
J Sci Comput (2016) 68:975–1001
DOI 10.1007/s10915-016-0168-y

High Order Semi-implicit Schemes for Time Dependent
Partial Differential Equations

Sebastiano Boscarino1 · Francis Filbet2 ·
Giovanni Russo1

Received: 28 April 2014 / Revised: 8 January 2016 / Accepted: 14 January 2016 /
Published online: 28 January 2016
© Springer Science+Business Media New York 2016

Abstract The main purpose of the paper is to show how to use implicit–explicit Runge–
Kutta methods in a much more general context than usually found in the literature, obtaining
very effective schemes for a large class of problems. This approach gives a great flexibility,
and allows, in many cases the construction of simple linearly implicit schemes without any
Newton’s iteration. This is obtained by identifying the (possibly linear) dependence on the
unknown of the system which generates the stiffness. Only the stiff dependence is treated
implicitly, thenmaking thewholemethodmuch simpler than fully implicit ones. The resulting
schemes are denoted as semi-implicit R–K. We adopt several semi-implicit R–K methods up
to order three. We illustrate the effectiveness of the new approach with many applications to
reaction–diffusion, convection diffusion and nonlinear diffusion system of equations.

Keywords IMEX schemes · Stiff problems · Time dependant partial differential equations

Mathematics Subject Classification Primary 82C40 · Secondary 65N08 · 65N35

1 Introduction

A well-known approach in the numerical solution of evolutionary problems in partial dif-
ferential equations is the method of lines. In this approach a partial differential equation is

B Sebastiano Boscarino
boscarino@dmi.unict.it

Francis Filbet
francis.filbet@math.univ-toulouse.fr

Giovanni Russo
russo@dmi.unict.it

1 Department of Mathematics and Computer Science, University of Catania, Via A.Doria 6,
95125 Catania, Italy

2 Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse III & IUF, 118, Route de
Narbonne, 31062 Toulouse Cedex, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-016-0168-y&domain=pdf

976 J Sci Comput (2016) 68:975–1001

first discretized in space by finite difference or finite element techniques and converted into
a system of ordinary differential equations (ODEs). In some cases the right hand side can be
written as the sum of two terms, a stiff one and a non stiff one:

⎧
⎪⎨

⎪⎩

du

dt
(t) = F(t, u(t)) + 1

ε
G(t, u(t)), ∀ t ≥ t0,

u(t0) = u0,

(A)

where ε is a small parameter, which generates some stiffness in the system. We call such stiff
problem of additive type and hereafter denoted by (A).

The development of numerical schemes for systems of stiff ODEs of the form (A) attracted
a lot of attention in the last decades. Systems of such formoften arise from the discretization of
partial differential equations, such as convection–diffusion equations and hyperbolic systems
with relaxation. In previous works we considered the latter case which in recent years has
been a very active field of research, due to its great impact on applied sciences. In fact,
relaxation is important in many physical situations, for example it arises in discrete kinetic
theory of rarefied gases, hydrodynamical models for semiconductors, linear and non-linear
waves, viscoelasticity, traffic flows, shallow water [1–8].

Hopefully, when a problem with easily separable stiff and non-stiff components is con-
sidered, a combination of implicit and explicit Runge–Kutta methods can be used. The
implicit method is used to treat the stiff component G(t, u(t))/ε in a stable fashion while
the non-stiff component F(t, u(t)) of the system is treated using the explicit scheme. These
combined implicit/explicit (IMEX) schemes are already used for several problems, includ-
ing convection–diffusion–reaction systems, hyperbolic systems with relaxation, collisional
kinetic equations, and so on.

However not all systems containing stiff terms appear in partitioned or additive form, and
therefore the use of standard IMEX schemes is not straightforward. In such cases one usually
relies on fully implicit schemes.

In the context of ODEs, several authors usually call semi-implicit RK methods (in contrast
to implicit RK methods) numerical schemes that require the solution of linear systems of
equations for the computation of the numerical solution with no Newton iteration. A typical
case is given by Rosenbrock schemes, [9], which are linearly implicit schemes, that do
not make use of the particular structure of the system. Similarly, in the context of PDEs,
some authors denote by semi-implicit additive schemes in which the two tableau correspond
respectively to an explicit and an implicit scheme (see [10,11]).

In other cases, semi-implicit schemes denote methods for the numerical solution of a
problem of the form

du

dt
= f (t, u),

obtained by adding and subtracting an approximation g(t, u) of f (t, u) which is more
amenable for an implicit treatment:

du

dt
= f (t, u) − g(t, u) + g(t, u).

Then the term f (t, u) − g(t, u) is treated explicitly, while g(t, u) is treated implicitly.
Examples of this type are given in [12], where the authors consider nonlinear hyperbolic

systems containing fully nonlinear and stiff relaxation terms in the limit of arbitrary late
times. The dynamics is asymptotically governed by effective systems which are of parabolic

123

J Sci Comput (2016) 68:975–1001 977

type and may contain degenerate and/or fully nonlinear diffusion terms. Fully nonlinear
relaxation terms can arise, for instance, in presence of strong friction, see for example in
[13] and references therein. Furthermore, a general class of models of the same type were
introduced byKawashima and LeFloch (see for example [12]). For such problems in [12], the
authors introduced a semi-implicit formulation based on implicit–explicit (IMEX) Runge–
Kuttamethods. Similarly in [14], the author introduced a semi-implicit method for computing
the two models of motion by mean curvature and motion by surface diffusion which is stable
for large time steps. In all such models a semi-implicit method is more effective than a fully
implicit one. Other examples are given in [15], where the authors construct a very effective
solver for the Boltzmann equation near the fluid dynamic regime. In this case f denotes the
Boltzmann operator, while g denotes a suitable BGK approximation. A similar technique is
adopted in [16,17] in the context of Navier–Stokes equations.

In other cases the stiffness is associated to some variables. For example, if a system can
be written in the partitioned form, hereafter denoted by (P),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy

dt
(t) = F1(t, y(t), z(t)),

ε
dz

dt
(t) = F2(t, y(t), z(t)),

(P)

then the stiffness is associated to variable z, and the corresponding equation will be treated
implicitly, while the equation for y is treated explicitly. In other cases it is more convenient
to associate the stiffness to a part of the right hand side, for example if a system has the
additive form (A), in this case the term F(t, u(t)) is treated explicitly while G(t, u(t))/ε
is treated implicitly. It can be shown that the same system can be written in either form,
however sometimes one of the two forms is more convenient.

Directly motivated by the above cases, we consider a more general class of problems of
the form ⎧

⎪⎨

⎪⎩

du

dt
(t) = H(t, u(t), u(t)/ε), ∀ t ≥ t0,

u(t0) = u0,

(G)

where the function H: R × R
m × R

m → R
m is sufficiently differentiable and the right hand

side has a stiff dependence only on the last argument, emphasized by the appearance on
the small parameter ε in the denominator. We denote this class of problems as generalized
partitioned form and hereafter denoted by (G). All the cases mentioned before belong to
this more general class. In our paper we denote by semi-implicit schemes numerical methods
which solve problems of the form (G) in which the variable u appearing as the second
argument ofH is treated explicitly, while u appearing as third argument is treated implicitly.

Remark 1.1 Note that the parameter ε in (G) does not necessarily appear explicitly, but it just
indicates some stiffness in the term. Sometime the stiffness is hidden, and is not explicitly
expressed in terms of a small parameter ε. For example, in the case of diffusion terms
ε = O(�x2), see [12,18–20].

Themain goal of the paper is to focus on the treatment of systems of the form (G), by using
some IMEX schemes already presented in the literature. Furthermore, in order to simplify
the expression of the formulas, we drop the dependence of the parameter ε in the second
argument as mentioned before, keeping in mind that the dependence on the second argument

123

978 J Sci Comput (2016) 68:975–1001

is stiff. Then in this paper we consider the general class of non-autonomous problems of the
form

⎧
⎪⎨

⎪⎩

du

dt
(t) = H(t, u(t), u(t)), ∀ t ≥ t0,

u(t0) = u0,

(1)

The aim of this paper is to propose a new approach, based on IMEX Runge–Kutta meth-
ods, for the construction of semi-implicit schemes. The approach is somehow inspired by
partitioned Runge–Kutta methods [21] and related to the additive Runge–Kutta methods of
Zhong [11].

In particular, we show several examples of systems of the form G that can be efficiently
solved with the new approach. In order to apply this idea, one has to identify where the
dependence of the unknown is stiff. We do not propose a general technique to automatically
identify the stiff dependence in the function H that defines the system, rather we try to give
arguments that help identifying the stiff dependence in each of the examples that we present.
The problem of identifying the stiff term in a complicated system of equations is not new,
and in several practical cases it is not so straightforward. In the context of numerical methods
for systems of ODE’s, the problem of automatic stiffness detection is treated, for example,
in the classical book of Hairer and Wanner ([9], p. 21). In the case in which a decision has to
be made about where a variable has to be treated explicitly and where implicitly is an even
more delicate one, and the research on techniques that automatically identify, in a general
system, which is the dependence that is responsible for the stiffness, and whether it can be
effectively treated linearly is far beyond the scope of the present paper.

