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Abstract In this paper, we develop a first-order and a second-order coupled energy stable
numerical scheme respectively for a Q-tensor based hydrodynamic model of nematic liquid
crystal flows. We then extend the first order coupled scheme to a decoupled scheme and
show that it is energy stable as well. The fully coupled schemes are implemented in 2-
dimensional space and time, with which we study defect dynamics in flows of nematic liquid
crystals in a channel. The numerical schemes are shown to be efficient in solving the Q-tensor
based liquid crystal model. The methodology developed here also provides a paradigm for
developing energy-stable schemes for more general hydrodynamic models of complex fluids
which obey an energy dissipation law.

Keywords Liquid crystals · Energy stable scheme · Finite difference · Hydrodynamics

1 Background

Nematic liquid crystals are complex fluids that exhibit an orientational order on average
in their molecular orientation, but do not normally possess any positional order. Like other
complex fluids, their rheological properties are primarily dominated bymesoscopic structures
and dynamics. The most popular mathematical model for flows of low molecular weight
nematic liquid crystals is the celebrated Ericksen–Leslie model [13], in which the average
molecular orientation is describedby aunit vectorp, knownas the director, and the distortional
elasticity is described by the Oseen–Frank elastic energy. This theory is apolar in that it does
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not differentiate the orientation between p and −p. It describes uniaxial symmetry in all
flow geometries including the shear flow and at defects, neglecting any potential biaxiality.
However, in shear flows, orientational symmetry can readily be broken by the flow, leading
to truly biaxial symmetry in nematic liquid crystals. In this case, the Ericksen–Leslie theory
fails to capture this important broken symmetry. In fact, it has been show that the director
model is in fact an asymptotic limit of a more general tensor model for liquid crystals [28].

An alternative to the director theory is to use the Q-tensor, a second order tensor of trace
zero, which can be traced back to the deviatoric part of the second moment of a probability
distribution function for the nematic liquid crystal system. The reflective symmetry of the
system as well as biaxiality are naturally built in the tensor-based theories. Therefore, for
flows of nematic liquid crystal polymers, a Q-tensor based hydrodynamic model of liquid
crystals is more appropriate [1,8,9,25,28].

In the Q-tensor based Landau–de Gennes theory, the average orientation of nematic liquid
crystals is described using Q [28]. We denote

� =
{
Q ∈ R

3×3, tr(Q) = 0, Q = QT
}

. (1.1)

A nematic liquid crystal is said to be (i) isotropic whenQ = 0; (ii) uniaxial whenQ has two
equal non-zero eigenvalues:

Q = s1

(
n ⊗ n − 1

3
I
)

, s1 ∈ R\{0},n ∈ S
2; (1.2)

and biaxial when Q has three distinct eigenvalues:

Q = s1

(
n × n − 1

3
I
)

+ s2

(
m × m − 1

3
I
)

, s1, s2 ∈ R\{0}, n,m ∈ S
2,n ⊥ m.

(1.3)
Here the order parameters: s1, s2 are actually confined in a triangular region enclosing the
origin [27]. They are linear combinations of eigenvalues ofQ. In nontrivial flows of nematic
liquid crystals, all three phases may show up.

Now, we consider nematic liquid crystals in a smooth domain � ⊂ R
3. The total free

energy F is given as follows:

F =
∫

�

[
K

2
|∇Q|2 + g(Q)

]
dx, (1.4)

with K the distortional elastic constant and the second term g(Q) is the bulk free energy term.
Although more general distortional elastic terms can be included, for the sake of simplicity,
we stick to the one constant case in this paper [14]. We use the simplified Landau–de Gennes
bulk free energy [4]

g(Q) = a1
2
tr(Q2) + a2

3
tr(Q3) + a3

4

(
tr(Q2)

)2
, (1.5)

where a1,2,3 are model parameters for the bulk energy. For thermotropic liquid crystals,
a1 ∼ (T − T0), T0 is the phase transition temperature, and T the temperature of the liquid
crystal, which controls the phase transition from the isotropic phase to the nematic phase. I.e.
when T0 < T , the equilibrium state is isotropic; when T0 > T , it is nematic. For lyotropic
liquid crystals, a1 = α(1 − N/3), a2 = −αN , a3 = αN , where N is the dimensionless
concentration and α is a scaling parameter [6,28]. When, 0 ≤ N < 3, the system is in
isotropic phase while it is in nematic phase when N > 3. There could also be an intermediate
interval in N where both phases can coexist [27].
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We denote the rate of strain tensor D and the vorticity tensorW as follows

D = 1

2

(
∇u + ∇uT

)
, W = 1

2

(
∇u − ∇uT

)
, (1.6)

with (∇u)i j = ∂ jui . The nondimensionalizsed Q-tensor model of nematic liquid crystals is
summarized as follows [1,28,34]

⎧⎨
⎩
ut + u · ∇u = −∇ p′ + η∇2u + ∇ · σ ′(Q,H) − H∇Q,

∇ · u = 0,
Qt + u · ∇Q − S(∇u,Q) = M1H,

(1.7)

where p′ is the hydrostatic pressure, σ ′ is the elastic stress, H is the molecular field, 1/M1

is the relaxation time, S(∇u,Q) is defined by

S(∇u,Q) = W · Q − Q · W + a(Q · D + D · Q) + 2a
3 D − 2a(D : Q)

(
Q + 1

3 I
)
, (1.8)

a is a geometric parameter of the nematic liquid crystal molecule, confined between -1 and
1 [28]. Here the molecular field H is given by

H = −
(

δF

δQ
− 1

3
tr

(
δF

δQ

)
I
)

= K∇2Q −
(
a1Q − a2

(
Q2 − 1

3
tr(Q2)I

)
+ a3tr(Q2)Q

)
, (1.9)

and the elastic stress σ ′ is given by

σ ′(Q,H) = (Q · H − H · Q) − a(H · Q + Q · H) − 2a

3
H + 2a(Q : H)

(
Q + 1

3
I
)

.

(1.10)

This model has been used in studying liquid crystals especially flows of liquid crystal
polymers extensively [4,5,16,22,28,32]. Despite that the model has been solved numeri-
cally repeatedly, no numerical analysis result has been established. There are some existing
analytic work in literature on solution existence and regularity. In [10], the author showed the
existence and uniqueness of a local-in-time weak solution with weak regularity for the time
derivative of the velocity and the tensor variable (u,Q). In [7], the authors showed regularity
criteria for local strong solutions. In [17], the authors proved the existence of global weak
solutions in dimensions two and three in the entire space. In [11], the author considered the
existence and uniqueness of weak solutions in a bounded three-dimensional domain under
a homogeneous Dirichlet boundary condition for u and either a non-homogeneous Dirichlet
or a homogeneous Neumann boundary condition for tensor Q. Numerically, a few authors
have designed numerical schemes to solve the equations. For instance, in [5], Yeomann et
al. used the Lattice Boltzmann method to solve the model to study structures in nematic
liquid crystals; in [15], the author presented numerical schemes for minimizing Landau–de
Gennes energy based on a finite element discretization without hydrodynamics. There are
several extensions of this model to study two phase fluid flows [23] and active liquid crystals
recently [2]. However, no stability analysis has been established for the numerical schemes
developed so far.

