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Abstract We use high order finite difference methods to solve the wave equation in the
second order form. The spatial discretization is performed by finite difference operators sat-
isfying a summation-by-parts property. The focus of this work is on numerical treatments
of non-conforming grid interfaces and non-conforming mesh blocks. Interface conditions
are imposed weakly by the simultaneous approximation term technique in combination with
interface operators, whichmove discrete solutions between grids at an interface. In particular,
we consider an interpolation approach and a projection approach with corresponding opera-
tors. A norm-compatible condition of the interface operators leads to energy stability for first
order hyperbolic systems. By imposing an additional constraint on the interface operators,
we derive an energy estimate of the numerical scheme for the second order wave equation.
We carry out eigenvalue analyses to investigate the additional constraint and its relation to
stability. In addition, a truncation error analysis is performed, and discussed in relation to
convergence properties of the numerical schemes. In the numerical experiments, stability and
accuracy properties of the numerical scheme are further explored, and the practical usefulness
of non-conforming grid interfaces and mesh blocks is discussed in two practical examples.

Keywords Second order wave equation · Finite difference method · SBP-SAT · Non-
conforming grid interface · Interpolation · Coupling

Mathematics Subject Classification 65M06 · 65M12 · 65M15

1 Introduction

For wave propagation problems, the computational domain is often large compared with
the wavelength, and waves travel for a long time. It has been shown that high order accurate
discretizations in time and space aremore efficient to solve these problemson smooth domains
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[9,15]. Although it is straightforward to derive high order finite difference stencils in the
interior of the computational domain, it is challenging to derive boundary closures in a stable
and accurate way. For long time simulations, it is also desirable that the discretization is
strictly stable [10, p. 129] so that the numerical solution only exhibits growth originated
from the differential equation. A successful candidate of high order finite differences is
the summation-by-parts simultaneous approximation term (SBP-SAT) method [5,30]. An
SBP operator [17] approximates a spatial derivative, and mimics integration-by-parts via
its associated norm. The SAT method [3] is used to impose boundary conditions and grid
interface conditions weakly.

Traditionally, the wave equation is written as a first order hyperbolic system, and is then
solved by well-developed methods for such systems. However, there are various drawbacks
in doing so [16]. For example, new variables are introduced in the system. This not only
leads to more computational work, but also requires a careful derivation of the boundary
conditions for the new variables. Therefore, it is desirable to solve directly the wave equation
in the second order form. The SBP-SAT scheme has been used to solve the wave equation in
the second order in [1,22] for different boundary conditions, and in [21] for a discontinuous
medium. In [31], the method is extended to handle complex geometries and heterogeneous
media. Stability of the numerical scheme is proved by the energy method, and such a scheme
is often termed as energy stable.

For a wave that travels in an inhomogeneous medium, the wave speed varies in space. The
frequency of a wave is given by initial and boundary data, and any present interior forcing. To
resolve a given frequency, the corresponding wavelength is proportional to the wave speed.
A reduction in the wave speed confined to a subset of the physical domain yields a wave with
a shorter wavelength localized in that subset. In [11,15], the accuracy of a numerical solution
to a Cauchy problem is stated in terms of the number of grid points per wavelength. For
computational efficiency it is important that a fine mesh is used in the subset that constitutes
the slower medium, and a coarse mesh elsewhere.

To achieve this, we can partition the computational domain into blocks, where the mesh
sizes are constant in each block but differ in different blocks. Though there are conforming
strategies [13], it ismore natural that the partitioning results in non-conforming grid interfaces
with hanging nodes, or even non-conforming mesh blocks. Suitable interface conditions
are then imposed to couple adjacent mesh blocks and yield a well-posed problem. Many
techniques for the numerical treatment of interface conditions have been proposed. In [27], an
energy conserving discretization of the elastic wave equation in the second order formulation
is presented. The finite difference operators satisfy the principle of SBP, and the grid interface
with a 1:2 refinement ratio is handled by using ghost points. Stability is proved by the energy
method, but the convergence rate of the numerical scheme is limited to two.