In the next section, we describe the general framework to construct semi-implicit Runge–
Kutta schemes based on approach outlined before. Several schemes are proposed with
different stability properties and order of accuracy. We next compare the numerical solu-
tions with exact ones available in the literature for reaction–diffusion problem and nonlinear
convection–diffusion equation. After this validation step, we perform several numerical
computations to show the robustness of our approach (nonlinear Fokker–Planck equation,
Hele–Shaw flow and surface diffusion flow).

2 Relation Between the Various Types of Systems

In this section we show the following hierarchical dependence.

Proposition 2.1 Consider a system in partitioned form (A). Then it can be written either in
the additive form (A) or in the generalized partitioned form (G).

This hierarchical dependence can be illustrated by the following Fig. 1.
The first part of the Proposition, P ⊂ A, is self evident. To show that P ⊂ G we consider

the system (P) and set u = (u1, u2) with u1 = y and u2 = ε z, then we have from (P)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du1

dt
(t) = F1(t, u1(t), u2(t)/ε),

du2

dt
(t) = F2(t, u1(t), u2(t)/ε),

123

J Sci Comput (2016) 68:975–1001 979

Fig. 1 Illustration of the hierarchical dependence of (P), with respect to (A) and (G) approach

Fig. 2 Illustration of hierarchical dependence between partitioned approach (P), additive approach (A) and
generalised partitioned form (G) approach where the dashed lines represent the set of systems with doubled
number of unknowns

that is, system (G) with u = (u1, u2) and
⎛

⎝
F1(t, u1(t), u2(t)/ε)

F2(t, u1(t), u2(t)/ε)

⎞

⎠ = H(t, u(t), u(t)/ε).

We note that in this two cases no duplications of unknowns is needed. Unfortunately there
is no such hierarchical dependence between (A) and (G) systems. Note however that if we
allow to double the number of unknowns, then we have the following dependence.

Proposition 2.2 We have the following assertions

(1) Consider a system in the additive form (A). Then by doubling the number of unknowns,
it can be written in the partitioned form (P).

(2) Consider a system in the generalized partitioned form (G). Then by doubling the number
of unknowns, it can be written in the partitioned form (P).

This hierarchical dependence can be illustrated by the following Fig. 2.
Part (1) of the Proposition is well known in the literature (see, for example, [22]). To prove

(2), we consider a solution to (G) and set v = u/ε. Thus, we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du

dt
(t) = H(t, u(t), v(t)),

ε
dv

dt
(t) = H(t, u(t), v(t)),

(2)

it is a particular case of system (P). Note that these two last cases require duplication of
unknowns.

Such inclusions are very important, since the analysis of the numerical schemes applied
to one family of schemes is automatically valid also for schemes applied to the other two
families. As far as we know, it is not possible to write system (A) in the form (G) or viceversa,
without doubling the number of unknowns.

123

980 J Sci Comput (2016) 68:975–1001

Nevertheless, we will see later (“Appendix”) that the computational cost and the number
of evaluations of H does not increase.

Thus, the formal equivalence among the various systems allows us to adopt techniques
well known for additive or partitioned systems to more general cases.

A remark is in order at this point. A vast literature exists on the formal analysis of systems
(P), which are denoted as singular perturbation systems, [2,9,23–26]. However, system (2)
is only formally a particular case of (P), and the analysis developed for the former cannot be
directly applied to this case, since now the two functionsF1 andF2 are the same. Furthermore,
a detailed asymptotic analysis of the schemes presented here goes beyond the scope of the
paper, and will be considered in a future work for specific applications where the asymptotic
behavior ε → 0 is well understood at the continuous level [27,28].

3 Numerical Methods for ODEs

In this section we review the concept of partitioned Runge–Kutta methods and derive a new
class of semi-implicit R–K schemes, and we propose several schemes up to third order of
accuracy, based on IMEX Runge–Kutta schemes already existing in the literature.

3.1 From Partitioned to Semi-implicit Runge–Kutta Methods

In the literature some interesting numerical methods do not belong to the classical class of
implicit or explicit Runge–Kuttamethods. They are called partitioned Runge–Kuttamethods,
[9,21]. In order to present these methods we consider non-autonomous differential equations
in the partitioned form,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy

dt
(t) = F1(t, y(t), z(t)),

dz

dt
(t) = F2(t, y(t), z(t)),

(3)

where y(t) and z(t) may be vectors of different dimensions and y(t0) = y0, z(t0) = z0 are
the initial conditions.

The idea of the partitioned Runge–Kutta methods is to apply two different Runge–Kutta
methods, i.e.

ĉ Â

b̂T

c A

bT
(4)

where we treat the first variable y with the first method, Â, b̂T = (b̂1, . . . , b̂s), ĉ =
(ĉ1, . . . , ĉs) and the second variable z with the second method, A, bT = (b1, . . . , bs),
c = (c1, . . . , cs) under the usual assumption

∑

j

âi, j = ĉi , and
∑

j

ai j = ci , for 1 ≤ i ≤ s. (5)

123

J Sci Comput (2016) 68:975–1001 981

In other words, if we consider a numerical approximation (yn, zn) of (3) at time tn , a
partitioned Runge–Kutta method for the solution of (3) is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ki = F1

⎛

⎝tn + ĉi �t, yn + �t
s∑

j=1

âi j k j , zn + �t
s∑

j=1

ai j� j

⎞

⎠ , 1 ≤ i ≤ s,

�i = F2

⎛

⎝tn + ci �t, yn + �t
s∑

j=1

âi j k j , zn + �t
s∑

j=1

ai j� j

⎞

⎠ , 1 ≤ i ≤ s

(6)

and the numerical solution at the next time step is given by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn+1 = yn + �t
s∑

i=1

b̂i ki ,

zn+1 = zn + �t
s∑

i=1

bi �i .

(7)

We observe that we can rewrite system (1) as a partition one
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy

dt
(t) = H(t, y(t), z(t)),

dz

dt
(t) = H(t, y(t), z(t)),

(8)

with initial conditions y(t0) = y0, z(t0) = y0. In such a case the solution of system (8)
satisfies z(t) = y(t) for any t ≥ t0 and is also a solution of Eq. (1). The system is a particular
case of partitioned system in whichF1 = F2 but with an additional computational cost since
we double the number of variables. Applying the partitioned Runge–Kutta method (6)–(7)
we have

⎧
⎨

⎩

ki = H (tn + ĉi�t, Yi , Zi
)
, 1 ≤ i ≤ s,

�i = H (tn + ci�t, Yi , Zi
)
, 1 ≤ i ≤ s,

(9)

with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Yi = yn + �t
s∑

j=1

âi, j k j , 1 ≤ i ≤ s,

Zi = zn + �t
s∑

j=1

ai j � j , 1 ≤ i ≤ s,

and the numerical solutions at the next time step are
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn+1 = yn + �t
s∑

i=1

b̂i ki ,

zn+1 = zn + �t
s∑

i=1

bi �i .

123

982 J Sci Comput (2016) 68:975–1001

In general, ki and �i given by (9) for all 1 ≤ i ≤ s are different. However, there are two
cases in which ki = �i , i = 1, . . . , s. The first one is when the system is autonomous, i.e.
H does not explicitly depend on time, and the second one is when ĉi = ci , i = 1, . . . , s. In
these two cases only one evaluation ofH is needed in (9), and only one set of stage fluxes is
computed:

ki = H
(

yn + �t
s∑

i=1

âi, j k j , zn + �t
s∑

i=1

ai j k j

)

, 1 ≤ i ≤ s.

From now on we assume that the system is autonomous. This restriction can be removed:
even in the general case of a non-autonomous system, and ĉ �= c, it is still possible to
derive a scheme that does not require two sets of stage fluxes. The details are reported in the
“Appendix”.

Now we are ready to propose semi-implicit Runge–Kutta methods in order to solve
autonomous problem of the form (8), i.e.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy

dt
= H(y, z),

dz

dt
= H(y, z),

(10)

with initial conditions y(t0) = y0, z(t0) = y0, where we treat the first variable y explicitly,
and the second one z, implicitly.

From now on we shall adopt IMEX R–K schemes with b = b̂. It is usual to consider
diagonally implicit R–K (DIRK) schemes for the implicit part, [9]. In addition to be simpler
to implement, this ensures that the terms involving thefirst argument ofH are indeed explicitly
computed. The coefficients of the method are usually represented in a double Butcher tableau
as (4).