In fact, it can be shown that the Q-tensor nematic liquid crystal model (1.7) obeys an
energy dissipation law, which will be presented in details in the next section. This indicates
that the model can be derived using the generalized Onsager principle [33]. Naturally, one
would like to design numerical schemes that approximate the continuum model and in the
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meantime obey consistent discrete energy dissipation laws, which would be a good indication
of a fine approximation to the continuum dissipative system. This type of numerical schemes
is known as the energy stable scheme. However, to our best knowledge, such a numerical
scheme for the Q-tensor hydrodynamic model of liquid crystals (1.7) has not been developed
so far.

In this paper, we will develop several energy stable numerical schemes for this nematic
liquid crystal model (1.7), based on a stabilization technique [20,30], the convex splitting
strategy [19,26] and decoupling methods [3,21]. We will only discretize the scheme in
time. For the spatial discretization, we can readily develop a second order finite difference
discretization to retain the discrete energy in discrete norms under appropriate boundary
conditions. For finite element and spectral methods, energy preserving discretization perhaps
can be established as well, which will not be pursued in this paper. Thus, the numerical
schemes can be validated for a broad spectrum of spatial-discretization strategies so long as
the spatial discretization renders a faithful approximation to the total energy in the continuous
system. The numerical schemes that we will develop in this study will address the following
numerical issues directly:

• the coupling of the velocity and pressure through the incompressible condition;
• the stiffness in the tensor equation associated with nonlinear bulk terms g(Q) (an explicit

treatment of g(Q) will lead to instability);
• the nonlinear coupling between the momentum transport and the tensor field equation.

The rest of the paper is organized as follows. In Sect. 2, we briefly derive the energy
dissipation law of the nematic liquid crystal model (1.7). In Sect. 3, we present several semi-
discrete numerical schemes for the model and prove their energy stability. Fully discretized
schemes of course warrant thorough numerical analyses to prove their stability and conver-
gence, which will be deferred to a future study. In Sect. 4, we present several numerical case
studies on mesh-refinement and defect dynamics of nematic liquid crystal channel flows. We
then give a concluding remark in the last section.

2 Energy Dissipation in the Nematic Liquid Crystal System

In this section, we show that model (1.7) satisfies an energy dissipation law. In order to
simplify our proof, we rewrite the hydrostatic pressure p and elastic stress σ as

p = p′ + 2a

3
(Q : H), (2.1)

σ(Q,H) = σ ′(Q,H) − 2a

3
(Q : H)I. (2.2)

Then, the model is rewritten into

⎧⎪⎪⎨
⎪⎪⎩

ut + u · ∇u = −∇ p + η∇2u + ∇ · σ(Q,H) − H∇Q,

∇ · u = 0,

Qt + u · ∇Q − S(∇u,Q) = M1H,

(2.3)
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with

S(∇u,Q) = W · Q − Q · W + a(Q · D + D · Q) + 2a

3
D − 2a(D : Q)

(
Q + 1

3
I
)

,

(2.4)

σ(Q,H) = (Q · H − H · Q) − a(H · Q + Q · H) − 2a

3
H + 2a(Q : H)Q, (2.5)

H = K∇2Q −
(
a1Q − a2(Q2 − 1

3
tr(Q2)I) + a3tr(Q2)Q

)
. (2.6)

In the following discussion, we will focus on deriving energy-stable numerical schemes on
(2.3).

We consider a smooth domain �. For any two vector function f = ( f1, f2, . . . , fd) and
g = (g1, g2, . . . , gd), where d ∈ N , the inner product and norm are defined by

(f, g) =
d∑

i=1

∫

�

fi gi dx, ‖f‖ = √
(f, f). (2.7)

First, we present the following lemmas.

Lemma 2.1 The following identity holds for any vector function u,

((v · ∇)u,u) = 0, (2.8)

provided that n · v|∂� = 0, v and u are sufficiently smooth and ∇ · v = 0, where n is the unit
external normal of the boundary ∂�.

Lemma 2.2 The following identity holds for any scalar function p,

(v,∇ p) = 0, (2.9)

provided that n ·v|∂� = 0, v is sufficiently smooth and∇ ·v = 0, where n is the unit external
normal of the boundary.

The proof of Lemma 2.1 and 2.2 are straight forward. Readers can refer to [24] for details.

Lemma 2.3 Given a smooth domain �, if u ∈ R
3 with u|∂� = 0, and Q,H ∈ �, the

following identity holds

(∇ · σ(Q,H),u) = (H, S(∇u,Q)) , (2.10)

where σ(Q,H) is defined in (2.5) and S(∇u,Q) in (2.4).

Proof Recall from (2.4) and (2.5) that

S(∇u,Q) = (W · Q − Q · W) + a(D · Q + Q · D) + 2a

3
D − 2a(Q : D)

(
Q + 1

3
I
)

,

σ (Q,H) = (Q · H − H · Q) − a(H · Q + Q · H) − 2a

3
H + 2a(Q : H)Q. (2.11)

For the left hand side, we have

(∇ · σ(Q,H),u) = (∇ · (σu), 1) − (σ,∇u)

= (−(Q · H−H · Q)+a(H · Q+Q · H)+ 2a
3 H + 2a(Q : H)Q,∇u

)
.

(2.12)

provided u|∂� = 0.
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For the right hand side, we have

(H, S(∇u,Q))

= (
H, (W · Q − Q · W) + a(D · Q + Q · D) + 2a

3 D − 2a(Q : D)
(
Q + 1

3 I
))

.

(2.13)

Notice the facts that

− (Q · H − H · Q,∇u) = (H,W · Q − Q · W),

a(H · Q + Q · H,∇u) = a(H,D · Q + Q · D),

2a ((Q : H)Q,∇u) = 2a

(
H, (Q : D)(Q + 1

3
I)

)
,

2a

3
(H,∇u) = 2a

3
(H,D). (2.14)

Adding the left hand side up, we obtain (∇ · σ,u). Analogously, adding the right hand side,
we have (H, S(∇u,Q)).

So, given u|∂� = 0, we arrive at

(∇ · σ(Q,H),u) = (H, S(∇u,Q)) . (2.15)

��
Lemma 2.4 Recall the Landau–de Gennes bulk potential in (1.5). We can rewrite it as

f (Q) = f1(Q) − f2(Q), (2.16)

where

f1(Q) = b1
2
tr(Q2) + a2

3
tr(Q3) + b3

4
(tr(Q2))2,

f2(Q) = b1 − a1
2

tr(Q2) + b3 − a3
4

(tr(Q2))2. (2.17)

If b1 > max(|a2|, |a1|) and b3 > |a2|, f1(Q) and f2(Q) are convex functions.

