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Abstract The alternating direction method of multipliers (ADMM) is widely used in solv-
ing structured convex optimization problems due to its superior practical performance. On
the theoretical side however, a counterexample was shown in Chen et al. (Math Program
155(1):57–79, 2016.) indicating that the multi-block ADMM for minimizing the sum of N
(N ≥ 3) convex functions with N block variables linked by linear constraints may diverge. It
is therefore of great interest to investigate further sufficient conditions on the input side which
can guarantee convergence for the multi-block ADMM. The existing results typically require
the strong convexity on parts of the objective. In this paper, we provide two different ways
related to multi-block ADMM that can find an ε-optimal solution and do not require strong
convexity of the objective function. Specifically, we prove the following two results: (1) the
multi-block ADMM returns an ε-optimal solution within O(1/ε2) iterations by solving an
associated perturbation to the original problem; this case can be seen as using multi-block
ADMM to solve a modified problem; (2) the multi-block ADMM returns an ε-optimal solu-
tion within O(1/ε) iterations when it is applied to solve a certain sharing problem, under the
condition that the augmented Lagrangian function satisfies the Kurdyka–Łojasiewicz prop-
erty, which essentially covers most convex optimization models except for some pathological
cases; this case can be seen as applying multi-block ADMM to solving a special class of
problems.
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1 Introduction

We consider the following multi-block convex minimization problem:

min f1(x1) + f2(x2) + · · · + fN (xN )

s.t. A1x1 + A2x2 + · · · + AN xN = b
xi ∈ Xi , i = 1, . . . , N ,

(1.1)

where Ai ∈ R p×ni , b ∈ R p , Xi ⊂ Rni are closed convex sets, and fi : Rni → R are
closed convex functions. Problem (1.1) is a general convexminimization problemwith linear
equality constraints, and there exist many algorithms for solving this problem. For example,
the augmented Lagrangian method can be used to solve it. In this paper, we consider the case
that the functions fi , i = 1, . . . , N have certain structures so that it is beneficial to handle
them separately, rather than treat them as a whole. One effective way to solve (1.1) that
can take advantage of its separable structure is the so-called Alternating Direction Method
of Multipliers (ADMM). The ADMM is closely related to the Douglas–Rachford [12] and
Peaceman–Rachford [34] operator splitting methods that date back to 1950s. These operator
splitting methods were further studied later in [13,16,18,32]. The ADMM has been revisited
recently due to its success in solving problemswith special structures arising fromcompressed
sensing, machine learning, image processing, and so on; see the recent survey papers [5,15]
for more information.

The ADMM is constructed under an augmented Lagrangian framework, where the aug-
mented Lagrangian function for (1.1) is defined as

Lγ (x1, . . . , xN ; λ) :=
N∑

j=1

f j (x j ) −
〈
λ,

N∑

j=1

A j x j − b

〉
+ γ

2

∥∥∥∥∥∥

N∑

j=1

A j x j − b

∥∥∥∥∥∥

2

,

where λ is the Lagrange multiplier and γ > 0 is a penalty parameter. In a typical iteration of
the ADMM for solving (1.1), the following updating procedure is implemented:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk+1
1 := argminx1∈X1

Lγ (x1, xk
2 , . . . , xk

N ; λk)

xk+1
2 := argminx2∈X2

Lγ (xk+1
1 , x2, xk

3 , . . . , xk
N ; λk)

...

xk+1
N := argminxN ∈XN

Lγ (xk+1
1 , xk+1

2 , . . . , xk+1
N−1, xN ; λk)

λk+1 := λk − γ
(∑N

j=1 A j xk+1
j − b

)
.

(1.2)

Note that theADMM(1.2)minimizes in each iteration the augmented Lagrangian function
with respect to x1, . . . , xN alternatingly in a Gauss-Seidel manner. The ADMM (1.2) for
solving two-block convex minimization problems (i.e., N = 2) has been studied extensively
in the literature. The global convergence of ADMM (1.2) when N = 2 has been shown
in [14,17]. There are also some recent works that study the convergence rate properties of
ADMM when N = 2 (see, e.g., [2,11,23,24,33]).
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However, the convergence of multi-block ADMM (1.2) (we call (1.2) multi-block ADMM
when N ≥ 3) has remained unclear for a long time. Recently, Chen et al. [7] constructed a
counterexample to show the failure of ADMM (1.2) when N ≥ 3. Notwithstanding its lack
of theoretical convergence assurance, the multi-block ADMM (1.2) has been applied very
successfully to solve problemswith N (N ≥ 3) block variables; for example, see [35,37]. It is
thus of great interest to further study sufficient conditions that can guarantee the convergence
ofmulti-blockADMM.Some recentworks on studying the sufficient conditions guaranteeing
the convergence of multi-block ADMM are described briefly as follows. Han and Yuan [19]
showed that the multi-block ADMM (1.2) converges if all the functions f1, . . . , fN are
strongly convex and γ is restricted to certain region. This condition is relaxed in [8,31] to
allow only N − 1 functions to be strongly convex and γ is restricted to a certain region.
Especially, Lin et al. [31] proved the sublinear convergence rate under such conditions. Cai
et al. [6] and Li et al. [28] proved that for N = 3, convergence of multi-block ADMM can be
guaranteed under the assumption that only one function among f1, f2 and f3 is required to be
strongly convex, and γ is restricted to be in a certain region. In addition to strong convexity
of f2, . . . , fN , by assuming further conditions on the smoothness of the functions and some
rank conditions on the matrices in the linear constraints, Lin et al. [30] proved the globally
linear convergence of multi-block ADMM. Davis and Yin [9] studied a variant of the 3-block
ADMM (see Algorithm 8 in [9]) which requires that f1 is strongly convex and γ is smaller
than a certain bound to guarantee the convergence. More recently, Lin, Ma and Zhang [29]
proved that the 3-block ADMM is globally convergent for any γ > 0 when it is applied
to solve a class of regularized least squares decomposition problems. Note that the above
mentioned works all require that (parts of) the objective function is strongly convex. Without
assuming strong convexity, Hong and Luo [26] studied a variant of ADMM (1.2) with small
stepsize in updating the Lagrange multiplier. Specifically, [26] proposes to replace the last
equation in (1.2) to λk+1 := λk − αγ (

∑N
j=1 A j xk+1

j − b), where α > 0 is a small step size.
Linear convergence of this variant is proven under the assumption that the objective function
satisfies certain error bound conditions. However, it is noted that the selection of α is in fact
bounded by some parameters associated with the error bound conditions to guarantee the
convergence. Therefore, it might be difficult to choose α in practice. There are also studies
on the convergence and convergence rate of some other variants of ADMM (1.2), andwe refer
the interested readers to [10,20–22,25,36,38] for the details of these variants. However, it is
observed by many researchers that modified versions of ADMM though with convergence
guarantee, often perform slower than the multi-block ADMMwith no convergent guarantee.
The authors of [36] made the following statement (see page 885 in [36]): “However, to the
best of our knowledge, up to now the dilemma is that at least for convex conic programming,
the modified versions, thoughwith a convergence guarantee, often perform two to three times
slower than themultiblockADMMwith no convergent guarantee.”Wang et al. [38] compared
the multi-block ADMM with several modifications of it, and the numerical experiments on
basis pursuit and latent variable Gaussian graphical model selection problems show that the
multi-blockADMMalwaysoutperforms itsmodifications tested (seeSection3of [38]). These
resultsmotivated us to further studywhetherADMMcan be guaranteed to convergewhen it is
applied to solve certain class of problems, although it is not necessarily convergent in general.

Our contributions. The main contributions of this paper are as follows. First, we show
that if ADMM (1.2) is applied to solve an associated perturbed problem of (1.1) rather than
(1.1) itself, then it returns an ε-optimal solution to (1.1) within O(1/ε2) iterations, with the
condition that γ depends on ε. Here we do not assume strong convexity of any objective
function fi . Note that our result in this part can be seen as a perturbation approach. Instead of
modifying the ADMM procedure itself as most papers in the literature propose, we propose
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to modify the problem. Such approach is not uncommon. The perturbation technique applied
to resolve the cycling problem in the simplex method for linear programming is one famous
example of this type. Modifying the algorithm sometimes requires additional computational
efforts. Moreover, as shown in [36] and [38], modified versions of ADMM perform worse
than the original ADMM for some problems. Our approach maintains the effectiveness of
ADMM, at least for certain problems discussed in [36] and [38], because we do not modify
the algorithm itself. Secondly, we show that the ADMM (1.2) returns an ε-optimal solution
within O(1/ε) iterations when it is applied to solve the so-called sharing problems, under the
condition that the augmented Lagrangian Lγ is a Kurdyka–Łojasiewicz (KL) function [3,4],
and γ is sufficiently large. Interestingly, it turns out that ADMM possesses nice convergence
properties when it is applied to solve sharing problems. In a recent work by Hong et al. [27],
global convergence of ADMMwas established even when it is applied to solve a nonconvex
sharing problem. In this paper, we show that by combining the KL property and the convexity
of the problem, we can establish a sublinear convergence rate of ADMM for solving sharing
problem.

