
J Sci Comput (2016) 68:1082–1100
DOI 10.1007/s10915-016-0169-x

Point Source Super-resolution Via Non-convex
L1 Based Methods

Yifei Lou1 · Penghang Yin2 · Jack Xin2

Received: 13 October 2015 / Revised: 13 January 2016 / Accepted: 18 January 2016 /
Published online: 28 January 2016
© Springer Science+Business Media New York 2016

Abstract We study the super-resolution (SR) problem of recovering point sources consisting
of a collection of isolated and suitably separated spikes from only the low frequency mea-
surements. If the peak separation is above a factor in (1, 2) of the Rayleigh length (physical
resolution limit), L1 minimization is guaranteed to recover such sparse signals. However,
below such critical length scale, especially the Rayleigh length, the L1 certificate no longer
exists. We show several local properties (local minimum, directional stationarity, and spar-
sity) of the limit points of minimizing two L1 based nonconvex penalties, the difference of
L1 and L2 norms (L1−2) and capped L1 (CL1), subject to the measurement constraints. In
one and two dimensional numerical SR examples, the local optimal solutions from difference
of convex function algorithms outperform the global L1 solutions near or below Rayleigh
length scales either in the accuracy of ground truth recovery or in finding a sparse solution
satisfying the constraints more accurately.

Keywords Super-resolution · Rayleigh length · L1−2 · Capped L1 · Difference of convex
algorithm (DCA)

1 Introduction

Super-resolution (SR), as its name states, aims at enhancing the resolution of a sensing
system, in which the resolution is limited by hardware such as lens and sensors. It is closely
related to interpolation [23] in the sense of filling in information on an unknown fine grid
based on what is available on the coarse grid. As particularly useful in imaging applications,
such as high-definition television and retina display used in Apple products, SR is often cast
as an image reconstruction problem, for which some methods are directly transplanted onto
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SR, e.g., total variation [24], non-local means [31], and sparse dictionary representation [39].
For other SR methods, please refer to two survey papers [3,26] and references therein.

The super-resolution problem addressed in this paper is different to image zooming or
magnification, but aiming to recover a real-valued signal from its low-frequency measure-
ments. A mathematical model is expressed as

bk = 1√
N

N−1∑

t=0

xt e
−i2πkt/N , |k| ≤ fc, (1)

where x ∈ R
N is a vector of interest, and b ∈ C

n is the given low frequency information with
n = 2 fc + 1 (n < N ). This is related to super-resolution in the sense that the underlying
signal x is defined on a fine grid with spacing 1/N , while we only observe the lowest
n Fourier coefficients, which implies that we can only expect to recover the signal on a
coarser grid with spacing 1/n. For simplicity, we use matrix notations to rewrite Eq. (1) as
b = SnFx , where Sn is a sampling matrix by collecting the lowest n frequency coefficients,
F is the Fourier transform, and we denote Fn = SnF . The frequency cutoff induces a
resolution limit inversely proportional to fc; below we set λc = 1/ fc, which is referred to
as Rayleigh length (a classical resolution limit of hardware [19]). Hence, a super-resolution
factor (SRF) can be interpreted as the ratio between the spacing in the coarse and fine grids,
i.e., SRF = N/n ≈ 0.5λcN .

We are interested in superresolving point sources. It is particularly useful in astronomy
[32], where blurred images with point sources need to be cleaned or super-resolved. Suppose
x is composed of points sources, i.e., x = ∑

t j∈T c jδt j , where δτ is a Dirac measure at τ ,
spikes of x are located at t j belonging to a set T , and c j are coefficients. Denote K = |T | be
the cardinality of the set T , and sparsity assumption implies that K � N . Recently, sparse
recovery problem becomes popular due to rapid advances in compressive sensing (CS) [13].
The provable performance of CS methods relies on either restricted-isometry property (RIP)
[4] or incoherent measurements [35,36]. Unfortunately for SR, the sensing matrix Fn is
highly coherent [17]. Consequently, sparse SR deserves special attention, which may lead to
a better understanding of CS. For example, Demanet and Nguyen [11] discussed minimax
recovery theory and error bounds by analyzing restricted isometry constant (a CS concept).

In addition to sparsity, we also assume that the point sources are separated by a critical
distance, which is referred to asminimum separation (MS) [6] (cf. Definition 1). Theoretical
results based on the analysis of L1 certificate or interpolating trigonometric polynomials
of sparse sign patterns [6] demonstrate that point sources can be exactly recovered in the
noise-free case as long as any two spikes are MS distance apart (cf. Theorem 1).

Definition 1 (Minimum Separation) LetT be the circle obtained by identifying the endpoints
on [0, 1] and T

d the d−dimensional torus. For a family of points T ∈ T
d , the minimum

separation is defined as the closest warp-around distance between any two elements from T ,

MS := �(T ) := inf
(t,t ′)∈T :t 	=t ′

|t − t ′|, (2)

where |t − t ′| is the L∞ distance (maximum deviation in any coordinate).

Theorem 1 [6, Corollary 1.4] Let T = {t j } be the support of x. If the minimum distance
obeys

�(T ) ≥ 2λcN , (3)

then x is the unique solution to L1 minimization:

min |x |1 s.t. Fnx = y. (4)
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If x is real-valued, then the minimum gap can be lowered to 1.87λcN .