Then a semi-implicit Runge–Kuttamethod is implemented as follows. Firstwe set zn = yn

and compute the stage fluxes for i = 1, . . . , s, we set Y1 = Z̃1 = yn and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + �t
i−1∑

j=1

âi j k j , 2 ≤ i ≤ s,

Z̃i = yn + �t
i−1∑

j=1

ai j k j , 2 ≤ i ≤ s

ki = H
(

Yi , Z̃i + �t aii ki

)
, 1 ≤ i ≤ s,

(11)

and, finally update the numerical solution by

yn+1 = yn + �t
s∑

i=1

b̂i ki , (12)

and

zn+1 = yn + �t
s∑

i=1

bi ki . (13)

123

J Sci Comput (2016) 68:975–1001 983

We observe that because b̂i = bi for i = 1, . . . , s then the numerical solutions are the
same, i.e. if z0 = y0 then zn = yn ∀n ≥ 0, therefore the duplication of the system is only
apparent, since there is indeed only one set of numerical solution.

Remark 3.1 (Embedded methods). We can select a different vector of weights for the z
variable, say the b̃ �= b = b̂. Such a vector will provide a lower order approximation of the
solution for z. Consider now a scheme in which, at the beginning of the time step, we set
zn = yn . Such a scheme would produce the same sequence yn as scheme (11, 12), and would
allow an automatic time step control. This procedure is commonly used in the context of
numerical methods for ODEs [21]. Note that using b̃ for the y variable, advancing with the z
variable and setting yn = zn at the beginning of each time step would give exactly the same
scheme. In practice one advances the numerical solution with the more accurate one and uses
the other variable to estimate the error. We shall not implement any time step control in the
present paper.

Remark 3.2 We note that this new approach includes Zhong’s method [11] for autonomous
systems. The theory developed in [11] for additive semi-implicit Runge–Kutta methods can
be extended in a straightforward manner to the semi-implicit Runge–Kutta methods, (11),
(12) and (13). In fact, by setting H(y, y) = f (y) + g(y) we obtain by (11):

ki = H
⎛

⎝yn +
j−1∑

j=1

âi j k j , yn +
j−1∑

j=1

ai j k j + aii ki

⎞

⎠ ,

= f

⎛

⎝yn +
j−1∑

j=1

âi j k j

⎞

⎠ + g

⎛

⎝yn +
j−1∑

j=1

ai j k j + aii ki

⎞

⎠ , (14)

for i = 1, . . . s. In particular, for updating the numerical solution, Zhong’s methods use only
one set of weights, i.e. bi for all i = 1, . . . s, and, in our case, this means that we have only
on set of unknowns, namely yn = zn . From Eq. (12), we have for numerical solution

yn+1 = yn +
s∑

i=1

bi ki , (15)

therefore (14) and (15) represent exactly the additive semi-implicit Runge–Kutta methods
proposed by Zhong, [11], applied in a more general context, and therefore they have to satisfy
more order conditions than in Zhong’s case (see next section).

In the following we propose different types of semi-implicit Runge–Kutta methods and
verify that the order conditions are the same as the ones satisfied by the explicit and implicit
Runge–Kutta schemes.

3.2 Classification of IMEX Runge–Kutta Schemes

Next we give a classification of such schemes and recall the order conditions to obtain second
and third order accuracy in time. Finally we list several second and third order IMEX R–K
schemes presented in the literature, [6,7] that we will use for our semi-implicit framework
(11)–(13).

IMEXRunge–Kutta schemes presented in the literature can be classified in three different
types characterized by the structure of the matrix A = (ai j)

s
i, j=1 of the implicit scheme.

Following [23], we will rely on the following notions [2,7,22].

123

984 J Sci Comput (2016) 68:975–1001

Definition 3.3 An IMEX Runge–Kutta method is said to be of type A [7] if the matrix
A ∈ R

s×s is invertible. It is said to be of type CK [2] if the matrix A ∈ R
s×s can be written

in the form

A =
(
0 0
a A
)

,

in which the matrix A ∈ R
(s−1)×(s−1) invertible. Finally, it is said to be of type ARS [22] if

it is a special case of the type CK with the vector a = 0.

Schemes of type CK are very attractive since they allow some simplifying assumptions,
thatmake order conditions easier to treat, therefore permitting the construction of higher order
IMEX Runge–Kutta schemes. On the other hand, schemes of type A are more amenable to
a theoretical analysis, since the matrix A of the implicit scheme is invertible.

3.3 Order Conditions and Numerical Schemes

Runge–Kutta methods (11)–(13) are obtained from the semi-implicit schemes (6)-(7). Thus,
the order conditions for (11)–(13) are a direct consequence of the classical order conditions
computed for partitioned Runge–Kutta methods, [21,29]. Here we recall some known results
for IMEX R–K schemes presented in [2,6,7]. In particular the order conditions up to order
3 can be simplified if we set b̂i = bi for i = 1, . . . , s. Then using the previous notation for
the explicit and implicit part and assuming (4) and (5), we have for a method of order 2

∑

i

bi = 1,
∑

i

bi ci = 1/2,
∑

i

bi ĉi = 1/2. (16)

and for a method of order 3
∑

i

bi c
2
i = 1/3,

∑

i, j

bi ai j c j = 1/6, (17)

∑

i

bi ĉ2i = 1/3,
∑

i, j

bi âi j ĉ j = 1/6, (18)

∑

i

bi ĉi ci = 1/3,
∑

i, j

bi ai j ĉ j = 1/6,
∑

i, j

bi âi j c j = 1/6. (19)

The general conditions in case b̂ �= b can be found in [7].
We recall some well know definitions that we shall adopt in the paper.

Definition 3.4 An implicit R–K method is called stiffly accurate if bT = eT
s A with eT

s =
(0, . . . , 0, 1), i.e. methods for which the numerical solution is identical to the last internal
stage (see [9], p. 45).

Remark 3.5 This property is important for the L-stability of the implicit part of the method,
i.e. an A-stable implicit method stiffly accurate is also L-stable, (see [9], p. 44–45).

Note that the coefficients of the implicit part of some IMEX RK schemes presented later
in this paper satisfy the property given in the Definition 3.4.

Now, we first consider second order schemes with two stages that satisfy the set of order
conditions (16). For practical reasons, in order to simplify the computations of the coefficients,

123

J Sci Comput (2016) 68:975–1001 985

we consider singly diagonally implicit Runge–Kutta (SDIRK) schemes, [9], for the implicit
part, i.e. aii = γ , for i = 1, . . . s. The Butcher tableau takes then the following form

0 0 0
ĉ ĉ 0

b1 b2

γ γ 0
c c − γ γ

b1 b2
(20)

with the following coefficients:

b1 = 1 − b2, ĉ = 1/(2 b2), c = (1/2 − γ (1 − b2))/b2, (21)

where b2 �= 0 and γ ∈ R free parameters. If we require that the implicit part of the scheme
is A-stable, then we consider γ ≥ 1/4, [9].

We list below the second order schemes that we shall use in the paper.

3.3.1 The Second Order Semi-implicit Runge–Kutta Scheme: H-SDIRK2(2,2,2)

A first example of scheme satisfying the second order conditions given in (16) is b2 = γ =
1/2, which yields the following table

0 0 0
1 1 0
1/2 1/2

1/2 1/2 0
1/2 0 1/2

1/2 1/2
(22)

This scheme is the combination of Heun method (explicit part) and an A-stable second
order singly diagonal implicit Runge–Kutta SDIRK method (implicit part), hence we call it
H-SDIRK2(2,2,2).

3.3.2 The Stiffly Accurate Semi-implicit Runge–Kutta Scheme: LSDIRK2(2,2,2)

Another choice for the coefficients (21) is b2 = γ , c = 1, where γ is chosen as the smallest
root of the polynomial γ 2 − 2γ + 1/2 = 0, i.e. γ = 1− 1/

√
2 and ĉ = 1/(2γ). This gives

0 0 0
ĉ ĉ 0
1 − γ γ

γ γ 0
1 1 − γ γ

1 − γ γ

(23)

This scheme is the combination ofRunge–Kuttamethod (explicit part) and an L-stable second
order SDIRK method in the implicit part. Thus, we call it LSDIRK2(2,2,2).

3.3.3 The IMEX-SSP2(2,2,2) L-stable Scheme: H-LDIRKp(2,2,2)

We choose b2 = 1/2, ĉ = 1, i.e. the corresponding Butcher tableau is given by

0 0 0
1 1 0
1/2 1/2

γ γ 0
1 − γ 1 − 2γ γ

1/2 1/2
(24)

This scheme, introduced in [6], is based on Heun method coupled with an L-stable SDIRK
Runge–Kutta. We call it H-LDIRKp(2,2,2). The implicit part has order p = 2 with γ =
1 − 1/

√
2 and order p = 3 with γ = (3 + 3

√
(6))/3. The version for p = 2 also has the

strongly stability preserving (SSP) property, see [6]. The choice of γ for p = 3 guarantees
that the implicit part is a third-order DIRK scheme with the best dampening properties [21].