Organization. The rest of this paper is organized as follows. In Sect. 2 we provide some
preliminaries for our convergence rate analysis. In Sect. 3, we prove the O(1/ε2) iteration
complexity of ADMM (1.2) by introducing an associated problem of (1.1). In Sect. 4, we
prove the O(1/ε) iteration complexity of ADMM (1.2) with Kurdyka–Łojasiewicz (KL)
property.

2 Preliminaries

We denote � = X1 × · · · × XN × R p and the optimal set of (1.1) as �∗, and the following
assumption is made throughout this paper.

Assumption 2.1 The optimal set �∗ for problem (1.1) is non-empty.

According to the first-order optimality conditions for (1.1), solving (1.1) is equivalent to
finding (x∗

1 , x∗
2 , . . . , x∗

N , λ∗) ∈ �∗ such that the following holds:
{

(xi − x∗
i )�(gi (x∗

i ) − A�
i λ∗) ≥ 0, ∀xi ∈ Xi , i = 1, 2, . . . , N

A1x∗
1 + · · · + AN x∗

N − b = 0.
(2.1)

In this paper, we analyze the iteration complexity of ADMM (1.2) under two scenarios.
The conditions of the two scenarios are listed in Table 1. The following assumption is only
used in Scenario 2.

Assumption 2.2 We assume that XN = RnN . We also assume that fi has a finite lower
bound, i.e., infxi ∈Xi fi (xi ) ≥ f ∗

i > −∞ for i = 1, 2, . . . , N . Moreover, we assume that
fi + 1Xi is a coercive function for i = 1, 2, . . . , N − 1, where 1Xi denotes the indicator
function of Xi , i.e.,

1Xi (xi ) =
{
0, if xi ∈ Xi

+∞, otherwise.

Furthermore, we assume that Lγ is a KL function (will be defined later).

Remark 2.3 Some remarks are in order here regarding the conditions in Scenario 2. Note
that it is not very restrictive to require fi + 1Xi to be a coercive function. In fact, many
functions used as regularization terms including �1-norm, �2-norm, �∞-norm for vectors
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Table 1 Two scenarios leading to sublinear convergence

Scenario Lipschitz
continuous

Matrices Additional
assumption

Iteration
complexity

1 – – ε
2 ≤ γ ≤ ε O(1/ε2)

2 ∇ fN AN = I γ >
√
2L and

Assumption 2.2
O(1/ε)

and nuclear norm for matrices are all coercive functions; assuming the compactness of Xi

also leads to the coerciveness of fi + 1Xi . Moreover, the assumptions AN = I and ∇ fN is
Lipschitz continuous actually cover many interesting applications in practice. For example,
many problems arising from machine learning, statistics, image processing and so on always
have the following structure:

min f1(x1) + · · · + fN−1(xN−1) + fN (b − A1x1 − · · · − AN−1xN−1), (2.2)

where fN denotes a loss function on data fitting, which is usually a smooth function, and
f1, . . . , fN−1 are regularization terms to promote certain structures of the solution. This
problem is usually referred as sharing problem (see, e.g., [5,27]). (2.2) can be reformulated as

min f1(x1) + · · · + fN−1(xN−1) + fN (xN )

s.t. A1x1 + · · · + AN−1xN−1 + xN = b,
(2.3)

which is in the form of (1.1) and can be solved by ADMM (see [5,27]). Note that AN = I in
(2.3) and it is very natural to assume that ∇ fN is Lipschitz continuous. Thus the conditions
in Scenario 2 are satisfied.

Notation For simplicity, we use u to denote the stacked vectors x1, . . . , xN , i.e., u =
[x1; x2; . . . ; xN ], uk = [xk

1 ; xk
2 ; . . . ; xk

N ], u∗ = [x∗
1 , x∗

2 ; . . . ; x∗
N ] and denote w = [u; λ].

We denote by f (u) ≡ f1(x1) + · · · + fN (xN ) the objective function of problem (1.1); 1X is
the indicator function of X ; ∇ f is the gradient of f ; ‖x‖ denotes the Euclidean norm of x .

In our analysis, the following two well-known identities are used frequently,

(w1 − w2)
�(w3 − w4) = 1

2

(‖w1 − w4‖2 − ‖w1 − w3‖2
)

+ 1

2

(‖w3 − w2‖2 − ‖w4 − w2‖2
)

(2.4)

(w1 − w2)
�(w3 − w1) = 1

2

(‖w2 − w3‖2 − ‖w1 − w2‖2 − ‖w1 − w3‖2
)
. (2.5)

3 Iteration Complexity of ADMM: Associated Perturbation

In this section, we prove the O(1/ε2) iteration complexity of ADMM (1.2) under the condi-
tions in Scenario 1 of Table 1. Indeed, given ε > 0 sufficiently small and u0 := (x01 ; . . . ; x0N ),
we introduce an associated perturbed problem of (1.1), i.e.,

min f1(x1) + f̃2(x2) + · · · + f̃N (xN )

s.t. A1x1 + A2x2 + · · · + AN xN = b
xi ∈ Xi , i = 1, . . . , N ,

(3.1)

where f̃i (xi ) = fi (xi ) + μ
2

∥∥Ai xi − Ai x0i
∥∥2 for i = 2, . . . , N , and μ = ε(N − 2)(N + 1).

Note f̃i are not necessarily strongly convex. We prove that the ADMM (1.2) for associated
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perturbed problem (3.1) returns an ε-optimal solution of the original problem (1.1), in terms
of both objective value and constraint violation, within O(1/ε2) iterations.

The ADMM for solving (3.1) can be summarized as (note that some constant terms in the
subproblems are discarded):

xk+1
1 := argminx1∈X1

f1(x1) + γ

2

∥∥∥∥∥∥
A1x1 +

N∑

j=2

A j xk
j − b − 1

γ
λk

∥∥∥∥∥∥

2

, (3.2)

xk+1
i := argminxi ∈Xi

f̃i (xi )

+ γ

2

∥∥∥∥∥∥

i−1∑

j=1

A j xk+1
j + Ai xi +

N∑

j=i+1

A j xk
j − b − 1

γ
λk

∥∥∥∥∥∥

2

, i = 2, . . . , N , (3.3)

λk+1 := λk − γ
(

A1xk+1
1 + A2xk+1

2 + · · · + AN xk+1
N − b

)
. (3.4)

The first-order optimality conditions for (3.2)–(3.3) are given respectively by xk+1
i ∈ Xi and

(
x1 − xk+1

1

)�
⎡

⎣g1
(

xk+1
1

)
− A�

1 λk + γ A�
1

⎛

⎝A1xk+1
1 +

N∑

j=2

A j xk
j − b

⎞

⎠

⎤

⎦ ≥ 0, (3.5)

(
xi − xk+1

i

)� [
gi

(
xk+1

i

)
+ μA�

i Ai

(
xk+1

i − x0i

)
− A�

i λk

+ γ A�
i

⎛

⎝
i∑

j=1

A j xk+1
j +

N∑

j=i+1

A j xk
j − b

⎞

⎠

⎤

⎦ ≥ 0, (3.6)

hold for any xi ∈ Xi and gi ∈ ∂ fi , a subgradient of fi , for i = 1, 2, . . . , N . Moreover, by
combining with (3.4), (3.5)–(3.6) can be rewritten as

(
x1 − xk+1

1

)�
⎡

⎣g1
(

xk+1
1

)
− A�

1 λk+1 + γ A�
1

⎛

⎝
N∑

j=2

A j

(
xk

j − xk+1
j

)
⎞

⎠

⎤

⎦ ≥ 0, (3.7)

(
xi − xk+1

i

)� [
gi

(
xk+1

i

)
+ μA�

i Ai

(
xk+1

i − x0i

)
− A�

i λk+1

+ γ A�
i

⎛

⎝
N∑

j=i+1

A j (xk
j − xk+1

j )

⎞

⎠

⎤

⎦ ≥ 0. (3.8)

Lemma 3.1 Let (xk+1
1 , xk+1

2 , . . . , xk+1
N , λk+1) ∈ � be generated by the ADMM (3.2)–(3.4)

from given (xk
2 , . . . , xk

N , λk). For any u∗ = (x∗
1 , x∗

2 , . . . , x∗
N ) ∈ �∗ and λ ∈ R p, it holds true

under the conditions in Scenario 1 that

f (u∗) − f
(

uk+1
)

+
N∑

i=1

(
x∗

i − xk+1
i

)� (
−A�

i λk+1
)

+ (λ − λk+1)�
(

N∑

i=1

Ai xk+1
i − b

)

+ 1

2γ

(∥∥∥λ − λk
∥∥∥
2 −

∥∥∥λ − λk+1
∥∥∥
2
)

+ ε(N − 2)(N + 1)

2

N∑

i=2

∥∥Ai x∗
i − Ai x0i

∥∥2
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+ γ

2

N−1∑

i=1

⎛

⎜⎝

∥∥∥∥∥∥

i∑

j=1

A j x∗
j +

N∑

j=i+1

A j xk
j − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

i∑

j=1

A j x∗
j +

N∑

j=i+1

A j xk+1
j − b

∥∥∥∥∥∥

2
⎞

⎟⎠

≥ 0. (3.9)

