.

Early numerical analysis for thermally coupled flow can be found in [13–15]. In [16,
17], subgrid-scale modeling for turbulent temperature dependent flow is considered. Since
local projection and grad-div stabilization have proven useful for a large range of critical
parameters, we want to apply them to the Oberbeck–Boussinesq model (1) and assess their
performance.
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This paper is structured as follows:
In Sect. 2, we introduce a finite element semi-discretization for the Oberbeck–Boussinesq

model with grad-div and LPS SU stabilization and prove stability in Sect. 3.
We extend the convergence analysis without compatibility condition from [10] for the

Oseen problem and [11] for the Navier–Stokes equations to the thermally coupled setting in
Sect. 4. Here, we can circumvent a restriction of the mesh width. The estimates rely on the
discrete inf-sup stability of the velocity and pressure ansatz spaces and the existence of a
local interpolation operator preserving the divergence as well as on relatively mild regularity
assumptions for the continuous solutions. The convective terms are treated carefully in order
to circumvent an exponential deterioration of the error in the limit of vanishing diffusion.
Furthermore, a pressure estimate is given using the discrete inf-sup stability. The applicability
of the proposed methods to possible finite element settings is discussed and the design of
stabilization parameters is studied.

The subsequent Sect. 5 is devoted to the numerical simulation of incompressible non-
isothermal flow. First, we present the time-discretization of the model and state some
analytical results. We use a method called pressure-correction projection method, which
incorporates a backward differentiation formula of second order. We validate the theoreti-
cal convergence results with respect to the mesh width and study the influence of grad-div
and LPS stabilization on the errors for the parameter range suggested by the analysis. As a
more realistic flow, Rayleigh–Bénard convection is considered. The stabilization variants are
applied and their performance evaluated via suitable benchmarks.

2 The Discretized Oberbeck–Boussinesq Problem

In this section, we describe the model problem and the spatial semi-discretization based on
inf-sup stable interpolation of velocity and pressure together with grad-div and LPS of the
velocity and temperature gradients in streamline direction.

2.1 The Oberbeck–Boussinesq Model

Let Ω ⊂ R
d , d ∈ {2, 3}, be a bounded polyhedral Lipschitz domain with boundary ∂Ω .

For simplicity, we consider homogeneous Dirichlet boundary conditions for velocity and
temperature.

In the following, we consider Sobolev spaces Wm,p(Ω) with norm ‖ · ‖Wm,p(Ω), m ∈
N0, p ≥ 1. In particular, we have L p(Ω) = W 0,p(Ω). For K ⊆ Ω , we will write

‖u‖0 := ‖u‖L2(Ω), ‖u‖0,K := ‖u‖L2(K ),

‖u‖∞ := ‖u‖L∞(Ω), ‖u‖∞,K := ‖u‖L∞(K ).

Moreover, the closed subspacesW 1,2
0 (Ω), consisting of functions inW 1,2(Ω)with zero trace

on ∂Ω , and L2
0(Ω), consisting of L2-functions with zero mean in Ω , will be used. The inner

product in L2(K ) will be denoted by (·, ·)K . In case of K = Ω , we omit the index. With
this, we define suitable function spaces:

V := [W 1,2
0 (Ω)]d , Q := L2

0(Ω), Θ := W 1,2
0 (Ω).

The variational formulation of (1) for fixed time t ∈ (0, T ) reads:
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Find (u(t), p(t), θ(t)) ∈ V × Q × Θ such that it holds for all (v, q, ψ) ∈ V × Q × Θ

(∂tu(t), v) + (ν∇u(t),∇v) + cu(u(t); u(t), v)

− (p(t),∇ · v) + (βθ(t)g, v) = ( f u(t), v), (2)

(∇ · u(t), q) = 0,

(∂tθ(t), ψ) + (α∇θ(t),∇ψ) + cθ (u(t); θ(t), ψ) = ( fθ (t), ψ) (3)

with

cu(w; u, v) := 1

2
[((w · ∇)u, v) − ((w · ∇)v, u)] ,

cθ (w; θ, ψ) := 1

2
[((w · ∇)θ, ψ) − ((w · ∇)ψ, θ)] .

The skew-symmetric forms of the convective term cu and cθ are chosen for conservation
purposes. The forces are required to satisfy f u ∈ L2(0, T ; [L2(Ω)]d)∩C(0, T ; [L2(Ω)]d),
fθ ∈ L2(0, T ; L2(Ω))∩C(0, T ; L2(Ω)) and g ∈ L∞(0, T ; [L∞(Ω)]d) and the initial data
is assumed to fulfill u0 ∈ [L2(Ω)]d , θ0 ∈ L2(Ω). In this paper, we will additionally assume
u ∈ L∞(0, T ; [W 1,∞(Ω)]d) and θ ∈ L∞(0, T ;W 1,∞(Ω)) which ensures uniqueness of
the solution.

2.2 The Stabilized Semi-Discrete Model

For the discretization in space, FEM are applied. For the Galerkin formulation of (2), (3),
we approximate the solution spaces V , Q, Θ by finite dimensional conforming subspaces
V h ⊂ V , Qh ⊂ Q, Θh ⊂ Θ . We impose a discrete inf-sup condition for V h and Qh

throughout this paper: Let V h ⊂ V and Qh ⊂ Q be FE spaces satisfying a discrete inf-sup-
condition

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

(∇ · vh, qh)

‖∇vh‖0‖qh‖0 ≥ βd > 0 (4)

with a constant βd independent of h.
In particular, due to the closed range theorem, the set of weakly solenoidal functions

V div
h := {vh ∈ V h | (qh,∇ · vh) = 0 ∀ qh ∈ Qh} (5)

does not only consist of the zero-function.
The semi-discrete Galerkin solution of problem (2), (3) may suffer from spurious oscilla-

tions due to poormass conservation and/or dominating advection. The idea of LPSmethods is
to separate discrete function spaces into small and large scales and to add stabilization terms
only on small scales. The grad-div stabilization is an additional element-wise stabilization
of the divergence constraint and enhances the discrete mass conservation.

Let {Th}, {Mh}, {Lh} be admissible and shape-regular families of non-overlapping trian-
gulations. {Mh} and {Lh} denote macro decompositions of Ω for velocity and temperature,
which represent the coarse scales in velocity and temperature. In the two-level approach, the
large scales are defined by using a coarse mesh. The coarse mesh Mh is constructed such
that each macro-element M ∈ Mh is the union of one or more neighboring elements T ∈ Th .
In the one-level LPS-approach, the coarse scales can be represented via a lower order finite
elements space on Th . Another way is to enrich the fine spaces. We can use the same abstract
framework by setting Mh = Th . Lh is constructed analogously for the temperature.
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There is nTh < ∞ such that all M and L are formed as a conjunction of at most nTh cells
T ∈ Th . Denote by hT , hM and hL the diameters of cells T ∈ Th , M ∈ Mh and L ∈ Lh ,
respectively. In addition, we require that there are constants C1, C2 > 0 such that

hT ≤ hM ≤ C1hT , hT ≤ hL ≤ C2hT ∀ T ⊂ M, T ⊂ L , M ∈ Mh, L ∈ Lh .

We denote by Yu
h , Y θ

h ⊂ H1(Ω) ∩ L∞(Ω) finite element spaces of functions that are con-
tinuous on Th . We consider the conforming finite element spaces

V h = [Yu
h ]d ∩ V , Qh ⊂ Y p

h ∩ Q, Θh = Y θ
h ∩ Θ

for velocity, pressure and temperature, where Y p
h is a finite element space of functions on

Th . Moreover, let Du
Mh

⊂ [L∞(Ω)]d , Dθ
Lh

⊂ L∞(Ω) denote discontinuous finite element
spaces on Mh for uh and on Lh for θh , respectively. We set

Du
M =

{
vh |M : vh ∈ Du

Mh

}
, Dθ

L = {
ψh |L : ψh ∈ Dθ

Lh

}
.

Later, we will write for combinations of finite element spaces

(V h/Du
M ) ∧ Qh ∧ (Θh/D

θ
L).

If no LPS is applied, we omit the respective coarse space in the above notation. For M ∈
Mh and L ∈ Lh , let πu

M : [L2(M)]d → Du
M , πθ

L : L2(L) → Dθ
L be the orthogonal L2-

projections onto the respective macro spaces. The so-called fluctuation operators are defined
by

κu
M : [L2(M)]d → [L2(M)]d , κθ

L : L2(L) → L2(L),

κu
M := I d − πu

M , κθ
L := I d − πθ

L .

For all macro elements M ∈ Mh and L ∈ Lh , we denote the element-wise constant
streamline directions of uh ∈ V h by uM ∈ R

d and uL ∈ R
d . One possible definition is

uM := 1

|M |
∫

M
uh(x) dx, uL := 1

|L|
∫

L
uh(x) dx. (6)

With the introduced notation,we can define the spatially discretizedOberbeck–Boussinesq
model with grad-div and LPS SU stabilization:
Find (uh, ph, θh) : (0, T ) → V h ×Qh ×Θh such that for all (vh, qh, ψh) ∈ V h ×Qh ×Θh :

(∂tuh, vh) + (ν∇uh,∇vh) + cu(uh; uh, vh) − (ph,∇ · vh)

+ (∇ · uh, qh) + (β gθh, vh) + su(uh; uh, vh) + th(uh; uh, vh) = ( f u, vh), (7)

(∂tθh, ψh) + (α∇θh,∇ψh) + cθ (uh; θh, ψh) + sθ (uh; θh, ψh) = ( fθ , ψh) (8)

with the streamline-upwind (SUPG)-type stabilizations su , sθ and the grad-div stabilization
th according to

su(wh; u, v) :=
∑

M∈Mh

τ uM (wM )(κu
M ((wM · ∇)u), κu

M ((wM · ∇)v))M ,

sθ (wh; θ, ψ) :=
∑
L∈Lh

τ θ
L (wL)(κθ

L ((wL · ∇)θ), κθ
L ((wL · ∇)ψ))L ,

th(wh; u, v) :=
∑

M∈Mh

γM (wM )(∇ · u,∇ · v)M
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and non-negative stabilization parameters τ uM , τ θ
L , γM .