123

986 J Sci Comput (2016) 68:975–1001

To conclude this subsection devoted to two stages second order schemes, let us give a
second order scheme, which is not in the class of singly diagonally implicit Runge–Kutta
schemes.

3.3.4 The Second Order Semi-implicit Runge–Kutta Scheme of Type CK: H-CN(2,2,2)

A variant of the previous scheme satisfying the second order conditions (16) is given by the
following table

0 0 0
1 1 0
1/2 1/2

0 0 0
1 1/2 1/2
1/2 1/2

(25)

This scheme is the combination of Heun method (explicit part) and a trapezoidal rule Crank
Nicolson (implicit part)which is A-stable second order implicit, hencewe call it H-CN(2,2,2).
It may be a natural choice when dealing with convection–diffusion equation, since the Heun
method is an SSP explicit RK [30], and the trapezoidal rule (also known as Crank–Nicolson)
is an A-stable method, widely used for diffusion problems.

Finally, we also propose a three stage, second order IMEX scheme.

3.3.5 The Stiffly Accurate IMEX-SSP2(3,3,2) L-stable Scheme: SSP-LDIRK2(3,3,2)

The last second order scheme is obtained by combining a three-stage, second-order SSP
schemewith anL-stable, second-orderDIRKscheme, and is denoted bySSP-LDIRK2(3,3,2).
This scheme is given by

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

(26)

3.3.6 The IMEX-SSP3(4,3,3) L-stable Scheme: SSP-LDIRK3(4,3,3)

As third semi-implicit Runge–Kutta methods of the type (11)–(13), that satisfies the set of
order conditions (17), (18) and (19), a possible choice is given by the IMEX-SSP3(4,3,3)
L-stable scheme with b̂i = bi for i = 1, . . . , s, i.e.

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1 − α α 0
1/2 β η 1/2 − β − η − α α

0 1/6 1/6 2/3

(27)

with α = 0.24169426078821, β = α/4 and η = 0.12915286960590. We call this scheme
SSP-LDIRK3(4,3,3). For this particular choice, let us observe that the number of evaluations
of the right hand side H is still reasonable since the coefficients ci = ĉi for 2 ≤ i ≤ 4 and
only c1 differs from ĉ1.

We remark that schemesH-LDIRK2(2,2,2), SSP-LDIRK2(3,3,2), andSSP-LDIRK3(4,3,3)
were introduced in the context of hyperbolic systems with stiff relaxation in [6].

123

J Sci Comput (2016) 68:975–1001 987

Remark 3.6 Even though IMEX R–K methods can be considered as additive R–K methods
([2,22,31]), we note that the coefficients in the Zhong form (14), (15) are not the standard
coefficients of an IMEX R–K method. It is possible to show, by inspection, that Eqs. (14),
(15) can be written as an IMEX R–K method. Let

Â =

⎛

⎜
⎜
⎜
⎝

0 0
â21 0
...

...
. . .

as1 · · · · · · ass−1

⎞

⎟
⎟
⎟
⎠

, A =

⎛

⎜
⎜
⎜
⎝

a11 0
a21 a22
...

...
. . .

as1 · · · · · · ass

⎞

⎟
⎟
⎟
⎠

b =

⎛

⎜
⎜
⎜
⎝

b1
b2
...

bs

⎞

⎟
⎟
⎟
⎠

be the coefficients of the scheme (14), (15), with s stages. Then we write explicitly

yn+1 = yn +
s∑

i=1

bi

(
f (Ŷi) + g(Yi)

)
(28)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŷ1 = yn,

Y1 = yn + �t a11
(

f (Ŷ1) + g(Y1)
)

,

Ŷ2 = yn + �t â21
(

f (Ŷ1) + g(Y1)
)

,

Y2 = yn + �t a21
(

f (Ŷ1) + g(Y1)
)

+ �t a22
(

f (Ŷ2) + g(Y2)
)

,

...

Ŷs = yn + �t âs1

(
f (Ŷ1) + g(Y1)

)
+ · · · + �t âss−1

(
f (Ŷs−1) + g(Ys−1)

)
,

Ys = yn + �t as1

(
f (Ŷ1) + g(Y1)

)
+ · · · + �t ass

(
f (Ŷss) + g(Yss)

)
.

(29)

and the Butcher tableau is

0
a11 0
â21 0 0
a21 0 a22 0
...

...
...

...
. . .

as1 0 as2 0 · · · ass 0
b1 0 b2 0 · · · bs 0

0
0 a11
0 â21 0
0 a21 0 a22
...

...
...

...
. . .

0 as1 0 as2 · · · ass

0 b1 0 b2 · · · bs

Using the Kronecker product, this can be written in a more compact form as

c Â

b̂T

c A

bT

with

b̂T = bT ⊗ (1, 0), bT = bT ⊗ (0, 1)

Â = (Â ⊗ B̂1) + (A ⊗ B̂2), A = (Â ⊗ B1) + (A ⊗ B2),

B̂1 =
(
1 0
0 0

)

, B̂2 =
(
0 0
1 0

)

,

123

988 J Sci Comput (2016) 68:975–1001

and

B1 =
(
0 1
0 0

)

, B2 =
(
0 0
0 1

)

,

i.e., a double Butcher tableau (4) of scheme (28-29) with ĉ = c = Âe = Ae, and e =
(1, ..., 1)T the unit vector of length 2s. Note that this is an IMEX scheme with a double
Butcher tableau as (4). From this, we can derive the set of order conditions for scheme of the
form (14)–(15) in terms of matrix Â, A and vectors b̂, b, from the order condition of parti-
tioned Runge–Kutta schemes with the same value of c and b̂ �= b. A similar analysis, with a
slightly different notation, was already performed in [32]. Below we list these equations up
to order p = 3,

b̂T e = 1, bT e = 1, (first order),

b̂T c = 1/2, bT c = 1/2, (second order),

b̂T c
2 = 1/3, bT c2 = 1/3, (third order)

bT Ac = 1/6, bT Âc = 1/6, b̂T Ac = 1/6, b̂T Âc = 1/6.

Explicit computation of these conditions give

s∑

i

bi = 1,
∑

i

bi ĉi = 1/2,
∑

i

bi ci = 1/2,
∑

i

bi c
2
i = 1/3,

∑

i

bi ĉ
2
i = 1/3,

∑

i

bi ai j c j = 1/6,
∑

i

bi âi j ĉ j = 1/6,
∑

i

bi ai j ĉ j = 1/6,
∑

i

bi âi j ci = 1/6.

which are a subset of the classical seven third order conditions (16–19) for IMEX schemes
of order three with b̂ = b and ĉ �= c. The missing condition is the one corresponding to the
mixed derivative ∂2yzH(y, z), which of course is zero forH(y, z) = f (y)+g(z). We observe
that the third order conditions are only five in the case of Zhong [11]. This discrepancy is
clearly explained in the paper [32].

4 Applications

Semi-implicit schemes present a particular interest for nonlinear problems where stiff terms
can be treated efficiently by a linear solver rather than by a nonlinear one. For instance, our
semi-implicitmethod iswell suited to semi-linear PDEs: for p ∈ N, t ≥ 0 and in x ∈
 ⊂ R

n ,
we consider the differential equation of order p + 1 by

∂u

∂t
+ F(u,∇u, . . . ,∇ pu) +

∑

|k|=p+1

Ak1,...,kn

∂ p+1

∂xk1
1 . . . ∂xkn

n

u = 0.

Of course for this problem classical IMEX schemes are also adapted. However for quasi-
linear problems where the function A depends on u, . . . ,∇ pu, semi-implicit methods are
particularly promising since only the term of order p + 1 can be treated implicitly. Tests 4
and 5 below belong to this category.
Furthermore, when the highest order term of order p+1 is negligible, the term of order p can
be eventually treated with a semi-implicit solver (convection-dominated diffusion problems,
see Tests 2 and 3 below).

123

J Sci Comput (2016) 68:975–1001 989

Another kind of applications concerns relaxation problems with nonlinear relaxation systems
[33]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
+ div v = 0

∂v

∂t
+ A∇u = G(u, v)

ε
(F(u) − v) ,

with G(u, v) ≤ α, with α a positive real constant. The nonlinear term G(u, v) can be treated
explicitly while the term (F(u) − v) is treated implicitly without any iterative solvers.