Proof For i = 1, 2, . . . , N − 1, we have,

(
xi − xk+1

i

)�
A�

i

⎛

⎝
N∑

j=i+1

A j

(
xk

j − xk+1
j

)
⎞

⎠

=
⎡

⎣

⎛

⎝
i∑

j=1

A j x j − b

⎞

⎠ −
⎛

⎝
i−1∑

j=1

A j x j + Ai xk+1
i − b

⎞

⎠

⎤

⎦
� ⎡

⎣

⎛

⎝−
N∑

j=i+1

A j xk+1
j

⎞

⎠

−
⎛

⎝−
N∑

j=i+1

A j xk
j

⎞

⎠

⎤

⎦

= 1

2

⎛

⎜⎝

∥∥∥∥∥∥

i∑

j=1

A j x j +
N∑

j=i+1

A j xk
j − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

i∑

j=1

A j x j +
N∑

j=i+1

A j xk+1
j − b

∥∥∥∥∥∥

2
⎞

⎟⎠

+ 1

2

⎛

⎜⎝

∥∥∥∥∥∥

i−1∑

j=1

A j x j +
N∑

j=i

A j xk+1
j − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

i−1∑

j=1

A j x j + Ai xk+1
i +

N∑

j=i+1

A j xk
j − b

∥∥∥∥∥∥

2
⎞

⎟⎠

≤ 1

2

⎛

⎜⎝

∥∥∥∥∥∥

i∑

j=1

A j x j +
N∑

j=i+1

A j xk
j − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

i∑

j=1

A j x j +
N∑

j=i+1

A j xk+1
j − b

∥∥∥∥∥∥

2
⎞

⎟⎠

+ 1

2

∥∥∥∥∥∥

i−1∑

j=1

A j x j +
N∑

j=i

A j xk+1
j − b

∥∥∥∥∥∥

2

,

where in the second equality we applied the identity (2.4). Summing the above inequality for
i = 1, . . . , N − 1 and using (3.4) yield,

γ

N−1∑

i=1

(
xi − xk+1

i

)�
A�

i

⎛

⎝
N∑

j=i+1

A j

(
xk

j − xk+1
j

)
⎞

⎠

≤ γ

2

N−1∑

i=1

⎛

⎜⎝

∥∥∥∥∥∥

i∑

j=1

A j x j +
N∑

j=i+1

A j xk
j − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

i∑

j=1

A j x j +
N∑

j=i+1

A j xk+1
j − b

∥∥∥∥∥∥

2
⎞

⎟⎠

+ 1

2γ

∥∥∥λk+1 − λk
∥∥∥
2 + γ

2

N−1∑

i=2

∥∥∥∥∥∥

i−1∑

j=1

A j x j +
N∑

j=i

A j xk+1
j − b

∥∥∥∥∥∥

2

. (3.10)
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Adding (3.7) and (3.8), and combining the resulting inequality with (3.4) and (3.10) yields
that the following inequality holds for any λ ∈ R p:

N∑

i=1

(
xi − xk+1

i

)� (
gi (xk+1

i ) − A�
i λk+1

)
+ (λ − λk+1)�

(
N∑

i=1

Ai xk+1
i − b

)

+ 1

γ
(λ − λk+1)�(λk+1 − λk)

+μ

N∑

i=2

(
xi − xk+1

i

)�
A�

i Ai

(
xk+1

i − x0i

)
+ 1

2γ

∥∥∥λk+1 − λk
∥∥∥
2

+ γ

2

N−1∑

i=2

∥∥∥∥∥∥

i−1∑

j=1

A j x j +
N∑

j=i

A j xk+1
j − b

∥∥∥∥∥∥

2

+ γ

2

N−1∑

i=1

⎛

⎜⎝

∥∥∥∥∥∥

i∑

j=1

A j x j +
N∑

j=i+1

A j xk
j − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

i∑

j=1

A j x j +
N∑

j=i+1

A j xk+1
j − b

∥∥∥∥∥∥

2
⎞

⎟⎠

≥ 0. (3.11)

Using (2.5), we have

1

γ

(
λ − λk+1

)� (
λk+1 − λk

)
+ 1

2γ

∥∥∥λk+1 − λk
∥∥∥
2 = 1

2γ

(∥∥∥λ − λk
∥∥∥
2 −

∥∥∥λ − λk+1
∥∥∥
2
)

,

and

μ
(

xi − xk+1
i

)�
A�

i Ai

(
xk+1

i − x0i

)

= μ

2

(∥∥Ai xi − Ai x0i
∥∥2 −

∥∥∥Ai xk+1
i − Ai x0i

∥∥∥
2 −

∥∥∥Ai xi − Ai xk+1
i

∥∥∥
2
)

≤ μ

2

∥∥Ai xi − Ai x0i
∥∥2 − μ

2

∥∥∥Ai xi − Ai xk+1
i

∥∥∥
2
.

Letting u = u∗ in (3.11), and invoking the convexity of fi that

fi
(
x∗

i

) − fi

(
xk+1

i

)
≥
(

x∗
i − xk+1

i

)�
gi

(
xk+1

i

)
, i = 1, 2, . . . , N

and

γ

2

N−1∑

i=2

∥∥∥∥∥∥

i−1∑

j=1

A j x∗
j +

N∑

j=i

A j xk+1
j − b

∥∥∥∥∥∥

2

= γ

2

N−1∑

i=2

∥∥∥∥∥∥

N∑

j=i

A j (xk+1
j − x∗

j )

∥∥∥∥∥∥

2

≤ γ (N + 1)(N − 2)

2

N∑

i=2

∥∥∥Ai xk+1
i − Ai x∗

i

∥∥∥
2
,
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we obtain,

f (u∗) − f (uk+1) +
N∑

i=1

(
x∗

i − xk+1
i

)� (
−A�

i λk+1
)

+ (λ − λk+1)�
(

N∑

i=1

Ai xk+1
i − b

)

+ 1

2γ

(∥∥∥λ − λk
∥∥∥
2 −

∥∥∥λ − λk+1
∥∥∥
2
)

+ μ

2

N∑

i=2

(∥∥Ai x∗
i − Ai x0i

∥∥2 −
∥∥∥Ai x∗

i − Ai xk+1
i

∥∥∥
2
)

+ γ

2

N−1∑

i=1

⎛

⎜⎝

∥∥∥∥∥∥

i∑

j=1

A j x∗
j +

N∑

j=i+1

A j xk
j − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

i∑

j=1

A j x∗
j +

N∑

j=i+1

A j xk+1
j − b

∥∥∥∥∥∥

2
⎞

⎟⎠

+ γ (N + 1)(N − 2)

2

N∑

i=2

∥∥∥Ai x∗
i − Ai xk+1

i

∥∥∥
2

≥ 0.

This together with the facts that μ = ε(N − 2)(N + 1) and γ ≤ ε implies that

γ (N + 1)(N − 2)

2

N∑

j=2

∥∥∥A j x∗
j − A j xk+1

j

∥∥∥
2 − μ

2

N∑

j=2

∥∥∥A j x∗
j − A j xk+1

j

∥∥∥
2 ≤ 0,

which further implies the desired inequality (3.9). ��
Now we are ready to prove the O(1/ε2) iteration complexity of the ADMM for (1.1) in

an ergodic case.

Theorem 3.2 Let (xk+1
1 , xk+1

2 , . . . , xk+1
N , λk+1) ∈ � be generated by ADMM (3.2)–(3.4)

from given (xk
2 , . . . , xk

N , λk). For any integer t > 0, let ūt = (x̄ t
1; x̄ t

2; . . . ; x̄ t
N ) and λ̄t be

defined as

x̄ t
i = 1

t + 1

t∑

k=0

xk+1
i , i = 1, 2, . . . , N , λ̄t = 1

t + 1

t∑

k=0

λk+1.

For any (u∗, λ∗) ∈ �∗, by defining ρ := ‖λ∗‖ + 1, it holds under conditions in Scenario 1
that,

0 ≤ f (ūt ) − f (u∗) + ρ

∥∥∥∥∥

N∑

i=1

Ai x̄ t
i − b

∥∥∥∥∥

≤ ρ2 + ‖λ0‖2
γ (t + 1)

+ γ

2(t + 1)

N−1∑

i=1

∥∥∥∥∥∥

N∑

j=i+1

A j (x0j − x∗
j )

∥∥∥∥∥∥

2

+ ε(N − 2)(N + 1)

2

N∑

i=2

∥∥Ai x∗
i − Ai x0i

∥∥2 .