Although the grad-div stabilization parameter could be defined element-wise, we here con-
sider it on the macro element level as well for simplicity. As we will see, this does not pose
a major restriction. The set of stabilization parameters τ uM (uh), τ θ

L (uh), γM (uh) has to be
determined later on. Let the initial data be given as suitable interpolations of the continuous
initial values in the respective finite element spaces as

uh(0) = juu0 =: uh,0 ∈ V h ⊂ [L2(Ω)]d , θh(0) = jθ θ0 =: θh,0 ∈ Θh ⊂ L2(Ω),

where ( ju, jθ ) : V × Θ → V h × Θh denote interpolation operators. We remark that for
solenoidal u0, we can find an interpolation operator ju such that uh,0 ∈ V div

h (cf. [18]). We
point out that due to the discrete inf-sup condition, we can search for (uh, ph, θh) : (0, T ) →
V div

h × Qh × Θh in (7), (8) equivalently.

3 Stability Analysis

We address the question regarding the existence of a semi-discrete solution of (7), (8). This
is obtained via a stability result for uh ∈ V div

h and θh ∈ Θh ; it yields control over the kinetic
energy and dissipation. The definition of the mesh-dependent expressions below is motivated
by symmetric testing in (7), (8). For v ∈ V and θ ∈ Θ , we define

|||v|||2LPS := ν‖∇v‖20 + su(uh; v, v) + th(uh; v, v),

|[θ ]|2LPS := α‖∇θ‖20 + sθ (uh; θ, θ),

‖v‖2L2(0,T ;LPS) :=
∫ T

0
|||v(t)|||2LPS dt,

‖θ‖2L2(0,T ;LPS) :=
∫ T

0
|[θ(t)]|2LPS dt.

The following result states the desired stability.

Theorem 1 Assume (uh, ph, θh) ∈ V div
h ×Qh ×Θh is a solution of (7), (8) with initial data

uh,0 ∈ [L2(Ω)]d , θh,0 ∈ L2(Ω). For 0 ≤ t ≤ T , we obtain

‖θh‖L∞(0,t;L2(Ω)) ≤ ‖θh,0‖0 + ‖ fθ‖L1(0,T ;L2(Ω)) =: Cθ (T, θh,0, fθ ),

‖uh‖L∞(0,t;L2(Ω)) ≤ ‖uh,0‖0 + ‖ f u‖L1(0,T ;L2(Ω))

+ β‖g‖L1(0,T ;L∞(Ω))

(‖θh,0‖0 + ‖ fθ‖L1(0,T ;L2(Ω))

)

=: Cu(T, uh,0, θh,0, f u, fθ ),

‖θh‖L2(0,t;LPS) ≤ Cθ (T, θh,0, fθ ),

‖uh‖L2(0,t;LPS) ≤ Cu(T, uh,0, θh,0, f u, fθ ).

Proof Let us start with the first claim for the temperature. Testing with ψh = θh ∈ Θh in (8)
gives

1

2

d

dt
‖θh‖20 + |[θh]|2LPS = (∂tθh, θh) + α‖∇θh‖2 + sθ (uh; θh, θh) = ( fθ , θh). (9)

Due to sθ (uh; θh, θh) ≥ 0, it follows

‖θh‖0 d

dt
‖θh‖0 = 1

2

d

dt
‖θh‖20 ≤ ‖ fθ‖0‖θh‖0 ⇒ d

dt
‖θh‖0 ≤ ‖ fθ‖0.
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Integration in time leads to

‖θh(t)‖0 ≤ ‖θh,0‖0 + ‖ fθ‖L1(0,T ;L2(Ω)) = Cθ (T, θh,0, fθ ). (10)

For the velocity, we test with (uh, 0) ∈ V div
h × Qh in (7)

1

2

d

dt
‖uh‖20 + |||uh |||2LPS

= (∂tuh, uh) + (ν∇uh,∇uh) + su(uh; uh, uh) + th(uh; uh, uh)
= ( f u − β gθh, uh). (11)

We obtain

‖uh‖0 d

dt
‖uh‖0 = 1

2

d

dt
‖uh‖20 ≤ (‖ f u‖0 + β‖g‖∞‖θh‖0) ‖uh‖0.

Hence, d
dt ‖uh‖0 ≤ ‖ f u‖0 + β‖g‖∞‖θh‖0. Integration in time and using stability of the

temperature (10) give:

‖uh(t)‖0 ≤ ‖uh,0‖0 + ‖ f u‖L1(0,t;L2(Ω))

+ β‖g‖L1(0,t;L∞(Ω))‖θh‖L∞(0,t;L2(Ω))

≤ ‖uh,0‖0 + ‖ f u‖L1(0,T ;L2(Ω))

+ β‖g‖L1(0,T ;L∞(Ω))

(‖θh,0‖0 + ‖ fθ‖L1(0,T ;L2(Ω))

)

= Cu(T, uh,0, θh,0, f u, fθ ) (12)

for all t ∈ [0, T ]. In order to estimate the diffusive and stabilization terms, we go back to
(9), integrate in time and apply (10):

∫ t

0
|[θh(τ )]|2LPS dτ ≤

∫ t

0
‖ fθ (τ )‖0‖θh(τ )‖0 dτ + 1

2
‖θh,0‖20

≤ ‖θh‖L∞(0,t;L2(Ω))‖ fθ‖L1(0,t;L2(Ω))

+ 1

2
‖θh,0‖20 ≤ Cθ (T, θh,0, fθ )

2.

The analogous procedure for uh , starting from (11) and using (12), yields:
∫ t

0
|||uh(τ )|||2LPS dτ ≤

∫ t

0
‖ f u(τ ) − β gθh(τ )‖0‖uh(τ )‖0 dτ + 1

2
‖uh,0‖20

≤ ‖uh‖L∞(0,t;L2(Ω))

(‖ f u‖L1(0,t;L2(Ω))

+β‖g‖L1(0,t;L∞(Ω))‖θh‖L∞(0,t;L2(Ω))

)+ 1

2
‖uh,0‖20

≤ Cu(T, uh,0, θh,0, f u, fθ )
2.

��

Remark 1 The discrete inf-sup stability yields a stability estimate of the pressure as well.
The above theorem gives us existence of the semi-discrete quantities due to Carathéodory’s
Existence Theorem. If we assume Lipschitz continuity in time for f u , fθ and g, the Picard-
Lindelöf Theorem yields uniqueness of the solution.
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4 Quasi-Optimal Semi-Discrete Error Estimates

In this section, we derive quasi-optimal error estimates in the finite element setting introduced
above.

For the analysis, we introduce a decomposition of the error into a discretization and a
consistency error. Let ( ju, jp, jθ ) : V × Q × Θ → V h × Qh × Θh denote interpolation
operators. We introduce

ξu,h := u − uh, ξp,h := p − ph, ξθ,h := θ − θh,

ηu,h := u − juu, ηp,h := p − jp p, ηθ,h := θ − jθ θ,

eu,h := juu − uh, ep,h := jp p − ph, eθ,h := jθ θ − θh . (13)

Indeed, the semi-discrete errors are decomposed as ξu,h = ηu,h + eu,h , ξp,h = ηp,h + ep,h
and ξθ,h = ηθ,h + eθ,h .

4.1 Assumptions

For the semi-discrete error analysis, we need the following assumptions for the finite element
spaces and stabilization parameters.

Assumption 1 (Interpolation operators) Assume that for integers ku ≥ 1, kp ≥ 1, kθ ≥ 1,
there are bounded linear interpolation operators ju : V → V h preserving the divergence and
jp : Q → Qh such that for all M ∈ Mh , for all w ∈ V ∩[Wlu ,2(Ω)]d with 1 ≤ lu ≤ ku +1:

‖w − juw‖0,M + hM‖∇(w − juw)‖0,M ≤ ChluM‖w‖Wlu ,2(ωM ) (14)

and for all q ∈ Q ∩ Wlp,2(Ω) with 1 ≤ l p ≤ kp + 1:

‖q − jpq‖0,M + hM‖∇(q − jpq)‖0,M ≤ Ch
lp
M‖q‖Wlp ,2(ωM ) (15)

on a suitable patch ωM ⊇ M . Let for all M ∈ Mh

‖v − juv‖∞,M ≤ ChM |v|W 1,∞(ωM ) ∀v ∈ [W 1,∞(Ω)]d . (16)

There is also a bounded linear interpolation operator jθ : Θ → Θh such that for all L ∈ Lh

and for all ψ ∈ Θ ∩ Wlθ ,2(Ω) with 1 ≤ lθ ≤ kθ + 1:

‖ψ − jθψ‖0,L + hL‖∇(ψ − jθψ)‖0,L ≤ ChlθL ‖ψ‖Wlθ ,2(ωL ) (17)

on a suitable patch ωL ⊇ L . In addition, assume for all L ∈ Lh , M ∈ Mh

‖ψ − jθψ‖∞,L ≤ ChL |ψ |W 1,∞(ωL ) ∀ψ ∈ W 1,∞(Ω),

‖ψ − jθψ‖∞,M ≤ ChM |ψ |W 1,∞(ωM ) ∀ψ ∈ W 1,∞(Ω). (18)

The last property (18) for jθ holds due to the fact that all M ∈ Mh and L ∈ Lh are formed as
a conjunction of at most nTh < ∞ cells T ∈ Th . If the interpolator is constructed such that
the above estimates hold true on all T ∈ Th , the same localized estimates hold on M ∈ Mh

and L ∈ Lh .

Assumption 2 (Local inverse inequality) Let the FE spaces [Y u
h ]d for the velocity and Y θ

h
for the temperature satisfy the local inverse inequalities

‖∇wh‖0,M ≤ Ch−1
M ‖wh‖0,M ∀wh ∈ [Yu

h ]d , M ∈ Mh,

‖∇ψh‖0,L ≤ Ch−1
L ‖ψh‖0,L ∀ψh ∈ Y θ

h , L ∈ Lh .
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Assumption 3 (Properties of the fluctuation operators) Assume that for given integers ku ,
kθ ≥ 1, there are lu ∈ {0, . . . , ku} and lθ ∈ {0, . . . , kθ } such that the fluctuation operators
κu
M = I d − πu

M and κθ
L = I d − πθ

L provide the following approximation properties: There
is C > 0 such that for w ∈ [Wl,2(M)]d with M ∈ Mh , l = 0, . . . , lu and for ψ ∈ Wr,2(L)

with L ∈ Lh , r = 0, . . . , lθ , it holds

‖κu
Mw‖0,M ≤ ChlM‖w‖Wl,2(M), ‖κθ

Lψ‖0,L ≤ ChrL‖ψ‖Wr,2(L).