Besides the ghost point approach, the SAT method can be used for the numerical cou-
pling of grid interfaces, for example for the advection-diffusion equation in [4] and the wave
equation in [21]. In [20], norm-compatible interpolation operators are constructed to handle
non-conforming grid interfaces, and the Euler equations are used as the model problem. The
norm-compatible condition leads to an energy estimate for first order hyperbolic systems,
and also for the Schrödinger equation [26]. The interpolation error of the norm-compatible
interpolation operators [20] is of the same order as the truncation error of the SBP opera-
tors. In the numerical experiments, it is shown that the convergence rate of the numerical
scheme applied to the Euler equations is not lowered by using the interpolation operators,
compared with the case with only conforming grid interfaces. To use the interpolation oper-
ators presented in [20], the mesh refinement ratio is fixed to 1:2 and the mesh blocks must
be conforming.
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Recently, a general purpose methodology for coupling non-conforming grid interfaces as
well as non-conforming mesh blocks was developed in [14]. This technique uses projection
operators to move a discrete finite difference solution to piecewise polynomial functions in a
subspace of a Hilbert space where the coupling is done. The wave equation in the first order
system formulation is used as a model problem. Stability is proved by the energy method,
and the numerical experiments demonstrate that the convergence rate is high order though
slightly lower than when conforming grid interfaces were used. The projection operators
allow for a very flexible configuration of meshing in the sense that grid interfaces and mesh
blocks do not need to be conforming. Similarly to the interpolation operators, the projec-
tion operators satisfy a norm-compatible condition that is essential for the stability proof
to hold.

In this paper, we focus on numerical treatments of non-conforming grid interfaces for the
wave equation in the second order form in the framework of the SBP-SAT methodology. In
particular, stability and accuracy properties of the resultingmethods are investigated.We have
found that in contrast to first order hyperbolic systems, the norm-compatible condition is not
sufficient for energy stability. The second and fourth order accurate interpolation operators in
[20] and projection operators in [14] satisfy an additional condition. We give a stability proof
by the energy method for those cases. For higher order accurate operators, the additional
condition is not satisfied, and we cannot prove stability. In fact, numerical experiments
show that the sixth and eighth order accurate schemes based on the interpolation operators
are unstable in several settings, while no unphysical growth is observed for the higher order
accurate schemeswith the projectionoperators.Aneigenvalue analysis of the spatial operators
support these observations.

Local mesh refinement reduces the number of grid points significantly in computations.
To achieve full efficiency, the numerical scheme must also be accurate enough. It is desirable
that the convergence rate is not depressed by using non-conforming grid interfaces and mesh
blocks. Even though this is in most cases true for first order hyperbolic systems, the situation
for second order equations is less favourable. By a truncation error analysis, we show that
the truncation error near the corners of mesh blocks connected by the non-conforming grid
interfaces is two orders larger than that with conforming grid interfaces. The large truncation
error is localized at only a few grid points in a two dimensional space, and its effect to the
convergence rate may therefore be weakened. In fact, the numerical experiments show that
the convergence rate with a non-conforming grid interface is only one order lower than the
corresponding case with a conforming grid interface. In addition, we give some practical
examples to compare the numerical schemes with interpolation operators and projection
operators. We have found that in certain cases it is beneficial to use non-conforming grid
interfaces, albeit the accuracy reduction.

The structure of this paper is as follows. In Sect. 2, the SBP-SAT methodology is intro-
duced. We then discuss stability and accuracy properties of the numerical coupling based on
interpolation operators in Sect. 3, and projection operators in Sect. 4. Numerical experiments
are carried out in Sect. 5 including the eigenvalue analyses for stability, convergence verifi-
cations for accuracy and two practical examples of problems with a complex geometry. We
conclude and mention future work in Sect. 6.

2 Preliminaries

We begin with the preliminaries that will be used in the discussion of the SBP-SAT method.
Letw1(x) andw2(x) be two real-valued functions in L2[0, 1]. An inner product is defined by
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Table 1 α Values

2p 2 4 6 8 10

α 0.4 0.2508560249 0.1878715026 0.0015782259 0.0351202265

(w1, w2) = ∫ 1
0 w1w2dx , with a corresponding norm ‖w1‖2 = (w1, w1). The computational

domain [0, 1] is discretized by N + 1 equidistant grid points

xi = ih, i = 0, 1, . . . , N , where h = 1

N
.

With any fixed N , a grid function can be represented by a vector and an operator can be rep-
resented by a matrix. Throughout this paper, we use an operator and a matrix interchangeably
when there is no ambiguity.

2.1 SBP Finite Difference Operators

To solve the wave equation with constant coefficients in a rectangular domain, an SBP finite
difference operator approximating second derivative ∂2/∂x2 is needed. In this paper, we use
the operators constructed in [19,23], and defined as follows.

Definition 1 A difference operator D2 = H−1(−M+BS) approximating second derivative
∂2/∂x2 is an explicit narrow diagonal second derivative SBP operator, if H is diagonal and
positive definite, M is symmetric positive semi-definite, B = diag(−1, 0, . . . , 0, 1), the first
and last row of S is a one sided approximation of ∂/∂x at the boundary and the interior stencil
width of D2 is minimal.