We want to analyze the constant in front of λcN in Eq. (3), referred to as minimum sepa-
ration factor (MSF). Theorem 1 indicates that MSF≥ 2 guarantees the exact recovery of L1

minimizationwith a recent improvement to 1.26 [18] at the cost of an additional constraint that
fc ≥ 1000. This line of research was originated fromDonoho [12], who showed that MSF >

1 is sufficient if the spikes are on the grid. Note that both aforementioned works [6,18] are
formulated in terms of off-grid spikes. Another article about off-grid spikes was [1] by Aubel
et al., who also arrived at MSF > 1 if windowed Fourier (or short-time Fourier transform)
measurements are available. Furthermore, there are two works that do not require MS. De
Castro and Gamboa [10] showed that K spikes can be resolved from 2K +1 Fourier samples;
and with additional positive assumption of point sources, Donoho et al. [14] showed that 2K
noiselessmeasurements are sufficient to yield exact recovery of K positive spikes. In addition
to these exact recovery results, errors in spike detection and noise robustness are of great inter-
est as well. Fernandez-Granda analyzed error bounds of constrained L1 minimization in [18],
while the unconstrained version was addressed in [34] under a Gaussian noise model as well
as in [2] for any sampling scheme. The robustness of spike detection was discussed in [15].

1.1 Our Contributions

We investigate recovery performance of two nonconvex L1 based penalties, the difference of
L1 and L2 norms (L1−2) and capped L1 (CL1). The former is recently proposed in [22,40]
as an alternative to L1 for CS, and the latter is often used in statistics and machine learning
[33,41]. Numerical simulations show that L1 minimization often fails when MSF < 1, in
which case we demonstrate that both L1−2 and CL1 outperform the classical L1 method.

During the course of simulation study, we observe that the rank property is mostly satisfied
for L1−2, i.e. the L0 norm of the reconstructed solution does not exceed n (the rank of
A). We find that exact sparse recovery is almost unlikely when MSF is very small, but the
reconstructed solution is still sparsewith sparsity atmost n. In addition, we have the following
relationship: MS · K ≤ N , MSF = MS · fc/N , and rank(A) = n = 2 · f c+ 1. Putting them
together, we get K < 0.5n/MSF. This inequality implies that we may reconstruct a vector
sparser than the ground-truth (c.f. Fig. 4).

The rest of the paper is organized as follows. Section 2 reviews numerical methods for L1

minimization [6] and L p (0 < p < 1) minimization [20]. Section 3 describes the proposed
algorithms for two non-convex functionals, L1−2 and CL1, in a unified way. We analyze the
theoretical aspects of the two methods in Sect. 4 including rank property, local minimizers,
and stationary points. Experiments on both one-dimensional signals and two-dimensional
images are examined in Sect. 5, followed by conclusions in Sect. 6.

2 Review on L1 and L p Minimization

Tomake the paper self-contained, we briefly review two numerical algorithms: L1 minimiza-
tion via semi-definite program (SDP) in [6] and L p minimization via iteratively reweighted
least square (IRLS) in [20], both of which will be examined in Sect. 5 as a benchmark to the
proposed L1−2 and CL1 methods.

2.1 L1 via SDP

To recover the optimal solution of (4), Candés and Fernandez-Granda [6] considered a dual
problem, i.e.,
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maxc Re〈y, c〉 s.t. ‖F∗
n c‖∞ ≤ 1; (5)

the constraint says that the trigonometric polynomial F∗
n c(t) = ∑

|k|≤ fc cke
i2πkt has a mod-

ulus uniformly bounded by 1 over the interval [0, 1]. As indicated in [6, Corollary 4.1], this
constraint is equivalent to the existence of a Hermitian matrix Q ∈ C

n×n such that

[
Q u
u∗ 1

]
� 0,

n− j∑

i=1

Qi,i+ j =
{
1 j = 0
0 j = 1, 2, · · · , n − 1.

(6)

Therefore, the dual problem is equivalent to

{ĉ, Q̂} = argmax
c,Q

Re〈y, c〉 s.t. (6), (7)

which can be solved via SDP on the decision variations c ∈ Cn, Q ∈ Cn×n , in total (n+1)2/2
variables. Once the optimal dual variations ĉ, Q̂ are obtained, a root-finding technique is used
to retrieve a solution to the primal problem (4). In particular, the trigonometric polynomial,

p2n−2(e
i2π t ) = 1 − |F∗

c (t)|2 = 1 −
2 fc∑

k=−2 fc

uke
i2πkt , uk =

∑

j

ĉ j ¯̂c j−k, (8)

is a real-valued andnonnegative trigonometric polynomials by construction; and p2n−2(ei2π t )
is either equal to zero everywhere or has at most n − 1 roots on the unit circle. Therefore,
one simply locates the roots of p2n−2 on the unit circle in order to recover the support of
the optimal solution to the L1 minimization (4); and then amplitudes can be estimated via
least-squares. The noise robustness of this algorithm was analyzed in a follow-up work [5].

2.2 L p via IRLS

The L p quasi-norm is often used in CS as an alternative to L1 to approximate the L0 norm,
see [7–9,20,38]. As it is nonconvex for p < 1, L p minimization is generally NP hard. In
[20], the authors considered a smoothed L p minimization, which is expressed as

min λ

N∑

j=1

(|x j |2 + ε2)p/2 + 1

2
‖Ax − b‖22, (9)

for ε > 0. Taking the gradient of (9) gives the first-order optimality condition,

λ

[
px j

(|x j |2 + ε2)1−p/2

]

1≤ j≤N

+ AT (Ax − b) = 0. (10)

Then an iterative scheme is formulated as
⎧
⎪⎨

⎪⎩
xk+1 = argmin λ

N∑
j=1

wk
j |x j |2 + 1

2‖Ax − b‖22
wk+1

j = p(|xk+1
j |2 + ε2)p/2−1.