Note that this is a property of the coarse spaces Du
M and Dθ

L and is always true for lu = lθ = 0.
Furthermore, we need to satisfy some requirements on the stabilization parameters:

Assumption 4 (Parameter bounds) Assume that for all M ∈ Mh and L ∈ Lh :

max
M∈Mh

τ uM (uM )|uM |2 ∈ L∞(0, T ), τ uM (uM ) ≥ 0,

max
M∈Mh

(
γM (uM ) + γM (uM )−1) ∈ L∞(0, T ), γM (uM ) ≥ 0,

max
L∈Lh

τ θ
L (uL)|uL |2 ∈ L∞(0, T ), τ θ

L (uL) ≥ 0.

4.2 Velocity and Temperature Estimates

This gives rise to the following quasi-optimal semi-discrete error estimate for the LPS-model.

Theorem 2 Let (u, p, θ) : [0, T ] → V div×Q×Θ , (uh, ph, θh) : [0, T ] → V div
h ×Qh×Θh

be solutions of (2), (3) and (7), (8) satisfying

u ∈ L∞(0, T ; [W 1,∞(Ω)]d), ∂tu∈ L2(0, T ; [L2(Ω)]d), p ∈ L2(0, T ; Q ∩ C(Ω)),

θ ∈ L∞(0, T ;W 1,∞(Ω)), ∂tθ ∈ L2(0, T ; L2(Ω)), uh ∈ L∞(0, T ; [L∞(Ω)]d).

Let Assumptions 1, 2 and 4 be valid and uh(0) = juu0, θh(0) = jθ θ0. We obtain for
eu,h = juu − uh, eθ,h = jθ θ − θh of the LPS-method (7), (8) for all 0 ≤ t ≤ T :

‖eu,h‖2L∞(0,t;L2(Ω))
+ ‖eθ,h‖2L∞(0,t;L2(Ω))

+
∫ t

0

(|||eu,h(τ )|||2LPS + |[eθ,h(τ )]|2LPS
)
dτ

�
∫ t

0
eCG,h(u,θ,uh)(t−τ)

⎧⎨
⎩
∑

M∈Mh

[
(ν + τ uM |uM |2 + γMd)‖∇ηu,h(τ )‖20,M

+ h−2
M ‖ηu,h(τ )‖20,M + ‖∂tηu,h(τ )‖20,M

+ τ uM |uM |2‖κu
M (∇u)(τ )‖20,M + min

(
d

ν
,

1

γM

)
‖ηp,h(τ )‖20,M

]

+
∑
L∈Lh

[
‖∂tηθ,h(τ )‖20 +

(
h−2
L + β‖g‖∞,L

)
‖ηθ,h(τ )‖20,L

+ (α + τ θ
L |uL |2) ‖∇ηθ,h(τ )‖20,L + τ θ

L |uL |2‖κθ
L(∇θ)(τ )‖20,L

]
⎫⎬
⎭ dτ
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with (ηu,h, ηp,h, ηθ,h) = (u − juu, p − jp p, θ − jθ θ) and the Gronwall constant

CG,h(u, θ, uh) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ |W 1,∞(Ω) + ‖uh‖2∞
+ max

M∈Mh

{
h2M |u|2W 1,∞(M)

}
+ max

M∈Mh

{
h2M
γM

|u|2W 1,∞(M)

}

+ max
M∈Mh

{
γ −1
M ‖u‖2∞,M

}
+ max

M∈Mh

{
h2M |θ |2W 1,∞(M)

}

+ max
M∈Mh

{
h2M
γM

|θ |2W 1,∞(M)

}
+ max

M∈Mh

{
γ −1
M ‖θ‖2∞,M

}
. (19)

Proof We use the interpolation operators ju : V → V h preserving the divergence, jθ : Θ →
Θh and jp : Q → Qh from Assumption 1. Note that juu ∈ V div

h . Subtracting (7) from (2),
testing with (vh, qh) = (eu,h, 0) ∈ V div

h × Qh and using (13) lead to an error equation for
the velocity:

0 = (∂t (u − uh), eu,h) + (ν∇(u − uh),∇eu,h) − (p − ph,∇ · eu,h) + cu(u; u, eu,h)

− cu(uh; uh, eu,h) − su(uh; uh, eu,h) − th(uh; uh, eu,h) + (β g(θ − θh), eu,h)

= (∂tηu,h, eu,h) + (∂t eu,h, eu,h) + (ν∇ηu,h,∇eu,h) + (ν∇eu,h,∇eu,h)

− (ηp,h,∇ · eu,h) + cu(u; u, eu,h) − cu(uh; uh, eu,h) + su(uh; eu,h, eu,h)

+ su(uh; ηu,h, eu,h) − su(uh; u, eu,h) + th(uh; eu,h, eu,h) − th(uh; juu, eu,h)

+ β(geθ,h, eu,h) + β(gηθ,h, eu,h),

where we used (ep,h,∇ · eu,h) = 0 due to eu,h ∈ V div
h . With the definition of ||| · |||LPS and

the fact that (∇ · u, q) = 0 for all q ∈ L2(Ω), this implies

1

2
∂t‖eu,h‖20 + |||eu,h |||2LPS
= −(∂tηu,h, eu,h) − ν(∇ηu,h,∇eu,h) + (ηp,h,∇ · eu,h) + cu(uh; uh, eu,h)

− cu(u; u, eu,h) − su(uh; ηu,h, eu,h) − th(uh; ηu,h, eu,h)

+ su(uh; u, eu,h) − β(geθ,h, eu,h) − β(gηθ,h, eu,h).

The right-hand side terms are bounded as:

−(∂tηu,h, eu,h) ≤ ‖∂tηu,h‖0‖eu,h‖0 ≤ 1

4
‖∂tηu,h‖20 + ‖eu,h‖20,

−ν(∇ηu,h,∇eu,h) ≤ √
ν‖∇ηu,h‖0|||eu,h |||LPS,

(ηp,h,∇ · eu,h) ≤
⎛
⎝ ∑

M∈Mh

min

(
d

ν
,

1

γM

)
‖ηp,h‖20,M

⎞
⎠

1/2

|||eu,h |||LPS,

−su(uh; ηu,h, eu,h) ≤
⎛
⎝ ∑

M∈Mh

τ uM |uM |2‖∇ηu,h‖20,M
⎞
⎠

1/2

|||eu,h |||LPS,

−th(uh; ηu,h, eu,h) ≤
⎛
⎝ ∑

M∈Mh

γMd‖∇ηu,h‖20,M
⎞
⎠

1/2

|||eu,h |||LPS,
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su(uh; u, eu,h) ≤
⎛
⎝ ∑

M∈Mh

τ uM |uM |2‖κu
M (∇u)‖20,M

⎞
⎠

1/2

|||eu,h |||LPS,

|β(geθ,h, eu,h)| ≤ 1

4
β‖g‖∞‖eu,h‖20 + β‖g‖∞‖eθ,h‖20

|β(gηθ,h, eu,h)| ≤ 3

4
β‖g‖∞‖eu,h‖20 + 1

3
β‖g‖∞‖ηθ,h‖20.

Therefore,

1

2
∂t‖eu,h‖20 + |||eu,h |||2LPS
≤ 1

4
‖∂tηu,h‖20 + ‖eu,h‖20 + cu(uh; uh, eu,h) − cu(u; u, eu,h)

+
⎡
⎢⎣√

ν‖∇ηu,h‖0 +
⎛
⎝ ∑

M∈Mh

τ uM |uM |2‖∇ηu,h‖20,M
⎞
⎠

1/2

+
⎛
⎝ ∑

M∈Mh

γMd‖∇ηu,h‖20,M
⎞
⎠

1/2

+
⎛
⎝ ∑

M∈Mh

min

(
d

ν
,

1

γM

)
‖ηp,h‖20,M

⎞
⎠

1/2

+
⎛
⎝ ∑

M∈Mh

τ uM |uM |2‖κu
M (∇u)‖20,M

⎞
⎠

1/2
⎤
⎥⎦ |||eu,h |||LPS

+ β‖g‖∞
(‖eθ,h‖20 + ‖eu,h‖20

)+ β‖g‖∞
3

‖ηθ,h‖20

and thus via Young’s inequality

1

2
∂t‖eu,h‖20 + (1 − 2ε)|||eu,h |||2LPS
≤ 1

4
‖∂tηu,h‖20 + ‖eu,h‖20 + [

cu(uh; uh, eu,h) − cu(u; u, eu,h)
]

+ 5

8ε

∑
M∈Mh

[ (
ν + τ uM |uM |2 + γMd

) ‖∇ηu,h‖20,M

+min

(
d

ν
,

1

γM

)
‖ηp,h‖20,M + τ uM |uM |2‖κu

M (∇u)‖20,M
]

+ β‖g‖∞
(‖eθ,h‖20 + ‖eu,h‖20

)+ β‖g‖∞
3

‖ηθ,h‖20. (20)

Lemma 1 from the appendix yields for the convective terms:

cu(u; u, eu,h) − cu(uh; uh, eu,h)

≤ C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖20,M + 3ε|||ηu,h |||2LPS + 3ε|||eu,h |||2LPS

123



J Sci Comput (2016) 69:244–273 255

+
[
|u|W 1,∞(Ω) + ε max

M∈Mh
{h2M |u|2W 1,∞(M)

} + C

ε
max

M∈Mh

{
h2M
γM

|u|2W 1,∞(M)

}

+ C

ε
max

M∈Mh
{γ −1

M ‖u‖2∞,M } + ε‖uh‖2∞
]

‖eu,h‖20

We incorporate this into (20) and obtain with a constant C independent of the problem
parameters, hM , hL , the solutions and ε

1

2
∂t‖eu,h‖20 + (1 − 5ε)|||eu,h |||2LPS
≤ 1

4
‖∂tηu,h‖20 + C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖20,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + ε max

M∈Mh
{h2M |u|2W 1,∞(M)

}

+ C

ε
max

M∈Mh

{
h2M
γM

|u|2W 1,∞(M)

}

+C

ε
max

M∈Mh
{γ −1

M ‖u‖2∞,M } + ε‖uh‖2∞
]

‖eu,h‖20

+ C

ε

∑
M∈Mh

[(
ν + τ uM |uM |2 + γMd

) ‖∇ηu,h‖20,M

+min

(
d

ν
,

1

γM

)
‖ηp,h‖20,M + τ uM |uM |2‖κu

M (∇u)‖20,M
]

+ β‖g‖∞‖eθ,h‖20 + Cβ‖g‖∞‖ηθ,h‖20. (21)

Now, subtracting (8) from (3) with ψh = eθ,h ∈ Θh as a test function leads to

1

2
∂t‖eθ,h‖20 + |[eθ,h]|2LPS
= −(∂tηθ,h, eθ,h) − α(∇ηθ,h,∇eθ,h) + cθ (uh; θh, eθ,h)

− cθ (u; θ, eθ,h) − sθ (uh; ηθ,h, eθ,h) + sθ (uh; θ, eθ,h).