The diagonal positive definite matrix H defines the SBP norm, and it has the interior
weight h and special boundary weights. A difference operator is explicit if no system of
equations is needed to solve when computing difference approximations, i.e. compact Padé-
type schemes are not considered here. The concept narrow is introduced in [24], whichmeans
that the interior finite difference stencil width is minimal. To derive an energy estimate for the
SBP-SAT scheme for the wave equation with a Dirichlet boundary condition or an interface
condition at a material heterogeneity, the following lemma, which is often referred to as the
borrowing trick [1,21,31], is essential:

Lemma 1 The matrix M in the diagonal norm SBP operators D2 constructed in [19,23] can
be written as

M = hα(BS)T BS + M̃,

where h is the grid spacing, α is a constant independent of h, the matrices B and S are the
same as in Definition 1, and M̃ is symmetric positive semi-definite.

The values of α are computed in [21] for the second, fourth and sixth order accurate SBP
operators D2. We use the same technique to compute the values of α for the eighth and tenth
order cases, and list them in Table 1.

When a complex geometry is present, a curvilinear grid can be used to resolve the geo-
metrical features. In this case, even if the original equation has only constant coefficients,
the transformed equation has second derivative terms with variable coefficients, and mixed
derivative terms [29]. For this reason, there is a need of SBP operators D1 approximating
first derivative ∂/∂x and D(b)

2 = H−1(−M (b) + B(b)S) approximating second derivative
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(a) (b)

Fig. 1 Conformingmesh blocks with non-conforming grid interfaces. aTwomesh blocks, b four mesh blocks

∂/∂x(b(x)∂/∂x) with b(x) > 0. To derive an energy estimate for stability, it is important
that D1 and D(b)

2 are associated with the same norm. In addition, when a mixed derivative

term is present D1 and D(b)
2 must be compatible. Compatibility [24] means that M (b) can be

written as M (b) = DT
1 HB(b)D1 + R(b) where R(b) is symmetric positive semi-definite. In

this case, D(b)
2 is essentially equal to applying D1 twice plus a small dissipative term. In this

paper, we use the compatible SBP operators D1 constructed in [28] and D(b)
2 constructed in

[18]. In the special case b(x) ≡ 1, D(b)
2 in [18] coincides with the corresponding constant

coefficient SBP operators D2 in [23].
The accuracy of SBP operators are often termed as 2p, meaning that the truncation error

is O(h2p) in the interior. To satisfy the SBP property, the truncation error near the boundary
increases. For all the SBP operators we use, near the boundary the truncation error isO(h p).
For S ≈ d

dx at the boundary, the truncation error is O(h p+1). Compatible SBP operators D1

and D2 are constructed in [28] and [23] for p = 1, 2, 3, 4. The operators D1 and D2 are
further extended to tenth order accuracy in [19], but they are not compatible. The operators
D(b)
2 in [18] have accuracy p = 1, 2, 3. The construction of D(b)

2 requires the solution of a
large system of nonlinear equations, which is very involved when the accuracy order is high.
The borrowing trick for D(b)

2 is presented in [31].

3 Non-conforming Grid Interfaces Handled by Interpolation Operators

The numerical coupling of conforming grid interfaces by the SAT method for the wave
equation is discussed in [31]. Our aim in this section is to generalize the scheme to also
couple non-conforming grid interfaces by using interpolation operators. Figure 1a, b show
two examples of non-conforming grid interfaces in conforming mesh blocks. To begin with,
we consider a grid interface with a coarse grid on one side and a fine grid on the other side.
We denote the interpolation operators by IF2C and IC2F , with the subscripts F2C and C2F
referring to fine to coarse and coarse to fine, respectively.

A key concept, norm-compatible, is important because it enables interpolating solutions
across the interface while preserving the SBP property.

Definition 2 Let HC and HF denote the SBP norms corresponding to the coarse grid and
the fine grid on an interface of two mesh blocks. We call the interpolation operators IF2C
and IC2F norm-compatible if

HF IC2F = (HC IF2C )T . (1)
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We will also make use of the following definition when proving stability by the energy
method.

Definition 3 Let HC and HF denote the SBP norms corresponding to the coarse grid and
the fine grid on an interface of two mesh blocks. We call the interpolation operators IF2C
and IC2F norm-contracting if the matrices

�C := HC (IC − IF2C IC2F ) and �F := HF (IF − IC2F IF2C )

are symmetric positive semi-definite. IC and IF are identity matrices.

Norm-compatible interpolation operators for the grid interface with mesh refinement ratio
1:2 are constructed in [20]. The construction of interpolation operators with other refinement
ratios (1:4, 1:8, . . .) is possible by the same technique. The interpolation operators do not
interpolate exactly, instead they mimic the accuracy property of the diagonal norm SBP
operators. For p = 1, 2, 3, 4, the interpolation error isO(h2p) in the interior of the interface,
but near the ends of the interface the interpolation error increases to O(h p). Though the
accuracy is reduced near the ends of the interface, the number of grid points with the large
interpolation errorO(h p) is independent of h. We call them 2pth order accurate interpolation
operators, and when used together with 2pth order accurate SBP operators the scheme is also
termed as 2pth order accurate, even though the local truncation error of the semi-discretized
equation may not be O(h2p) or O(h p). Here, h is used to denote the magnitude of the mesh
sizes for the sake of a simplified notation. In Sect. 3.1.2,we perform a truncation error analysis
based on the interpolation accuracy and relate it to the convergence rate of the scheme.