In this sectionwe present several numerical tests for nonlinear PDEs for reaction–diffusion
systems and nonlinear convection–diffusion equation for which we verify the order of accu-
racy and stability issues with respect to the CFL condition. Then, we treat a nonlinear
Fokker–Planck equation to investigate the long time behavior of the numerical solution
obtained from (11)–(13). Finally we complete this section with numerical tests on Hele–
Shaw flow and surface diffusion flow.

We monitor L1 and L∞ norms of the error, defined as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε∞ = max
0≤n≤NT

max
i, j

‖ωn
i, j − ω(tn, xi , y j)‖,

ε1 = max
0≤n≤NT

∑

i, j

�x �y ‖ωn
i, j − ω(tn, xi , y j)‖.

whereω(t, x, y) denotes the exact solution, whileωn
i, j indicates its numerical approximation

at (tn, xi , y j). For space discretization we will apply basic fourth order discretization with
central finite difference for first derivative

∇hωi = −ωi+2 + 8ωi+1 − 8ωi−1 + ωi−2

12 h

where h is the space step, and for the second derivative is discretized using a fourth order
central finite difference scheme as well

∇2
hωi = −ωi+2 + 16ωi+1 − 30ωi + 16ωi−1 − ωi−2

12 h2 .

For all numerical tests below, linear systems have been solved by a simple iterative C++
solver, that is, a successive over-relaxation (SOR(ω)) method even if more efficient solvers
may be applied. This approach allows a comparison between various semi-implicit schemes,
but of course it is not suitable to compare the efficiency of implicit and fully explicit methods.
The use of a more efficient solver, such as for example a multigrid, would be desirable, but
this goes beyond the scope of the present paper. The runs are performed on 2.8GHz Intel
core i7 machine.

4.1 Test 1: Reaction–Diffusion Problem

We first consider a very simple reaction–diffusion system with nonlinear source for which
there are explicit solutions.

To demonstrate the optimal accuracy of the semi-implicit method in various norms, we
consider the reaction–diffusion system problem [34] together with periodic boundary condi-
tions: ω = (ω1, ω2) : R+ × (0, 2π)2 �→ R

2

123

990 J Sci Comput (2016) 68:975–1001

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ω1

∂t
= �ω1 − α1(t) ω2

1 + 9

2
ω1 + ω2 + f (t), t ≥ 0, (x, y) ∈ (0, 2π)2,

∂ω2

∂t
= �ω2 + 7

2
ω2 , t ≥ 0, (x, y) ∈ (0, 2π)2,

(30)
with α(t) = 2 et/2 and f (t) = −2e−t/2. The initial conditions are extracted from the exact
solutions

⎧
⎨

⎩

ω1(t, x, y) = e−t/2 (1 + cos(x)),

ω2(t, x, y) = e−t/2 cos(2 x).

To apply our semi-implicit scheme (11)–(13) we rewrite this PDE in the form (G) with
u = (u1, u2) the component treated explicitly, v = (v1, v2) the component treated implicitly
and

H(t, u, v) =

⎛

⎜
⎜
⎜
⎝

�v1 − α(t) u1 v1 + 9 u1

2
+ v2 + f (t)

�v2 + 7 v2

2

⎞

⎟
⎟
⎟
⎠

.

Since the � operator induces some stiffness it is treated implicitly whereas reaction terms
are treated according to the sign of the reaction term and are linearized in order to avoid the
numerical solution of a fully nonlinear problem. Concerning the spatial discretization, we
simply apply a fourth order central finite differente method to the � operator. A fourth order
accurate scheme for spatial derivatives is applied in order to bring out the order of accuracy
of the second and third order time discretization.

To estimate the order of accuracy of the schemes we compute a numerical approximation
and refine the time step �t according to the space step �x = �y in such a way the CFL
condition associated to the diffusion operator is violated, that is, we apply an hyperbolic CFL
condition where we refine the time step and the space step simultaneously

λ = 2�t

�x
,

with λ = 1.
Obviously, for a fully explicit scheme like the Runge–Kutta method, this condition would

lead to some instabilities of the numerical solution since a parabolic CFL is necessary.
The semi-implicit schemes are expected to be stable even for large time step when the

parabolic CFL condition is not satisfied.
Furthermore, the PDE system (30) is non autonomous since the source term depends on

time, hence the two solutions given by the explicit coefficient (b̂i , ĉi)1≤i≤s in (12) and by
the implicit coefficient (bi , ci)1≤i≤s in (13) are different and we want to explore numerically
the two choices.

Absolute error in L∞ norms at time T = 2 are shown in Fig. 3 for all the schemes
presented in the previous section. As expected the order of accuracy is satisfied for all second
and third order schemes. The results obtained with the third order SSP-DIRK3(4,3,3) scheme
(27) are much more accurate than the others obtained from second order schemes. Moreover,
let us also emphasize that comparing the amplitude of the L∞ error norm obtained with the
second order schemes, the SSP-LDIRK2(3,3,2) scheme (26) with three stages is much more
accurate than the others. Among the second order schemes with two stages the H-CN scheme
(25) is the most accurate for this test. However, when we take into account the CPU time (see

123

J Sci Comput (2016) 68:975–1001 991

10−5

10−4

10−3

10−2

10−1

100

10−2 10−1

ε ∞
 i
n

 l
o

g
 s

c
a

le

Δt in log scale

H-CN(2,2,2)
LSDIRK2(2,2,2)

H-SDIRK2(2,2,2)
H-LSDIRKp(2,2,2)

SSP-LDIRK2(3,3,2)
SSP-DIRK3(4,3,3)

3

2

10−5

10−4

10−3

10−2

10−1

100

10−2 10−1

ε ∞
 i
n

 l
o

g
 s

c
a

le

Δt in log scale

H-CN(2,2,2)
LSDIRK2(2,2,2)

H-SDIRK2(2,2,2)
H-LSDIRKp(2,2,2)

SSP-LDIRK2(3,3,2)
SSP-DIRK3(4,3,3)

3

2

(a) (b)

Fig. 3 Test 1: reaction–diffusion problem: L∞ error normwhen the last step is performedusing the coefficients
obtained from the (a) explicit scheme (12) and (b) and the implicit scheme (13) for the IMEXschemes described
in the previous section. a yn+1 in (12). b zn+1 in (13)

10−5

10−4

10−3

10−2

10−1

10−1 100 101 102

ε ∞
 in

 lo
g

sc
al

e

CPU time in log scale

H-CN(2,2,2)
LSDIRK2(2,2,2)
H-SDIRK2(2,2,2)
H-LSDIRKp(2,2,2)
SSP-LDIRK2(3,3,2)
SSP-DIRK3(4,3,3)

Fig. 4 Test 1: reaction–diffusion problem: L∞ error norm with respect to the number of operations obtained
from the IMEX schemes described in the previous section

Fig. 4), most of the second order schemes are equivalent, whereas the third order scheme is
clearly advantageous for this test.

Finally, we only observe a slight difference between the two solutions yn+1 from (12)
and zn+1 from (13), even if it seems that for this numerical test, the amplitude of the error is
smaller when we use the solution given by the implicit stencil (13).

4.2 Test 2: Nonlinear Convection–Diffusion Equation

We consider the following nonlinear convection diffusion equation on the whole space R
2

and apply a fourth order central finite difference scheme for the first and second spatial
derivatives

⎧
⎪⎪⎨

⎪⎪⎩

∂ω

∂t
+ [V + μ∇ log(ω)

] · ∇ω − μ�ω = 0 , (t, x) ∈ R
+ × R

2,

ω0(t = 0) = e−‖x‖2/2,

123

992 J Sci Comput (2016) 68:975–1001

(a) (b)

Fig. 5 Test 2: nonlinear convection–diffusion problem: (a) L∞ error norm for the second order schemes (22),
(23), (24), (25) and (26) and the third order SSP-DIRK3(4,3,3) L-stable scheme (27). a L∞ error norm with
respect to �t . b L∞ error norm with respect to the number of operations

where V = t (1, 1), μ = 0.5 . The exact solution is given by

ω(t, x) = 1√
4μ t + 1

e− ‖x−V t‖2
8μ t + 2 , t ≥ 0, x ∈ R

2.

After the space discretization, we apply our semi-implicit scheme (11)–(13) by writing the
system of ODEs in the form (G) with u the component treated explicitly, v the component
treated implicitly and

H(t, u, v) = − (V + μ∇ log(u)) · ∇v + μ�v.

We treat both the convection and diffusion implicitly (so that we do not have to worry in
case the convection term dominates) but we only deal with a linear system at each time step.
The computational domain in space is (−10, 10)2 and the final time is T = 0.5. As in the
previous case, the space step is chosen sufficiently small to neglect the influence of the space
discretization and the time step�t is taken proportional to�x such that�t = λ�x , with λ =
1. Therefore, the classical CFL condition for convection diffusion problem �t = O(�x2)
is not verified.