(11)

Each subproblem in (11) can be solved by a weighted least-square type of equation,

(λWk + AT A)xk+1 = AT b, (12)

whereWk is a diagonal matrix with diagonal elements of {wk
j , j = 1, . . . , N }. The parameter

ε should be discreetly chosen so as to avoid local minima. The update for ε in [20] is given as
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εk+1 = min{εk, c · r(xk+1)K+1}, where c ∈ (0, 1) is a constant, r(z) is the rearrangement of
absolute value of z ∈ R

N , and K is the estimated sparsity of the vector x to be constructed.
This method gives better results than the classical L1 approaches in the RIP regime and/or
incoherent scenario, but it does not work so well for highly coherent CS, as observed in
[21,22,40].

3 Nonconvex L1 Based Minimization via DCA

In this section, we describe a unified approach for solving two nonconvex L1 based mini-
mization problems via a difference of convex algorithm (DCA) [28,29]. The unconstrained
minimization problem is formulated as follows,

min F(x) := λR(x) + 1

2
‖Ax − b‖22, (13)

where R(x) is a regularization term, λ is a balancing parameter, and A = Fn . We consider
two regularization terms:

RL1−2(x) = ‖x‖1 − ‖x‖2 (L1−2) (14)

RCL1(x) =
∑

j

min{|x j |, α}, (CL1) (15)

whereα in RCL1 is a pre-definedparameter.Avariant ofCL1 is of the form
∑

j min{|x j |/α, 1},
referred to as a normalized capped L1 [27]. However, the normalized CL1 is computationally
stiff in the super-resolution setting, while L1−2 is not, and parameter free.

The method of DCA decomposes F(x) = G(x) − H(x) where both G(x) and H(x) are
convex. By linearizing H , we obtain an iterative scheme that starts with x1 	= 0,

{
yk ∈ ∂H(xk)
xk+1 = argminx∈RN G(x) − (

H(xk) + 〈yk, x − xk〉), (16)

where yk is a subgradient of H(x) at xk . The DC decomposition is
{
GL1−2(x) = 1

2‖A x − b‖22 + λ‖x‖1
HL1−2(x) = λ‖x‖2,

{
GCL1(x) = 1

2‖A x − b‖22 + λ‖x‖1
HCL1(x) = λ

∑
j max(|x j | − α, 0),

(17)

for L1−2 and CL1 respectively. Each subproblem in (16) amounts to an L1 regularized form

xk+1 = arg min
x∈RN

1

2
‖Ax − b‖22 + λ‖x‖1 − 〈yk, x〉, (18)

where ykL1−2
= λ xk

‖xk‖2 for L1−2, and ykCL1
= λsign(xk). ∗ max(|xk | − α, 0)1 for CL1. To

solve (18), we consider the augmented Lagrangian

Lδ(x, z, u) = 1

2
xT (AT A)x + λ‖z‖1 − 〈yk, x〉 + 〈u, x − z〉 + δ

2
‖x − z‖22,

where z is an auxiliary variable; to enforce the constraint x = z, the Lagrangemultiplier δ > 0
and dual variable u are introduced. ADMM iterates between minimizing Lδ with respect to

1 Denote .∗ be entry-wise multiplication, and | · | be entry-wise absolute value (Note ‖ · ‖1 is the standard L1
norm).
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x and z, and updating the dual variable u. Therefore, an iterative scheme for solving the
subproblem (18) goes as follows,

⎧
⎨

⎩

xl+1 = (AT A + λId)−1(δ(zl + ul) − yk)
zl+1 = shrink(x − u, λ/δ)

ul+1 = ul + zl+1 − xl+1,

, (19)

where the subscript l indexes the inner iterations. Note that the matrix inversion (AT A +
λId)−1 can be efficiently implemented by Fast Fourier Transforms, as A is the multiplication
of a sampling matrix and Fourier matrix. The subproblem (18) is convex, and hence it is
guaranteed to have an optimal solution x∗ via (19), and we take it to be the solution of (18),
i.e., xk+1 = x∗.

For the constrained formulation,

min R(x) s.t. Ax = b, (20)

we apply a similar trick to the unconstrained version by considering the following iterative
scheme,

xk+1 = argmin
x

{
‖x‖1 − 〈yk, x〉 s.t. Ax = b

}
. (21)

To solve (21), we introduce two dual variables u, v and define an augmented Lagrangian

Lδ(x, z, u, v) = ‖z‖1 − 〈yk, x〉 + 〈u, x − z〉 + 〈v, Ax − b〉 + δ

2
‖x − z‖2 + δ

2
‖Ax − y‖2,

where ADMM finds a saddle point (x∗, z∗, u∗, v∗) satisfying

Lδ(x∗, z∗, u, v) � Lδ(x∗, z∗, u∗, v∗) � Lδ(x, z, u∗, v∗) ∀x, z, u, v.

As a result, we take xk+1 = x∗.