Proof We only need to prove the Hessian matrix of f1 and f2 are positive-definite. For
notation simplicity, we use the index notations, i.e. (Q)i j = Qi j , and we use the notational
convention of Einstein summation.

For this bulk potential

f1(Q) = b1
2
tr(Q2) + a2

3
tr(Q3) + b3

4
(tr(Q2))2, (2.18)

we can get
∂ f1

∂Qi j
= b1Qi j + a2Qik Qkj + b3(QksQks)Qi j . (2.19)

And the Hessian matrix could be calculated as

H1 = ∂2 f1
∂Qi j∂Qmn

= b1δimδ jn + a2
(
δimδknQkj + δkmδ jn Qik

) + b3(QksQks)δimδ jn + 2b3δkmδsnQks Qi j

= b1δimδ jn + a2
(
δim Qnj + δ jn Qim

) + b3(Qks Qks)δimδ jn + 2b3QmnQi j (2.20)
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If we multiply left side of H1 by xi j , right side of H1 by xmn , we obtain,

xi jH1xmn = b1xmnxmn + 2a2xmj Qnj xmn + b3(QksQks)xmnxmn + 2b3(xmnQmn)
2

≥ b1xmnxmn − 2|a2|
√
QksQks xmnxmn + b3(QksQks)xmnxmn

≥ |a2|(
√
QksQks − 1)2xmnxmn

≥ 0, (2.21)

since b1 > max(|a2|, |a1|) and b3 > |a2|. Therefore, f1(Q) is a convex function. In the same
manner, it is easy to show f2(Q) is also a convex function. ��

The energy dissipation law of model (2.3) is summarized in the following theorem.

Theorem 2.1 We denote the total energy as E

E =
∫

�

[
1

2
u2 + f

]
dx, (2.22)

where the first term 1
2u

2 is the kinetic energy density and f is the free energy density given
by

f = K

2
|∇Q|2 + a1

2
tr(Q2) + a2

2
tr(Q3) + a3

4
(tr(Q2))2. (2.23)

The energy dissipation rate (or negative of the entropy production rate) of system (2.3) is
given by

dE

dt
= −

∫

�

[
η|∇u|2 + M1|H|2] dx. (2.24)

Proof The time rate of change for the total energy is calculated as follows:

dE

dt
= d

dt

∫

�

[
1

2
u2 + f

]
dx

=
∫

�

(
u · ∂tu + δF

δQ
∂tQ

)
dx. (2.25)

Notice from (2.3) that

ut = −u · ∇u − ∇ p + η∇2u + ∇ · σ(Q,H) − H∇Q,

Qt = −u · ∇Q + S(∇u,Q) + M1H. (2.26)

By substituting (2.26) into (2.25), we obtain

dE

dt
=

∫

�

[
u · (−u · ∇u − ∇ p + η∇2u + ∇ · σ(Q,H) − H∇Q

) +
−H · (−u · ∇Q + S(∇u,Q) + M1H)

]
dx. (2.27)

Using Lemmas 2.1, 2.2 and 2.3, we have respectively
∫

�

u · (−u · ∇u)dx = 0, (2.28)
∫

�

u · (−∇ p)dx = 0, (2.29)

and ∫

�

[u(∇ · σ) − H · S(∇u,Q)] dx = 0. (2.30)

123



1248 J Sci Comput (2016) 68:1241–1266

Finally, we end up with

dE

dt
= −

∫

�

[
η|∇u|2 + M1|H|2] dx. (2.31)

��
This energy dissipation property provides the foundation, as well as a guidance for us to

derive semi discrete energy-stable schemes for the nematic liquid crystal model. Specifically,
in the next section, we will propose a first-order and a second-order unconditional, energy-
stable scheme for this model, respectively. Then, we will discuss decoupling strategies to
yield two linearly, first order, decoupled energy stable schemes for the same model. The
proof of stability of the schemes will be given in details in the following.

3 Semi-Discrete Numerical Schemes

To design numerical schemes and prove their energy stability, we have to assume some prop-
erties for the bulk potential function g(Q) technically, i.e. it satisfy the following properties:
(i). g has a continuous second order derivative, (ii). there exists a constant L such that

max
Q∈�

|H(Q)| ≤ L , (3.1)

where H(Q) is the Hessian matrix of g(Q). One might immediately notice, the Landau–de
Gennes bulk potential g(Q) in (1.5) does not satisfies (3.1) as it is.

In practice, the properties can be readily met provided we modify the given function
of g(Q) far away from the origin by an essentially quadratic potential of Q to meet the
conditions. Physically, Q is bounded since it is the deviatoric part of a second moment of a
probability density function and the bulk potential makes sense only for Q being confined
in its physically relevant domain. Thus, any modification of the bulk potential beyond the
domain would not change the physical relevance of the model. For instance, we can propose

g(Q) =
⎧⎨
⎩

1
2 tr(Q

2) + a2
3 tr(Q

3) + a3
4 (tr(Q2))2, tr(Q2) ≤ 4

3 ,

1
2 tr(Q

2) + a2
3 tr(Q

3)e−tr(Q2)+ 4
3 + 4

9a3, tr(Q2) > 4
3 .

(3.2)

In addition, the bulk-potential g(Q) could be splitted into a convex part gc(Q), minus another
convex part ge(Q) [29], i.e.

g(Q) = gc(Q) − ge(Q). (3.3)

One case is given in (2.16) and verified in Lemma 2.4. Notice to make our proof general, we
don’t necessarily restrict to any specific bulk potentials in the following discussion.

We next introduce the following notations:

un+ 1
2 = 1

2

(
un+1 + un

)
, Qn+ 1

2 = 1

2

(
Qn+1 + Qn) ,

un+ 1
2 = 3

2
un − 1

2
un−1, Q

n+ 1
2 = 3

2
Qn − 1

2
Qn−1. (3.4)

We use En to denote the discrete energy at time step tn ,

En =
(
K

2
|∇Qn |2 + g(Qn), 1

)
, (3.5)
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and denote
g′(Q) = ∇Qg(Q), g′′(Q) = H(Q), (3.6)

where H(Q) is the Hessian matrix of g(Q).

3.1 Preliminaries

We first present some lemmas to assist readers to navigate through the details of the proof of
the main theorem.

Lemma 3.1 The following equalities hold,

2(Qn+1 − Qn,Qn+1) = ‖Qn+1‖2 − ‖Qn‖2 + ‖Qn+1 − Qn‖2,
2(Qn+1 − Qn,Qn) = ‖Qn+1‖2 − ‖Qn‖2 − ‖Qn+1 − Qn‖2,
2(∇Qn+1 − ∇Qn,∇Qn+1) = ‖∇Qn+1‖2 − ‖∇Qn‖2 + ‖∇Qn+1 − ∇Qn‖2,
2(∇Qn+1 − ∇Qn,∇Qn) = ‖∇Qn+1‖2 − ‖∇Qn‖2 − ‖∇Qn+1 − ∇Qn‖2.