With estimates for the interpolation terms and Young’s inequality, we have

1

2
∂t‖eθ,h‖20 + (1 − 2ε)|[eθ,h]|2LPS
≤ 1

4
‖∂tηθ,h‖20 + ‖eθ,h‖20 + cθ (uh; θh, eθ,h) − cθ (u; θ, eθ,h)

+ 3

8ε

∑
L∈Lh

[ (
α + τ θ

L |uL |2) ‖∇ηθ,h‖20,L + τ θ
L |uL |2‖κθ

L(∇θ)‖20,L
]
. (22)

The combination of (22) and the difference of the convective terms in the Fourier equation
according to Lemma 1 (in the appendix) with a constant C independent of the problem
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parameters, hM , hL , the solutions and ε gives

1

2
∂t‖eθ,h‖20 + (1 − 8ε)|[eθ,h]|2LPS
≤ 1

4
‖∂tηθ,h‖20 + C

ε

∑
L∈Lh

1

h2L
‖ηθ,h‖20,L + C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖20,M

+ 3ε|||ηu,h |||2LPS + 3ε|||eu,h |||2LPS + 1

2
|θ |W 1,∞(Ω)‖eu,h‖20

+
[
1 + 1

2
|θ |W 1,∞(Ω) + ε‖uh‖2∞ + ε max

M∈Mh
{h2M |θ |2W 1,∞(M)

}

+C

ε
max

M∈Mh

{
h2M
γM

|θ |2W 1,∞(M)

}
+ C

ε
max

M∈Mh
{γ −1

M ‖θ‖2∞,M }
]

‖eθ,h‖20

+ C

ε

∑
L∈Lh

[ (
α + τ θ

L |uL |2) ‖∇ηθ,h‖20,L + τ θ
L |uL |2‖κθ

L(∇θ)‖20,L
]
. (23)

Note that

|||ηu,h |||2LPS ≤
∑

M∈Mh

(
ν + τ uM |uM |2 + γMd

) ‖∇ηu,h‖20,M .

Adding (21) and (23) results in

1

2
∂t‖eu,h‖20 + (1 − 8ε)|||eu,h |||2LPS + 1

2
∂t‖eθ,h‖20 + (1 − 8ε)|[eθ,h]|2LPS

≤ 1

4
‖∂tηu,h‖20 + 1

4
‖∂tηθ,h‖20 + C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖20,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + ε max

M∈Mh
{h2M |u|2W 1,∞(M)

}

+ C

ε
max

M∈Mh

{
h2M
γM

|u|2W 1,∞(M)

}
+ ε‖uh‖2∞

+ C

ε
max

M∈Mh
{γ −1

M ‖u‖2∞,M } + 1

2
|θ |W 1,∞(Ω)

]
‖eu,h‖20

+
(
C

ε
+ Cε

) ∑
M∈Mh

(
ν + τ uM |uM |2 + γMd

) ‖∇ηu,h‖20,M

+ C

ε

∑
M∈Mh

[
min

(
d

ν
,

1

γM

)
‖ηp,h‖20,M + τ uM |uM |2‖κu

M (∇u)‖20,M
]

+
∑
L∈Lh

(
C

ε

1

h2L
+ Cβ‖g‖∞,L

)
‖ηθ,h‖20,L

+
[
1 + 1

2
|θ |W 1,∞(Ω) + ε‖uh‖2∞ + β‖g‖∞ + ε max

M∈Mh
{h2M |θ |2W 1,∞(M)

}
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+ C

ε
max

M∈Mh

{
h2M
γM

|θ |2W 1,∞(M)

}
+ C

ε
max

M∈Mh
{γ −1

M ‖θ‖2∞,M }
]

‖eθ,h‖20

+ C

ε

∑
L∈Lh

[ (
α + τ θ

L |uL |2) ‖∇ηθ,h‖20,L + τ θ
L |uL |2‖κθ

L(∇θ)‖20,L
]
.

We choose ε = 1
18 and get (where � indicates that the left-hand side is smaller or equal than

a generic constant times the right-hand side)

∂t‖eu,h‖20 + |||(eu,h, ep,h)|||2LPS + ∂t‖eθ,h‖20 + |[eθ,h]|2LPS
� ‖∂tηu,h‖20 + ‖∂tηθ,h‖20 +

∑
M∈Mh

1

h2M
‖ηu,h‖20,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + max

M∈Mh
{h2M |u|2W 1,∞(M)

} + ‖uh‖2∞

+ max
M∈Mh

{
h2M
γM

|u|2W 1,∞(M)

}
+ max

M∈Mh
{γ −1

M ‖u‖2∞,M } + |θ |W 1,∞(Ω)

]
‖eu,h‖20

+
∑

M∈Mh

(
ν + τ uM |uM |2 + γMd

) ‖∇ηu,h‖20,M

+
∑

M∈Mh

[
min

(
d

ν
,

1

γM

)
‖ηp,h‖20,M + τ uM |uM |2‖κu

M (∇u)‖20,M
]

+
∑
L∈Lh

(
1

h2L
+ β‖g‖∞,L

)
‖ηθ,h‖20,L

+
[
1 + |θ |W 1,∞(Ω) + ‖uh‖2∞ + β‖g‖∞ + max

M∈Mh
{h2M |θ |2W 1,∞(M)

}

+ max
M∈Mh

{
h2M
γM

|θ |2W 1,∞(M)

}
+ max

M∈Mh
{γ −1

M ‖θ‖2∞,M }
]

‖eθ,h‖20

+
∑
L∈Lh

[ (
α + τ θ

L |uL |2) ‖∇ηθ,h‖20,L + τ θ
L |uL |2‖κθ

L(∇θ)‖20,L
]
.

We require that all the terms on the right-hand side are integrable in time. This holds due
to the regularity assumptions on u and θ , Assumption 4, g ∈ L∞(0, T ; [L∞(Ω)]d) and
the fact that the fluctuation operators are bounded. Application of Gronwall’s Lemma for
‖(eu,h, eθ,h)‖20 := ‖eu,h‖20 + ‖eθ,h‖20 defined in Theorem 2 gives the claim since the initial
error (eu,h, eθ,h)(0) vanishes. ��

Corollary 1 Assume that the solution (u, p, θ) : [0, T ] → V div × Q × Θ of (2), (3) and
the solution (uh, ph, θh) : [0, T ] → V div

h × Qh × Θh of (7), (8) satisfy

u ∈ L∞(0, T ; [W 1,∞(Ω)]d) ∩ L2(0, T ; [Wku+1,2(Ω)]d),
∂tu ∈ L2(0, T ; [Wku ,2(Ω)]d),
p ∈ L2(0, T ;Wkp+1,2(Ω) ∩ C(Ω)),

θ ∈ L∞(0, T ;W 1,∞(Ω)) ∩ L2(0, T ;Wkθ +1,2(Ω)),
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∂tθ ∈ L2(0, T ;Wkθ ,2(Ω)),

uh ∈ L∞(0, T ; [L∞(Ω)]d).
Let Assumptions 1–4 be valid as well as uh(0) = juu0, θh(0) = jθ θ0 hold. For 0 ≤ t ≤ T ,
we obtain the estimate for the semi-discrete error ξu,h = u − uh, ξθ,h = θ − θh:

‖ξu,h‖2L∞(0,t;L2(Ω))
+ ‖ξθ,h‖2L∞(0,t;L2(Ω))

+
∫ t

0

(|||ξu,h(τ )|||2LPS + |[ξθ,h(τ )]|2LPS
)
dτ

�
∫ t

0
eCG,h(u,θ)(t−τ)

⎧⎨
⎩
∑

M∈Mh

h
2(kp+1)
M min

(
d

ν
,

1

γM

)
‖p(τ )‖2

Wkp+1,2(ωM )

+
∑

M∈Mh

h2kuM

[
(1 + ν + τ uM |uM |2 + γMd)‖u(τ )‖2Wku+1,2(ωM )

+‖∂tu(τ )‖2Wku ,2(ωM )
+ τ uM |uM |2h2(lu−ku)

M ‖u(τ )‖2Wlu+1,2(ωM )

]

+
∑
L∈Lh

h2kθ

L

[
‖∂tθ(τ )‖2

Wkθ ,2(ωL )
+ τ θ

L |uL |2h2(lθ−kθ )
L ‖θ(τ )‖2

Wlθ +1,2(ωL )

]

+ (
1 + h2Lβ‖g‖∞,L + α + τ θ

L |uL |2) ‖θ(τ )‖2
Wkθ +1,2(ωL )

}
dτ (24)

with lu ∈ {0, . . . , ku}, lθ ∈ {0, . . . , kθ } and a Gronwall constant as defined in Theorem 2.