This also implies that when t = O(1/ε2), ūt is an ε-optimal solution to the original problem
(1.1), i.e., both the error of the objective function value and the residual of the equality
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constraint satisfy that

| f (ūt ) − f (u∗)| = O(ε), and

∥∥∥∥∥

N∑

i=1

Ai x̄ t
i − b

∥∥∥∥∥ = O(ε). (3.12)

Proof Because (uk, λk) ∈ �, it holds that (ūt , λ̄t ) ∈ � for all t ≥ 0. By Lemma 3.1 and
invoking the convexity of function f (·), we have

f (u∗) − f (ūt ) + λ�
(

N∑

i=1

Ai x̄ t
i − b

)

= f (u∗) − f (ūt ) +
N∑

i=1

(
x∗

i − x̄ t
i

)� (
−A�

i λ̄t
)

+ (λ − λ̄t )�
(

N∑

i=1

Ai x̄ t
i − b

)

≥ 1

t + 1

t∑

k=0

[
f (u∗) − f (uk+1)

+
N∑

i=1

(
x∗

i − xk+1
i

)� (
−A�

i λk+1
)

+ (λ − λk+1)�
(

N∑

i=1

Ai xk+1
i − b

)]

≥ 1

t + 1

t∑

k=0

[
1

2γ

(∥∥∥λ − λk+1
∥∥∥
2 −

∥∥∥λ − λk
∥∥∥
2
)

− ε(N − 2)(N + 1)

2

N∑

i=2

∥∥Ai x∗
i − Ai x0i

∥∥2

+ γ

2

N−1∑

i=1

⎛

⎜⎝

∥∥∥∥∥∥

i∑

j=1

A j x∗
j +

N∑

j=i+1

A j xk+1
j − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

i∑

j=1

A j x∗
j +

N∑

j=i+1

A j xk
j − b

∥∥∥∥∥∥

2
⎞

⎟⎠

⎤

⎥⎦

≥ − 1

2γ (t + 1)

∥∥λ − λ0
∥∥2 − γ

2(t + 1)

N−1∑

i=1

∥∥∥∥∥∥

i∑

j=1

A j x∗
j +

N∑

j=i+1

A j x0j − b

∥∥∥∥∥∥

2

−ε(N − 2)(N + 1)

2

N∑

i=2

∥∥Ai x∗
i − Ai x0i

∥∥2 . (3.13)

Note that this inequality holds for all λ ∈ R p . From the optimality condition (2.1) we obtain

0 ≥ f (u∗) − f (ūt ) + (λ∗)�
(

N∑

i=1

Ai x̄ t
i − b

)
.

Moreover, since ρ := ‖λ∗‖ + 1, by applying Cauchy–Schwarz inequality, we obtain

0 ≤ f (ūt ) − f (u∗) + ρ

∥∥∥∥∥

N∑

i=1

Ai x̄ t
i − b

∥∥∥∥∥ . (3.14)
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By setting λ = −ρ(
∑N

i=1 Ai x̄ t
i − b)/‖∑N

i=1 Ai x̄ t
i − b‖ in (3.13), and noting that ‖λ‖ = ρ,

we obtain

f (ūt ) − f (u∗) + ρ

∥∥∥∥∥

N∑

i=1

Ai x̄ t
i − b

∥∥∥∥∥

≤ ρ2 + ‖λ0‖2
γ (t + 1)

+ γ

2(t + 1)

N−1∑

i=1

∥∥∥∥∥∥

N∑

j=i+1

A j (x0j − x∗
j )

∥∥∥∥∥∥

2

+ ε(N − 2)(N + 1)

2

N∑

i=2

∥∥Ai x∗
i − Ai x0i

∥∥2 . (3.15)

When t = O(1/ε2), together with the condition that ε
2 ≤ γ ≤ ε, it is implied that the right

hand side of (3.15) is of order O(ε).
We now define the function

v(ξ) = min

{
f (u)

∣∣∣∣∣

N∑

i=1

Ai xi − b = ξ, xi ∈ Xi , i = 1, 2, . . . , N

}
.

It is easy to verify that v is convex, v(0) = f (u∗), and λ∗ ∈ ∂v(0). Therefore, from the
convexity of v and the Cauchy–Schwarz inequality, it holds that

v(ξ) ≥ v(0) + 〈λ∗, ξ 〉 ≥ f (u∗) − ‖λ∗‖‖ξ‖. (3.16)

Let ξ̄ = ∑N
i=1 Ai x̄ t

i −b, we have f (ūt ) ≥ v(ξ̄ ). Therefore, by combining (3.14), (3.16), and
the fact that the right hand side (thus the left hand side) of (3.15) is of order O(ε), we get

−‖λ∗‖‖ξ̄‖ ≤ f (ūt ) − f (u∗)

≤ ρ2 + ‖λ0‖2
γ (t + 1)

+ γ

2(t + 1)

N−1∑

i=1

∥∥∥∥∥∥

N∑

j=i+1

A j (x0j − x∗
j )

∥∥∥∥∥∥

2

+ε(N − 2)(N + 1)

2

N∑

i=2

∥∥Ai x∗
i − Ai x0i

∥∥2 − ρ‖ξ̄‖

≤ Cε − ρ‖ξ̄‖,
which, by using ρ = ‖λ∗‖ + 1, yields,

∥∥∥∥∥

N∑

i=1

Ai x̄ t
i − b

∥∥∥∥∥ = ‖ξ̄‖ ≤ Cε, (3.17)

where C is a constant depending on ρ, λ0, x0, x∗ and N . Moreover, by combining (3.14) and
(3.17), one obtains that

− ρCε ≤ −ρ‖ξ̄‖ ≤ f (ūt ) − f (u∗) ≤ (1 − ρ)Cε. (3.18)

Finally, we note that (3.17), (3.18) imply (3.12). ��
Remark 3.3 We remark that by applying ADMM to solve the associated perturbed problem
(3.1), we can find an ε-optimal solution to the original problem (1.1), i.e., an approximate
solution to (1.1). However, the assumptions required in this section do not ensure that the
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exact optimal solution to (1.1) can be found, because that would require γ → 0 and thus
ε → 0.

3.1 Solving the Counterexample in [7]

We now implement our algorithm in this section to solve a perturbed version of the coun-
terexample constructed by Chen et al. [7]. As we will see, after modifying the problem by
adding the perturbation terms, the multi-block ADMM is always able to find an ε-optimal
solution. The counterexample constructed in [7] is to find a solution to the linear system
A1x1 + A2x2 + A3x3 = 0, where A1 = (1, 1, 1)�, A2 = (1, 1, 2)� and A3 = (1, 2, 2)�.
It is easy to see that the unique solution of this linear system is (x1, x2, x3) = (0, 0, 0). The
associated perturbed problem to this example is given by

min μ
2 ‖A2x2 − A2x02‖2 + μ

2 ‖A3x3 − A3x03‖2
s.t. A1x1 + A2x2 + A3x3 = 0,

(3.19)

where μ = 4ε. To satisfy the conditions in Scenario 1, we chose γ = ε. We randomly
generated x0 = (x01 , x02 , x03 ) using the randn function in Matlab with random seed set to 0.
We plot the residual of the equality constraint and the three components of xt and the average
of xk for k = 0, . . . , t in Figs. 1 and 2 for ε = 10−2 and ε = 10−3 respectively, where t
denotes the iteration number. From Figs. 1 and 2 we can see that ADMM for solving the
perturbed problem is able to decrease the residual of the equality constraint to the order of
O(ε) in O(1/ε2) iterations, which matches our theoretical results in Theorem 3.2. We also
see that both xt and the average of xk for k = 0, . . . , t converge to zero, which is the unique
solution to the original problem. As a result, our approach successfully eliminates the risk of
divergence of the multi-block ADMM.

4 Iteration Complexity of ADMM: Kurdyka–Łojasiewicz Property

In this section, we prove an O(1/ε) iteration complexity ofADMM(1.2) under the conditions
in Scenario 2 of Table 1. Under the conditions in Scenario 2, since XN = RnN , fN is
differentiable and AN = I , (1.1) becomes the so-called sharing problem. It turns out that
ADMM has nice convergence properties when it is applied to solve sharing problems. In
a recent work by Hong, Luo and Razaviyayn [27], it was shown that ADMM is globally
convergent under certain conditions for solving a nonconvex sharing problem. For convex
sharing problem, Corollary 3.1 in [27] gives conditions that guarantee the global convergence
of ADMM. These conditions are the same as our conditions required in Scenario 2. For
example, both papers require γ >

√
2L . The difference is that global convergence of ADMM

for solving (both nonconvex and convex) sharing problem is shown in [27], and we show that
by using the KL property, we are able to prove the sublinear convergence rate of ADMM for
convex sharing problem.