(3.7)

Proof We can obtain the equalities by simply expanding the inner product on the right hand
side and then combining the corresponding terms. ��
Lemma 3.2 Let g ∈ C2(�), with � defined by (1.1).

(i) If
max
x∈�

|H(x)| < L , (3.8)

where H(x) is the Hessian matrix of g(x), then ∀xn+1, xn ∈ �, the following inequality
holds, (

xn+1 − xn,∇xg(xn)
) ≥ (

g
(
xn+1) − g

(
xn

)
, 1

) − L‖xn+1 − xn‖2. (3.9)

(ii) If g is a convex function, i.e. H(x) is positive definite ∀x ∈ �, the following two inequal-
ities hold

− (
xn+1 − xn,∇xg(xn)

) ≥ − (
g(xn+1) − g(xn), 1

)
(3.10)(

xn+1 − xn,∇xg(xn+1)
) ≥ (

g(xn+1) − g(xn), 1
)

(3.11)

Proof Using the Taylor expansion, ∀xn, xn+1 ∈ �, we have

g(xn+1) = g(xn) + ∇xg(xn)(xn+1 − xn)

+ (xn+1 − xn)TH(ζ1)(xn+1 − xn), ζ1 ∈ � (3.12)

g(xn) = g(xn+1) + ∇xg(xn+1)(xn − xn+1)

+ (xn − xn+1)TH(ζ2)(xn − xn+1), ζ2 ∈ � (3.13)

(i) If (3.8) holds, from (3.12), we have

g(xn+1) ≤ g(xn) + ∇xg(xn)(xn+1 − xn) + L|xn+1 − xn |2. (3.14)

Integrating over �, we obtain

(xn+1 − xn,∇xg(xn)) ≥ (g(xn+1) − g(xn), 1) − L‖xn+1 − xn‖2. (3.15)

(ii) If g is a convex function, from (3.12), we obtain

g(xn+1) − g(xn)) ≥ (xn+1 − xn) · ∇xg(xn), (3.16)
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Taking intergation over �, we will arrive

− (xn+1 − xn,∇xg(xn)) ≥ −(g(xn+1) − g(xn), 1). (3.17)

Analogously, from (3.13), we can derive

(xn+1 − xn,∇xg(xn+1)) ≥ (g(xn+1) − g(xn), 1). (3.18)

��
Lemma 3.3 Define

Hn+1 = K∇2Qn+1 − g′(Qn) − C1(Qn+1 − Qn). (3.19)

Then, the following inequality holds,

− (Qn+1 − Qn,Hn+1) ≥ En+1 − En, (3.20)

provided C1 > L, where En+1 and En are the discrete free energy defined in (3.5).

Proof If C1 > L , according to Lemma 3.2, we obtain

−(Qn+1−Qn,Hn+1)=C1‖Qn+1−Qn‖2+ K

2

(‖∇Qn+1‖2−‖∇Qn‖2+‖∇Qn+1−∇Qn‖2)

+ (Qn+1 − Qn, g′(Qn))

≥ C1‖Qn+1 − Qn‖2 + K

2
(‖∇Qn+1‖2 − ‖∇Qn‖2)

+ (g(Qn+1) − g(Qn), 1) − L‖Qn+1 − Qn‖2
≥ En+1 − En . (3.21)

��
Lemma 3.4 Define

Hn+ 1
2 = K∇2Qn+ 1

2 − g′
1
n+ 1

2 , (3.22)

where

g′
1
n+ 1

2 =
⎧⎨
⎩

g
(
Qn+1)−g(Qn)

Qn+1−Qn , Qn+1 �= Qn

g′(Qn), Qn+1 = Qn .
(3.23)

Then,

−
(
Qn+1 − Qn,Hn+ 1

2

)
= En+1 − En . (3.24)

Proof We take the inner product of (3.22) with Qn+1 − Qn . Then, we obtain

−
(
Qn+1 − Qn,Hn+ 1

2

)
= K

2

(|∇Qn+1|2 − |∇Qn |2, 1) + (
g

(
Qn+1) − g

(
Qn) , 1

)

= En+1 − En . (3.25)

��
Lemma 3.5 Define

Hn+ 1
2 = K∇2Qn+ 1

2 − g′
2
n+ 1

2 , (3.26)
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where

g′
2
n+ 1

2 = g′
c

(
Qn+1) − 1

2

(
Qn+1 − Qn) g′′

c

(
Qn+1) − g′

e

(
Qn) − 1

2

(
Qn+1 − Qn) g′′

e

(
Qn) .

(3.27)
Here we denote g(Q) = gc(Q) − ge(Q) with gc and ge are all convex functions. Then,

−
(
Qn+1 − Qn,Hn+ 1

2

)
≥ En+1 − En . (3.28)

Proof Taking the inner product of (3.26) with Qn+1 − Qn , we have

−
(
Qn+1 − Qn,Hn+ 1

2

)

= K

2

(|∇Qn+1|2 − |∇Qn |2, 1) + (
g′
c

(
Qn+1) ,Qn+1 − Qn) − (

g′
e

(
Qn) ,Qn+1 − Qn)

+K

2

(
g′′
c

(
Qn+1) ,

(
Qn+1 − Qn)2) + 1

2

(
g′′
e

(
Qn) ,

(
Qn+1 − Qn)2) (3.29)

≥ 1

2

(|∇Qn+1|2 − |∇Qn |2, 1) + (
g′
c

(
Qn+1) ,Qn+1 − Qn) − (

g′
e

(
Qn) ,Qn+1 − Qn) ,

since gc and ge are convex functions. Using Lemma 3.2, we arrive at

−
(
Qn+1 − Qn,Hn+ 1

2

)

≥ K

2

(|∇Qn+1|2−|∇Qn |2, 1)+(
gc

(
Qn+1)−gc

(
Qn) , 1

) − (
ge

(
Qn+1) − ge

(
Qn) , 1

)

= En+1 − En . (3.30)

��
3.2 First-Order, Coupled Unconditionally Energy Stable Schemes

Here, we present a first-order, coupled, linear, unconditionally energy stable scheme.
Given the initial condition Q0,u0 and p0 = 0 and having computed (Qn,un, pn), we

calculate (Qn+1,un+1, pn+1) in the following two steps,

(1) Step 1: update (Qn+1,un+1

 ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qn+1−Qn

δt + un+1

 · ∇Qn − S

(∇un+1

 ,Qn

) = M1Hn+1,

Hn+1 = −C1
(
Qn+1 − Qn

) + K∇2Qn+1 − g′ (Qn) ,

un+1

 −un

δt + (un · ∇)un+1

 = η�un+1


 − ∇ pn + ∇ · σ
(
Qn,Hn+1

) − Hn+1∇Qn

un+1

 |∂� = 0, ∂Qn+1

∂n |∂� = 0,

(3.31)

(2) Step 2: update un+1: ⎧⎨
⎩

un+1−un+1



δt = −∇ (
pn+1 − pn

)
,

∇ · un+1 = 0, un+1 · n|∂� = 0.
(3.32)
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Theorem 3.1 Given C1 ≥ L, the scheme (3.31)–(3.32) obeys the discrete energy law

1

2
‖un+1‖2 + En+1 + δt2

2
‖∇ pn+1‖2 + δt

(
η‖∇un+1


 ‖2 + M1‖Hn+1‖2)

≤ 1

2
‖un‖2 + En + δt2

2
‖∇ pn‖2, (3.33)

where En and En+1 are defined in (3.5).