4 Theoretical Properties

In this section, we investigate a rank property, namely the L0 norm of the reconstructed
solution does not exceed n (the rank of A). First of all, we examine the probability of finding
the exact solution with 100 random trials for L1−2, CL1 with α = 0.1, and L p with p = 1/2.
The left of Fig. 1 illustrates that it is unlikely to find the exact solution when MSF is small
(< 0.8), which implies that multiple sparse vectors satisfying Ax = b do exist. On the
other hand, we plot the probability of rank property being satisfied on the right of Fig. 1,
by counting how many times the L0 norm of the reconstructed solution is smaller than or
equal to n. The results suggest that the rank property is true for both L1−2 and CL1 when
MSF> 1 or when L1 certificate holds. More importantly in the worse case (MSF< 0.8),
L1−2 provides a sparse solution (sparsity ≤ n) while satisfying the constraint, which is the
best one can do. It seems unlikely for L p to have the rank property.

One deterministic result regarding the rank property is given in [40, Theorem 3.1] that
there exists λn such that for any λ > λn := ‖A‖2‖b‖√

n+1−1
, the stationary point of the unconstrained

L1−2 minimization problem has at most n non-zero elements. In practice, we choose a much
smaller λ than λn , which usually yields a smaller residual and better recovery. As for CL1,
we can not derive such result, as ykCL1

is not bounded a priori and hence no upper bound of
sparsity in terms of λ for CL1. For the rest of this section, we give some theoretical analysis
on the rank property that is independent of λ.
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Fig. 1 Probability (%) of finding the exact solution (left) and of rank property being satisfied (right) for both
L1−2 and CL1 with α = 0.1. It shows over 95% chance that the reconstructed solutions using L1−2 are
n−sparse, though it does not find the exact ground-truth solution when MSF is small (< 0.8)

4.1 Local Minimizers

It is shown in [40, Theorem 2.3–2.4] that any local minimizer of L1−2 has the rank property,
as summarized in Theorem 2. With additional assumption, we prove the rank property for
CL1 in Theorem 3. The error bounds at high probability of a local minimizer of CL1 from the
true solution are established in [37,41] under sparse eigenvalue assumptions of the Hessian
of the loss functions (similar to RIP), which is unfortunately hard to verify.

Theorem 2 Suppose A ∈ R
n×N is of full row rank. If x∗ is a local minimizer of L1−2 in

either a unconstrained (13) or constrained (20) formulation, then the sparsity of x∗ is at most
n.

Theorem 3 Suppose A ∈ R
n×N is of full row rank. If x∗ is a local minimizer of CL1 in

either a unconstrained (13) or constrained (20) formulation and the objective function is not
flat in the neighborhood of x∗, then the sparsity of x∗ is at most n.

Proof We only provide proof for the constrained case, and the unconstrained version is
almost the same. It is sufficient to show the columns of AΛ∗ are linearly independent. Prove
by contradiction. Suppose there exists v ∈ ker(A) \ 0 such that supp(d) ⊆ Λ∗. Denote
Λ∗

α+ = { j : |x∗
j | > α}, Λ∗

α− = { j : |x∗
j | < α}, and Λ∗

α = { j : |x∗
j | = α}. For any fixed

neighborhood of x∗, we scale d so that

{ |x∗
j ± d j | > α j ∈ Λ∗

α+
|x∗

j ± d j | < α j ∈ Λ∗
α−

(22)

Consider two feasible vectors in Br (x∗), x̂ = x∗ + d and x̆ = x∗ − d . Since supp(d) ⊆ Λ∗
and d ∈ ker(A), we have supp(x̂) ⊆ Λ∗, supp(x̆) ⊆ Λ∗, and Ax̂ = Ax̆ = Ax∗. By analyzing
RCL1(x

∗) and RCL1(x
∗ ± d), we get

RCL1(x
∗ + d) + RCL1(x

∗ − d) − 2RCL1(x
∗)

=
∑

j∈Λ∗
α−

(
|x∗

j + d j | + |x∗
j − d j | − 2|x∗

j |
)

+
∑

j∈Λ∗
0

(
min(|α + d j |, |α − d j |) − α

)
.

123



J Sci Comput (2016) 68:1082–1100 1089

Fig. 2 Probability (%) of the
computed solution of CL1 with
no elements equal to ±α. The
results are averaged over 100
random signals and 25 random
choices of α drawn from uniform
distribution [0, 1] at each MSF
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The first term is zero for v sufficiently small, while the second term is negative if Λ∗
0 	= ∅,

so we have

RCL1(x) ≥ min{RCL1(x̂), RCL1(x̆)}.
As long as RCL1(x

∗) is not flat (or constant) in Br (x∗), the above inequality is strict, which
contradicts with the assumption that x∗ is a local minimizer in Br (x∗). ��
Remark It is possible that objective function for CL1 is not constant. For example, if the
set { j : −α < x j < 0} has different cardinality to the set { j : 0 < x j < α}, then
RCL1(x̂) 	= RCL1(x̆). Or if Λ∗

0 	= ∅, then ∑
j∈Λ∗

0

(
min(|α + d j |, |α − d j |) − α

)
< 0. In

addition, the rank property of CL1 depends on α. If α is small, then the set Λ∗
α− may be

empty, and hence rank property does not hold. Another interpretation is that if α is too small,
the problem is a small perturbation of the least squares problem where sparsity is absent. If α
is too large, the CL1 is no longer a good approximation of the L0 norm. Empirically, we find
that an adaptive update of α during iterations works better than a fixed value, one advantage
of which is no need to tune this parameter. The analysis of adaptive α is beyond the scope of
this paper.