The first-order optimality conditions for the subproblems in (1.2) are given by xk+1
i ∈

Xi , i = 1, . . . , N − 1, and for any xi ∈ Xi ,

gi

(
xk+1

i

)
− A�

i λk + γ A�
i

⎛

⎝
i∑

j=1

A j xk+1
j +

N−1∑

j=i+1

A j xk
j +xk

N − b

⎞

⎠ = 0, i = 1, . . . , N −1,

(4.1)
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∇ fN

(
xk+1

N

)
− λk + γ

⎛

⎝
N−1∑

j=1

A j xk+1
j +xk+1

N − b

⎞

⎠ = 0, (4.2)

where gi ∈ ∂( fi + 1Xi ) is a subgradient of fi + 1Xi , i = 1, 2, . . . , N − 1. The last equation
in (1.2) that updates λk now becomes

λk+1 := λk − γ
(

A1xk+1
1 + A2xk+1

2 + · · · + AN−1xk+1
N−1 + xk+1

N − b
)

. (4.3)

Moreover, by combining with (4.3), (4.1) and (4.2) can be rewritten as

gi (xk+1
i )− A�

i λk+1+γ A�
i

⎛

⎝
N−1∑

j=i+1

A j (xk
j − xk+1

j )+(xk
N −xk+1

N )

⎞

⎠=0, i = 1, . . . , N − 1,

(4.4)

∇ fN (xk+1
N ) − λk+1 = 0. (4.5)

Note that in Scenario 2 we require that Lγ is a Kurdyka–Łojasiewicz (KL) function. Let
us first introduce the notion of the KL function and the KL property, which can be found,
e.g., in [3,4]. We denote dist(x, S) := inf{‖y − x‖ : y ∈ S} as the distance from x to S. Let
η ∈ (0,+∞]. We further denote �η to be the class of all concave and continuous functions
ϕ : [0, η) → R+ satisfying the following conditions: (1) ϕ(0) = 0; (2) ϕ is C1 on (0, η) and
continuous at 0; (3) for all s ∈ (0, η) : ϕ′(s) > 0.

Definition 4.1 Let f : � → (−∞,+∞] be proper and lower semicontinuous.

1. The function f has KL property at w0 ∈ {w ∈ � : ∂ f (w) �= ∅} if there exists η ∈
(0,+∞], a neighborhood W0 of w0 and a function ϕ ∈ �η such that for all

w̄0 ∈ W ∩ {w ∈ � : f (w) < f (w0) < f (w) + η} ,

the following inequality holds,

ϕ′( f (w̄0) − f (w0))dist(0, ∂ f (w̄0)) ≥ 1. (4.6)

2. The function f is a KL function if f satisfies the KL property at each point of � ∩
{∂ f (w) �= ∅}.

Remark 4.1 It is important to remark that most convex functions from practical applications
satisfy the KL property; see Section 5.1 of [4]. In fact, convex functions that do not satisfy the
KL property exist (see [3] for a counterexample) but they are rare and difficult to construct.

Indeed,Lγ will be aKL function if each fi satisfies growth condition, or uniformconvexity,
or they are general convex semialgebraic or real analytic functions. We refer the interested
readers to [1,4] for more information.

The following result, which is called uniformized KL property, is from Lemma 6 of [4].

Lemma 4.2 (Lemma 6 [4]) Let � be a compact set and f : Rn → (−∞,∞] be a proper
and lower semi-continuous function. Assume that f is constant on � and satisfies the KL
property at each point of �. Then, there exists ε > 0, η > 0 and ϕ ∈ �η such that for all ū
in � and all u in the intersection:

{
u ∈ Rn : dist(u,�) < ε

} ∩ {
u ∈ Rn : f (ū) < f (u) < f (ū) + η

}
,

the following inequality holds,

ϕ′ ( f (u) − f (ū)) dist (0, ∂ f (u)) ≥ 1.
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We now give a formal definition of the limit point set. Let the sequence wk =(
xk
1 , . . . , xk

N , λk
)
be a sequence generated by the multi-block ADMM (1.2) from a start-

ing point w0 = (
x01 , . . . , x0N , λ0

)
. The set of all limit points is denoted by �(w0), i.e.,

�(w0) = {
w̄ ∈ Rn1 × · · · × RnN × R p : ∃ an infinite sequence {kl}l=1,...

such that wkl → w̄ as l → ∞
}

.

In the followingwe present themain results in this section. Specifically, Theorem 4.3 gives
the convergence of the multi-block ADMM (1.2), and we include its proof in the “Appendix”.
Theorem 4.5 shows that the whole sequence generated by the multi-block ADMM (1.2)
converges.

Theorem 4.3 Under the conditions in Scenario 2 of Table 1, then:

1. �(w0) is a non-empty set, and any point in �(w0) is a stationary point of
Lγ (x1, . . . , xN , λ);

2. �(w0) is a compact and connected set;
3. The function Lγ (x1, . . . , xN , λ) is finite and constant on �(w0).

Remark 4.4 In Theorem 4.3, we do not requireLγ to be aKL function, which is only required
in Theorem 4.5 (see next).

Theorem 4.5 Suppose that Lγ (x1, . . . , xN , λ) is a KL function. Let the sequence wk =(
xk
1 , . . . , xk

N , λk
)

be generated by the multi-block ADMM (1.2). Let w∗ = (
x∗
1 , . . . , x∗

N , λ∗) ∈
�(w0), then the sequence wk = (

xk
1 , . . . , xk

N , λk
)

has a finite length, i.e.,

∞∑

k=0

(
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥ +
∥∥∥λk − λk+1

∥∥∥

)
≤ G, (4.7)

where the constant G is given by

G := 2

(
N−1∑

i=1

∥∥Ai x0i − Ai x1i
∥∥ + ∥∥x0N − x1N

∥∥ + ∥∥λ0 − λ1
∥∥
)

+ 2Mγ (1 + L2)

γ 2 − 2L2 ϕ
(Lγ (w1) − Lγ (w∗)

)
,

and

M = max

(
γ

N−1∑

i=1

∥∥∥A�
i

∥∥∥ ,
1

γ
+ 1 +

N−1∑

i=1

∥∥∥A�
i

∥∥∥

)
> 0, (4.8)

and the whole sequence
(

A1xk
1 , A2xk

2 , . . . , AN−1xk
N−1, xk

N , λk
)

converges to
(

A1x∗
1 , . . . ,

AN−1x∗
N−1, x∗

N , λ∗).

Proof The proof of this theorem is almost identical to the proof of Theorem 1 in [4], by
utilizing the uniformized KL property (Lemma 4.2), and the facts that �(w0) is compact,
Lγ (w) is constant (proved in Theorem 4.3), with function � replaced by Lγ and some other
minor changes. We thus omit the proof for succinctness. ��

Based on Theorem 4.5, we prove a key lemma for analyzing the iteration complexity for
the ADMM.
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Lemma 4.6 Suppose that Lγ (x1, . . . , xN , λ) is a KL function. Let (xk+1
1 , xk+1

2 , . . . , xk+1
N ,

λk+1) ∈ � be generated by the multi-block ADMM (1.2) from given (xk
2 , . . . , xk

N , λk). For
any u∗ = (x∗

1 , x∗
2 , . . . , x∗

N ) ∈ �∗ and λ ∈ R p, it holds under conditions in Scenario 2 that

f (u∗) − f (uk+1) +
N−1∑

i=1

(
x∗

i − xk+1
i

)� (
−A�

i λk+1
)

−
(

x∗
N − xk+1

N

)�
λk+1

+ (λ − λk+1)�
(

N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)

+ γ

2

⎛

⎝
∥∥∥∥∥A1x∗

1 +
N−1∑

i=2

Ai xk
i + xk

N − b

∥∥∥∥∥

2

−
∥∥∥∥∥A1x∗

1 +
N−1∑

i=2

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥

2⎞

⎠

+ 1

2γ

(∥∥∥λ − λk
∥∥∥
2 −

∥∥∥λ − λk+1
∥∥∥
2
)

+ γ D(N − 2)

(
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

)

≥ 0, (4.9)

where D is a constant that will be specified later.

Proof Note that similar to the proof of Lemma 3.1, we can prove that, for any x1 ∈ X1,

(
x1 − xk+1

1

)�
A�
1

⎡

⎣
N−1∑

j=2

A j

(
xk

j − xk+1
j

)
+
(

xk
N − xk+1

N

)
⎤

⎦

≤ 1

2

⎛

⎜⎝

∥∥∥∥∥∥
A1x1 +

N−1∑

j=2

A j xk
j + xk

N − b

∥∥∥∥∥∥

2

−
∥∥∥∥∥∥

A1x1 +
N−1∑

j=2

A j xk+1
j + xk+1

N − b

∥∥∥∥∥∥

2
⎞

⎟⎠

+ 1

2γ 2

∥∥∥λk+1 − λk
∥∥∥
2
.

