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Abstract Linear reconstruction based on local cell-averaged values is the most commonly
adopted technique to achieve a second-order accuracywhenone uses thefinite volume scheme
on unstructured grids. For solutions with discontinuities appearing in such as conservation
laws, a certain limiter has to be applied to the predicted gradient to prevent numerical oscil-
lations. We propose in this paper a new formulation for linear reconstruction on unstructured
grids, which integrates the prediction of the gradient and the limiter together. By solving on
each cell a tiny linear programming problem without any parameters, the gradient is directly
obtainedwhich satisfies themonotonicity condition. It can be shown that the resulting numer-
ical scheme with our new method fulfils a discrete maximum principle with fair relaxed
geometric constraints on grids. Numerical results demonstrate that our method achieves sat-
isfactory numerical accuracy with theoretical guarantee of local discrete maximum principle.

Keywords Linear reconstruction · Finite volume method · Simplex method ·
Linear programming

1 Introduction

When one adopts the finite volume scheme to discretize one-dimensional conservation laws,
a second-order accuracy can be achieved by local linear reconstructions. To prevent spuri-
ous oscillations where discontinuities may appear, a suitable limiter has to be applied on
the gradient given by the linear reconstruction. One common approach in this fold is the
Monotonic Upstream-Centered Scheme for Conservation Law (MUSCL) due to van Leer
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[1]. Later MUSCL-type finite volume schemes were developed for multiple dimension prob-
lems on both structured and unstructured grids. In one-dimensional case the TVD criterion
can prevent spurious oscillations and achieve second-order accuracy at the meantime, while
TVD schemes in multi-dimensional cases have been proved to be at most first-order accu-
rate [2]. Moreover, the implementation of TVD condition on unstructured grids is much less
obvious. As an alternative for TVD criterion to prevent spurious oscillations, the local max-
imum principle was considered [3] which makes it easier to generalize to multi-dimensional
problems. To ensure a local maximum principle, a new class of monotone scheme was pro-
posed in [3] based on positivity of coefficients. The positivity of coefficients can be achieved
by certain monotonicity condition and some additional geometric constraint on grids. Much
subsequent research has been directed towards multi-dimensional numerical schemes which
satisfy certain form of monotonicity condition [4–6]. The second-order TVD scheme of [5]
was modified in [7] such that the local maximum principle is fulfilled by selecting the gra-
dient which satisfies the monotonicity condition. In [8], an appropriate maximum principle
was attained by restricting the gradient to lie within a maximum principle region. During the
study of the multi-dimensional limiting process (MLP), Park et al. [9] extended the MLP
condition from structured to unstructured grids, which also leads to a maximum principle.
The MUSCL-type methods were generalized to higher-order reconstruction by introducing
the Hessian [10]. The ENO/WENO-type methods are alternative methods to achieve higher-
order accuracy. Although thesemethods have been successfully applied on unstructured grids
[11–14], they are not free from parameters.

The linear reconstructions above consist of two steps. First, a predicted gradient is com-
puted for each cell of the mesh using the cell averages in the reconstruction patch of the
cell. Then the predicted gradient is limited to give a corrected gradient on the cell to pre-
vent numerical oscillations. There exists a large family of so-called scalar limiters, which
are implemented by multiplying all components of the gradient by a scalar in [0, 1]. Scalar
limiters, though very popular, are far more diffusive, since the constraint triggered by any
neighbouring cell will degrade the gradient in one specific direction, resulting limiting in all
directions. Several approaches have been suggested to improve the scalar limiter with more
consideration on the nature of multi-dimensional problems. Therefore, instead of reducing
the magnitude of the predicted gradient, one may try to limit the predicted gradient compo-
nentwisely [15,16], as is done in the vector limiters. One essential difference between the
scalar limiter and the vector limiter is that the limited gradient given by the scalar limiter has
the same direction with the predicted gradient, while the vector limiter may not only modify
the magnitude, but also the direction of the predicted gradient. Therefore, the vector limiter
is actually trying to find a gradient in a multi-dimensional cone adjacent to the direction of
the predicted gradient. Some authors then turned the vector limiter into the formulation of
an optimization problem [17–19]. Taking [17] as an example, the limiter was formulated
as a linear programming (LP) problem with the goal of retaining as much of the predicted
gradient as possible while fulfilling the monotonicity condition.

Since the direction of the predicted gradient is modified, one actually has no obligation
to take the predicted gradient as a priori information. Motivated by such an idea, we pro-
pose a new formulation of reconstruction. In this formulation, the gradient satisfying the
monotonicity condition can be directly obtained without a gradient prediction. The predic-
tion step and limiting step in the traditional reconstruction are therefore integrated into a
single step. Our construction eventually gives rise to a tiny LP problem similar to that of
[19], except with an alternative objective function that does not require gradient prediction
any longer. Equipped with an efficient LP solver, the reconstructed gradient can be obtained
directly with cheap computational cost. Moreover, the LP problem itself is free from the
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grid topology, and thus the method may be applied to those discretization with very flexi-
ble grids. More importantly, our method is completely parameter-free and can thereby be
easily extended to various applications. With some mild assumptions on the grids, we can
show that the local maximum principle is preserved on triangular meshes. Similar analysis
to alternative meshes can be performed. We present some numerical tests by solving scalar
equations to validate our method. It is observed that the discrete scheme achieves satisfactory
numerical accuracy without violating the discrete maximum principle. The numerical results
for some benchmark problems governed by Euler equations are then provided to demonstrate
the capacity of this new exploration.

This paper is organized as follows. At first, we briefly introduce the finite volumemethods
in Sect. 2, and then in Sect. 3 we present our linear reconstruction procedures in detail. In
Sect. 4 we discuss the properties of our reconstruction method. Numerical examples will be
given in Sect. 5 to demonstrate the robustness and accuracy of our method. Finally, a short
conclusion will be drawn in Sect. 6.