Applying convergence properties of general DCA studied in [29,30] for CL1, we know the
limit point, x∗, is a local minimizer if no component of x∗ is equal to ±α. We numerically
calculate the probability of the computed solution not taking values ±α, which implies
local minimizers. For this purpose, we test 100 random sparse (ground-truth) vectors from
Gaussian distribution and 25 random choices of α from [0, 1] by uniform distribution, and
compute how many times that the computed solution does not take values ±α. Finally we
plot the probability of the limit points being local minimizers in Fig. 2, which is almost for
sure (∼99.6%) at each MSF. The probabilities of having exact recovery and rank property
are also provided, which validates that local minimizers do not imply the rank property, as
indicated by Theorem 3. Compared with Fig. 1, rank property is more likely to occur for
CL1 when α is chosen randomly instead of a fixed value. This phenomenon again suggests
that an adaptive α may be better.
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4.2 Second-Order Optimality Condition

By analyzing the second-order optimality condition, we show that either the stationary point
x∗ has at most n non-zero elements or there exists a vector in any neighborhood of x∗ that
has a smaller objective function. We will need the following technical lemma.

Lemma 1 If λ < min{ ‖AT b‖2√
N+‖A‖2 ,

‖AT b‖2√
N+1

}, then any first-order stationary point x∗ ∈ R
N of

L1−2 unconstrained problem (13) satisfies ‖x∗‖2 > λ.

Proof First, we show that x∗ can not be zero. Suppose x∗ = 0, then by the optimality
condition,

λ(p∗ − q∗) − AT b = 0, (23)

where p∗ ∈ ∂‖x∗‖1 is the subgradient of ‖x‖1 at x∗, and q∗ ∈ ∂‖x∗‖2. It is easy to see that
when x∗ = 0, ‖p∗‖∞ ≤ 1 and ‖q∗‖2 ≤ 1. By (23), we have

‖AT b‖2 = λ‖p∗ − q∗‖2 ≤ λ(
√
N + 1),

or λ ≥ ‖AT b‖2√
N+1

, which is a contradiction.

Therefore x∗ 	= 0, and

λ

(
p∗ − x∗

‖x∗‖2
)

+ AT (Ax∗ − b) = 0. (24)

It follows from (24) that

‖A‖2‖x∗‖2 =‖AT A‖‖x∗‖2 ≥ ‖AT Ax∗‖2 = ‖ − λ

(
p∗ − x∗

‖x∗‖2
)

+ AT b‖2

≥‖AT b‖2 − λ‖p∗ − x∗

‖x∗‖2 ‖2. (25)

Let Λ∗ be the support of x∗, then p∗
i = sign(x) for i ∈ Λ∗, and |p∗

i | ≤ 1 otherwise. So we

have |p∗ − x∗
‖x∗‖2 |i < 1 for i ∈ Λ∗, and |p∗ − x∗

‖x∗‖2 |i ≤ 1 otherwise. Using the assumption

λ ≤ ‖AT b‖2√
N+‖A‖2 , from (25) it follows that

‖A‖2‖x∗‖2 > ‖AT b‖2 − λ
√
N ≥ λ‖A‖2,

and thus ‖x∗‖2 > λ. ��
Theorem 4 Suppose λ < min{ ‖AT b‖2√

N+‖A‖2 ,
‖AT b‖2√

N+1
}. Let x∗ be any limit point of the DCA

L1−2 minimizing sequence. Then we have either ‖x∗‖0 ≤ n (rank property) or there exists
d ∈ R

N such that F(x∗ + d) < F(x∗) and x∗ + d is sparser than x∗.

Proof Taking the difference of objective function values at x∗ + d and x∗, we get
1

λ

(
F(x∗ + d) − F(x∗)

)

=
⎛

⎝
∑

j∈Λ∗
〈sign(x∗

j ), d j 〉 +
∑

j∈Λ∗
c

|d j | + 〈 1
λ
AT (Ax − b) − x∗

‖x∗‖2 , d〉
⎞

⎠

+ 1

2
dT

(
1

λ
AT A − 1

‖x∗‖2 + x∗x∗T

‖x∗‖32

)
d + O(‖d‖32). (26)
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Note that x∗ is a column vector in (26), and hence x∗x∗T is a (rank-one) matrix. Since
x∗ is the limit point of DCA sequence, it satisfies the first-order optimality condition (24).
Therefore, the first term in (26) is equal to

∑
j∈Λ∗

c
|d j | − 〈p∗

j , d j 〉, and is nonnegative, since
p∗
j ∈ [−1, 1] for j ∈ Λ∗

c .
As for the Hessian matrix in (26), denoted as H , we have

H := 1

λ
AT A − 1

‖x∗‖2 + x∗x∗T

‖x∗‖32
= 1

‖x∗‖2F
T

(‖x∗‖2
λ

STn Sn − Id + yyT
)
F,

where y = Fx∗/‖x∗‖2 and A = SnF (Sn is a sampling matrix and F is the Fourier matrix).
As STn Sn are a diagonal matrix taking values of either 1 or 0, the matrix D := ‖x∗‖2

λ
STn Sn− Id

is also diagonal, the elements of which are β := ‖x∗‖2
λ

− 1 with multiplicity n, and −1 with
multiplicity N − n. By Lemma 1, we have β > 0.