Proof Taking the inner-product of (3.31) with 2δtun+1

 , we obtain,

‖un+1

 ‖2 − ‖un‖2 + ‖un+1


 − un‖2 + 2ηδt‖∇un+1

 ‖2 + 2δt

(∇ pn,un+1



)

+2δt
(
Hn+1∇Qn,un
 )

) − 2δt
(∇ · σ(Qn,Hn+1),un


) = 0. (3.34)

To deal with the pressure term, we take the inner product of (3.32) with 2δt2∇ pn to arrive
at

δt2(‖∇ pn+1‖2 − ‖∇ pn‖2 − ‖∇ pn+1 − ∇ pn‖2) = 2δt (un+1

 ,∇ pn). (3.35)

Taking the inner product of (3.32) with 2δtun+1, we obtain

‖un+1‖2 + ‖un+1 − un+1

 ‖2 = ‖un+1


 ‖2. (3.36)

It follows from (3.32) directly that

δt2‖∇ pn+1 − ∇ pn‖2 = ‖un+1

 − un+1‖2. (3.37)

Combining (3.34)–(3.37), we obtain

‖un+1‖2 − ‖un+1‖2 + ‖un+1

 − un‖2 + δt2

(‖∇ pn+1‖2 − ‖∇ pn‖2) + 2ηδt‖∇un+1

 ‖2

+2δt
(
Hn+1∇Qn,un


) − 2δt
(∇ · σ(Qn,Hn+1),un+1




) = 0. (3.38)

If we take the inner product of (3.31) with 2δtHn+1, we get

2δtM1‖Hn+1‖2 − 2δt (Hn+1, (un+1

 · ∇)Qn) − 2(Qn+1 − Qn,Hn+1)

+2δt
(
Hn+1, S(∇un+1


 ,Qn)
) = 0. (3.39)

Applying Lemma 2.3, we have
(∇ · σ(Qn,Hn+1),un+1




) = (
Hn+1, S(∇un+1


 ,Qn)
)
, (3.40)

Then adding (3.38) and (3.39) and using the equality (3.40), we obtain

‖un+1‖2 − ‖un+1‖2 + ‖un+1

 − un‖2 + δt2

(‖∇ pn+1‖2 − ‖∇ pn‖2)

+2ηδt‖∇un+1

 ‖2 + 2δtM1‖Hn+1‖2 − 2

(
Qn+1 − Qn,Hn+1) = 0. (3.41)

Applying Lemma 3.3, we finally arrive at

1

2
‖un+1‖2 + En+1 + δt2

2
‖∇ pn+1‖2 + δt

(
η‖∇un+1


 ‖2 + M1‖Hn+1‖2)

≤ 1

2
‖un‖2 + En + δt2

2
‖∇ pn‖2. (3.42)

��
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Remark 3.1 In scheme (3.31)–(3.32), we use the first-order pressure correction scheme to
handle the momentum transport equation together with the incompressibility condition. This
scheme is thus first-order and energy stable. We notice that there exists a coupling between
Qn+1 and un+1


 , which means that we have to solve these two equations simultaneously. We
will design schemes to decouple them in the following.

Remark 3.2 C1 term is the added first-order stabilizer to balance the explicit treatment for
g(Q) [21,31]. One can also use the convex splitting strategy to deal with such a nonlinear
term [19] without introducing the order one term.

3.3 Second-Order, Coupled Unconditionally Energy Stable Schemes

In a similar way, we now design a second-order, coupled, unconditionally energy stable
scheme.

Given the initial condition Q0,u0 and p0 = 0, we first compute Q1,u1 and p1 by the
first-order scheme (3.31)–(3.32). Having computed (Qn−1,un−1, pn−1) and (Qn,un, pn),
where n ≥ 2, we calculate (Qn+1,un+1, pn+1) in the following two steps:

(1) Step 1: update (Qn+1,un+1

 ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qn+1−Qn

δt + u
n+ 1

2

 · ∇Q

n+ 1
2 − S

(
∇u

n+ 1
2


 ,Q
n+ 1

2

)
= M1Hn+ 1

2 ,

Hn+ 1
2 = K∇2Qn+ 1

2 − g′n+ 1
2 ,

un+1

 −un

δt +
(
un+ 1

2 · ∇
)
u
n+ 1

2

 =η�u

n+ 1
2


 − ∇ pn + ∇ · σ

(
Q

n+ 1
2 ,Hn+ 1

2

)

−Hn+ 1
2 ∇Q

n+ 1
2 ,

un+1

 |∂� = 0, ∂Qn+1

∂n |∂� = 0,u
n+ 1

2

 = 1

2

(
un+1


 + un
)
,

(3.43)

where g̃n+ 1
2 is a second-order approximation for g(Qn+ 1

2 ). We will give a detailed
discussion on choices of g̃.

(2) Step 2: update un+1:
⎧⎨
⎩

un+1−un+1



δt = − 1
2∇

(
pn+1 − pn

)
,

∇ · un+1 = 0, un+1 · n|∂� = 0.
(3.44)

Theorem 3.2 Given

g′n+ 1
2 =

{
g(Qn+1)−g(Qn)

Qn+1−Qn , Qn+1 �= Qn

g′(Qn), Qn+1 = Qn,
(3.45)

the scheme (3.43)–(3.44) obeys the discrete energy law

1
2‖un+1‖2 + En+1 + δt2

8 ‖∇ pn+1‖2 + δt

(
η‖∇u

n+ 1
2


 ‖2 + M1‖Hn+ 1
2 ‖2

)

= 1
2‖un‖2 + En + δt2

8 ‖∇ pn‖2,
(3.46)

where En and En+1 are defined in (3.5).
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Proof The proof is similar to the one in the previous theorem. Nevertheless, we provide some

details below. Taking the inner-product of (3.43) with 2δtu
n+ 1

2

 , we obtain,

‖un+1

 ‖2 − ‖un‖2 + 2ηδt‖∇u

n+ 1
2


 ‖2 + 2δt

(
∇ pn,u

n+ 1
2




)