2 MUSCL-Type Finite Volume Method

We briefly introduce the MUSCL-type finite volume methods for hyperbolic conservation
laws on unstructured grids below. Let us consider a hyperbolic conservation law as follows

∂u
∂t

+ ∇ · F(u) = 0, (1)

equipped with appropriate boundary conditions. The problem domain is triangulated into
a mesh T with cells Ti . The cell-centered finite volume discretization is derived by first
integrating (1) on the control volume Ti

dui
dt

+ 1

|Ti |
∮

∂Ti
F · ndl = 0, (2)

where ui (t) denotes the cell average of u on the cell Ti and n is the unit outward normal over
the boundary ∂Ti , and then approximating the integral on the cell boundary appeared in (2)
with the numerical quadrature

∮
∂Ti

F · ndl ≈
∑

ei j⊂∂Ti

|ei j |
Q∑

q=1

wq F
(
u(x(q)

i j , t)
)

· ni j , (3)

where ei j represents the common edge between Ti and Tj , x
(q)
i j and wq (q = 1, 2, · · · , Q)

are the numerical quadrature points and corresponding weights respectively. Since we are
concerned with second-order schemes, we adopt the midpoint quadrature rule and omit the
index q hereinafter.

Next we supplant the flux F(u(xi j , t)) · ni j at interfaces by a numerical flux function
F(u−

i j , u
+
i j ), which yields a semi-discrete scheme formulated as

dui
dt

+ 1

|Ti |
∑

ei j⊂∂Ti

F(u−
i j , u

+
i j )|ei j | = 0,

where u−
i j (resp. u

+
i j ) is the trace value of the numerical solution inside (resp. outside) the

cell Ti .

123



J Sci Comput (2016) 68:1172–1197 1175

As one of the most popular numerical flux functions, the Lax-Friedrichs flux can be
expressed as

F(u−, u+) = 1

2
[F(u−) + F(u+)] · n − 1

2
α(u+ − u−), (4)

where α is taken as an upper bound for the signal speed.
To achieve a higher than first-order numerical accuracy, the trace values u±

i j are evaluated
on a piecewise polynomial numerical solution reconstructed from cell-averaged values {ui }.
This is the focus of this paper and we will give a method to reconstruct a piecewise linear
numerical solution to calculate trace values appeared in the numerical flux.

So far we obtain a system of ordinary differential equations

du
dt

= L(u). (5)

The system of ODEs (5) are then discretized by a higher-order TVD Runge–Kutta methods
[20]. For example, the first-order TVD Runge–Kutta scheme is simply the forward Euler
scheme

un+1 = un + �tnL(un), (6)

and the second-order TVD Runge–Kutta scheme is given therein as
⎧⎨
⎩
u∗ = un + �tnL(un),

un+1 = 1

2
un + 1

2
(u∗ + �tnL(u∗)) .

(7)

Tomatch the second-order spatial discretization, we use the second-order TVDRunge–Kutta
scheme (7). The time step length �tn can be determined from CFL condition

�tn = CFL × min
Ti∈T

{
hi
ci

}
,

where hi is the size of the cell Ti and ci is the maximal signal speed over Ti .

3 Integrated Linear Reconstruction

We present the procedures of our linear reconstruction in this section. The linear reconstruc-
tion requires a suitable gradient on each cell. In our method, the gradient is the solution of
an LP problem. The LP problem is solved by an efficient algorithm. For simplicity, we will
restrict ourselves to two-dimensional cases. The extension to three-dimensional is straight-
forward.

To start with, let us recall the typical procedure of the linear reconstructions in previous
studies.Most of linear reconstructions consist of two steps: first construct a predicted gradient
on each cell, and then correct the gradient to enforce some formofmonotonicity condition. For
clarity, we temporarily rename the relevant cell indices of a given cell within this section: the
index 0 here stands for the current cell, whereas indices 1, 2, . . . ,m stand for its neighbouring
cells. The neighbourhood may consist of either cells sharing the edges of the given cell, or
cells sharing at least one vertex of the given cell. We refer to the former as edge neighbours
(EN) (Fig. 1), whereas the latter as vertex neighbours (VN) (Fig. 2). Note that both definitions
exclude the cell 0 itself.
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Fig. 1 Edge neighbours (EN)
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u3 u2

Fig. 2 Vertex neighbours (VN)
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Let ui and xi = (xi , yi ) be the cell-averaged value and mass center of Ti respectively
(i = 0, 1, . . . ,m). It is reasonable to assume that the mass centers x0, x1, . . . , xm are non-
colinear. The reconstructed linear function on the cell T0 can be formulated as

u(x, y) = u0 + Lx (x − x0) + Ly(y − y0), (8)

where L = [Lx , Ly]� is a limited form of the predicted gradient g = [gx , gy]�. The
predicted gradient is taken as the Green–Gauss or least-squares approximations etc. [4,8,9].
For example, the least-square reconstruction gives a gradient prediction by fitting the cell-
averaged values of the cell and its neighbourhood

⎛
⎜⎝
x1 − x0 y1 − y0

...
...

xm − x0 ym − y0

⎞
⎟⎠

[
gx
gy

]
=

⎡
⎢⎣
u1 − u0

...

um − u0

⎤
⎥⎦ . (9)

The solution of (9) exists in the least-squares sense, i.e.[
gx
gy

]
= 1

dxxdyy − d2xy

[
dyy px − dxy py
dxx py − dxy px

]
, (10)

where

dxx =
m∑
i=1

(xi − x0)
2, dyy =

m∑
i=1

(yi − y0)
2, dxy =

m∑
i=1

(xi − x0)(yi − y0),

px =
m∑
i=1

(xi − x0)(ui − u0), py =
m∑
i=1

(yi − y0)(ui − u0).
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Next a monotonicity condition is enforced to prevent spurious oscillations. We present
scalar limiters with two versions of monotonicity conditions [19] for comparison with our
method. Following the construction of MUSCL schemes, the gradient is limited such that
the reconstructed value evaluated at the mass center of any neighbouring cell is bounded by
u0 and the cell-averaged value of that cell, i.e.

min{u0, ui } ≤ u(xi , yi ) ≤ max{u0, ui }, i = 1, 2, . . . ,m. (11)

The constraints (11) may be viewed as a two-dimensional generalization of the minmod
limiter for one-dimensional case. Later in Sect. 3.1 we will give a further remark on this
point.

Instead of limiting using two cell-averaged values, a less diffusive approach is to limit the
predicted gradient using the maximum and minimum over all neighbouring cells and the cell
itself, i.e.

min{u0, u1, . . . , um} ≤ u(xi , yi ) ≤ max{u0, u1, . . . , um}, i = 1, 2, . . . ,m. (12)

Following the terminology of [19], we refer to the monotonicity condition (11) as the
standard formulation, whereas (12) as the relaxed formulation. As will be shown in Sect. 4,
either (11) or (12) leads to a certain discrete maximum principle and subsequently L

∞-
stability with an additional geometric hypothesis on the grid.