We want to analyze the eigenvalues of H , which is equivalent to analyzing a diagonal
matrix D with rank-one perturbation yyT . Suppose u is an eigenvector of D + yyT with
corresponding eigenvalue γ , then we have

(uT y) ·
[

yn
yN−n

]
+

[
(β − γ )In 0

0 (−1 − γ )IN−n

] [
un

uN−n

]
= 0, (27)

where y = [yn, yN−n]T and u = [un, uN−n]T . So the eigenvalues of D + yyT are β with
multiplicity n−1,−1withmultiplicity N−n−1, and other two, denoted as γ1, γ2, satisfying
‖yn‖2
γ−β

+ ‖yN−n‖2
γ+1 = 1, or γ 2 −βγ − (β +1)‖yn‖2 = 0,where we use ‖yn‖22 +‖yN−n‖22 = 1.

It follows from the quadratic formula that these eigenvalues satisfy −1 < γ1 < 0 < β < γ2
and γ1 + γ2 = β.

Now we discuss eigenvectors and diagonalization. Each eigenvector for β has the form of
[un, 0]with uTn yn = 0.DenoteUn be amatrixwith each column being one of the eigenvectors
corresponding to β. We further assume Un is orthonormal after Gram-Schmidt orthogonal-
ization. Similarly, each eigenvectors for -1 has the form of [0, uN−n] with uTN−n yN−n = 0,
and we denoteUN−n be an orthonormal matrix composed of all the corresponding eigenvec-
tors. Therefore, an orthonormal matrix, denoted as U , that diagonalizes H can be expressed
as

U =

⎡

⎢⎢⎢⎣

Un 0
yn

(γ1 − β)α1

yn
(γ2 − β)α2

0 UN−n
yN−n

(γ1 + 1)α1

yN−n

(γ2 + 1)α2

⎤

⎥⎥⎥⎦ , (28)

where α1, α2 are normalizing factors.
For any d ∈ R

N , we can decompose d = dk + dr , where dk ∈ ker(A) and dr ∈
range(AT ), and henceFdk,Fdr have the forms of [0, gN−n]T , [gn, 0]T respectively. Denote
s1 := 〈yn, gn〉, s2 := 〈yN−n, gN−n〉. We can prove that s1, s2 are real numbers and s1+s2 =
〈d, x∗〉. Then after tedious calculation, (26) reduces to

F(x∗ + d) − F(x∗) = λ
∑

j∈Λ∗
c

(
|d j | − 〈p∗

j , d j 〉
)

+β‖UT
n gn‖2 − ‖UT

N−ngN−n‖2 + P1s
2
1 + P2s1s2 + N0s

2
2 (29)

where P1, P2 > 0 and N0 < 0 are constant with respect to d .
If ‖x∗‖0 > n, then the columns of AΛ∗ are linearly dependent, and hence there exists

d ∈ ker(A) \ {0} such that d ∈ SΛ∗ , where SΛ∗ = {x : supp(x) ∈ Λ∗}. As d ∈ ker(A),
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Fd = [0, gN−n], i.e., gn = 0 and s1 = 0. Since gN−n 	= 0, we have F(x∗ +d)−F(x∗) < 0,
i.e., x∗ + d has a smaller objective function than x∗. In addition, we can scale d to cancel
one non-zero element of x∗, and hence x∗ + d is sparser than x∗. ��
4.3 Stationary Points

It is shown in [21,40] that any limit point of the DCA sequence converges to a stationary
point; and in Theorem 5, we give a tighter result, which states that the limit point is d-
stationary rather than stationary. These stationarity concepts are related as the set of local
minimizers belongs to the set of d-stationary points, which belongs to the set of stationary
points. As we often observe that limit points of DCA are sparse (see Fig. 1), it is likely that
any d-stationary point may have the rank property, which will be left to a future work.We first
give the definition of d-stationary points [16], and then prove the DCA sequence converges
to a d-stationary point in Theorem 5.

Definition 2 (D-stationary) We say that a vector x̂ ∈ X is a d(irectional) stationary point of
the minimization of a function F(x), or in short, d-stationary, if

F ′(x̂; x − x̂) ≥ 0, ∀x ∈ X,

where the directional derivative is defined as one-sided derivative

F ′(x; d) := lim
τ↘0

F(x + τd) − F(x)

τ
. (30)

For example, directional derivatives of L1 and L2 norms at x∗ are

‖ · ‖′
1(x

∗; d) =
∑

j∈Λ∗
〈sign(∗x j ), d j 〉 +

∑

j /∈Λ∗
|d j |, (31)

and

‖ · ‖′
2(x

∗; d) =
{ 〈

x∗
‖x∗‖2 , d

〉
if x∗ 	= 0

‖d‖2 if x∗ = 0.
(32)

As a result, the directional derivative of F(x) for L1−2 can be expressed as

F ′(x∗; d) = λ
∑

j∈Λ∗
〈sign(x∗

j ), d j 〉+λ
∑

j∈Λ∗
c

|d j |−λ

〈
x∗

‖x∗‖2 , d

〉
+〈AT (Ax∗ − b), d〉, (33)

for x∗ 	= 0.

Theorem 5 Let {xk} be the sequence of iterates generated by DCA (16), or DCA sequence
in short, for L1−2, then any limit point x∗ of {xn} is a d-stationary point of F(x), defined in
(13) and R(x) = RL1−2(x).