For any xi ∈ Xi , i = 2, 3, . . . , N − 1, we have,

(
xi − xk+1

i

)�
A�

i

⎡

⎣
N−1∑

j=i+1

A j

(
xk

j − xk+1
j

)
+
(

xk
N − xk+1

N

)
⎤

⎦

≤
∥∥∥Ai xi − Ai xk+1

i

∥∥∥

⎡

⎣
N−1∑

j=i+1

∥∥∥A j xk
j − A j xk+1

j

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

⎤

⎦

≤
∥∥∥Ai xi − Ai xk+1

i

∥∥∥

⎡

⎣
N−1∑

j=1

∥∥∥A j xk
j − A j xk+1

j

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

⎤

⎦ .
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Therefore, for any xi ∈ Xi , i = 1, . . . , N − 1, it holds that

γ

N−1∑

i=1

(
xi − xk+1

i

)�
A�

i

⎛

⎝
N−1∑

j=i+1

A j

(
xk

j − xk+1
j

)
+
(

xk
N − xk+1

N

)
⎞

⎠

≤ γ

2

⎛

⎝
∥∥∥∥∥A1x1 +

N−1∑

i=2

Ai xk
i + xk

N − b

∥∥∥∥∥

2

−
∥∥∥∥∥A1x1 +

N−1∑

i=2

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥

2⎞

⎠

+ 1

2γ

∥∥∥λk+1 − λk
∥∥∥
2

+ γ

(
N−1∑

i=2

∥∥∥Ai xi − Ai xk+1
i

∥∥∥

)[
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

]
. (4.10)

Combining (4.3), (4.4), (4.5) and (4.10), it holds for any λ ∈ R p that

N−1∑

i=1

(
xi − xk+1

i

)� (
gi (xk+1

i ) − A�
i λk+1

)
+
(

xN − xk+1
N

)� (
∇ fN (xk+1

N ) − λk+1
)

+ (λ − λk+1)�
(

N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)
+ 1

γ
(λ − λk+1)�(λk+1 − λk)

+ γ

2

⎛

⎝
∥∥∥∥∥A1x1 +

N−1∑

i=2

Ai xk
i + xk

N − b

∥∥∥∥∥

2

−
∥∥∥∥∥A1x1 +

N−1∑

i=2

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥

2⎞

⎠

+ 1

2γ

∥∥∥λk+1 − λk
∥∥∥
2

+ γ

(
N−1∑

i=2

∥∥∥Ai xi − Ai xk+1
i

∥∥∥

)[
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

]

≥ 0. (4.11)

Using (2.5), we have

1

γ

(
λ − λk+1

)� (
λk+1 − λk

)
+ 1

2γ

∥∥∥λk+1 − λk
∥∥∥
2 = 1

2γ

(∥∥∥λ − λk
∥∥∥
2 −

∥∥∥λ − λk+1
∥∥∥
2
)

.

Letting u = u∗ in (4.11), and invoking the convexity of fi , we obtain

f (u∗) − f (uk+1) +
N−1∑

i=1

(
x∗

i − xk+1
i

)� (
−A�

i λk+1
)

+
(

x∗
N − xk+1

N

)�
(−λk+1)

+
(
λ − λk+1

)�
(

N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)
+ 1

2γ

(∥∥∥λ − λk
∥∥∥
2 −

∥∥∥λ − λk+1
∥∥∥
2
)

+ γ

2

⎛

⎝
∥∥∥∥∥A1x∗

1 +
N−1∑

i=2

Ai xk
i + xk

N − b

∥∥∥∥∥

2

−
∥∥∥∥∥A1x∗

1 +
N−1∑

i=2

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥

2⎞

⎠

+ γ

(
N−1∑

i=2

∥∥∥Ai x∗
i − Ai xk+1

i

∥∥∥

)[
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

]
≥ 0.
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FromTheorem 4.5 we know that the whole sequence
(

A1xk
1 , A2xk

2 , . . . , AN−1xk
N−1, xk

N , λk
)

converges to
(

A1x∗
1 , . . . , AN−1x∗

N−1, x∗
N , λ∗). Therefore, there exists a constant D > 0 such

that
∥∥∥Ai xk

i − Ai xk+1
i

∥∥∥ ≤ D,

for any k ≥ 0 and any i = 2, 3, . . . , N − 1. This implies (4.9). ��

Now, we are ready to prove the O(1/ε) iteration complexity of the multi-block ADMM
for (1.1).

Theorem 4.7 Suppose that Lγ (x1, . . . , xN , λ) is a KL function. Let (xk+1
1 , xk+1

2 , . . . , xk+1
N ,

λk+1) ∈ � be generated by the multi-block ADMM (1.2) from given (xk
2 , . . . , xk

N , λk). For
any integer t > 0, let ūt = (x̄ t

1; x̄ t
2; . . . ; x̄ t

N ) and λ̄t be defined as

x̄ t
i = 1

t + 1

t∑

k=0

xk+1
i , i = 1, 2, . . . , N , λ̄t = 1

t + 1

t∑

k=0

λk+1.

For any (u∗, λ∗) ∈ �∗, by defining ρ := ‖λ∗‖ + 1, it holds in Scenario 2 that,

0 ≤ f (ūt ) − f (u∗) + ρ

∥∥∥∥∥

N∑

i=1

Ai x̄ t
i − b

∥∥∥∥∥

≤ ρ2 + ‖λ0‖2
γ (t + 1)

+ γ

2(t + 1)

∥∥∥∥∥

N−1∑

i=2

Ai (x0i − x∗
j ) + (x0N − x∗

N )

∥∥∥∥∥

2

+ γ DG

t + 1
.

Note this also implies that when t = O(1/ε), ūt is an ε-optimal solution to the original
problem (1.1), i.e., both the error of the objective function value and the residual of the
equality constraint satisfy that

| f (ūt ) − f (u∗)| = O(ε), and

∥∥∥∥∥

N∑

i=1

Ai x̄ t
i − b

∥∥∥∥∥ = O(ε). (4.12)

Proof Because (uk, λk) ∈ �, it holds that (ūt , λ̄t ) ∈ � for all t ≥ 0. By Lemma 4.6 and
invoking the convexity of function f (·), we have for any λ ∈ R p ,

f (u∗) − f (ūt ) + λ�
(

N−1∑

i=1

Ai x̄ t
i + x̄ t

N − b

)

= f (u∗) − f (ūt ) +
N−1∑

i=1

(
x∗

i − x̄ t
i

)� (
−A�

i λ̄t
)

+ (
x∗

N − x̄ t
N

)�
(−λ̄t ) + (λ − λ̄t )�

(
N−1∑

i=1

Ai x̄ t
i + x̄ t

N − b

)

≥ 1

t + 1

t∑

k=0

(
f (u∗) − f (uk+1) +

N−1∑

i=1

(
x∗

i − xk+1
i

)� (
−A�

i λk+1
)
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+
(

x∗
N − xk+1

N

)�
(−λk+1)

+ (λ − λk+1)�
(

N−1∑

i=1

Ai xk+1
i + xk+1

N − b

))

≥ 1

t + 1

t∑

k=0

[
1

2γ

(∥∥∥λ − λk+1
∥∥∥
2 −

∥∥∥λ − λk
∥∥∥
2
)

− γ D(N − 2)

(
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

)

+ γ

2

⎛

⎝
∥∥∥∥∥A1x∗

1 +
N−1∑

i=2

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥

2

−
∥∥∥∥∥A1x∗

1 +
N−1∑

i=2

Ai xk
i + xk

N − b

∥∥∥∥∥

2⎞

⎠

⎤

⎦

≥ − 1

2γ (t + 1)

∥∥λ − λ0
∥∥2 − γ

2(t + 1)

∥∥∥∥∥A1x∗
1 +

N−1∑

i=2

Ai x0i + x0N − b

∥∥∥∥∥

2

− γ D(N − 2)

t + 1

t∑

k=0

(
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

)

≥− 1

2γ (t + 1)

∥∥λ − λ0
∥∥2− γ

2(t + 1)

∥∥∥∥∥A1x∗
1 +

N−1∑

i=2

Ai x0i + x0N − b

∥∥∥∥∥

2

− γ DG(N − 2)

t + 1
,

(4.13)

where the last inequality holds due to Theorem 4.5. From the optimality conditions (2.1) we
obtain

0 ≥ f (u∗) − f (ūt ) + (λ∗)�
(

N−1∑

i=1

Ai x̄ t
i + x̄ t

N − b

)
.

Since ρ := ‖λ∗‖ + 1, by the Cauchy–Schwarz inequality, we obtain

0 ≤ f (ūt ) − f (u∗) + ρ

∥∥∥∥∥

N−1∑

i=1

Ai x̄ t
i + x̄ t

N − b

∥∥∥∥∥ . (4.14)

By setting λ = −ρ(
∑N−1

i=1 Ai x̄ t
i + x̄ t

N − b)/‖∑N−1
i=1 Ai x̄ t

i + x̄ t
N − b‖ in (4.13), and noting

that ‖λ‖ = ρ, we obtain

f (ūt ) − f (u∗) + ρ

∥∥∥∥∥

N−1∑

i=1

Ai x̄ t
i + x̄ t

N − b

∥∥∥∥∥

≤ ρ2 + ‖λ0‖2
γ (t + 1)

+ γ

2(t + 1)

∥∥∥∥∥

N−1∑

i=2

Ai (x0i − x∗
i ) + (x0N − x∗

N )

∥∥∥∥∥

2

+ γ DG(N − 2)

t + 1
.