In Fig. 5 we present the numerical error for the L∞ norm for the semi-implicit schemes
described in the previous section and still verify the correct order of accuracy.We also present
the error norm with respect to the CPU time. Once more, the third order SSP-DIRK3(4,3,3)
scheme (27) with four stages gives much more accurate results than second order schemes
with several order of magnitude.

4.3 Test 3: Nonlinear Fokker–Planck Equations for Fermions and Bosons

In [35,36], a nonlinear Fokker–Planck type equation modelling the relaxation of fermion and
boson gases is studied. This equation has a linear diffusion and a nonlinear convection term:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ω

∂t
= div (x (1 + k ω)ω + ∇ω) , x ∈ R

d , t > 0,

ω(x, 0) = ω0(x),

(31)

123

J Sci Comput (2016) 68:975–1001 993

with k = 1 in the boson case and k = −1 in the fermion case. For this equation, the explicit
solution is not known except steady states, but there are several works devoted to the long
time behavior based on the knowledge of the qualitative behavior of the entropy functional.
The long time behavior of this model has been rigorously investigated quite recently in [35]
via an entropy-dissipation approach. More precisely, the stationary solution of (31) is given
by the Fermi-Dirac (k = −1) and Bose–Einstein (k = 1) distributions:

ωeq(x) = 1

βe
|x |2
2 − k

, (32)

where β ≥ 0 is such that ωeq has the same mass as the initial data ω0. For this equation,
there exists an entropy functional given by

E(t) :=
∫

Rd

(|x |2
2

ω + ω log(ω) − k(1 + kω) log(1 + kω)

)

dx, (33)

such that

d

dt
Eω(t) = −I(t),

where the entropy dissipation I(t) is defined by

I(t) :=
∫

Rd
ω (1 + kω)

∣
∣
∣
∣∇
(|x |2

2
+ log

(
ω

1 + kω

))∣
∣
∣
∣

2

dx . (34)

Then decay rates towards equilibrium are given in [35,36] for fermion case in any dimension
and for 1D boson case by relating the entropy and its dissipation. Here we want to investigate
the long time behavior of the numerical solution using different semi-implicit solvers with
large time step and compare the numerical solution with the one obtained with an explicit
method with a small time step [37].

To apply our semi-implicit scheme, we treat the linear diffusion term implicitly, and the
non-linear convective term semi-implicitly. We rewrite this PDE in the form (G) with u the
component treated explicitly, v the component treated implicitly and

H(t, u, v) = div (x (1 + k u) v + ∇v) = div (x (1 + k u) v) + �v

andwe apply a fourth order spatial discretization for the convective and diffusive components.
We consider the nonlinear Fokker–Planck Eq. (31) for fermions (k = −1) in 2D. The

initial condition is chosen as

ω0(x) = 1

2π
|x |2 exp

(

−|x |2
2

)

, x ∈ R
2,

and the computational domain is (−10, 10)2 with the space step �x = 0.1.
Evolution of the discrete relative entropy E(tn) = Eω(tn)−Eωeq and its dissipation I(tn),

given in (34), is presented in Fig. 6. This is obtained at the top by second order schemes, i.e.
classical second order explicit Runge–Kutta scheme and H-LDIRKp(2,2,2) (24), and at the
bottom by third order schemes, i.e. classical third order explicit Runge–Kutta scheme and
SSP-DIRK3(4,3,3) (27).

Weobserve exponential decay rate of these quantities,which is in agreementwith the result
proved by Carrillo et al. [35] and the numerical results proposed in [37]. Classical Runge–
Kutta schemes are subject to a parabolic condition whereas semi-implicit schemes can be
used with a large time step without affecting the accuracy even for large time asymptotics.

123

994 J Sci Comput (2016) 68:975–1001

10−10

10−8

10−6

10−4

10−2

100

 0 1 2 3 4 5 6

R
el

at
iv

e
en

tr
op

y
Ε(

t)
 in

 lo
g

sc
al

e

time t

RK2, dt=0.002
H-LDIRKp(2,2,2), dt = 0.02
H-LDIRKp(2,2,2), dt = 0.10
H-LDIRKp(2,2,2), dt = 0.20

10−10

10−8

10−6

10−4

10−2

100

 0 1 2 3 4 5 6

D
is

si
pa

tio
n

I(
t)

 in
 lo

g
sc

al
e

time t

RK2 dt=0.002
H-LDIRKp(2,2,2), dt = 0.02
H-LDIRKp(2,2,2), dt = 0.10
H-LDIRKp(2,2,2), dt = 0.20

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

 0 1 2 3 4 5 6

R
el

at
iv

e
en

tr
op

y
Ε(

t)
 in

 lo
g

sc
al

e

time t

RK3, dt=0.002
SSP-DIRK3(4,3,3), dt = 0.02
SSP-DIRK3(4,3,3), dt = 0.10
SSP-DIRK3(4,3,3), dt = 0.20

10−10

10−8

10−6

10−4

10−2

100

 0 1 2 3 4 5 6

D
is

si
pa

tio
n

I(
t)

 in
 lo

g
sc

al
e

time t

RK3, dt=0.002
SSP-DIRK3(4,3,3), dt = 0.02
SSP-DIRK3(4,3,3), dt = 0.10
SSP-DIRK3(4,3,3), dt = 0.20

(a) (b)

Fig. 6 Test 3: Fokker–Planck equation, (a) evolution of the relative entropy E�(tn) and (b) the dissipation
I�(tn) for the second order explicit Runge–Kutta scheme and for the H-LDIRKp(2,2,2) scheme (24) (top)
and for the third order explicit third order Runge–Kutta scheme and SSP-DIRK3(4,3,3) scheme (27) (bottom).
a relative entropy functional E(t). b entropy dissipation I(t)

4.4 Test 4: Hele–Shaw Flow

In this section we consider a fourth order nonlinear degenerate diffusion equation in one
space dimension called the Hele–Shaw cell [38,39]

∂ω

∂t
+ ∂

∂x

(

ω
∂3ω

∂x3

)

= 0, x ∈ R, t ≥ 0, (35)

with ω(x, t = 0) = ω0(x) ≥ 0. This example belongs to the first category of semi-linear
equations recalled at the beginning of this section, and only the unknown appearing in the
highest derivative is treated implicitly.

One of the remarkable features of Eq. (35) is that its nonlinearity guarantees the nonneg-
ativity preserving property of the solution [40] and the conservation of mass

∫

R

ω(t, x)dx =
∫

R

ω0(x)dx .

Moreover there is dissipation of surface-tension energy, that is,

d

dt

∫

R

∣
∣
∣
∣
∂ω

∂x

∣
∣
∣
∣

2

dx = −
∫

R

ω

∣
∣
∣
∣
∂3ω

∂x3

∣
∣
∣
∣

2

dx,

123

J Sci Comput (2016) 68:975–1001 995

and dissipation of an entropy which highlights similarities with the Boltzmann equation

d

dt

∫

R

ω log(ω)dx = −
∫

R

∣
∣
∣
∣
∂2ω

∂x2

∣
∣
∣
∣

2

dx .

On the one hand, we compare the numerical results obtained with our numerical approxima-
tion with the similarity property of monotonicity in time of solution

ω(t, x) = 1

120(t + τ)1/5

[

r2 − x2

(t + τ)2/5

]2

+
,

where [·]+ denotes the positive part. We have chosen r = 2, τ = 4−5 and x ∈ (−2, 2). This
solution is only ω ∈ C1(R×R) but the second derivative in space is discontinuons, therefore
we cannot expect high order accuracy. Exact and numerical solutions at various times are
reported in Fig. 8.

On the other hand, we consider the same problem with a given source term

f (τ, x) = 1

8τ 4
exp

(

− x2

4τ

) (

2 x2 τ 2 + (x4 + 6τ 2 − 9x2τ
)
exp

(

− x2

4τ

))

,

with τ = t + 1 such that the exact solution is smooth and given by ωexact (t, x) =
exp
(−x2/4(t + 1)

)
.

For the time discretization we apply the scheme (27) by writing the system of ODEs in
the form (G)with u the component treated explicitly and the v component treated implicitly:

H(t, u, v) = − ∂

∂x

(

u
∂3v

∂x3

)

+ f (t + 1, x).

Concerning the space discretization, we apply a second order centred finite difference scheme
for the space discretization

H�(t, ui , vi) = −Fi+1/2 − Fi−1/2

�x
+ f (t + 1, xi),

with

Fi+1/2 = ui+1/2
vi+2 − 3vi + 3vi−1 − vi−2

�x3
,

with ui+1/2 = (ui + ui+1)/2. The time step is chosen as previously such that �t is propor-
tional to the space step �x . In this way the stability condition associated to an hypothetical
fully explicit time discretization for this problem, i.e. �t ≤ C�x4, is strongly violated.