The predicted gradient is then multiplied by a scalar factor φ ∈ [0, 1] as large as possible
without violating the monotonicity condition

L = φg. (13)

Explicit expressions are available for the scalar limiter by substituting (8) (13) into (11) or
(12). The standard form of monotonicity condition (11) leads to the following upper bound
of φ

�i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v+
i

g · (xi − x0)
, g · (xi − x0) > v+

i ,

v−
i

g · (xi − x0)
, g · (xi − x0) < v−

i ,

1, otherwise,

(14)

for i = 1, 2, . . . ,m, while the relaxed form (12) leads to the following upper bound of φ

�i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v+
max

g · (xi − x0)
, g · (xi − x0) > v+

max,

v−
min

g · (xi − x0)
, g · (xi − x0) < v−

min,

1, otherwise,

(15)

for i = 1, 2, . . . ,m, where

vi = ui − u0, v+
i = max{vi , 0}, v−

i = min{vi , 0}, i = 1, 2, . . . ,m,

v+
max = max{0, v1, v2, . . . , vm}, v−

min = min{0, v1, v2, . . . , vm}.
Finally the scalar factor φ is selected as the minimum of all �i ’s

φ = min{�1,�2, . . . , �m}.
Instead of a single factor in the scalar limiter, the vector limiter is implemented by mul-

tiplying different factors to each component of the predicted gradient. Since the direction of
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the predicted gradient is modified, one may be persuaded that the prediction of the gradient is
actually unnecessary. As a further exploration of our method, the gradient is obtained without
prediction at all. Since our reconstruction approach is not split into the prediction and limiting
steps any more, we will refer it as the integrated linear reconstruction (ILR) from now on.

3.1 Reconstruction as an LP Problem

For better numerical accuracy and less numerical diffusion, the reconstructed values should
fit the cell-averaged values as best as possible without violating anymonotonicity conditions.
In the following construction we will adopt the standard form of the monotonicity condition
(11). Denote by ûi = u0 + Lx (xi − x0) + Ly(yi − y0) the reconstructed value at the mass
center of neighbouring cell Ti (i = 1, 2, . . . ,m), then the inequality (11) becomes

v−
i ≤ (xi − x0)Lx + (yi − y0)Ly ≤ v+

i , i = 1, 2, . . . ,m. (16)

We use the l1-norm tomeasure the difference between the reconstructed and cell-averaged
values when (16) holds. Define the total gaps δ by

δ(Lx , Ly) :=
m∑
i=1

|ui − ûi | =
m∑
i=1

|vi − v̂i |. (17)

where v̂i = ûi − u0 = (xi − x0)Lx + (yi − y0)Ly (i = 1, 2, . . . ,m).
Our goal is to minimize the total gaps δ subjected to the monotonicity conditions (16) (see

Fig. 3). This seems a non-linear objective function at first glance. However, one observes
that, the difference vi − v̂i has the same sign with vi , and consequently

δ =
m∑
i=1

sgn (vi )(vi − v̂i )

= −
m∑
i=1

sgn (vi )v̂i + const

Fig. 3 Illustration of the
integrated linear reconstruction:
the shaded plane represents
linear reconstruction on cell T0;
the cross symbols represent
reconstructed values, while the
dot symbols represent
cell-averaged values

T0T1

û1(< u0)

T2

û2(= u0)

T3

u0

u1(< u0)
u2(< u0)

û3(= u3 > u0)
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= −
m∑
i=1

sgn (vi )[(xi − x0)Lx + (yi − y0)Ly] + const

= −
[

m∑
i=1

sgn (vi )(xi − x0)

]
Lx −

[
m∑
i=1

sgn (vi )(yi − y0)

]
Ly + const.

As a result, δ is actually an affine function of the limited gradient (Lx , Ly).
So far we have formulated the linear reconstruction in the following LP problem

max

[
m∑
i=1

sgn (vi )(xi − x0)

]
Lx +

[
m∑
i=1

sgn (vi )(yi − y0)

]
Ly

s.t. v−
i ≤ (xi − x0)Lx + (yi − y0)Ly ≤ v+

i , i = 1, 2, . . . ,m.

(18)

In particular the solution of (18) exactly recovers the linear data, since the exact gradient
satisfies all the constraints and achieves minimal total gaps δ = 0.

Remark 1 In one-dimensional case, our approach actually degenerates to the minmod slope.
Indeed, consider two neighbours assigned with labels 1 and 2 such that x1 < x0 < x2. Then
the LP problem (18) reduces to

max [sgn (v1)(x1 − x0) + sgn (v2)(x2 − x0)]Lx

s.t. v−
1 ≤ (x1 − x0)Lx ≤ v+

1 and v−
2 ≤ (x2 − x0)Lx ≤ v+

2 . (19)

It is easy to derive the optimal solution of (19)

Lx = minmod

(
u1 − u0
x1 − x0

,
u2 − u0
x2 − x0

)
,

where the minmod function is defined by

minmod (a, b) =

⎧⎪⎨
⎪⎩
a, if ab > 0 and |a| < |b|,
b, if ab > 0 and |a| ≥ |b|,
0, if ab ≤ 0.

A subsequent question is about the existence of the solution for LP problem (18). Since
each double-sided constraint of (16) corresponds to a strip in the (Lx , Ly)-plane, the feasible
region of (18) is the intersection ofm strips (see Fig. 4). Consider the region enclosed by any
two of the m constraints (16), saying i = 1 and 2 for instance{

v−
1 ≤ (x1 − x0)Lx + (y1 − y0)Ly ≤ v+

1 ,

v−
2 ≤ (x2 − x0)Lx + (y2 − y0)Ly ≤ v+

2 .

This region is bounded as long as x0, x1 and x2 are non-colinear. Since x0, x1, . . . , xm
are non-colinear, the feasible region of (18) is always bounded. Another observation is that
(Lx , Ly) = (0, 0) must be a feasible point. From the theory of LP, there exists a bounded
optimal solution for (18).