(4.15)

When t = O(1/ε), we have that the right hand side of (4.15) is of order O(ε). By the same
arguments as in the proof for Theorem 3.2, (4.12) follows from (4.14) and (4.15). ��
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Fig. 4 The residual of the equality constraint of ADMM for solving the sharing problem (4.16) with γ =
0.01 ∗ √

2 ∗ L

4.1 Divergence Counterexample Revisited

In this subsectionwe shall test the same divergence counterexample as considered in Sect. 3.1,
but now equivalently reformulated in a way to satisfy the conditions required in Scenario 2.
The example in [7] can obviously be formulated equivalently as:

min 1
2‖y‖2

s.t. A1x1 + A2x2 + A3x3 + y = 0,
(4.16)

where A1, A2, A3 are the same as in Sect. 3.1. Note that (4.16) is in the form of the sharing
problem with four block variables x1, x2, x3 and y, and it satisfies assumptions in Scenario
2. Note that (4.16) corresponds to f4(·) = 1

2‖ · ‖2 and the Lipschitz constant L = 1 for ∇ f4.
It is easy to see that the unique solution to (4.16) is x1 = x2 = x3 = 0 and y = (0, 0, 0)�.
We then apply ADMM (1.2) to solve (4.16) with γ = 1.01 ∗ √

2 ∗ L so that the assumption
on γ in Scenario 2 is satisfied. Similarly as the tests in Sect. 3.1, we plot the residual of the
equality constraint and the components of the average of xk and yk for k = 0, . . . , t in Fig.
3, where t denotes the iteration number. From Fig. 3 we again observed the convergence of
ADMM.We then tested the same problem using a smaller γ , which was set to 0.01∗√

2∗ L .
The residual of the equality constraint is plotted in Fig. 4. Figure 4 shows that after a few
number of iterations, ADMM diverges. This indicates that if the assumption γ >

√
2 ∗ L is

violated, then it is possible that ADMM diverges for solving the sharing problem (4.16).

Acknowledgments The authors are grateful to the associate editor and two anonymous referees for their
insightful comments that have improved the presentation of this paper greatly.
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Appendix: Proof of Theorem 4.3

We first prove the following lemma.

Lemma 4.8 The following results hold under the conditions in Scenario 2.

1. The iterative gap of dual variable can be bounded by that of primal variable, i.e.,

‖λk+1 − λk‖2 ≤ L2‖xk+1
N − xk

N ‖, (4.17)

where L is the Lipschitz constant for ∇ fN .
2. The augmented Lagrangian Lγ has a sufficient decrease in each iteration, i.e.,

Lγ

(
xk
1 , . . . , xk

N+1; λk
)

− Lγ

(
xk+1
1 , . . . , xk+1

N+1; λk+1
)

≥ γ 2 − 2L2

2γ (1 + L2)

(
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥
2 +

∥∥∥xk
N − xk+1

N

∥∥∥
2 +

∥∥∥λk − λk+1
∥∥∥
2
)

.

(4.18)

3. The augmented Lagrangian Lγ (wk) is uniformly lower bounded, and it holds true that

∞∑

k=0

(
N−1∑

i=1

∥∥∥Ai xk+1
i − Ai xk

i

∥∥∥
2 +

∥∥∥xk+1
N − xk

N

∥∥∥
2 +

∥∥∥λk+1 − λk
∥∥∥
2
)

≤ 2γ (1 + L2)

γ 2 − 2L2

(Lγ (w0) − L∗) (4.19)

where L∗ is the uniform lower bound of Lγ (wk), and hence

lim
k→∞

(
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥
2 +

∥∥∥xk
N − xk+1

N

∥∥∥
2 +

∥∥∥λk − λk+1
∥∥∥
2
)

= 0. (4.20)

Moreover,
{(

xk
1 , xk

2 , . . . , xk
N , λk

) : k = 0, 1, . . .
}

is a bounded sequence.
4. There exists an upper bound for a subgradient of augmented Lagrangian Lγ in each

iteration. In fact, we define

Rk+1
i := γ A�

i

(
N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)

−γ A�
i

⎛

⎝
N−1∑

j=i+1

A j

(
xk

j − xk+1
j

)
+
(

xk
N − xk+1

N

)
⎞

⎠

and

Rk+1
N := γ

(
N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)
, Rk+1

λ := b −
N−1∑

i=1

Ai xk+1
i − xk+1

N

for each positive integer k, and i = 1, 2, . . . , N. Then
(

Rk+1
1 , . . . , Rk+1

N , Rk+1
λ

)
∈

∂Lγ (wk+1). Moreover, it holds that
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∥∥∥
(

Rk+1
1 , . . . , Rk+1

N , Rk+1
λ

)∥∥∥ ≤
N∑

i=1

∥∥∥Rk+1
i

∥∥∥ +
∥∥∥Rk+1

λ

∥∥∥

≤ M

(
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥ +
∥∥∥xk

i − xk+1
i

∥∥∥ +
∥∥∥λk − λk+1

∥∥∥

)
, ∀k ≥ 0,

(4.21)

where M is a constant defined in (4.8).

Proof of Lemma 4.8. 1. (4.17) follows directly from (4.5).
2. From (4.1), by invoking the convexity of fi , we have for i = 1, . . . , N − 1:

0 =
(

xk
i −xk+1

i

)�
⎡

⎣gi

(
xk+1

i

)
− A�

i λk +γ A�
i

⎛

⎝
i∑

j=1

A j xk+1
j +

N−1∑

j=i+1

A j xk
j + xk

N − b

⎞

⎠

⎤

⎦

≤ fi

(
xk

i

)
− fi

(
xk+1

i

)
−
(

Ai xk
i − Ai xk+1

i

)�
λk

+ γ
(

Ai xk
i − Ai xk+1

i

)�
⎛

⎝
i∑

j=1

A j xk+1
j +

N−1∑

j=i+1

A j xk
j + xk

N − b

⎞

⎠

= Lγ

(
xk+1
1 , . . . , xk

i−1, xk
i , . . . , λk

)
− Lγ

(
xk+1
1 , . . . , xk+1

i , xk
i+1, . . . , λ

k
)

− γ

2

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥
2
. (4.22)

Similarly, from (4.2) we can prove that

Lγ

(
xk+1
1 , . . . , xk+1

N−1, xk
N , . . . ; λk

)
− Lγ

(
xk+1
1 , . . . , xk+1

N ; λk
)

≥ γ

2

∥∥∥xk
N − xk+1

N

∥∥∥
2
.

(4.23)

Summing (4.22) over i = 1, . . . , N − 1 and (4.23), we have

Lγ

(
xk
1 , . . . , xk

N , λk
)

− Lγ

(
xk+1
1 , . . . , xk+1

N , λk
)

≥ γ

2

N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥
2 + γ

2

∥∥∥xk
N − xk+1

N

∥∥∥
2
. (4.24)

On the other hand, it follows from (4.2) and (4.17) that

Lγ

(
xk+1
1 , . . . , xk+1

N , λk
)

− Lγ

(
xk+1
1 , . . . , xk+1

N , λk+1
)

= 1

γ

∥∥∥λk − λk+1
∥∥∥
2 ≥ − L2

γ

∥∥∥xk
N − xk+1

N

∥∥∥
2
. (4.25)
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Combining (4.24) and (4.25) yields

Lγ

(
xk
1 , . . . , xk

N , λk
)

− Lγ

(
xk+1
1 , . . . , xk+1

N , λk+1
)

≥ γ

2

N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥
2 + γ 2 − 2L2

2γ

∥∥∥xk
N − xk+1

N

∥∥∥
2

≥ γ

2

N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥
2 + γ 2 − 2L2

2γ (1 + L2)

(∥∥∥xk
N − xk+1

N

∥∥∥
2 +

∥∥∥λk − λk+1
∥∥∥
2
)

≥ γ 2 − 2L2

2γ (1 + L2)

(
N−1∑

i=1

∥∥∥Ai xk
i − Ai xk+1

i

∥∥∥
2 +

∥∥∥xk
N − xk+1

N

∥∥∥
2 +

∥∥∥λk − λk+1
∥∥∥
2
)

.

(4.26)

3. It follows from (4.2) and the fact that ∇ fN is Lipschitz continuous with constant L that,

fN

(
b −

N−1∑

i=1

Ai xk+1
i

)

≤ fN

(
xk+1

N

)
+
〈
∇ fN

(
xk+1

N

)
,

(
b −

N−1∑

i=1

Ai xk+1
i − xk+1

N

)〉

+ L

2

∥∥∥∥∥b −
N−1∑

i=1

Ai xk+1
i − xk+1

N

∥∥∥∥∥

2

= fN

(
xk+1

N

)
−
〈
λk+1,

N−1∑

i=1

Ai xk+1
i +xk+1

N − b

〉
+ L

2

∥∥∥∥∥

N−1∑

i=1

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥

2

.

This implies that there exists L∗ > −∞, such that

Lγ

(
xk+1
1 , . . . , xk+1

N , λk+1
)

≥
N−1∑

i=1

fi (xk+1
i ) + fN

(
b −

N−1∑

i=1

Ai xk+1
i

)
+ γ − L

2

∥∥∥∥∥

N−1∑

i=1

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥

2

> L∗, (4.27)

where the last inequality holds since γ > L and infXi fi > f ∗
i for i = 1, 2, . . . , N .