+ 2δt

(
Hn+ 1

2 ∇Q
n+ 1

2 ,u
n+ 1

2



)
− 2δt

(
∇ · σ(Q

n+ 1
2 ,Hn+ 1

2 ),u
n+ 1

2



)
= 0. (3.47)

To deal with the pressure term, we take the inner product of (3.44) with 2δt2∇ pn to arrive
at

δt2

4

(‖∇ pn+1‖2 − ‖∇ pn‖2 − ‖∇ pn+1 − ∇ pn‖2) = δt
(
un+1


 ,∇ pn
)
. (3.48)

Taking the inner product of (3.44) with 2δtun+1, we obtain

‖un+1‖2 + ‖un+1 − un+1

 ‖2 = ‖un+1


 ‖2. (3.49)

It follows from (3.44) directly that

δt2

4
‖∇ pn+1 − ∇ pn‖2 = ‖un+1


 − un+1‖2. (3.50)

Noticing the fact

2δt

(
∇ pn,u

n+ 1
2




)
= δt

(∇ pn,un+1



)
, (3.51)

(due to (∇ p,un) = 0), and combining (3.47)–(3.50), we obtain

‖un+1‖2 − ‖un‖2 + δt2

4

(‖∇ pn+1‖2 − ‖∇ pn‖2) + 2ηδt‖∇un+1

 ‖2

+ 2δt

(
Hn+ 1

2 ∇Q
n+ 1

2 ,u
n+ 1

2



)
− 2δt

(
∇ · σ(Q

n+ 1
2 ,Hn+ 1

2 ),u
n+ 1

2



)
= 0. (3.52)

If we take the inner product of (3.43) with 2δtHn+ 1
2 , we get

2δtM1‖Hn+ 1
2 ‖2 − 2δt

(
Hn+ 1

2 ,

(
u
n+ 1

2

 · ∇

)
Qn+ 1

2

)
− 2

(
Qn+1 − Qn,Hn+ 1

2

)
+

2δt

(
Hn+ 1

2 , S(∇u
n+ 1

2

 ,Q

n+ 1
2 )

)
= 0. (3.53)

Applying Lemma 3.3, i.e.
(

∇ · σ(Q
n+ 1

2 ,Hn+ 1
2 ),u

n+ 1
2




)
=

(
Hn+ 1

2 , S(∇u
n+ 1

2

 ,Q

n+ 1
2 )

)
, (3.54)

and adding (3.52) and (3.53), we obtain

‖un+1‖2 − ‖un‖2 + δt2

4

(‖∇ pn+1‖2 − ‖∇ pn‖2) + 2ηδt‖∇un+1

 ‖2

+ 2δtM1‖Hn+ 1
2 ‖2 − 2

(
Qn+1 − Qn,Hn+ 1

2

)
= 0. (3.55)

From Lemma 3.4, we have

−
(
Qn+1 − Qn,Hn+ 1

2

)
= En+1 − En . (3.56)
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Finally, we arrive at

1

2
‖un+1‖2 + En+1 + δt2

8
‖∇ pn+1‖2 + δt

(
η‖∇u

n+ 1
2


 ‖2 + M1‖Hn+ 1
2 ‖2

)

= 1

2
‖un‖2 + En + δt2

8
‖∇ pn‖2. (3.57)

��

We can take advantage of the convex splitting strategy [12] to reduce the non-linear terms.
Furthermore, we can also truncate the bulk potential and rewrite g(Q) as a convex function
minus another convex function. This leads to the following theorem.

Theorem 3.3 If we define

g′n+ 1
2 = g′

c

(
Qn+1) − 1

2

(
Qn+1 − Qn) g′′

c

(
Qn+1) − g′

e

(
Qn) − 1

2

(
Qn+1 − Qn) g′′

e

(
Qn) ,

(3.58)
the scheme (3.43)–(3.44) obeys the discrete energy law

1

2
‖un+1‖2 + En+1 + δt2

8
‖∇ pn+1‖2 + δt

(
η‖∇u

n+ 1
2


 ‖2 + M1‖Hn+ 1
2 ‖2

)

≤ 1

2
‖un‖2 + En + δt2

8
‖∇ pn‖2. (3.59)

with En and En+1 given in (3.5).

Proof This proof is similar to the one in Theorem 3.2 except that we need to use Lemma 3.5
instead of Lemma 3.4. We thus omit the details. ��
3.4 Linearly, First-Order Decoupled Energy Stable Schemes

Next, we discuss two ways to design decoupled energy stable schemes and remark on the
difficulties to arrive at sharp results.

Given the initial conditionQ0,u0 and p0 = 0 and having computed (Qn,un, pn), where
n ≥ 1, we calculate (Qn+1,un+1, pn+1) in the following three steps,

(1) Step 1: update Qn+1:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qn+1−Qn

δt + un · ∇Qn − S (∇un,Qn) = M1Hn+1

Hn+1 = −C1
(
Qn+1 − Qn

) + K∇2Qn+1 − g′ (Qn) ,

∂Qn+1

∂n |∂� = 0,

(3.60)

(2) Step 2: update intermediate variable un
 and �n :

βn = ‖ − Hn+1∇Qn + ∇ · σ
(
Qn,Hn+1) ‖,

un
 = un − δtHn+1∇Qn + δt∇ · σ
(
Qn,Hn+1) ,

�n = −δt (βn)2

‖un
‖2
un
 . (3.61)
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(3) Step 3: update un+1:
⎧⎨
⎩

ũn+1−un
δt +(un · ∇)ũn+1=η�ũn+1−∇ pn + ∇ · σ

(
Qn,Hn+1

)−Hn+1∇Qn + �n

ũn+1|∂� = 0.
(3.62)

{
un+1−ũn+1

δt = −∇ (
pn+1 − pn

)
,

∇ · un+1 = 0, un+1 · n|∂� = 0.
(3.63)

Theorem 3.4 Given C1 > L, the scheme given by (3.60)–(3.63) satisfies the following
semi-discrete energy dissipation law:

1

2
‖un+1‖2 + En+1 + δt2

2
‖∇ pn+1‖2 + δt

(
η‖∇ũn+1‖2 + M1‖Hn+1‖2)

≤ 1

2
‖un‖2 + En + δt2

2
‖∇ pn‖2 + δt4Cn+1, (3.64)

where the semi-discrete energy En is defined in (3.5) and

Cn+1 = ‖ − Hn+1∇Qn + ∇ · σ
(
Qn,Hn+1

) ‖4
‖un − δtHn+1∇Qn + δt∇ · σ

(
Qn,Hn+1

) ‖2 . (3.65)

Proof From the definition of un
 in equation (3.61), we rewrite the momentum equation as
follows

un
 = un − δtHn+1∇Qn + δt∇ · σ
(
Qn,Hn+1) , (3.66)

un

 = un
 − δt�n, (3.67)