3.2 LP Solver

The efficiency of LP solver is crucial since we need to solve an LP problem on each cell.
Following [19], the all-inequality simplex method is taken as our LP solver. This variant of
simplex method applies to LP problems consisting exclusively of inequality constraints. The
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Fig. 4 Feasible region when
m = 3: the point (Lx , Ly) on the
solid lines and dashed lines
satisfies
u0+(xi −x0)Lx +(yi − y0)Ly =
u0 and
u0+(xi −x0)Lx +(yi − y0)Ly =
ui respectively (i = 1, 2, 3)

û1 = u0

û1 = u1

û2 = u0

û2 = u2

û3 = u0

û3 = u3

O

Lx

Ly

idea is the same as the standard simplex algorithm: if there is an optimal solution for the LP,
then there exists at least one vertex in the feasible region that achieves optimality. We search
this vertex in an iterative manner. Compared to traditional simplex methods, this method is
especially useful if the number of inequality constraints is much greater than the number of
variables, which is the very case here. The algorithm of the all-inequality simplex method
for the following LP problem

max c�x s.t. Ax ≤ b, (20)

where c, x ∈ R
d , A ∈ R

N×d and b ∈ R
N , can be found in “Appendix”.

In our case d = 2 and N = 2m. The corresponding variables become

c =
[

m∑
i=1

sgn (vi )(xi − x0),
m∑
i=1

sgn (vi )(yi − y0)

]�
, x = L = [Lx , Ly]�,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 − x0 y1 − y0
...

...

xm − x0 ym − y0
−(x1 − x0) −(y1 − y0)

...
...

−(xm − x0) −(ym − y0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v+
1
...

v+
m

−v−
1

...

−v−
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Besides, it is known a priori that L = [0, 0]� is a valid starting point. We initialize the
active matrix M with the rows of A corresponding to the following two constraints

(x1 − x0)Lx + (y1 − y0)Ly ≶ 0 and (x2 − x0)Lx + (y2 − y0)Ly ≶ 0.

The cost of the reconstruction is largely affected by the number of iterations needed to
solve the LP. In all the two-dimensional cases we have run so far, the maximum number of
iterations was 5. Moreover, one iteration of this simplex method is also very cheap, which
requires only the solution of two 2 × 2 linear systems to determine the Lagrange multiplier
and search direction.
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4 Discrete Maximum Principle

In this section we first give an a posteriori estimation of the gradient reduction, and then
prove the local maximum principle for our ILR.

In [19], May et al. was aiming at retaining as much of the unlimited gradient as possible
without violating the monotonicity conditions. The objective function then equals to the
gradient reduction in l1-norm: ‖g − L‖1 = |gx − Lx | + |gy − Ly |. Although optimal
solutions of these two problems do not coincide, we claim that our optimal solution actually
achieves quasi-optimality in the sense of minimal gradient reduction. This statement is made
more clear in the following Theorem 1.

Theorem 1 (A posteriori estimation of gradient reduction). Let g be the least-square pre-
dicted gradient given by (10) and L be any feasible gradient satisfying (16), then the following
l1-estimation holds

‖g − L‖1 ≤ Cδ, (21)

where

C= 1

dxxdyy − d2xy
max
1≤i≤m

[|dyy(xi −x0)− dxy(yi −y0)|+|dxx (yi −y0)− dxy(xi − x0)|
]

(22)

is a geometry-dependent constant and δ is the total gaps (17).

Proof Denote

X =
(
x1 − x0 . . . xm − x0
y1 − y0 . . . ym − y0

)
, v = [v1, . . . , vm]�, v̂ = [v̂1, . . . , v̂m]�,

then we have the following two identities

XX�g = Xv and XX�L = X v̂.

Subtracting these two identities yields

XX�(g − L) = X(v − v̂).

By assumption XX� is invertible. Therefore

‖g − L‖1 ≤ ‖(XX�)−1X‖1‖v − v̂‖1 = Cδ,

where C , given in (22), is the l1-norm of the matrix (XX�)−1X . �

From Theorem 1 we conclude that by minimizing the total gaps δ, the quasi-optimality

of the reduction of the resulting gradient L with respect to g is enforced.
We establish below the discrete maximum principle of linear reconstruction with either

EN or VN for scalar conservation laws. The whole proof is sketched out in the following
three stages: first we show that the solution is bounded from above and below by interpolants
at the previous time level (Lemma 4); next we propose technical conditions of values at
quadrature points that lead to a maximum principle (Theorem 5); finally we demonstrate that
the monotonicity condition along with some geometric hypothesis results in the proposed
technical conditions (Theorems 6, 7). The following notations of neighbouring indices are
introduced to simplify the expressions (see Figs. 1, 2)
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EN (i) := { j |ei j ⊂ ∂Ti },
V N (i) := { j |Ti ∩ Tj �= ∅, j �= i},
EN (i) := EN (i) ∪ {i},
V N (i) := V N (i) ∪ {i}.

We also define the extremal trace values and extremal interior values at the quadrature
points through

Umin
i := min

j∈EN (i)
{u±

i j }, Umax
i := max

j∈EN (i)
{u±

i j },
Umin
i := min

j∈EN (i)
{u−

i j }, Umax
i := max

j∈EN (i)
{u−

i j }.

In the following argument we consider the fully discrete finite volume scheme

un+1
i = uni − �tn

|Ti |
∑

j∈EN (i)

F(u−
i j , u

+
i j )|ei j |. (23)

Definition 2 We say that the finite volume scheme (23) fulfils the local maximum principle,
if the solution at a given cell is bounded by the minimum and maximum values within this
cell and its VN at the previous time step, i.e.

umin
i ≤ un+1

i ≤ umax
i , (24)

where the local extrema

umin
i := min

j∈V N (i)
{unj }, umax

i := max
j∈V N (i)

{unj }.

And we say that the finite volume scheme (23) fulfils the global maximum principle, if
the global solution maximum is non-increasing and the global solution minimum is non-
decreasing between two successive time levels, i.e.

umin,n+1 ≥ umin,n, umax,n+1 ≤ umax,n, (25)

where the global extrema

umin,n := min
Ti∈T

{uni }, umax,n := max
Ti∈T

{uni }.

Of course the local maximum principle implies the global maximum principle, but the
converse is not true. Before the proof of maximum principle, let us investigate some basic
properties of linear reconstruction.