The numerical error in L1 and L∞ for both test cases are reported in Fig. 7 at the final
time t = 0.35. We observe a rate of convergence about 1.6 for both L1 and L∞ norms for
the non smooth solution and second order accuracy for the smooth solution.

Of course for these large time steps, the numerical scheme does not preserve positivity,
but only some small spurious oscillations occur for short times and then they are damped
after several time iteration thanks to the diffusion process (see Fig. 8).

4.5 Test 5: Surface Diffusion Flow

In this section, we consider the surface diffusion of graphs [41]

∂ω

∂t
+ divS(ω) = 0, x ∈ R

2, t ≥ 0,

123

996 J Sci Comput (2016) 68:975–1001

10−5

10−4

10−3

10−2

10−1

10−4 10−3 10−2 10−1

ε 1
 i
n

 l
o

g
 s

c
a

le

Δt in log scale

Non smooth solution
Smooth solution

2

1.6

10−5

10−4

10−3

10−2

10−1

10−4 10−3 10−2 10−1

ε ∞
 i
n

 l
o

g
 s

c
a

le

Δt in log scale

Non smooth solution
Smooth solution

2

1.6

(a) (b)

Fig. 7 Test 4: Hele–Shaw flow: a L1 error norm and b L∞ error norm for the SSP-LDIRK2(3,3,2) L-stable
scheme (24)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
(t

,x
)

x

t = 0.00
t = 0.01
t = 0.15
t = 0.35

Fig. 8 Test 4: Hele–Shaw flow: time evolution of the numerical solution for the SSP-LDIRK3(4,3,3) L-stable
scheme (27) for t = 0, 0.01, 0.15 and 0.35

where the nonlinear differential operator S is given by

S(ω) :=
(

Q(ω)

(

I − ∇ω ⊗ ∇ω

Q2(ω)

)

∇N (ω)

)

,

where Q is the area element

Q(ω) =
√
1 + |∇ω|2

and N is the mean curvature of the domain boundary �

N (ω):=
(∇ω

Q(ω)

)

. (36)

123

J Sci Comput (2016) 68:975–1001 997

The surface diffusion equation models the diffusion of mass within the bounding surface of
a solid body, where V = �� N (ω) is the normal velocity of the evolving surface �,

V = − 1

Q(u)

∂u

∂t
,

and �� denotes the Laplace–Beltrami operator [41].
There are many applications of these models, such as body shape dynamics, surface con-

struction, computer data processing or image processing. This equation is a highly nonlinear
fourth-order PDE. The higher order differential operators and additional nonlinearities for
these kind of problems are difficult to analyze and to simulate numerically due to the stiff-
ness of order �x4, where �x is the space step [27,42]. We will apply our stable high order
accurate methods based on semi-implicit time discretizations. Moreover, we will compare
our time discretization with the one proposed by Smereka [14] or in [15], where the operator
S is split in two parts

S(ω) = S(ω) − β �2ω
︸ ︷︷ ︸

less stiff part

+ β �2ω,
︸ ︷︷ ︸

stiff, dissipative part

where β is a free parameter to be determined and in [14] it is chosen as β = 2. The first part is
then treated explicitly whereas the stiff and dissipative part is treated implicitly. This splitting
technique is very effective to stabilize numerical schemes but it may affect the numerical
accuracy.

With our approach there is no need to add and subtract terms, because the system is
automatically stabilized by the proper choice of the variable that will be implicitly treated,
i.e. the numerator in the function N (ω), Eq. (36).

The solution of the surface diffusion of graphs verifies

1

2

d

dt

∫

ω2dx +
∫

ω

N 2(ω)dx = 0,

giving L2 stability.
We consider numerical solutions of the two-dimensional surface diffusion of graphs equa-

tion with the initial condition

ω0(x) = 1

2πT
exp

(

−|x |2
2T

)

.

The computational domain is (−10, 10)2 and we use a second order central finite difference
scheme together with the second order H-LDIRKp(2,2,2) scheme (24) with

H(u, v):=
(

Q(u)

(

I − ∇u ⊗ ∇u

Q2(u)

)

∇N (u, v)

)

,

and N

N (u, v):=
(∇v

Q(u)

)

.

We present in Fig. 9 the time evolution of the L2 norm of the numerical solution and its
dissipation:

d

dt
E(ω) = −I(t),

123

998 J Sci Comput (2016) 68:975–1001

(a) (b)

Fig. 9 Test 5: surface diffusion flow, (a) evolution of the L2 norm and (b) the dissipation I�(tn) for second
order H-LDIRKp(2,2,2) L-stable scheme (24) and the one proposed in [14] based on a splitting technique in
log scale. a functional E(t). b dissipation I(t)

where the functional E(ω) and the dissipation I(t) are defined by

E(ω) =
∫

ω2(t, x)dx, I(t) =
∫

N 2(ω(t, x))dx .

The results show that our second order numerical scheme (24) is stable and accurate for large
time steps whereas the one based on the splitting technique given in [14] is stable but less
accurate for large time step �t = 0.1. These numerical simulations illustrate the efficiency
of our approach based on semi-implicit numerical schemes.

5 Conclusions

In this paper we show that classical IMEX schemes can be adopted in a much wider context
that the one they were originally introduced for. Indeed, in several contexts, the stiffness of
the problem is essentially linear, and therefore IMEX schemes can be successfully adopted by
treating the linear stiff part implicitly. Note that this approach is not equivalent to a lineariza-
tion of the problem, and in several cases it is much simpler to apply than linearization. The
overall accuracy of the scheme is automatically guaranteed by the standard order conditions
for IMEX schemes. Many practical examples showing how to apply IMEX schemes in this
new context are presented. We believe that this new approach can be successfully applied in
many other contexts well beyond the ones presented in the paper.

Acknowledgments Francis Filbet is partially supported by the European Research Council ERC Starting
Grant 2009, Project 239983-NuSiKiMo and the French ANR project STAB. Giovanni Russo and Sebastiano
Boscarino have been partially supported by Italian PRIN 2009 project “Innovative numerical methods for
hyperbolic problems with application to fluid dynamics, kinetic theory, and computational biology”, Prot. No.
2009588FHJ.

Appendix

Here we prove that it is possible to apply the IMEX schemes to the general system (8) with
no doubling of the stage fluxes. We start observing that by choosing ŷ = (t, u) and z = u,
we can rewrite system (1) as

123

J Sci Comput (2016) 68:975–1001 999

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d ŷ

dt
(t) =

(
1

H(ŷ(t), z(t))

)

,

dz

dt
(t) = H(ŷ(t), z(t)),

(37)

with initial conditions ŷ(t0) = (t0, u0), z(t0) = u0.
In this way, system (37) for (ŷ, z) is a particular case of an autonomous partitioned system

in which F1 = (1,H) and F2 = H but apparently with an additional computational cost
since we double the number of variables. Now, we apply the partitioned Runge–Kuttamethod
(6)–(7) to (37) obtaining

⎧
⎪⎪⎨

⎪⎪⎩

k̂i = H
(

Ŷi , Zi

)
, 1 ≤ i ≤ s,

�i = H
(

Ŷi , Zi

)
, 1 ≤ i ≤ s,

with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ŷi = ŷn + �t
s∑

j=1

âi, j k̂ j , 1 ≤ i ≤ s,

Zi = zn + �t
s∑

j=1

ai j � j , 1 ≤ i ≤ s,

Using the assumption (5), that is,
∑

j âi, j = ĉi , we obtain that the first component of Ŷ at

the stage i is equal to tn + ĉi�t , and therefore, under the consistency condition
∑

i b̂i = 1,
the first component of ŷ at time tn+1 is equal to time tn+1.

Replacing ŷ by (t, y), we have
⎧
⎨

⎩

ki = H (tn + ĉi �t, Yi , Zi
)
, 1 ≤ i ≤ s,

�i = H (tn + ĉi�t, Yi , Zi
)
, 1 ≤ i ≤ s,

(38)

with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Yi = yn + �t
s∑

j=1

âi, j k j , 1 ≤ i ≤ s,

Zi = zn + �t
s∑

j=1

ai j � j , 1 ≤ i ≤ s,

Equation (38) already shows that ki = �i , i = 1, . . . , s. The numerical solutions at the next
time step are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn+1 = yn + �t
s∑

i=1

b̂i ki ,

zn+1 = zn + �t
s∑

i=1

bi ki .

At this stage let us address several issues: number of evaluations, storage, order of accuracy
and embedded methods.