Proof We split the semi-discrete error as

ξu,h = ηu,h + eu,h, ξθ,h = ηθ,h + eθ,h, ξp,h = ηp,h + ep,h

and use the triangle inequality in order to estimate the approximation and consistency errors
separately. The interpolation results in V div

h × Qh × Θh , according to Assumption 1, are
applied to Theorem 2. Further, we take advantage of the approximation properties of the
fluctuation operators from Assumption 3 with lu ∈ {0, . . . , ku}, lθ ∈ {0, . . . , kθ }. This
provides a bound for the consistency error in the following way for all 0 ≤ τ ≤ t ≤ T

∑
M∈Mh

(ν + τ uM |uM |2 + dγM )‖∇ηu,h(τ )‖20,M

+
∑

M∈Mh

h−2
M ‖ηu,h(τ )‖20,M +

∑
M∈Mh

min

(
d

ν
,

1

γM

)
‖ηp,h(τ )‖20,M

+
∑
L∈Lh

(
1

h2L
+ β‖g‖∞,L

)
‖ηθ,h(τ )‖20,L + (

α + τ θ
L |uL |2) ‖∇ηθ,h(τ )‖20,L

≤ C
∑

M∈Mh

h2kuM

(
1 + τ uM |uM |2 + dγM

) ‖u(τ )‖2Wku+1,2(ωM )

+ C
∑

M∈Mh

h
2(kp+1)
M min

(
d

ν
,

1

γM

)
‖p(τ )‖2

Wkp+1,2(ωM )

+
∑
L∈Lh

h2kθ

L

(
1 + h2Lβ‖g‖∞,L + α + τ θ

L |uL |2) ‖θ(τ )‖2
Wkθ +1,2(ωL )

.

123



J Sci Comput (2016) 69:244–273 259

Furthermore, it holds

‖∂tηu,h(τ )‖20 ≤ C
∑

M∈Mh

h2kuM ‖∂tu(τ )‖2Wku ,2(ωM )
,

τ uM |uM |2‖κu
M (∇u(τ ))‖20,M ≤ C

∑
M∈Mh

τ uM |uM |2h2luM ‖u‖2Wlu+1,2(ωM )
,

‖∂tηθ,h(τ )‖20 ≤ C
∑
L∈Lh

h2kθ

L ‖∂tθ(τ )‖2
Wkθ ,2(ωL )

,

τ θ
L |uL |2‖κθ

L(∇θ(τ ))‖20,L ≤ C
∑
L∈Lh

τ θ
L |uL |2h2lθL ‖θ(τ )‖2

Wlθ +1,2(ωL )
.

For the interpolation errors, we exploit the approximation properties from Assumption 1:

‖ηu,h(τ )‖20 ≤ C
∑

M∈Mh

h2(ku+1)
M ‖u(τ )‖2Wku+1,2(ωM )

,

‖ηθ,h‖20 ≤ C
∑
L∈Lh

h2(kθ+1)
L ‖θ(τ )‖2

Wkθ +1,2(ωL )
,

|||ηu,h(τ )|||2LPS ≤
∑

M∈Mh

(
ν + τ uM |uM |2 + γMd

) ‖∇ηu,h(τ )‖20,M

≤ C
∑

M∈Mh

h2kuM

(
ν + τ uM |uM |2 + γMd

) ‖u(τ )‖2Wku+1,2(ωM )
,

|[ηθ,h(τ )]|2LPS ≤
∑
L∈Lh

(
α + τ θ

L |uL |2) ‖∇ηθ,h‖20,M

≤ C
∑
L∈Lh

h2kθ

L

(
α + τ θ

L |uL |2) ‖θ(τ )‖2
Wkθ +1,2(ωL )

.

The combination gives the claim. ��

Remark 2 Unfortunately, the stability result for uh in Theorem 1 does not imply that uh ∈
L∞(0, T ; [L∞(Ω)]d). Hence, Theorem 2 gives no a priori bounds. Without this assumption,
mesh width restrictions of the form

ReM = hM‖uh‖∞,M

ν
≤ 1√

ν
, PeL = hL‖uh‖∞,L

α
≤ 1√

α
,

similar to the ones obtained in [11],would occur. For theNavier–Stokes equations, approaches
for L∞(Ω)]d -stability for the velocity can be found in [19,20]. The technique applied there
relies on h-dependent threshold conditions and hence differs significantly from the analysis
considered here.

Remark 3 Provided that a certain compatibility condition between fine and coarse ansatz
spaces holds true (according to [8]), we can improve the estimates in Theorem 2 similarly to
the consideration in [11]. In particular, we obtain
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‖eu,h‖2L∞(0,t;L2(Ω))
+ ‖eθ,h‖2L∞(0,t;L2(Ω))

+
∫ t

0

(|||eu,h(τ )|||2LPS + |[eθ,h(τ )]|2LPS
)
dτ

≤ C
∫ t

0
eC

′
G,h (u,θ,uh)(t−τ)

⎧⎨
⎩
∑

M∈Mh

min

(
d

ν
,

1

γM

)
‖ηp,h(τ )‖20,M

+
∑

M∈Mh

[(
ν + τ uM |uM |2 + γMd

) ‖∇ηu,h(τ )‖20,M +
(

1

h2M
+ 1

τ uM

)
‖ηu,h(τ )‖20,M

+‖∂tηu,h(τ )‖20,M + τ uM |uM |2‖κu
M (∇u)(τ )‖20,M

]

+
∑
L∈Lh

[(
α + τ θ

L |uL |2) ‖∇ηθ,h(τ )‖20,L +
(

1

τ θ
L

+ β‖g‖∞,L

)
‖ηθ,h(τ )‖20,L

+ τ θ
L |uL |2‖κθ

L(∇θ)(τ )‖20,L + ‖∂tηθ,h(τ )‖20,L
]⎫⎬
⎭ dτ

with Gronwall constant

C ′
G(u, θ, uh) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ |W 1,∞(Ω)

+ max
M∈Mh

{
h2M |u|2W 1,∞(M)

}
+ max

M∈Mh

{
h2M
γM

|u|2W 1,∞(M)

}

+ max
M∈Mh

{
γ −1
M ‖u‖2∞,M

}
+ max

M∈Mh
{h2M |θ |2W 1,∞(M)

}

+ max
M∈Mh

{
h2M
γM

|θ |2W 1,∞(M)

}
+ max

M∈Mh

{
γ −1
M ‖θ‖2∞,M

}

+ max
M∈Mh

{
τ uM |uh |2W 1,∞(M)

}
+ max

L∈Lh

{
τ θ
L |uh |2W 1,∞(L)

}

and without assuming uh ∈ L∞(0, T ; [L∞(Ω)]d). For more details, compare with [21].

Remark 4 From the above estimates, we can derive an error estimate for the pressure via the
discrete inf-sup condition. If

u ∈ L∞(0, T ; [W 1,∞(Ω)]d), uh ∈ L∞(0, T ; [L∞(Ω)]d),
we obtain the estimate for the semi-discrete pressure error ξp,h = p − ph for 0 ≤ t ≤ T

‖ξp,h‖2L2(0,t;L2(Ω))

≤ C

β2
d

⎧⎨
⎩‖∂tξu,h‖2L2(0,t;H−1(Ω))

+ β2‖g‖2L∞(0,t;L∞(Ω))‖ξθ,h‖2L2(0,t;L2(Ω))

+
(
‖u‖2L2(0,t;L∞(Ω))

+ ‖uh‖2L2(0,t;L∞(Ω))

)
‖ξu,h‖2L∞(0,t;L2(Ω))

+
∫ t

0

(
ν + max

M∈Mh
{γ −1

M ‖uh‖2∞,M }
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+ max
M∈Mh

{τ uM |uM |2} + max
M∈Mh

{γMd}
)

|||ξu,h |||2LPS dτ

+
∫ t

0
max

M∈Mh
{τ uM |uM |2}

∑
M∈Mh

τ uM |uM |2‖κu
M (∇u)‖20,Mdτ

⎫⎬
⎭

with a constant C > 0 independent of the problem parameters, hM , hL and the solutions.
We point out that the estimate is not optimal due to the term ‖∂tξu,h‖2L2(0,t;H−1(Ω))

. In [10],

only ‖∂tξu,h‖2 ≤ Ch2k−2 could be proven for the similarly stabilized Oseen problem. For
the Navier–Stokes equations, an improved error result for the pressure is obtained in [12].

4.3 Suitable Finite Element Spaces

We address the question of suitable settings for our analysis in Theorem 2 and Corollary 1.
First, let us introduce some notation.

For a simplex T ∈ Th or a quadrilateral/hexahedron T in R
d , let T̂ be the reference unit

simplex or the unit cube (−1, 1)d . We are interested in so-called mapped finite elements,
that are constructed as transformations from the reference element. Denote by FT : T̂ → T
the reference mapping. For simplices T , FT is affine and bijective. In case of quadrilater-
als/hexahedra, FT is a multi-linear mapping from T̂ to arbitrary quadrilaterals/hexahedra.
Henceforth, we require that FT is bijective and its Jacobian is bounded for a family of
triangulations according to

∃ c1, c2 > 0 : c1h
d
T ≤ | det DFT (x̂)| ≤ c2h

d
T ∀ x̂ ∈ T̂ (25)

with constants c1, c2 > 0 independent of the cell diameter hT .
Let P̂l and Q̂l with l ∈ N0 be the set of polynomials of degree ≤ l and of polynomials of

degree ≤ l in each variable separately. Moreover, we set

Rl(T̂ ) :=
{
Pl(T̂ ) on simplices T̂
Ql(T̂ ) on quadrilaterals/hexahedra T̂ .

Bubble-enriched spaces are

P
+
l (T̂ ) := Pl(T̂ ) + bT̂ · Pl−2(T̂ ), Q

+
l (T̂ ) := Ql(T̂ ) + ψ · span{x̂r−1

i , i = 1, . . . , d}
with polynomial bubble function bT̂ := ∏d

i=0 λ̂i ∈ P̂d+1 on the reference simplex T̂ with

barycentric coordinates λ̂i and with d-quadratic function ψ(x̂) := ∏d
i=1(1 − x̂2i ) on the

reference cube. Define

Yh,−l := {vh ∈ L2(Ω) : vh |T ◦ FT ∈ Rl(T̂ ) ∀T ∈ Th},
Yh,+l := Yh,−l ∩ W 1,2(Ω)

and bubble-enriched spacesY+
h,±l , analogously. For convenience, wewrite V h = R±k instead

of V h := [Yh,±k]d ∩ V and V h = R±k instead of V h := [Y+
h,±k]d ∩ V for the velocity. We

use analogous abbreviations for the pressure and temperature ansatz spaces.
The presented approach is applicable to many combinations of ansatz spaces. The inter-

polation property fromAssumption 1 and the discrete inf-sup condition (4) hold for our finite
element setting of Lagrangian elements

V h = R
(+)
ku

, Qh = R±(ku−1), Θh = R
(+)
kθ
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with ku ≥ 2, kθ ≥ 2. It is shown in [18] that there exists a quasi-local interpolation oper-
ator that preserves the discrete divergence and has the needed approximation properties in
Assumption 1 on simplicial isotropic meshes. It is argued in [22] that the result can be easily
extended to quadrilateral/hexahedral meshes and in this case to ku = 2, d = 3.