Lemma 3 With the notations defined above and a monotone Lipschitz continuous numerical
flux function F , the fully discrete finite volume scheme (23) satisfies the following inequality

Li

|Ti |M(Umin
i − Umax

i ) ≤ un+1
i − uni

�tn
≤ Li

|Ti |M(Umax
i − Umin

i ), (26)

where Li denotes the perimeter of Ti and M is the Lipschitz constant of F with respect to
the second argument, i.e.

|F(u−, u+) − F(u−, ũ+)| ≤ M |u+ − ũ+| ∀u−, u+, ũ+ ∈ [Umin
i ,Umax

i ].
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Proof Utilizing the consistency and monotonicity of numerical flux function, we have

un+1
i − uni

�tn
= − 1

|Ti |
∑

j∈EN (i)

F(u−
i j , u

+
i j )|ei j |

= − 1

|Ti |
∑

j∈EN (i)

[
F(Umin

i ,Umax
i )|ei j | + (F(u−

i j , u
+
i j ) − F(Umin

i , u+
i j ))|ei j |

+ (F(Umin
i , u+

i j ) − F(Umin
i ,Umax

i ))|ei j |
]

≤ − 1

|Ti |
∑

j∈EN (i)

F(Umin
i ,Umax

i )|ei j |

= − 1

|Ti |
∑

j∈EN (i)

[
F(Umin

i ,Umax
i ) − F(Umin

i ,Umin
i )

]|ei j |

≤ 1

|Ti |M(Umax
i − Umin

i )
∑

j∈EN (i)

|ei j |

= Li

|Ti |M(Umax
i − Umin

i ),

In a similar manner we can prove the left hand side of the inequality (26). �

Next we attempt to eliminate the extremal interior value terms Umin

i and Umax
i appeared in

(26). In fact, utilizing the interpretation of Barth’s geometric shape parameter [21] one can
prove that for linear reconstruction there exists a constant � ∈ (1,+∞) such that

Umax
i − Umin

i ≤ �(Umax
i − uni ) and Umax

i − Umin
i ≤ �(uni − Umin

i ). (27)

For triangular control volumes, the geometric shape parameter� = 3. As a result, the updated
solution is bounded by interpolants of extremal trace values and the current solution. Precisely
we have the following result.

Lemma 4 The fully discrete finite volume scheme (23) constructedwith amonotoneLipschitz
continuous numerical flux function and linear reconstruction exhibits the local interpolated
interval bound

σiU
min
i + (1 − σi )u

n
i ≤ un+1

i ≤ σiU
max
i + (1 − σi )u

n
i ,

where the time-step-proportional interpolation parameter σi is defined by

σi = Li

|Ti |M��tn .

Proof By definition Umax
i ≥ Umax

i ≥ Umin
i ≥ Umin

i . Applying the inequalities (27) we
conclude that

Umax
i − Umin

i − �(Umax
i − uni )

= (Umax
i − Umin

i ) − �(Umax
i − uni ) − (� − 1)(Umax

i − Umax
i ) ≤ 0,

Umin
i − Umax

i − �(Umin
i − uni )

= �(uni − Umin
i ) − (Umax

i − Umin
i ) + (� − 1)(Umin

i −Umin
i ) ≥ 0.
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Consequently,

Umax
i − Umin

i ≤ �(Umax
i − ui ) and Umin

i − Umax
i ≥ �(Umin

i − ui ). (28)

Inserting (28) into (26) and rearranging terms give rise to the desired results. �

Given the two-sided bound, a discrete maximum principle can be established under a

CFL-like time step restriction provided that the extremal trace valuesUmax
i andUmin

i can be
bounded from both above and below by the neighbouring cell averages. Actually we have
the following Theorem 5.

Theorem 5 The fully discrete finite volume scheme (23) constructed with a monotone
Lipschitz continuous numerical flux function and linear reconstruction fulfils the global
maximum principle (25) if on each cell Ti the following condition holds

umin,n ≤ u−
i j ≤ umax,n, ∀ j ∈ EN (i). (29)

Furthermore, the scheme fulfils the local maximum principle (24) if

max{umin
i , umin

j } ≤ u−
i j ≤ min{umax

i , umax
j }, ∀ j ∈ EN (i). (30)

In particular, the local maximum principle is satisfied if

min{uni , unj } ≤ u−
i j ≤ max{uni , unj }, ∀ j ∈ EN (i). (31)

Proof Assuming the time step restriction

�tn ≤ min
Ti∈T

{ |Ti |
M�Li

}
,

we have 0 ≤ σi ≤ 1 and consequently

umin,n = σi u
min,n + (1 − σi )u

min,n ≤ un+1
i ≤ σi u

max,n + (1 − σi )u
max,n = umax,n,

when (29) holds. The global maximum principle then follows.
Now we rewrite the condition (30) as

umin
i ≤ u±

i j ≤ umax
i .

Then the extremal trace values can be bounded from above and below by the local extrema

umin
i ≤ Umin

i ≤ Umax
i ≤ umax

i ,

and as a result,

umin
i = σi u

min
i + (1 − σi )u

min
i ≤ un+1

i ≤ σi u
max
i + (1 − σi )u

max
i = umax

i ,

which leads to the local maximum principle (24). �

Let us recall the monotonicity conditions in Sect. 3 in a formal notation: the standard form

min{unj , uni } ≤ u(x j ) ≤ max{unj , uni }, (32)

and the relaxed form

min
j

{unj } ≤ u(x j ) ≤ max
j

{unj }, (33)

where either j ∈ EN (i) or j ∈ V N (i).
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Fig. 5 Violation of Hypothesis
H1: vertex A is not contained in
the convex hull spanned by mass
centers of cells from N (A)

C3

C1C2
A

Fig. 6 Violation of Hypothesis
H2: midpoint M1 is not
contained in the triangle
�C1C2C3

C3

C1

C2

A1A2

A3

B3

B1

B2

M3

M1
M2

It is worth mentioning that these conditions all restrict values at the adjacent mass centers
rather than the quadrature points. However, with an additional geometric hypothesis the
quadrature points will be contained in the convex hull spanned by the adjacent mass centers,
and the restriction on the quadrature points can thereby be obtained. Our results below rely
on the following Hypothesis H1 or H2

• Hypothesis H1: Any vertex of the grid falls in the convex hull spanned by mass centers
of cells sharing this vertex (Fig. 5);

• Hypothesis H2: For each cell of the grid, the edge midpoints fall in the convex hull
spanned by mass centers of EN (Fig. 6).

HypothesisH1 is required in the proof of maximum principle for VN, while HypothesisH2

is required in the proof of maximum principle for EN. Here we present two general results for
linear reconstruction in Theorems 6 and 7, from which it can be shown that our ILR satisfies
the local maximum principle.