Therefore, it directly follows from (4.18) and γ >
√
2L that,

γ 2 − 2L2

2γ (1 + L2)

K∑

k=0

(
N−1∑

i=1

‖Ai xk+1
i − Ai xk

i ‖2 + ‖xk+1
N − xk

N ‖2 + ‖λk+1 − λk‖2
)

≤ Lγ (w0) − L∗.

Letting K → ∞ gives (4.19) and (4.20).
It also follows from (4.27), (4.18) and γ >

√
2L that Lγ (w0) − f ∗

N ≥ ∑N−1
i=1 fi (xk+1

i ).
This implies that

{(
xk
1 , xk

2 , . . . , xk
N−1

) : k = 0, 1, . . .
}
is a bounded sequence by using

the coerciveness of fi + 1Xi , i = 1, 2, . . . , N − 1. The boundedness of
(
xk

N , λk
)
can be

obtained by using (4.3), (4.17) and (4.20).
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4. From the definition of Lγ , it is clear that for i = 1, . . . , N − 1,

gi

(
xk+1

i

)
− A�

i λk+1 + γ A�
i

(
N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)
∈ ∂xi Lγ (wk+1),

and

∇ f
(

xk+1
N

)
− λk+1 + γ

(
N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)
= ∇xN Lγ (wk+1),

and

b −
N−1∑

i=1

Ai xk+1
i − xk+1

N = ∇λLγ (wk+1),

where gi ∈ ∂
(

fi + 1Xi

)
for i = 1, 2, . . . , N − 1.

Combining these relations with (4.4) and (4.5) yields that

Rk+1
i := γ A�

i

(
N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)

− γ A�
i

⎛

⎝
N−1∑

j=i+1

A j (xk
j − xk+1

j ) + (xk
N − xk+1

N )

⎞

⎠ ∈ ∂xi Lγ (wk+1),

Rk+1
N := γ

(
N−1∑

i=1

Ai xk+1
i + xk+1

N − b

)
= ∇xN Lγ (wk+1),

Rk+1
λ := b −

N−1∑

i=1

Ai xk+1
i − xk+1

N = ∇λLγ (wk+1),

for i = 1, 2, . . . , N − 1. Therefore,
(

Rk+1
1 , . . . , Rk+1

N , Rk+1
λ

)
∈ ∂Lγ (wk+1).

We now need to bound the norms of Rk+1
i , i = 1, . . . , N − 1, Rk

N and Rk
λ. It holds that

∥∥∥Rk+1
i

∥∥∥ ≤ γ

∥∥∥A�
i

∥∥∥

⎛

⎝
N−1∑

j=i+1

∥∥∥A j xk
j − A j xk+1

j

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

⎞

⎠

+ γ

∥∥∥A�
i

∥∥∥

∥∥∥∥∥

N−1∑

i=1

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥

≤ γ

∥∥∥A�
i

∥∥∥

⎛

⎝
N−1∑

j=1

∥∥∥A j xk
j − A j xk+1

j

∥∥∥ +
∥∥∥xk

N − xk+1
N

∥∥∥

⎞

⎠ +
∥∥∥A�

i

∥∥∥
∥∥∥λk − λk+1

∥∥∥

and

∥∥∥Rk+1
N

∥∥∥ = γ

∥∥∥∥∥

N−1∑

i=1

Ai xk+1
i + xk+1

N − b

∥∥∥∥∥ =
∥∥∥λk − λk+1

∥∥∥ , ‖Rk+1
λ ‖ = 1

γ

∥∥∥λk − λk+1
∥∥∥ .

These relations immediately imply (4.21). �
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Proof of Theorem 4.3. 1. It has been proven in Lemma 4.8 that
{(

xk
1 , xk

2 , . . . , xk
N , λk

) :
k = 0, 1, . . .} is a bounded sequence. Therefore, we conclude that �(w0) is non-empty
by the Bolzano-Weierstrass Theorem. Let w∗ = (

x∗
1 , . . . , x∗

N , λ∗) ∈ �(w0) be a limit
point of {wk = (

xk
1 , . . . , xk

N , λk
) : k = 0, 1, . . .}. Then there exists a subsequence{

wkq =
(

x
kq
1 , . . . , x

kq
N , λkq

)
: q = 0, 1, . . .

}
such that wkq → w∗ as q → ∞. Since

fi , i = 1, . . . , N − 1, are lower semi-continuous, we obtain that

lim inf
q→∞ fi (x

kq
i ) ≥ fi (x∗

i ), i = 1, 2, . . . , N . (4.28)

From (1.2), we have for any integer k and any i = 1, . . . , N − 1,

xk+1
i := argmin

xi ∈Xi

Lγ

(
xk+1
1 , . . . , xk+1

i−1 , xi , xk
i+1, . . . , xk

N ; λk
)

.

Letting xi = x∗
i in the above, we get

Lγ

(
xk+1
1 , . . . , xk+1

i , xk
i+1, . . . , xk

N ; λk
)
≤Lγ

(
xk+1
1 , . . . , xk+1

i−1 , x∗
i , xk

i+1, . . . , xk
N ; λk

)
,

i.e.,

fi

(
xk+1

i

)
−
〈
λk, Ai xk+1

i

〉
+ γ

2

∥∥∥∥∥∥

i∑

j=1

A j xk+1
j +

N−1∑

j=i+1

A j xk
j + xk

N − b

∥∥∥∥∥∥

2

≤ fi
(
x∗

i

) −
〈
λk, Ai x∗

i

〉
+ γ

2

∥∥∥∥∥∥

i−1∑

j=1

A j xk+1
j + Ai x∗

i +
N−1∑

j=i+1

A j xk
j + xk

N − b

∥∥∥∥∥∥

2

.

Choosing k = kq − 1 in the above inequality and letting q go to +∞, we obtain

lim sup
q→+∞

fi

(
x

kq
i

)
≤ lim sup

q→+∞

(
γ

2

∥∥∥Ai x
kq
i − Ai x∗

i

∥∥∥
2 +

〈
λk, Ai x

kq
i − Ai x∗

i

〉)
+ fi

(
x∗

i

)
,

(4.29)

for i = 1, 2, . . . , N −1.Herewe have used the facts that the sequence {wk : k = 0, 1, . . .}
is bounded, and γ is finite, and that the distance between two successive iterates tends to
zero (4.20), and the fact that

i∑

j=1

A j xk+1
j +

N−1∑

j=i+1

A j xk
j + xk

N − b =
N−1∑

j=i+1

(
A j xk

j − A j xk+1
j

)
+
(

xk
N − xk+1

N

)

+ 1

γ

(
λk − λk+1

)
.

From (4.20) we also have x
kq−1
i → x∗

i as q → ∞, hence (4.29) reduces to

lim sup
q→∞

fi (x
kq
i ) ≤ fi (x∗

i ). Therefore, combining with (4.28), fi (x
kq
i ) tends to fi (x∗

i )

as q → ∞. Hence, we can conclude that
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lim
q→∞Lγ (wkq ) = lim

q→∞

(
N∑

i=1

fi

(
x

kq
i

)
−
〈
λkq ,

N−1∑

i=1

Ai x
kq
i + x

kq
N − b

〉

+ γ

2

∥∥∥∥∥

N−1∑

i=1

Ai x
kq
i + x

kq
N − b

∥∥∥∥∥

2⎞

⎠

=
N∑

i=1

fi
(
x∗

i

) −
〈
λ∗,

N−1∑

i=1

Ai x∗
i + x∗

N − b

〉
+ γ

2

∥∥∥∥∥

N−1∑

i=1

Ai x∗
i + x∗

N − b

∥∥∥∥∥

2

= Lγ (w∗).

On the other hand, it follows from (4.20) and (4.21) that
(

Rk+1
1 , . . . , Rk+1

N , Rk+1
λ

)
∈ ∂Lγ (wk+1) (4.30)

(
Rk+1
1 , . . . , Rk+1

N , Rk+1
λ

)
→ (0, . . . , 0), k → ∞. (4.31)

It implies that (0, . . . , 0) ∈ ∂Lγ (x∗
1 , . . . , x∗

N , λ∗) due to the closeness of ∂Lγ . Therefore,
w∗ = (

x∗
1 , . . . , x∗

N , λ∗) is a critical point of Lγ (x1, . . . , xN , λ).
2. The proof for this assertion directly follows from Lemma 5 and Remark 5 of [4]. We

omit the proof here for succinctness.
3. We define that L̃ is the finite limit of Lγ (xk

1 , . . . , xk
N , λk) as k goes to infinity, i.e.,

L̃ = lim
k→∞Lγ

(
xk
1 , . . . , xk

N , λk
)

.

Takew∗ ∈ �(w0). There exists a subsequencewkq converging tow∗ as q goes to infinity.
Since we have proven that

lim
q→∞Lγ (wkq ) = Lγ (w∗),

and Lγ (wk) is a non-increasing sequence, we conclude that Lγ (w∗) = L̃ , hence the
restriction of Lγ (x1, . . . , xN , λ) to �(w0) equals L̃ .

��
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