In [9] (Tables 1, 2), fine and coarse discrete ansatz spaces are presented that fulfill the
approximation property of the fluctuation operators (Assumption 3). Possible variants of the
triples (V h/Du

M ) ∧ Qh ∧ (Θh/Dθ
L) with lu ∈ {1, . . . , ku}, lθ ∈ {1, . . . , kθ } are

(Pku/Plu−1) ∧ Pku−1 ∧ (Pkθ /Plθ −1), (Qku/Qlu−1) ∧ Qku−1 ∧ (Qkθ /Qlθ −1),

(P+
ku

/Plu−1) ∧ P−(ku−1) ∧ (P+
kθ

/Plθ−1), (Qku/Plu−1) ∧ P−(ku−1) ∧ (Qkθ /Plθ −1).

For the construction of the coarse space in the two-level setting, see [8,9].

4.4 Parameter Choice

The presented possibilities of finite element combinations result in a parameter choice as

γM = γ0, 0 ≤ τ uM (uM ) ≤ τ u0
h2(ku−lu )
M

|uM |2 , 0 ≤ τ θ
L (uL) ≤ τ θ

0
h2(kθ−lθ )
L

|uL |2 (26)

for M ∈ Mh and L ∈ Lh , where γ0, τ
u
0 , τ θ

0 = O(1) denote non-negative tuning constants.
With the parameter choice (26), Assumption 4 is satisfied. In these possible settings, we can
apply Theorem 2 and Corollary 1. We point out that in order to get an optimal rate k in (24),
one might want to choose

k := ku = kθ = kp + 1.

A choice of grad-div and LPS SU parameters as in (26) balances the terms in the upper
bound of the semi-discrete error (24). In addition, the Gronwall constant (19) does not blow
up for small ν if γM > 0. An h-independent γM (or at least γM ≥ Ch) also diminishes the
growth of the Gronwall constant with |u|W 1,∞(Ω) and |θ |W 1,∞(Ω) and is therefore favorable.
In case of uM = 0, we set τ uM (uM ) = 0 and τ θ

L (uL) = 0 if uL = 0 as the whole LPS terms

vanish. In [9], similar bounds for the Oseen problem are proposed: τ uM |bM |2 ≤ Chk−lu
M and

γM ∼ 1.
Comparing the physical dimensions in the momentum Eq. (7) and the Fourier equation (8),
we obtain

[
τ uM (uM )

] m2

s4
= [su(uh; uh, uh)] =

[(
∂uh
∂t

, uh

)]
= m2

s3

[
τ θ
L (uL)

] K 2

s2
= [sθ (uh; θh, θh)] =

[(
∂θh

∂t
, θh

)]
= K 2

s
.

This suggests a parameter design as

τ θ
L (uL) ∼ hL/|uL |, τ uM (uM ) ∼ hM/|uM |, (27)

that is within the above (theoretical) parameter bounds. We will consider this choice in the
numerical examples.
The design of the grad-div parameter set {γM }M is still an open problem, see e.g. [23] for
the Stokes problem. An equilibration argument in our analysis (24) suggests
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Table 1 Averaged Nusselt numbers and maximal deviations σ for different Ra and different grad-div para-
meters γM , averaged over time t ∈ [150, 1000], N = 10 · 83, Q2 ∧ Q1 ∧ Q1 elements are used

Ra 105 106 107 108 109

Nuavg σ Nuavg σ Nuavg σ Nuavg σ Nuavg σ

nGD 3.84 0.04 8.65 0.34 16.41 1.83 37.70 29.5 118.8 137.6

GD 3.84 0.03 8.65 0.02 16.88 0.11 31.29 0.70 55.52 1.35

Nuref 3.83 8.6 16.9 31.9 63.1

nGD indicates that no stabilization is used (γM = 0), GD means that an optimal grad-div parameter is used:
γM = 0.1 for 105 ≤ Ra ≤ 108 and γM = 0.01 for Ra = 109. Nuref denotes DNS results from [28]

Table 2 Averaged Nusselt numbers and maximal deviations σ for different choices of stabilization and finite
element spaces, Ra = 109, averaged over time t ∈ [150, 1000], N = 10 · 83

τuM τθ
L Nu

avg
ht σht Nu

avg
bb σbb Nu

avg
I d,ht σI d,ht Nu

avg
I d,bb σI d,bb

0 0 55.52 1.35 58.14 1.48 41.46 40.20 47.53 23.40

hu1 0 53.84 1.41 58.27 1.47 38.71 43.03 44.30 24.79

0 hu1 52.45 3.48 56.53 3.06 37.61 10.84 54.26 16.53

hu1 hu1 51.81 3.43 54.04 3.33 37.05 10.31 49.13 12.92

The subscript I dmeans that an isotropic grid is used; otherwise, the grid is transformed via Txyz . The additional
th indicates that (Q2/Q1)/Q1/(Q2/Q1) elements are used and (Q+

2 /Q1)/Q1/(Q
+
2 /Q1) are denoted by bb.

The label hu1 indicates that τu/θ
M/L = 1

2 hM/L/‖uh‖∞,M/L . Nuref denotes DNS results from [28]

γM ∼ max

(
0; ‖p‖Wk,2(M)

‖u‖Wk+1,2(M)

− ν

)
. (28)

Indeed, in different flow examples, the choice (28) yields distinct γM : In case of flow with
f u ≡ 0, (u · ∇)u = ∂tu = 0 and −νΔu + ∇ p = 0 (Poiseuille flow), we would choose
γM = 0, as ‖p‖Wk,2(Ω)/‖u‖Wk+1,2(Ω) ∼ ν. For the Taylor-Green vortex with f u ≡ 0, one
has ∂tu− νΔu = 0 and (u · ∇)u+ ∇ p = 0, thus leading to ‖p‖Wk,2(Ω)/‖u‖Wk+1,2(Ω) ∼ 1.
If ν is small, γM ∼ 1 follows. Unfortunately, (28) is not a viable choice for γM in practice.

Especially in the advection dominated case, grad-div stabilization with γM > ν has a
regularizing effect. Furthermore, γM > ν is essential for the independence of the Gronwall
constant CG,h(u, θ) of ν. Corollary 1 and the above discussion clarify that γM = O(1) is a
reasonable compromise. Our numerical tests also confirm this.

5 Numerical Examples

In order to validate the analytical results,weneed to discretize the semi-discrete formulation in
time aswell. Themethodwe choose is a splittingmethod called rotational pressure-correction
projection method, which is based on the backward differentiation formula of second order
(BDF2). This method has been proposed by Timmermans [24] for the Navier–Stokes case
and has been analyzed for the linear Stokes model in [25].
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With the constant time step size Δt > 0, the scheme reads:
Find unht ∈ V h such that for all vh ∈ V h :

(
3unht − 4un−1

ht + un−2
ht

2Δt
, vh

)
+ ν(∇unht ,∇vh) + cu(unht ; unht , vh)

+ th(unht ; unht , vh) + su(unht ; unht , vh) − (pn−1
ht ,∇ · vh) + β(g(tn)θ

n∗
ht , vh)

= ( f u(tn), vh) +
(
7

3
pn−1
ht − 5

3
pn−2
ht + 1

3
pn−3
ht ,∇ · vh

)
, (29)

where θn∗
ht := 2θn−1

ht − θn−2
ht is an extrapolation of second order of the temperature θnht .

Find pnht ∈ Qh such that for all qh ∈ Qh :

(∇(pnht − pn−1
ht ),∇qh) =

(
3∇ · unht
2Δt

, qh

)
. (30)

Find θnht ∈ Θh such that for all ψh ∈ Θh :
(
3θnht − 4θn−1

ht + θn−2
ht

2Δt
, ψh

)
+ α(∇θnht ,∇ψh)

+ cθ (unht ; θnht , ψh) + sθ (unht ; θnht , ψh)

= ( fθ (tn), ψh). (31)

Using this scheme, wewant to confirm the results obtained above numerically and investigate
suitable parameter choices for the stabilizations. Therefore, we first consider an artificial
example using the method of manufactured solution. Due to the fact that we know the
analytical solution, we can observe in which cases we obtain the desired rates of convergence.
In the second example, we consider Rayleigh–Bénard convection in a cylinder. This problem
is well-investigated and we consider the influence of stabilization on typical benchmark
quantities.

Remark 5 For the fully discrete quantities, one can show stability according to

‖uht‖2l∞(0,T ;L2(Ω))
+ ‖uht‖2l2(0,T ;LPS)

+ (Δt)2‖∇ pht‖2l∞(0,T ;L2(Ω))

+ ‖θht‖2l∞(0,T ;L2(Ω))
+ ‖θht‖2l2(0,T ;LPS)

≤ C(u0ht , u
1
ht , p

0
ht , p

1
ht , θ

0
ht , θ

1
ht , β, g, f u, fθ ),

cf. [21].We expect that the spatial and temporal convergence results for the stabilizedNavier–
Stokes in [26,27] can be extended to the Oberbeck–Boussinesq model easily due to the
similarity of the momentum and the Fourier equations and their weak coupling.