Theorem 6 (Maximum principle for vertex neighbours). Consider the fully discrete finite
volume scheme (23)with a monotone Lipschitz continuous numerical flux function and linear
reconstruction from VN on a grid satisfying Hypothesis H1.

1. If the linear reconstruction satisfies the standard form (11) of monotonicity condition,
then the scheme satisfies a local maximum principle (24) under a proper CFL restriction.

2. If the linear reconstruction satisfies the relaxed form (12) of monotonicity condition, then
only a global maximum principle (25) can be guaranteed under a proper CFL restriction.
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Proof (1) Consider two adjacent cells Ti and Tj with a common edge ei j = AB. From
Hypothesis H1 we know that the vertex A falls in the convex hull spanned by mass centers
of cells from N (A), the set of indices of cells sharing the vertex A. As a result,

min
k∈N (A)

{u(xk)} ≤ u(A) ≤ max
k∈N (A)

{u(xk)}.

Utilizing the standard form of monotonicity condition

min{unk , uni } ≤ u(xk) ≤ max{unk , uni }, ∀k ∈ N (A), (34)

we conclude that

min
k∈N (A)

{unk } ≤ u(A) ≤ max
k∈N (A)

{unk }.

The inclusion relations N (A) ⊂ V N (i) and N (A) ⊂ V N ( j) lead to

min
k∈V N (i)

{unk } ≤ u(A) ≤ max
k∈V N (i)

{unk }, min
k∈V N ( j)

{unk } ≤ u(A) ≤ max
k∈V N ( j)

{unk }, (35)

therefore

max{umin
i , umin

j } ≤ u(A) ≤ min{umax
i , umax

j } (36)

We can obtain the same bounds for vertex B. Therefore the interpolation u−
i j satisfies (30)

and the local maximum principle (24) follows.
(2) Ifwe are using the relaxed formofmonotonicity condition, then (34) should be replaced

with

umin
i ≤ u(xk) ≤ umax

i , ∀k ∈ N (A). (37)

Therefore,

umin
i ≤ u(A) ≤ umax

i .

Similarly,

umin
i ≤ u(B) ≤ umax

i .

As a result,

umin
i ≤ u−

i j ≤ umax
i .

Note that generally the inequality umin
j ≤ u−

i j ≤ umax
j does not hold. Nevertheless we can

still obtain a global maximum principle from (29). �

Theorem 7 (Maximum principle for edge neighbours). Consider the fully discrete finite
volume scheme (23)with a monotone Lipschitz continuous numerical flux function and linear
reconstruction from EN on a grid satisfying Hypothesis H2. If the linear reconstruction
satisfies either standard form (11) or relaxed form (12) of the monotonicity condition, then
the scheme exhibits a local maximum principle (24) under a proper CFL restriction.

Proof Againwe consider two adjacent cells Ti and Tj with a common edge. FromHypothesis
H2 we know that

min
k∈EN (i)

{u(xk)} ≤ u−
i j ≤ max

k∈EN (i)
{u(xk)}.
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Moreover, for any k ∈ EN (i), both standard and relaxed forms lead to

min
l∈EN (i)

{unl } ≤ u(xk) ≤ max
l∈EN (i)

{unl }.

Note that EN (i) ⊂ V N (i) and EN (i) ⊂ V N ( j). As a result,

max

{
min

l∈V N (i)
{unl }, min

l∈V N ( j)
{unl }

}
≤ u−

i j ≤ min

{
max

l∈V N (i)
{unl }, max

l∈V N ( j)
{unl }

}
.

The local maximum principle then follows from (30). �

The geometry of the grid has to be examined for Hypothesis H2. Here we give a suffi-

cient condition for Hypothesis H2 on a triangular grid, which is the case in our numerical
experiments.

Lemma 8 For any triangle�A1A2A3 in the grid. Let�B1A2A3,�A1B2A3 and�A1A2B3

be the edge neighbours of �A1A2A3 (see Fig. 6) and assume the following constraint on the
triangulation

−4

3
≤ λ j (Bi ) ≤ −2

3
(i = j),

2

3
≤ λ j (Bi ) ≤ 4

3
(i �= j),

where λ j denotes the barycentric coordinate with respect to A j ( j = 1, 2, 3). Then the grid
satisfies Hypothesis H2.

Proof Let C1,C2 and C3 be the mass centers of three EN accordingly. Denote by A and C
the barycentric coordinate systems of �A1A2A3 and of �C1C2C3. Then the matrix formed
by A-coordinates of edge midpoints is

M =
⎛
⎝ 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

⎞
⎠ .

Let B be the matrix formed by A-coordinates of B1, B2 and B3. Then the matrix formed
byA-coordinates of C1,C2 and C3 is (B+2M)/3. Furthermore, let P be the matrix formed
by C-coordinates of edge midpoints, then we have

M = 1

3
(B + 2M)P .

NowHypothesisH2 is equivalent to the entrywise non-negativity ofmatrix P . By assump-
tion, the entry of matrix K = B + 2M satisfies

−4

3
≤ Ki j ≤ −2

3
(i = j),

5

3
≤ Ki j ≤ 7

3
(i �= j).

By carrying out an algebraic manipulation we can show that all entries of P = 3K−1M are
non-negative. �

For grids with alternative cell geometry, similar conditions may be required.

123



1188 J Sci Comput (2016) 68:1172–1197

Table 1 Results for the advection of double sine wave

Cells L
1 error Order L

∞ error Order CPU time (s)

Unlimited 992 2.23e−2 1.99 5.13e−2 2.01 0.7

3968 5.59e−3 2.00 1.25e−2 2.04 6.0

15,872 1.40e−3 2.00 3.06e−3 2.03 49.5

63488 3.51e−4 2.00 7.66e−4 2.00 397.9

SSL 992 1.73e−1 0.78 4.79e−1 0.67 0.9

3968 8.62e−2 1.01 2.66e−1 0.85 7.4

15,872 4.44e−2 0.96 1.37e−1 0.95 60.3

63488 2.41e−2 0.88 7.38e−2 0.90 481.7

RSL 992 6.14e−2 1.66 2.65e−1 1.09 1.0

3968 1.94e−2 1.66 1.18e−1 1.17 8.0

15,872 5.52e−3 1.82 5.02e−2 1.23 61.7

63488 1.46e−3 1.92 2.07e−2 1.27 503.9

ILR 992 7.02e−2 1.55 2.86e−1 1.05 1.0

3968 2.21e−2 1.67 1.34e−1 1.10 8.6

15,872 5.99e−3 1.88 5.80e−2 1.20 68.7

63488 1.58e−3 1.93 2.45e−2 1.25 553.9

5 Numerical Results

We present several numerical examples to demonstrate the numerical performance of our
ILR on unstructured grids. Here the comparison is made with standard scalar limiter (SSL)
[cf. (14)] and relaxed scalar limiter (RSL) [cf. (15)].