ũn+1 − un


δt

+ (un · ∇)ũn+1 − η∇ũn+1 + ∇ pn = 0. (3.68)

If we take the inner product of (3.60) with 2δtHn+1, we get

2δtM1‖Hn+1‖2 − 2δt (Hn+1, (un · ∇)Qn) − 2(Qn+1 − Qn,Hn+1)

+2δt
(
Hn+1, (Wn + aDn) · Qn) = 0. (3.69)

Taking the inner product of (3.61) with 2un , we obtain

‖un
‖2−‖un‖2−‖un
−un‖2−2δt (Hn+1∇Qn,un))−δt
(∇ · σ(Qn,Hn+1),un

) = 0. (3.70)

From,
un

 = un
 + δt�n, (3.71)

we arrive at

‖un

‖2 =
(
1 − δt2(βn)2

‖un
‖2
)2

‖un
‖2, (3.72)

i.e.
‖un

‖2 − ‖u
‖2 + δt2(βn)2 + δt2(βn)2

(
1 − δt2(βn)2

‖un
‖2
)

= 0. (3.73)

Notice the fact δt2(βn)2 = ‖un
 − un‖2 and if we denote

Cn+1 = ‖ − Hn+1∇Qn + ∇ · σ(Qn,Hn+1)‖4
‖un − δtHn+1∇Qn + δt∇ · σ(Qn,Hn+1)‖2 , (3.74)
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we obtain
‖un

‖2 − ‖un
‖2 + 2‖un
 − un‖2 − Cn+1δt4 = 0. (3.75)

Taking the inner-product of (3.68) with 2δt ũn+1, we obtain,

‖ũn+1‖2 − ‖un

‖2 + ‖ũn+1 − un

‖2 + 2ηδ‖∇ũn+1‖2 + 2δt (∇ pn, ũn+1) = 0. (3.76)

To deal with the pressure term, we take the inner product of (3.63) with 2δt2∇ pn to arrive
at

δt2(‖∇ pn+1‖2 − ‖∇ pn‖2 − ‖∇ pn+1 − ∇ pn‖2) = 2δt (ũn+1,∇ pn). (3.77)

Taking the inner product of (3.63) with un+1, we obtain

‖un+1‖2 + ‖un+1 − ũn+1‖2 = ‖ũn+1‖2. (3.78)

It follows from (3.63) directly that

δt2‖∇ pn+1 − ∇ pn‖2 = ‖ũn+1 − un+1‖2. (3.79)

Combining (3.75) and (3.76)–(3.79), we obtain

‖un+1‖2 − ‖un+1

 ‖2 + ‖un+1


 − un‖2 + ‖ũn+1 − un

‖ + δt2(‖∇ pn+1‖2 − ‖∇ pn‖2)
+ 2ηδt‖∇un+1


 ‖2 − 2δt
(∇ · σ(Qn,Hn+1),un


) − Cn+1δt4 = 0. (3.80)

Adding (3.69) with (3.70) and noticing the fact that
(∇ · σ(Qn,Hn+1),un

) = (
Hn+1, S(∇un,Qn)

)
, (3.81)

we arrive at

‖un
‖2 − ‖un‖2 + ‖un
 − un‖2 + 2δtM1‖Hn+1‖2 − 2(Qn+1 − Qn,Hn+1) = 0. (3.82)

Finally, adding up the Eqs. (3.80), (3.82) and dividing both side by 2, we have

1

2

(‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un

‖2 + ‖un+1

 − un‖2) + 1

2
δt2(‖∇ pn+1‖ − ‖∇ pn‖2)

+ ηδt‖∇ũn+1‖2 + δtM1‖Hn+1‖2 − (Qn+1 − Qn,Hn+1) − Cn+1δt4 = 0. (3.83)

According to Lemma 3.3,

(Qn+1 − Qn,Hn+1) ≥ En+1 − En, (3.84)

Fig. 1 A schematic of a 2D stagged grid
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(A)

(B)

(C)

(D)

Fig. 2 Time step mesh refinement test for the 1st order scheme. Here, we use spatial mesh size 512×512 and
choose time step δt = 2×10−3, 10−3, 5×10−4, 2.5×10−4, 1.25×10−4, respectively. The log2(L1, L2, L∞
norm of the error) for v and Qxx ,Qxy versus log2(δt) are plotted. The slopes of the lines are all equal to 1.
a Error of vx . b Error of vy . c Error of Qxx . d Error of Qxy
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(A)

(B)

(C)

(D)

Fig. 3 Time step mesh refinement test for the 2nd order scheme. Here, we use spatial mesh size 512×512 and
choose time step δt = 2 × 10−3, 10−3, 5× 10−4, 2.5× 10−4, 1.25× 10−4, respectively. The log2(L1, L2,
L∞ norm of the error) for v andQxx ,Qxy versus log2(δt) are plotted. The slopes of the lines are all equal to 2.
a Error of vx . b Error of vy . c Error of Qxx . d Error of Qxy
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we finally obtain

1

2
‖un+1‖2 + En+1 + δt2

2
‖∇ pn+1‖2 + δt

(
η‖∇ũn+1‖2 + M1‖Hn+1‖2)

≤ 1

2
‖un‖2 + En + δt2

2
‖∇ pn‖2 + Cn+1δt4. (3.85)

��
Remark 3.3 We note that, in the momentum equation, a term �n is added to cancel other
terms generated from un
 . This leads to the result that such a scheme is only “quasi”-energy
stable, i.e. the energy decays modulo a quantity of order O(δt4).

Fig. 4 Structure coarsening of defects in a channel flow. This figure shows coarsening dynamics of defects
through splitting and annihilation. a–g the spatial structure at t = 0, 10, 15, 25, 50, 100, 150, respectively.
In h, the total energy decay with time is shown. in the end (t = 150), the flow settles into a quiescent,
homogeneous state without any defects. a t = 0. b t = 10. c t = 15. d t = 25. e t = 50. f t = 100. g t = 150.
h discrte energy
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4 Numerical Results

In this section, we first conduct themesh refinement test in time to verify the convergence rate
of the first order and the second order coupled scheme, respectively. Then, we will conduct
several numerical simulations of liquid crystal flows in 2D channel geometries focusing
on flow-induced defect dynamics. Here, we consider a lyotropic liquid crystal system with
η = 1, M1 = 1, K = 0.001, α = 1, N = 4, and a = 0.8, respectively, which represents
rod-like nematic liquid crystals. We use a rectangular computational domain, denoted by
[0, Lx] × [0, Ly] in all the simulations below. In the following numerical study, we set
Lx = Ly = 1, and we use periodic boundary condition in the x direction. In the y-direction,
the boundary conditions are given as follows:

Fig. 5 Structure coarsening of defects in a channel flow. a–c show the difference between the largest and
the second largest eigenvalues of Q + I/3 in the background pseudo-color map at time t = 1, 10, 12.5,
respectively, in which defects are shown explicitly. Totally, 10 defects are initially identified, among which
4 are ±1 defects and 6 are ±1/2 defects. The degree ±1 defects split into degree ±1/2 defects and then
+1/2 and −1/2 annihilate to reduce the number of defects in the domain eventually. d–f show the vorticity
field as the background pseudo-color map at t = 1, 10, 12.5, respectively. g–i show the velocity field at time
t = 1, 10, 12.5, respectively. a t = 1. b t = 10. c t = 12.5. d t = 1. e t = 10. f t = 12.5. g t = 1. h t = 20.
i t = 25
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u|y=0,Ly = 0,
∂Q
∂n

|y=0,Ly = 0. (4.1)

The space is discretized by a second order finite difference method with central dif-
ferencing. We use staggered grids, where Q and p are discretized at the cell center and
u is discretized on cell edges. A schematic cartoon is shown in Fig. 1 to illustrate this
idea.

4.1 Time Step Refinement Test

First, we conduct a mesh refinement test in time to confirm the order of the schemes. Notice
that the schemes are coupled between the velocity field v and nematic fieldQ. In the numerical
implementation, we employ the extrapolation technique to decouple them. This should not
affect any temporal accuracy. In order to have a high resolution in space to minimize the
influence of the spatial error, we test the code in 2D spatial domain with the spatial mesh-
size: 512× 512 and time step δt = 2× 10−3, 10−3, 5× 10−4, 2.5× 10−4 and 1.25× 10−4,
respectively. At t = 1, the numerical solutions are compared, where we calculate the error
by treating the numerical result with its nearest finer time step as the approximation to the
accurate solution. The errors for the first-order scheme in L1, L2 and L∞ norm for v and Q
are shown in Fig. 2, respectively. From the numerical tests, the first order scheme is shown at
least first-order accurate in time. The second-order scheme is also implemented and the mesh

Fig. 6 Annihilation of a + 1
2 defect and a − 1

2 defect. This figure shows annihilation dynamics of two
point defects with the opposite sign. a–e the nematic liquid crystal orientation on the xy plane at time
t = 80, 100, 110, 120, 150, respectively; f the total energy decay with time t. a t = 80. b t = 100.
c t = 110. d t = 120. e t = 150. f discrete energy
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refinement test result is depicted in Fig. 3. From the numerical test, the numerical scheme is
shown as second-order accurate.

We next apply this numerical scheme to study defect dynamics in liquid crystal flows
during coarsening and defect annihilation.

4.2 Coarsening of Liquid Crystal Structures

In this simulation, we use the initial condition of a nematic liquid crystal phase on the
xy plane, shown in Fig. 4a, where several defects are present. The coarsening dynam-
ics of the orientational structure involving multiple defects are simulated. Several plots
at various time steps are shown in Fig. 4a–g. We also plotted the discrete energy as a
function of time in Fig. 4h, where we observe the energy decay with respect to time.
Although there does not exist active hydrodynamic impact to the flow, its effect is
coupled to liquid crystal orientational dynamics. This figure shows very interesting coars-
ening dynamics, where we observe +1 defects divide into two + 1

2 defects (comparing
Fig. 4a, b), as well as the annihilation of − 1

2 and + 1
2 defects, which can also be seen

from the eigenvalues of Q on the xy plane, plotted in Fig. 5a–c. The velocity field and
vorticity field are also shown in Fig. 5, from which, we observe relatively larger vortic-
ity near the boundary of defects, as coarsening dynamics evolves. Initially there exists
10 defects, 4 degree ±1 and 6 degree ±1/2. Eventually, the defects disappear due to
annihilation. During the process, very complex defect dynamics are captured by the sim-
ulation.

Fig. 7 Annihilation of a + 1
2 defect and a − 1

2 defect. This figure shows the differences between the three
eigenvalues ofQ+I/3, indicating the liquid crystal phase at the two point defects are biaxial. a–c The pseudo-
color plot of the difference between the largest eigenvalue and the second largest eigenvalue of Q + I/3 is
plotted at time t = 50, 100, 120, respectively. d–f The pseudo-color plot of the difference between the second
largest eigenvalue and the smallest eigenvalue of Q + I/3 is plotted at time t = 50, 100, 120, respectively.
Biaxiality of the liquid crystal system near the defects is shown in d–f. a t = 50. b t = 100. c t = 120.
d t = 50. e t = 100. f t = 120
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4.3 Annihilation and Repulsions of a Single Defect Pair

To better understand coarsening dynamics involving point defects, we conducted two more
simulations, where annihilation of a+ 1

2 and− 1
2 defects and the repulsion of two+ 1

2 defects
are shown in Figs. 6 and 8, respectively. In both cases, we see decay of discrete energies
with time (see Figs. 6f and 8f), which demonstrates the robustness of our energy-stable
schemes. In particular, we have plotted the time series of the difference between the largest
eigenvalue and the second largest one of Q + I/3 in Fig. 7a–c and the difference between
the second largest eigenvalue and the smallest one in Fig. 7d–f, respectively. It demon-
strates that the liquid crystal at the point defects are in fact biaxial [18] (as we have three
distinct eigenvalues of Q + I/3 in the neighborhood of the point defects) and the liquid

Fig. 8 Repulsion of two + 1
2 point defects. This figure shows repulsion dynamics of two + 1

2 point defects.
a–e nematic liquid crystal orientation on the XY plane at time t = 0, 50, 100, 150, 200, 250, respectively.
f the energy decay with time. g pseudo-color plot of the difference between the largest and the second largest
eigenvalue ofQ+I/3 is plotted. h The velocity field at t = 150 is shown; i The vorticity component at t = 150
is shown. a t = 50. b t = 100. c t = 150. d t = 200. e t = 250. f discrete energy. g t = 150. h t = 150.
i t = 150
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crystal is uniaxial elsewhere (as the second largest eigenvalue and the smallest eigenvalue
are equal).

5 Conclusion

In this paper, we have developed several semi-discrete energy stable schemes for the Q-tensor
based hydrodynamic model of nematic liquid crystals, which can be used to study flowing
behavior of nematic liquid crystals in various geometries. These include both a first order
and a second order scheme, together with a first-order decoupled approximation. The new
schemes lay a solid foundation for pursuing further development of energy stable, efficient
numerical methods for solving hydrodynamic models of complex fluids that obey energy
dissipation laws. The schemes are then used to study defect dynamics during coarsening of
nematic liquid crystal orientational structures and pair interaction between point defects. The
numerical schemes are shown to be effective in solving the Q-tensor based hydrodynamic
model of liquid crystals. The methodology developed here also provides a paradigm for
developing energy-stable schemes for more general hydrodynamicmodels of complex fluids,
which obey an energy dissipation law.
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