Proof In [40], the DCA sequence {xk} was shown to converge to a stationary point x∗. We
now prove that all the iterates (except for the first one) and the limit point x∗ are non-zero.
We assume that the initial point is x0 = 0. Then it follows from (16) that

F(x1) = λ(||x1||1 − ||x1||2) + 1

2
||Ax1 − b||2 (34)

≤ λ||x1||1 + 1

2
‖Ax1 − b‖2 ≤ 1

2
‖b‖2 = F(0). (35)
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Strict inequality holds if zero is not global minimum of L1 problem (which is generically
true). Therefore, nonzero property is maintained during descending iterations of DCA, i.e.,
xk 	= 0, ∀k. In addition, x∗ 	= 0 as F(x∗) < F(0).

As x∗ satisfies the first-order optimality condition (24), we can simplify the directional
derivative of F ′(x; d), given in (33),

F ′(x; d) = λ
∑

j∈Λ∗
〈sign(x∗

j ), d j 〉 + λ
∑

j∈Λ∗
c

|d j | − 〈p∗, d〉 (36)

= λ
∑

j∈Λ∗
c

(
|d j | − 〈p∗

j , d j 〉
)
, (37)

where p∗ ∈ ∂‖x∗‖1. As p∗
j ∈ [−1, 1] for j ∈ Λ∗

c , then |d j | − 〈p∗
j , d j 〉 ≥ 0, and hence

F ′(x∗; d) ≥ 0 ∀d , which means x∗ 	= 0 is a d-stationary point. ��

5 Experimental Results

We numerically demonstrate that the proposed L1−2 and CL1 via DCA can recover signals
beyond the Rayleigh length. Two existing methods, L1 via SDP [6] and L1/2 via IRLS [20],
serve as benchmarks. For 2D image super-resolution, it is computationally expensive to solve
the L1 minimization via SDP, so we adopt the ADMM approach instead.

5.1 One-Dimensional Signal Super-Resolution

We consider a sparse signal (the ground-truth) xg of 1000-dimensional with MS = 20. We
vary fc from 31 to 60, thusMSF := Δ(T )· fc/N := MS· fc/N = 0.62 : 0.02 : 1.2. Denoted
x∗ as the reconstructed signal using any of the methods: SDP, constrained and unconstrained
L1−2. In Fig. 3, we plot the residual (‖Au∗ − b‖/‖b‖) and relative reconstruction errors
(‖x∗ − xg‖/‖xg‖) on log 10 scale. As MSF decreases towards and passes 1, L1−2 with
DCA maintains fidelity (constraints) much better, even for the unconstrained L1−2. More
importantly, we observe smaller relative errors of L1−2 than SDP for MSF< 1 when unique
sparse solution is not guaranteed. The L1−2 approaches pick one among a solution pool,
while errors in SDP’s root findings tend to violate the fidelity Ax = b. For MSF> 1 where
the L1 certificate holds, L1−2 seems not as good as SDP in terms of reconstruction errors,
which is due to stopping conditions; on the other hand, relative errors on the order of 1e − 5
are accurate enough.

In Figs. 4 and 5, we examine one particular ground-truth vector and choose fc to have
MSF = 0.4 and 0.8 respectively, when all the methods fail to recover the ground-truth.
Figure 4 shows that the reconstructed solutions are sparser than the ground-truthwhenMSF =
0.4, which is consistent with our intuition as discussed in Sect. 4. We see in Fig. 5 that the
solution of CL1 is not sparse when α = 0.1 (the result becomes sparse if we increase α to
0.25). For results in Fig. 5 (MSF = 0.8), we observe “peak splitting”, i.e., all the methods
miss one single peak in the ground-truth, and instead recover two nearby peaks, marked in
blue squares. In addition, a peak shift, circled in green, is probably attributed to both peak
splitting and peak merging, as there is a tiny peak on the left of the green in the ground-truth
vector. Since there is no certificate guarantee in this regime, there are acceptable solutions if
the tolerance on residual is satisfied. The large residual of SDP is clearly due to shifted peak
locations, and there are very few small peaks in SDP. In contrast, there are some small peaks
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Fig. 3 Error analysis of residuals (left) and relative reconstruction errors (right) on log 10 scale. The underlying
signal in this case is with N = 1000 and MS = 20

Fig. 4 Reconstruction comparison for MSF = 0.4, from top to bottom: ground-truth, L1 via SDP (residual
∼10−1.6), L1−2 (residual∼10−7.7), andCL1 (residual∼10−5.0). All the reconstructionmethods yield overly
sparser vectors compared to the ground-truth

appearing in L1−2, which may be the cost to satisfy the constraint. No matter how peaks split
or merge, the reconstructed solutions of L1−2 are sparse.

Wenow look at success rates in two testswith fixedMSandfixed fc respectively. In the first
case, we consider 100 random realizations of the same setting as discussed above to get Fig. 3,
and success rates of three methods can be computed. An incident (or a reconstructed signal
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Fig. 5 Reconstruction comparison for MSF = 0.8, from top to bottom: ground-truth, L1 via SDP (residual
∼10−1.3), L1−2 (residual ∼10−7.7), and CL1 (residual ∼10−4.9)
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Fig. 6 Success rates (%) of fixed MS = 20 (left) and fixed fc = 20 (right) when N = 1000

x∗) is labeled as “successful” if ‖x∗ −xg‖/‖xg‖ < 1.5e−3 and ‖Au∗ −b‖/‖b‖ < 5e−4. In
the second case, we fix fc = 20, generate a sparse signal with MS = MSF∗N/ fc, and repeat
100 random realizations to compute success rates. Both plots in Fig. 6 show big advantages
of L1−2 and CL1 over SDP when MSF < 1.