5.1 Linear Advection Equations

We first consider the linear advection equation

∂u

∂t
+ a · ∇u = 0, (38)

with constant wave velocity a = (1, 2). The boundary conditions are periodic. The mesh
is generated by a global refinement on an irregular Delaunay triangulation, with the ratio
of maximum to minimum size being 1.47. The Lax-Friedrichs flux (4) is adopted as the
numerical flux and CFL number is 0.4.

Double sine wave: The initial profile is given by the double sine wave function [8,19]

u0(x, y) = sin(2πx) sin(2πy),

on the domain [0, 1] × [0, 1]. Errors in L
1 and L

∞ norms for the solution at t = 1 as well as
the CPU time are shown in Table 1. The results of ILR and RSL almost exhibit second-order
accuracy, in contrast with the first-order accuracy of SSL. Although ILR seems slightly more
time-consuming than SSL or RSL, it is still very efficient. In fact, the average number of
iterations is approximately two. Moreover, ILR is free from the computation of predicted
gradient. As a result, there is almost no extra cost in solving LP problems. Figure 7 shows
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Fig. 7 Contours of the double sine wave at t = 1 with 3968 cells. a Unlimited. b SSL. c RSL. (d) ILR
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Fig. 8 Contours of the square wave at t = 1 with 3968 cells. a Unlimited. b SSL. c RSL. d ILR

Table 2 Global maximum and
minimum values for the
advection of square wave at t = 1

3968 cells 15,872 cells

Min Max Min Max

Unlimited −0.164 1.2307 −0.185 1.2449

SSL 3.21e−5 0.9836 5.11e−9 0.9995

RSL 4.43e−7 0.9993 1.42e−12 1.0000

ILR 7.52e−7 0.9988 8.54e−12 1.0000

the contour lines for the double sine wave with 3968 cells. Compared to SSL, both ILR and
RSL are less sensitive to the grid orientation.

Square wave: Instead of a smooth function, we use the following square wave for initial
profile [6]

u0(x, y) =
{
1, if 0.25 < x, y < 0.75,

0, otherwise.

Figure 8 shows the advection of square wave at t = 1. In Table 2 we examine the global
maximum and minimum values on two levels of grids. One may see that ILR is, again
similar as RSL, less dissipative than SSL, and resolves the discontinuity without spurious
oscillations.

5.2 Solid Body Rotation

Another test to assess the capacity of the scheme to preserve the shape is the solid body
rotation [22]. Consider the advection (38) with velocity a = (−(y − 0.5), x − 0.5) in the
domain [0, 1] × [0, 1]. The initial profile consists of three geometry shapes. Each shape
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Fig. 9 Contours of the solid body rotation at t = 2π with 15,872 cells. a SSL. b ILR

is located within the circle of radius r0 = 0.15 whose center is (x0, y0). Moreover, let

r(x, y) = 1

r0

√
(x − x0)2 + (y − y0)2 be the normalized distance. The slotted cylinder is

centered at (x0, y0) = (0.5, 0.75) and

u0(x, y) =
{
1, if |x − x0| ≥ 0.025 or y ≥ 0.85,

0, otherwise.

The sharp cone is centered at (x0, y0) = (0.5, 0.25) and

u0(x, y) = 1 − r(x, y).

The smooth hump is centered at (x0, y0) = (0.25, 0.5) and

u0(x, y) = 1 + cos(πr(x, y))

4
.

For the rest of the domain, the initial value is zero. The homogeneous Dirichlet boundary
conditions are prescribed. The snapshots presented in Fig. 9 show the shape of the solution
on a Delaunay mesh with 15,872 cells at t = 2π , which corresponds to one full rotation. Due
to excessive numerical dissipation of SSL, the slotted cylinder is significantly smeared and
distorted. On the other hand, the result of ILR almost preserves the shape of slotted cylinder
without much distortion.

5.3 Euler Equations

For system of conservation laws, we apply the reconstruction directly to the conservative
variables, mainly for the purposes of speed and simplicity, though in many aspects the char-
acteristic limiting seems to be the most natural choice [8]. For Euler equations, the HLL flux
is adopted as the numerical flux.

5.3.1 Shock Tube Problems

These tests are to examine the capability to resolve various linear and non-linear waves on
unstructured grids. The computational domain is [0, 1]× [0, 0.1] with an irregular triangula-
tion of 101 nodes in the x-direction and 11 nodes in the y-direction on the boundary. Initially
the discontinuity is located at x = 0.5 with the prescribed left and right states as follows
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Fig. 10 Sod’s problem: density and internal energy at t = 0.2
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Fig. 11 Lax’s problem: density and internal energy at t = 0.12

Sod’s problem

(ρL, uL, vL, pL) = (1, 0, 0, 1),

(ρR, uR, vR, pR) = (0.125, 0, 0, 0.1).

Lax’s problem

(ρL, uL, vL, pL) = (0.445, 0.698, 0, 3.528),

(ρR, uR, vR, pR) = (0.5, 0, 0, 0.571).

123 problem

(ρL, uL, vL, pL) = (1,−2, 0, 0.4),

(ρR, uR, vR, pR) = (1, 2, 0, 0.4).