123

1000 J Sci Comput (2016) 68:975–1001

Remark 5.1 Concerning the number of evaluations of H, we observe that by writing (G) as
an autonomous partitioned system, we have �i = ki for all 1 ≤ i ≤ s. Therefore only one
evaluation of H is needed in (38), and only one set of stage fluxes is computed. Note that in
(37), we could also choose y = u and ẑ = (t, u) and therefore use the (ci)i coefficients for
time stages.

References

1. Caflisch, R.E., Jin, S., Russo, G.: Uniformly accurate schemes for hyperbolic systems with relaxation.
SIAM J. Numer. Anal. 34(1), 246–281 (2001)

2. Carpenter,M.H.,Kennedy,C.A.:AdditiveRunge–Kutta schemes for convection–diffusion–reaction equa-
tions. Appl. Numer. Math. 44, 139–181 (2003)

3. Chen, C.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with relaxation terms and entropy.
Commun. Pure Appl. Math. 47, 787–830 (1994)

4. Durran, D.R., Blossey, P.N.: Implicit–explicit multistep methods for fast-wave–slow-wave problems.
Mon. Wea. Rev. 140, 1307–1325 (2012)

5. Jin, S.: Runge–Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput.
Phys. 122, 51–67 (1995)

6. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equa-
tions. In: Trigiante, D. (ed.) Recent Trends in Numerical Analysis, Advances Theory Computational
Mathematics, vol. 3, pp. 269–288. Nova Sci. Publ., Huntington, NY (2001)

7. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems
with relaxations. J. Sci. Comput. 25, 129–155 (2005)

8. Weller, H., Lock, S.J., Wood, N.: Runge–Kutta IMEX schemes for the horizontally explicit/vertically
implicit (HEVI) solution of wave equations. J. Comput. Phys. 252, 365–381 (2013)

9. Hairer, E.,Wanner, G.: Solving ordinary differential equation. II. Stiff and differential algebraic problems,
Springer Series in Computational Mathematics, 14, Springer (second revised edition 1996), corrected
second printing 2002

10. Higueras, I., Mantas, J.M., Roldán, T.: Design and implementation of predictors for additive semi-implicit
Runge–Kutta methods. SIAM J. Sci. Comput. 31(3), 2131–2150 (2009)

11. Zhong, X.: Additive semi-implicit Runge–Kutta methods for computing high-speed non equilibrium
reactive flows. J. Comput. Phys. 128, 19–31 (1996)

12. Boscarino, S., LeFloch, P.-G., Russo, G.: High-order asymptotic-preserving methods for fully non linear
relaxation problems. SIAM J. Sci. Comput. 36, A377–A395 (2014)

13. Berthon, C., LeFloch, P.-G., Turpault, R.: Late-time relaxation limits of nonlinear hyperbolic systems. A
general framework. Math. Comput. 82, 831–860 (2012)

14. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput.
19(1–3), 439–456 (2003)

15. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems
with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010)

16. Giraldo, F.X., Restelli, M., Läuter, M.: Semi-implicit formulations of the Navier–Stokes equations: appli-
cation to nonhydrostatic atmosphereric modeling. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010)

17. Giraldo, F.X., Kelly, J.F., Costantinescu, E.M.: Implicit–explicit formulations of a three-dimensional
nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput. 35(5), B1162–B1194
(2013)

18. Araújo, A., Barbeiro, S., Serranho, P.: Stability of finite difference schemes for complex diffusion
processes. SIAM J. Numer. Anal. 50, 1284–1296 (2012)

19. Boscarino, S., Russo, G.: High-order asymptotic-preservingmethods for nonlinear relaxation from hyper-
bolic systems to convection–diffusion equations. In: Submitted to Proceedings, High Order Nonlinear
Numerical Methods for Evolutionary PDEs (HONOM 2013), March 18–22, Bordeaux (2013)

20. Boscarino, S., Bürger, R., Mulet, Pep, Russo, G., Villada, L.M.: Linearly implicit IMEX Runge–Kutta
methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37, B305–B331
(2015)

21. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation. I. Non-stiff Problems,
Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

22. Ascher, U., Ruuth, S., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time dependent partial
differential equations. Appl. Numer. Math. 25, 151–167 (1997)

123

J Sci Comput (2016) 68:975–1001 1001

23. Boscarino, S.: Error analysis of IMEXRunge–Kutta methods derived from differential algebraic systems.
SIAM J. Numer. Anal. 45, 1600–1621 (2007)

24. Boscarino, S.: On an accurate third order implicit–explicit Runge–Kutta method for stiff problems. Appl.
Numer. Math. 59, 1515–1528 (2009)

25. Boscarino, S., Russo,G.: Flux-explicit IMEXRunge–Kutta schemes for hyperbolic to parabolic relaxation
problems. SIAM J. Numer. Anal. 51, 163–190 (2013)

26. Hairer, E., Lubich, C., Roche,M.: Error of Runge–Kuttamethods for stiff problems studied via differential
algebraic equations. BIT Numer. Math. 28(3), 678–700 (1988)

27. Filbet, F., Guo, R., Xu, Y.: Efficient high order semi-implicit time discretization and local discontinuous
Galerkin methods for highly nonlinear PDEs. Preprint (2015)

28. Filbet, F., Rodrigues, L.M.: Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system
with a strong external magnetic field. Preprint (2015)

29. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms
for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31, 2nd edn.
Springer, Berlin (2006)

30. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.
SIAM Rev. 43, 89–112 (2001)

31. Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and application
to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)

32. Higueras, I., Roldán, T.: Construction of additive semi-implicit Runge–Kutta methods with low-storage
requirements. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0116-2

33. Filbet, F., Rambaud, A.: Analysis of an asymptotic preserving scheme for relaxation systems. ESAIM
Math. Model. Numer. Anal. 47, 609–633 (2013)

34. Zhang, K., Wong, J.C.F., Zhang, R.: Second-order implicit–explicit scheme for the Gray–Scott model. J.
Comput. Appl. Math. 213, 559–581 (2008)

35. Carrillo, J.A., Laurençot, Ph, Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well-posedness and
long-time asymptotics. J. Differ. Equ. 247, 2209–2234 (2009)

36. Carrillo, J.A., Rosado, J., Salvarani, F.: 1D nonlinear Fokker–Planck equations for fermions and bosons.
Appl. Math. Lett. 21, 148–154 (2008)

37. Bessemoulin-Chatard,M., Filbet, F.:Afinite volume scheme for nonlinear degenerate parabolic equations.
SIAM J. Sci. Comput. 34, 559–583 (2012)

38. Bertozzi, A.L.: The mathematics of moving contact lines in thin liquid films. Not. AMS 45, 689–697
(1998)

39. Pareschi, L., Russo, G., Toscani, G.: A kinetic approximation to Hele–Shaw flow. C. R. Math., Acad. Sci.
Paris, Ser. I 338(2), 178–182 (2004)

40. Bertozzi, A.L., Pugh, M.: The lubrication approximation for thin viscous films: regularity and long-time
behavior of weak solutions. Commun. Pure Appl. Math. XLIX, 85–123 (1996)

41. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and
mean curvature flow. Acta Numer. 14, 139–232 (2005)

42. Xu, Y., Shu, C.W.: Local discontinuous Galerkin method for surface diffusion and Willmore flow of
graphs. J. Sci. Comput. 40, 375–390 (2009)

123

http://dx.doi.org/10.1007/s10915-015-0116-2

	High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations
	Abstract
	1 Introduction
	2 Relation Between the Various Types of Systems
	3 Numerical Methods for ODEs
	3.1 From Partitioned to Semi-implicit Runge--Kutta Methods
	3.2 Classification of IMEX Runge--Kutta Schemes
	3.3 Order Conditions and Numerical Schemes
	3.3.1 The Second Order Semi-implicit Runge--Kutta Scheme: H-SDIRK2(2,2,2)
	3.3.2 The Stiffly Accurate Semi-implicit Runge--Kutta Scheme: LSDIRK2(2,2,2)
	3.3.3 The IMEX-SSP2(2,2,2) L-stable Scheme: H-LDIRKp(2,2,2)
	3.3.4 The Second Order Semi-implicit Runge--Kutta Scheme of Type CK: H-CN(2,2,2)
	3.3.5 The Stiffly Accurate IMEX-SSP2(3,3,2) L-stable Scheme: SSP-LDIRK2(3,3,2)
	3.3.6 The IMEX-SSP3(4,3,3) L-stable Scheme: SSP-LDIRK3(4,3,3)

	4 Applications
	4.1 Test 1: Reaction--Diffusion Problem
	4.2 Test 2: Nonlinear Convection--Diffusion Equation
	4.3 Test 3: Nonlinear Fokker--Planck Equations for Fermions and Bosons
	4.4 Test 4: Hele--Shaw Flow
	4.5 Test 5: Surface Diffusion Flow

	5 Conclusions
	Acknowledgments
	Appendix
	References