We examine the scability of the algorithms for N = 1000, 2000, 4000, while keeping
SRF fixed, specifically N/ fc = 50. Roughly speaking, all the algorithms are scalable to
some extent, as illustrated in Fig. 7. For SDP, the smaller N is, the smaller MSF is observed
for exact recovery. As for L1−2 and CL1, the success rates diminish while N increases,
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Fig. 7 Scability of the algorithms: N = 2000 (top) and 4000 (bottom) when fc = 20. N = 1000 is plotted
on the right of Fig. 6
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Fig. 8 Image examples shown on the top row: positive spikes of size 100 × 100 and MS = 10, which is
defined differently in [6] (left) and [25] (right). The corresponding success rates (%) of L1, L1−2, and CL1,
all in a constrained formulation, are plotted on the bottom. An exact recovery via L1 minimization occurs at
MSF = 1.7 for both MS definitions

which attributes to the curse of dimension: as N is large, the iterative DCA scheme does not
converge (for both inner and outer loops) or it takes too long to converge so we have to stop
earlier to obtain less accurate results within a reasonable amount of time.
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Fig. 9 A particular example at MSF = 0.7 using the RR definition (the top right plot of Fig. 8). a A
reconstruction via a direct inverse FFT, and b–d are the difference of the reconstructed solutions using L1,
capped L1, and L1−2 to the ground-truth image, with intensity window [−0.1, 0.1]. The root-means-errors
for these results are 0.004 (L1), 0.001 (capped L1), and 0.0005 (L1−2)

5.2 Two-Dimensional Image Super-Resolution

We present the super-resolution results of 2D images. There are two types of minimum
separation. Definition 1 [6] uses L∞ norm to measure the distance, while another definition
is called Rayleigh regularity (RR) [12,25], as given below.

Definition 3 (Rayleigh regularity) Fix N , n, and set λ = 1/ fc = 2/(n − 1). We say that the
set of points T ⊂ {0, 1/N , . . . , 1 − 1/N } ⊂ T

d is Rayleigh regular with parameters (d, r)
and write T ∈ Rd(t, r; N , n) if it may be partitioned as T = T1 ∪ · · · ∪ Tr where the Ti ’s
are disjoint, and each obeys a minimum separation constraint, that is, for all square subsets
D ⊂ T d of side length tλc/2, |Ti ∩ D| ≤ 1.

Images with these two definitions are illustrated in Fig. 8, where Definition 3 (RR) pro-
duces more spikes than Definition 1, thus more challenging for image super-resolution. The
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theoretical guarantee is studied in [6] for MS and in [25] for RR with additional assumption
of positive sources (the spikes have positive values). In both papers, MSF is theoretically
proven to be capped at 2.38, while we observe empirically that an exact recovery via L1

minimization occurs at MSF = 1.7. Here is the problem setting: image is of size 100× 100,
MS = 10, and fc = 4 : 20, thus yielding MSF = 0.4 : 0.1 : 2. We examine three regular-
ization terms: traditional L1, L1−2, and CL1, all of which are formulated in a constrained
model. The success rates for these two cases are present in Fig. 8. When MSF is below 1.7,
the success rates of MS are much higher than that of RR. Both plots illustrate that L1−2 and
CL1 (α = 0.1) have advantages over L1 (solved by ADMM). Note that CL1 is better than
L1−2 on the right plot of Fig. 8 in the 2d examples where sources only take positive values.

Finally we show an image super-resolution example to illustrate the visual difference. We
look at a particular point source image similar to the upper right plot of Fig. 8, which reminds
one of the stars in a clear night sky. The image is of size 100× 100 with MS = 10 based on
RR definition, and we only take 15 × 15 ( fc = 7) measurements from low-frequency data,
thus yielding MSF = 0.7. If using the inverse FFT after the zero-padded frequency data, the
reconstruction looks very blurry as shown on the upper left of Fig. 9. All the L1 variants (L1,
capped L1, and L1−2) result in much sparser and clearer reconstructions. To have a better
visual comparison, we plot the error maps of the reconstructed result to the ground-truth for
the L1 methods. All of them can find the spikes’ location relatively well, L1 also picks up
some neighboring pixels, and L1−2 has the smallest error.

6 Conclusions

Wepresented local properties (localminimum, d-stationary points, and sparsity upper bound)
of computed solutions minimizing L1−2 and capped-L1 penalties for super-resolution of
point sources. At a high probability, the limit point of DCA-capped-L1 algorithm is a local
minimumand is sparse if the intrinsic parameter of the capped-L1 is suitably chosen. The limit
point of DCA-L1−2 algorithm is a directional stationary point, which is observed numerically
to have sparsity upper bounded by the rank of the sensing matrix at a high probability. In
numerical experiments in one and two dimensions, the two non-convex penalties produced
better solutions either in the relative accuracy of ground truth recovery or seeking a sparse
solution while maintaining the measurement constraints when peak distance of the sparse
solutions is below the Rayleigh length (the classical barrier).
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