Figures 10, 11 and 12 show the density and internal energy distributions for these test cases,
which confirm the better performance of ILR. For 123 problem, the result of ILR captures
expansion waves more accurately than SSL, and reduces the non-physical peak that appears
in the middle of the domain considerably.
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Fig. 12 123 problem: density and internal energy at t = 0.15

5.3.2 Isentropic Vortex Evolution

This test is to assess the performance of the proposed schemes for evolution of a two-
dimensional inviscid isentropic vortex in a free stream [9]. The exact solution is simply a
passive advectionof the initial vortexwithmeanvelocity.Assuming the free streamconditions
ρ∞ = p∞ = T∞ = 1 and (u∞, v∞) = (1, 1), the initial condition is given by the mean flow
field perturbed by

(δu, δv) = β

2π
e(1−r2)/2(−y, x), δT = − (γ − 1)β2

8γπ2 e1−r2 ,

where the vortex strength β = 5.0 and adiabatic index γ = 1.4. The shifted coordinates
(x, y) = (x − x0, y − y0), where (x0, y0) = (5, 5) is the coordinates of the vortex center
initially and r2 = x2 + y2. The entire flow field is required to be isentropic so, for an ideal
gas, p/ργ = 1, and consequently, the resulting state is given by

ρ = T 1/(γ−1) = (T∞ + δT )1/(γ−1) =
[
1 − (γ − 1)β2

8γπ2 e1−r2
]1/(γ−1)

,

ρu = ρ(u∞ + δu) = ρ

[
1 − β

2π
e(1−r2)/2y

]
,

ρv = ρ(v∞ + δv) = ρ

[
1 + β

2π
e(1−r2)/2x

]
,

p = ργ and E = p

γ − 1
+ 1

2
ρ(u2 + v2).

The computational domain is [0, 10] × [0, 10] where the periodic boundary condition is
applied. The vortex moves in the right-up direction with the free stream, and returns back to
the initial location at every time interval �T = 10.

Figure 13 shows the density contours on an irregular Delaunay mesh with 15,872 cells.
Due to the numerical diffusion of the scalar limiter, the vortex shape is significantly distorted.
However, ILR almost keeps the initial vortex shape. Figure 14 gives the comparison of density
distribution across the vortex center. Again ILR exhibits less dissipation than SSL.
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Fig. 13 Density contours of the isentropic vortex at t = 30 with 15,872 cells. a SSL. b ILR
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Fig. 14 Density distributions across the vortex center line at t = 0, 10, 30 and 50. a SSL. b ILR

Fig. 15 Density contours for double Mach reflection with 23,367 cells. Thirty equally spaced contours from
ρ = 1.5 to ρ = 23.5 are plotted. a 23,367 cells, SSL. b 23,367 cells, ILR
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Fig. 16 Density contours of the double Mach reflection with 93,468 cells. Thirty equally spaced contours
from ρ = 1.5 to ρ = 23.5 are plotted. a 93,468 cells, SSL. b 93,468 cells, ILR

5.3.3 Double Mach Reflection

The double Mach reflection problem comes from [23]. Results at t = 0.2 are plotted in
Figs. 15 and 16 on two levels of Delaunay meshes. All pictures are the density contours with
30 equally spaced contour lines from1.5 to 23.5.We can see that ILRcaptures the complicated
flow structure under the Mach stem much better than SSL does, with a reasonable level of
numerical diffusion.

In conclusion, ILR achieves better numerical resolution than SSL. While for RSL, the
numerical dissipation may be on the similar level as ILR. Nevertheless, ILR satisfies the
local maximum principle, while RSL only leads to a global maximum principle, which is
much less sufficient to rule out spurious oscillations. Since we have not found any example
in the literature where RSL produces numerical oscillations, the advantage of our method is
mainly in the theoretical fold during the current stage.

6 Conclusion

We present an ILR under the framework of MUSCL-type schemes on unstructured grids.
The reconstruction is formulated as an LP problem in every cell and contains no parameters
at all. And the all-inequality simplex method used in this paper appears to be a very efficient
algorithm to solve these LP problems.Moreover, the resulting schemes satisfy a local discrete
maximum principle. Extension to higher-order reconstruction is possible, by increasing the
number of variables and constraints in the LP problems. Additional constraints may be
required to guarantee the local maximum principle. Fortunately, our framework is general
enough to implement this with little extra cost.

Acknowledgments The authors appreciate the financial supports provided by the National Natural Science
Foundation of China (Grant Numbers 91330205 and 11325102).

Appendix: All-Inequality Simplex Method

Consider a general LP problem in the all-equality form (20). The Lagrangian of (20) is

L(x,λ) = c�x + λ�(b − Ax) = b�λ + x�(c− A�λ),

and the dual problem of (20) is

min b�λ s.t. A�λ = c and λ ≥ 0. (39)
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By the weak duality theorem, one knows that if x is feasible for (20) and λ is feasible for
(39), then

c�x ≤ b�λ.

Moreover, x is optimal for (20) provided that the equality above holds. Now we start from
a vertex, and go from vertex to vertex until this equality holds. The iteration takes the form

x := x + α p,

where the step length α and the searching direction p need to be determined at each step.
Denote by a�

i the i-th row of A. The active matrix M consists of d rows of the matrix
A, indicating that corresponding constraints at the current searching point x are active. The
active matrix M needs to be non-singular.

Suppose that at a given step the active Lagrange multipliers λ̃ satisfy

M�λ̃ = c and λ̃ ≥ 0,

then c�x = b�λ with all the inactive Lagrange multipliers vanishing, and we end up with
an optimal point x. Otherwise, we remove the constraint j such that the component λ j < 0
and determine the searching direction p through

Mp = −e j ,

where e j is the j-th coordinate vector.
Assuming that the point in the next step x + αi p satisfies the constraint i , then we have

a�
i (x + αi p) = bi ,

which yields the step length with regard to i to be

αi = bi − a�
i x

a�
i p

.

Since bi − a�
i x ≥ 0, it suffices to consider those constraints satisfying a�

i p > 0. The
actual step length α is then taken as the minimum of all the estimated step lengths

α = min
i∈D {αi }.

Finallywe choose an index k satisfyingαk = α andupdate the activematrix by replacing j-
th rowofM with k-th rowof A. So farwe finish one loop. Thewhole algorithm is illustrated in
Algorithm1.Note thatwe use the negation of both the searching direction p and step lengthα.
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Algorithm 1 All-inequality simplex method

1: Initialize the point x ∈ R
d and active matrix M ∈ R

d×d .
2: Calculate the Lagrange multiplier λ ∈ R

d by solving M�λ = c.
3: if λ ≥ 0, then
4: STOP. The point x is optimal.
5: else
6: Set j := argmin

j
λ j .

7: end if
8: Calculate the searching direction p from Mp = e j .
9: Find all indices of decreasing constraints along p as

D := {i : a�
i p < 0}.

10: For all i ∈ D, calculate the step length αi one can take before violating constraint i

αi := bi − a�
i x

a�
i p

, ∀i ∈ D.

11: Find the step length as large as possible without violating any constraints

k := argmax
i∈D αi .

12: Update the point

x := x + αk p.

13: Replace j-th row of M with k-th row of A.
14: Go to Step 2.
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