5.1 Traveling Wave

We consider a time dependent, two-dimensional solution of the Oberbeck–Boussinesq equa-
tions (1) for different parameters ν, α, β > 0 in a box Ω = (0, 1)2 with t ∈ [0, 6 · 10−3]:

u(x, y, t) = (100 sin(πy), 0)T , p(x, y, t) = 100 cos(πx),

θ(x, y, t) = (1 + 3200αt)−1/2 exp

(
−
(
1

2
+ 100t x

)2 ( 1

800
+ 4αt

)−1
)
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(a) (b)

Fig. 1 LPS-errors with Δt = 5 · 10−6 for different finite elements and choices of α and β with a τθ
L = 0 and

b τθ
L = 10−2h/‖uh‖∞,L , ν = 1

with g ≡ (0,−1)T and (time dependent) Dirichlet boundary conditions for u and θ . The
right-hand sides f u , fθ are calculated such that (u, p, θ) solves the equations. Initially, the
temperature peak is located at x = 1

2 and moves in x-direction until it finally hits the wall at
x = 1, t = 0.005 and is transported out of the domain. Note that the movement of the peak
is one-dimensional.

The mesh is randomly distorted by 1%; h denotes an average cell diameter. We use
Q2∧Q1∧(Q2/Q0) orQ2∧Q1∧(Q+

2 /Q1) elements for velocity, pressure and fine and coarse

temperature. Since only the temperature ansatz spaces are varied here, we writeQ(+)
2 /Q1 for

convenience.
As presented in Fig. 1,we obtain the expected order of convergence for theLPS-error |||u−

uh |||LPS+|[θ −θh]|LPS ∼ h2 even without stabilization. Adding LPS stabilization for θ does
not corrupt this result. Note that even a high parameter β does not require any stabilization:
Neither the discrete temperature nor velocity or pressure fail to converge properly (not shown).
In the interesting case α = 10−3, the LPS-errors become very large in the unstabilized case.
LPS stabilization in combination with Q

+
2 /Q1 elements for θh cures this situation (Fig. 1b).

In the unstabilized case, the spurious oscillations of the discrete temperature cannot be
captured.These spuriousmodes are directly visible inFig. 2,where θh(x, y = 0.5, t = 0.005)
is plotted for x ∈ [0, 0.9]. Using the LPS stabilization clearly improves this behavior both
for standard and enriched elements.

Grad-div stabilization or LPS SU for the velocity does not change these results. In partic-
ular, adding these stabilizations within the bounds derived in the analysis does not perturb
the solutions.

5.2 Rayleigh–Bénard Convection

We consider Rayleigh–Bénard convection in a three-dimensional cylindrical domain

Ω :=
{

(x, y, z) ∈
(

− 1

2
,
1

2

)3 ∣∣∣
√
x2 + y2 ≤ 1

2
, |z| ≤ 1

2

}
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Fig. 2 Plot over temperature at y = 0.5 (x ∈ [0, 0.9]) at time t = 0.005 with h = 1/16 in case of a Q2/Q1
elements for τθ

L = 0 (dotted line and for τθ
L = 10−2h‖uh‖−1

∞,L (solid line), b Q+
2 /Q1 elements for τθ

L = 0

(dotted line) and for τθ
L = 10−2h‖uh‖−1

∞,L (solid line), (ν, α, β) = (1, 10−3, 1)

with aspect ratio Γ = 1 for Prandtl number Pr = 0.786 and different Rayleigh numbers
105 ≤ Ra ≤ 109. These critical parameters are defined by

Pr = ν

α
, Ra = |g|βΔθref L3

ref

να
.

In this testcase the gravitational acceleration g ≡ (0, 0,−1)T is (anti-)parallel to the z-
axis. The temperature is fixed by Dirichlet boundary conditions at the (warm) bottom and
(cold) top plate; the vertical wall is adiabatic with Neumann boundary conditions ∂θ

∂n = 0.
Homogeneous Dirichlet boundary data for the velocity are prescribed. We use triangulations
with N cells, where N ∈ {10 · 83, 10 · 163, 10 · 323}, as well as a time step size Δt = 0.1 for
N = 10 · 83, Δt = 0.05 for N = 10 · 163 and Δt = 0.01 for N = 10 · 323.

As a benchmark quantity, the Nusselt number Nu is used. The Nusselt number Nu at
fixed z is calculated from the vertical heat flux qz = uzθ − α ∂θ

∂z from the warm wall to the
cold one by averaging over Bz := {(x1, x2, x3) ∈ Ω : x3 = z} and in time:

Nu(z) = Γ
(
α|Bz |(T − t0) |θbottom − θtop|

)−1
∫ T

t0

∫

Bz
qz(x, y, z, t) dx dy dt

with a suitable interval [t0, T ]. It can be shown that the time averaged Nusselt number
Nu(z) for the continuous solution does not depend on z, i.e. limT→∞ ∂z Nu(z) = 0. In
order to assess the quality of our simulations, we compute the Nusselt number for different
z ∈ {−0.5,−0.25, 0, 0.25, 0.5}, where the heat transfer is integrated over a disk at fixed
z. Then we compare these quantities with the Nusselt number Nuavg calculated as the heat
transfer averaged over the whole cylinder Ω and in time. The maximal deviation σ within
the domain is evaluated according to

σ := max{|Nuavg − Nu(z)|, z ∈ {−0.5,−0.25, 0, 0.25, 0.5}}.
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Fig. 3 Temperature iso-surfaces at T = 1000 for Pr = 0.786, a Ra = 105, b Ra = 107, c Ra = 109,
N = 10 · 163, γM = 0.1

For comparison, we consider the DNS simulations by Wagner et al. [28] and denote the
respective values by Nuref .

For high Rayleigh numbers, boundary layers occur in this test case. In order to resolve
these layers in the numerical solution, the (isotropic) grid is transformed via Txyz : Ω → Ω

of the form

Txyz : (x, y, z)T �→
(
x

r
· tanh(4r)

2 tanh(2)
,
y

r
· tanh(4r)

2 tanh(2)
,
tanh(4z)

2 tanh(2)

)T

(32)

with r := √
x2 + y2.

A snapshot of temperature iso-surfaces for different Ra at T = 1000 is shown in Fig. 3.
N = 10 · 163 cells, grad-div stabilization with γM = 0.1 and Q2 ∧ Q1 ∧ Q2 elements for
velocity, pressure and temperature are used. Whereas the large scale behavior shows one
large convection cell (upflow of warm fluid and descent of cold fluid) in all cases in a similar
fashion, with larger Ra, smaller structures and thin boundary layers occur. For Ra = 105,
the flow reaches a steady state, whereas Ra ∈ {107, 109} results in transient flow. This is in
good qualitative agreement with simulations run by Wagner et al. [28].

InTable 1we compare the resultingNusselt numbers for an optimal grad-div parameter and
no grad-div stabilization at all. While the average Nusselt number is in both cases in good
agreement with the reference value with up to Ra = 107, the deviation between Nusselt
numbers at different z-positions quickly increases without grad-div stabilization.

Despite this, for all Ra ∈ {105, 106, 107, 108}, the reference values Nuref obtained by
DNS can be approximated surprisingly well with the help of grad-div stabilization on a mesh
with only N = 10·83 cells.We note that the optimal grad-div parameter only slightly depends
on the Rayleigh number and with this choice the Nusselt number varies little with respect to
different z. This parameter design is independent of the considered refinement.

With respect to the LPS stabilization it turned out that for anisotropically refined meshes
τθ,SU,L = 0 produced the best results, cf. Table 2. In case of isotropic grids, that are not
adapted to the problem, LPS SU stabilization (with τ θ

L = hL/‖uL‖∞,L ) for the temperature
improves the resulting Nusselt number. Bubble enrichment enhances the accuracy on all
grids.

Figure 4 gives an overview of the obtained results (using the respective optimal stabiliza-
tion parameters and an anisotropic grid).We compare the reducedNusselt numbers Nu/Ra0.3
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Fig. 4 Rayleigh–Bénard Convection: Nu/Ra0.3 (Γ = 1, Pr = 0.786) for an anisotropic grid with N ∈
{10 ·83, 10 ·163} cells, compared with DNS data from [28] (Γ = 1, Pr = 0.786) and [30] (Γ = 1, Pr = 0.7).
The grid is transformed via Txyz for N ∈ {10 ·83, 10 ·163} and via Tz for N = 10 ·323. The label th indicates
that (Q2/Q1)/Q1/(Q2/Q1) elements are used and (Q+

2 /Q1)/Q1/(Q
+
2 /Q1) are denoted by bb. For 105 ≤

Ra ≤ 108, (τu,gd,M , τuM , τ θ
M ) = (0.1, 0, 0) is chosen; (τu,gd,M , τuM , τ θ

M ) = (0.01, 1
2 h/‖uh‖∞,M , 0) in

case of Ra = 109

Table 3 Rayleigh–Bénard Convection: Thermal boundary layer thicknesses at the top and bottom plates
〈δθ 〉top/bottom , averaged over r =

√
x2 + y2 ∈ [0, 1

2 ], and slopes mtop/bottom resulting from the fitting
〈δθ 〉 ∝ Ram

〈δθ 〉 〈δθ 〉 ∝ Ram

Ra = 105 Ra = 107 Ra = 109 m mref

top 0.1295 0.0311 0.0084 −0.2970 −0.285

bottom 0.1295 0.0293 0.0085 −0.2957 −0.285

The grid with N = 10 · 163 cells is transformed via Txyz ; Q2/Q1/Q2 elements are used. τu,gd,M = 0.1 for

Ra ∈ {105, 107} and τu,gd,M = 0.01 for Ra = 109. mref denotes the slope proposed by Wagner et al. [28]

for different finite element spaces, indicated by th and bb as above, with DNS data from the
literature. The Grossmann-Lohse theory from [29] suggests that there is a scaling law of the
Nusselt number depending on Ra (at fixed Pr ) that holds over wide parameter ranges. The
reduced Nusselt number calculated in our experiments is nearly constant. However, one does
not observe a global behavior of the Nusselt number as Nu ∝ Ra0.3. But as in [28], a smooth
transition between different Ra-regimes Ra ≤ 106, 106 ≤ Ra ≤ 108 and Ra ≥ 108 can
be expected. Note that the presented results on the finest grid (N = 10 · 323) differ by only
0.1%.

Table 3 validates that a grid transformed via Txyz (together with grad-div stabilization)
resolves the boundary layer: For a grid with N = 10 · 163 cells, the dependence between
Ra and the resulting thermal boundary layer thickness 〈δθ 〉 is in good agreement with the
law 〈δθ 〉 ∝ Ra−0.285 suggested by Wagner et al. [28]. Here, the thermal boundary layer
thickness δθ is calculated via the so-called slope criterion as in [28]. δθ is the distance from
the boundary at which the linear approximation of temperature profile at the boundary crosses
the line θ = 0. 〈δθ 〉 denotes the average over r = √

x2 + y2 ∈ [0, 1
2 ].

All in all, our simulations illustrate that we obtain surprisingly well approximated bench-
mark quantities even on relatively coarse meshes (compared with DNS from the reference
data). For example, for the grid with N = 10 · 163 cells, we have a total number of approx-
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imately 1,400,000 degrees of freedom (DoFs) in case of (Q2 /Q1)/Q1/(Q2 /Q1) elements.
Enriched (Q+

2 /Q1)/Q1/(Q
+
2 /Q1) elements result in 1,900,000DoFs for N = 10 · 163 cells.

Refinement increases the number of DoFs roughly by a factor of 8. In comparison, the DNS
in [28] requires approximately 1,500,000,000DoFs.

The key ingredients are grad-div stabilization and a grid that resolves the boundary layer.
In case of isotropic grids, that are not adapted to the problem, LPS SU stabilization for the
temperature becomes necessary. Bubble enrichment enhances the accuracy on all grids.

6 Summary and Conclusions

We considered conforming finite element approximations of the time-dependent Oberbeck–
Boussinesq problem with inf-sup stable approximation of velocity and pressure. In order to
handle spurious oscillations due to dominating convection or poor mass conservation of the
numerical solution, we introduced a stabilization method that combines the idea of LPS with
streamline upwinding and grad-div stabilization.

A stability and convergence analysis is provided for the arising nonlinear semi-discrete
problem.We can show that the Gronwall constant does not depend on the kinetic and thermal
diffusivities ν and α for velocities and temperatures satisfying u ∈ [L∞(0, T ;W 1,∞(Ω))]d ,
uh ∈ [L∞(0, T ; L∞(Ω))]d , θ ∈ L∞(0, T ;W 1,∞(Ω)). The approach relies on the existence
of a (quasi-)local interpolation operator ju : V div → V div

h preserving the divergence (see
[18]). In contrast to the estimates in [10] and [11] for the Oseen and Navier–Stokes problem,
we can circumvent a mesh width restriction of the form

ReM := hM‖uh‖∞,M

ν
≤ 1√

ν
and PeL := hL‖uh‖∞,L

α
≤ 1√

α

even if no compatibility condition between fine and coarse velocity and temperature spaces
holds. Therefore, the analysis is valid for almost all inf-sup stable finite element settings.

Furthermore, we suggest a suitable parameter design depending on the coarse spaces Du
M

and Dθ
L . Note that a broad range of LPS SU parameters τ uM , τ θ

L is possible. In particular, we
achieve the same rate of convergence in the considered error norm if τ uM and τ θ

L are set to zero.
The LPS SU stabilization gives additional control over the velocity gradient in streamline
direction.

It is indicated by our analysis and numerical experiments that γM = O(1) is essential for
improved mass conservation and velocity estimates in W 1,2(Ω). We point out that grad-div
stabilization proves essential for the independence of the Gronwall constant CG(u, θ, uh)
from ν and α. Though the analysis assumes isotropic grids, the use of anisotropic ones in
our numerical examples does not lead to any problems. The need for additional stabilization
can be avoided if the grids are adapted to the problem. This is agreement with the numerical
tests performed in [10]. Especially, for boundary layer flows, the SUPG-type stabilization
τ uM/L ∼ hM/L/‖uh‖∞,M/L seems to be suited for modeling unresolved velocity scales
if isotropic meshes are used. The combination with enriched elements is favorable. The
first numerical example shows satisfactory results with LPS SU stabilization for convection
dominated flows.

For Rayleigh–Bénard convection, the combination of grad-div stabilization, a problem
adjusted mesh and suitable ansatz spaces yields results that approximate DNS data.
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Appendix

Lemma 1 Let ε > 0 and (u, p, θ) ∈ V div × Q × Θ , (uh, ph, θh) ∈ V div
h × Qh × Θh

be solutions of (2), (3) and (7), (8) satisfying u ∈ [W 1,∞(Ω)]d , θ ∈ W 1,∞(Ω) and uh ∈
[L∞(Ω)]d . If Assumptions 1 and 2 hold, we can estimate the difference of the convective
terms in the momentum equation

cu(u; u, eu,h) − cu(uh; uh, eu,h)

≤ C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖20,M + 3ε|||ηu,h |||2LPS + 3ε|||eu,h |||2LPS

+
[
|u|W 1,∞(Ω) + ε max

M∈Mh
{h2M |u|2W 1,∞(M)

} + C

ε
max

M∈Mh

{
h2M
γM

|u|2W 1,∞(M)

}

+ C

ε
max

M∈Mh
{γ −1

M ‖u‖2∞,M } + ε‖uh‖2∞
]

‖eu,h‖20

with C independent of hM , hL , ε, the problem parameters and the solutions. The difference
of the convective terms in the Fourier equation can be bounded as

cθ (u; θ, eθ,h) − cθ (uh; θh, eθ,h)

≤ C

ε

∑
M∈Mh

h−2
M ‖ηu,h‖20,M + 3ε|||ηu,h |||2LPS + 3ε|||eu,h |||2LPS

+ 1

2
|θ |W 1,∞(Ω)‖eu,h‖20 + C

ε

∑
L∈Lh

h−2
L ‖ηθ,h‖20,L

+ ‖eθ,h‖20
(
1

2
|θ |W 1,∞(Ω) + ε‖uh‖2∞ + ε max

M∈Mh
{h2M |θ |2W 1,∞(M)

}

+ C

ε
max

M∈Mh

{
h2M
γM

|θ |2W 1,∞(M)

}
+ C

ε
max

M∈Mh
{γ −1

M ‖θ‖2∞,M }
)

with C > 0 independent of the problem parameters, hM , hL and the solutions.

Proof Similar estimates can be performed for velocity and temperature. We present the steps
for the velocity; for details for the temperature terms, we refer the reader to [21].
We choose the same interpolation operators ju : V div → V div

h and jθ : Θ → Θh as in
Theorem 2.With the splitting ηu,h +eu,h = (u− juu)+( juu−uh) from (13) and integration
by parts, we have

cu(u; u, eu,h) − cu(uh; uh, eu,h)

= ((u − uh) · ∇u, eu,h)︸ ︷︷ ︸
=:T u

1

+ (uh · ∇(u − juu), eu,h)︸ ︷︷ ︸
=:T u

2

−1

2
((∇ · uh) juu, eu,h)︸ ︷︷ ︸

=:T u
3

.
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Now, we bound each term separately. Using Young’s inequality with ε > 0, we calculate:

T u
1 ≤

∑
M∈Mh

‖∇u‖∞,M
(‖eu,h‖20,M + ‖ηu,h‖0,M‖eu,h‖0,M

)

≤ |u|W 1,∞(Ω)‖eu,h‖20 +
∑

M∈Mh

1

hM
|u|W 1,∞(M)‖ηu,h‖0,MhM‖eu,h‖0,M

≤ 1

4ε

∑
M∈Mh

1

h2M
‖ηu,h‖20,M +

(
|u|W 1,∞(Ω) + ε max

M∈Mh
{h2M |u|2W 1,∞(M)

}
)

‖eu,h‖20.

(33)

For the term T u
2 , we have via integration by parts

T u
2 = (uh · ∇ηu,h, eu,h) = −(uh · ∇eu,h, ηu,h) − ((∇ · uh)eu,h, ηu,h) =: T u

21 + T u
22.

Term T u
21 is the most critical one. We calculate using Assumption 2 and Young’s inequality:

T u
21 = −(uh · ∇eu,h, ηu,h) ≤

∑
M∈Mh

‖uh‖∞,M‖∇eu,h‖0,M‖ηu,h‖0,M

≤ C
∑

M∈Mh

‖uh‖∞,M‖eu,h‖0,Mh−1
M ‖ηu,h‖0,M

≤ ε‖uh‖2∞‖eu,h‖20 + C

ε

∑
M∈Mh

h−2
M ‖ηu,h‖20,M . (34)

Using (∇ · u, q) = 0 for all q ∈ L2(Ω), Assumption 1 and Young’s inequality with ε > 0,
we obtain

T u
22 = −((∇ · uh)ηu,h, eu,h) = ((∇ · (ηu,h + eu,h))ηu,h, eu,h)

≤
∑

M∈Mh

‖ηu,h‖∞,M
(‖∇ · eu,h‖0,M + ‖∇ · ηu,h‖0,M

) ‖eu,h‖0,M

≤
∑

M∈Mh

ChM√
γM

|u|W 1,∞(M)

√
γM

(‖∇ · eu,h‖0,M + ‖∇ · ηu,h‖0,M
) ‖eu,h‖0,M

≤ ε|||ηu,h |||2LPS + ε|||eu,h |||2LPS + C

ε
max

M∈Mh

{
h2M
γM

|u|2W 1,∞(M)

}
‖eu,h‖20. (35)

Utilizing the splitting according to (13), we have

T u
3 = ((∇ · uh) juu, eu,h) = −((∇ · uh)ηu,h, eu,h) + ((∇ · uh)u, eu,h) = T u

22 + T u
32.
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and use the same estimate as in (35). For the term T u
32, we use that (∇ · u, q) = 0 for all

q ∈ L2(Ω) and Young’s inequality:

|T u
32| = |(∇ · uh, u · eu,h)| = |(∇ · (−ηu,h − eu,h + u), u · eu,h)|

≤ |(∇ · ηu,h, u · eu,h)| + |(∇ · eu,h, u · eu,h)|
≤

∑
M∈Mh

(
‖u‖∞,M

√
γM‖∇ · ηu,h‖0,M

1√
γM

‖eu,h‖0,M

+‖u‖∞,M
√

γM‖∇ · eu,h‖0,M 1√
γM

‖eu,h‖0,M
)

≤ ε|||ηu,h |||2LPS + ε|||eu,h |||2LPS + C

ε
max

M∈Mh
{γ −1

M ‖u‖2∞,M }‖eu,h‖20. (36)

Combining the above bounds (33)–(36) yields the claim. ��
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