For the norm-contracting condition in Definition 3, it is straightforward to show that �C

and �F are symmetric by using the norm-compatible condition in Definition 2. However,
the positive semi-definiteness is not a built-in constraint in the construction process of the
interpolation operators. In Sect. 5.1, we perform an eigenvalue analysis and show that only
the second and fourth order accurate interpolation operators constructed in [20] are norm-
contracting. However, the eigenvalue analysis of the spatial operator in Sect. 5.1 seems to
suggest, see Table 3, that the scheme with the sixth other accurate interpolation operators
is stable, indicating that the norm-contracting condition is sufficient but not necessary for
stability.

3.1 The Wave Equation with a Non-conforming Grid Interface

The wave equation in the second order form in two space dimensions is

Utt = Uxx +Uyy, (2)

in a domain Ω = [0, 1]2 and 0 ≤ t ≤ t f . We assume that the initial conditions and boundary
conditions are compatible smooth functions with compact support. As a consequence, the
true solution U is also smooth. The numerical scheme and analysis in this section are valid
with an additional forcing function in (2), althoughwe do not include it for a sake of simplified
notations.

In the numerical scheme, we use subscripts x and y to distinguish variables in different
spatial directions, and L and R to distinguish variables in different mesh blocks. In addition,
bold letters are used to denote the operators in two space dimensions, which are obtained from
the corresponding one dimensional operators through the Kronecker product Ax = Ax ⊗ Iy
and Ay = Ix ⊗ Ay , where Ix and Iy are identity matrices.

The computational domain is partitioned into two conforming mesh blocks ΩL and ΩR

with a grid interface at x = 0.5, y ∈ [0, 1]. A coarse mesh in ΩL has nxL × nyL grid points
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Table 2 Matrices that are used to
pick up solutions on the interface

Matrix Size Nonzero

E0L nxL × nxL (nxL , nxL )

E0R nxR × nx R (1, 1)

ELR nxL × nx R (nxL , 1)

ERL nxR × nxL (1, nxL )

and a fine mesh ΩR has nxR × nyR grid points. The equality nyR = 2nyL − 1 yields a 1:2
mesh refinement ratio across the interface illustrated in Fig. 1a. Since the true solution is
smooth, the proper interface conditions are continuity of the solution and continuity of first
normal derivative across the grid interface.

For a simplified notation, we define the matrices Table 2 that are used to pick up solutions
along grid interfaces. In each of those matrices, all elements are zero except one element
equal to one. The sizes along with the positions of the nonzero element are listed in the
second and third column of Table 2. Note that ELR = ET

RL .
Next, Eq. (2) is discretized by the SBP finite difference operators in space and the

non-conforming grid interface conditions are imposed weakly by the SAT method and inter-
polation operators. Since the focus here is the numerical treatment of grid interface conditions,
we omit the penalty terms for the boundary conditions, which can be constructed as in [22].
The semi-discretized equation corresponding to (2) reads:

utt = D2xLu + D2 yLu + SATu1 + SATu2 + SAT∂u, (3a)

vt t = D2xRu + D2 yRv + SATv1 + SATv2 + SAT∂v, (3b)

where

SATu1 = 1

2
H−1

xL S
T
xL(E0Lu − (ELR ⊗ IF2C )v),

SATu2 = −τ H−1
xL (E0Lu − (ELR ⊗ IF2C )v),

SAT∂u = −1

2
H−1

xL (E0L SxLu − (ELR ⊗ IF2C )SxRv),

(4)

and

SATv1 = −1

2
H−1

xR S
T
xR(E0Rv−(ERL ⊗ IC2F )u),

SATv2 = −τ H−1
xR (E0Rv−(ERL ⊗ IC2F )u),

SAT∂v = 1

2
H−1

xR (E0RSxRv − (ERL ⊗ IC2F )SxLu).

(5)

Here, u and v are grid functions in ΩL and ΩR with elements organized column-wise. In
Eq. (3a), both SATu1 and SATu2 impose weakly the continuity of the solution across the grid
interface, and SAT∂u imposes weakly the continuity of the first normal derivative. The term
STxL in SATu1 makes the semi-discretization symmetric with respect to the SBP norms. The
penalty parameter τ in SATu2 controls the strength of the weak enforcement, and its value is
determined by the energy method. The penalty terms in Eq. (3b) are constructed in a similar
way.

If the grids are conforming, we replace the interpolation operators in (4) and (5) by identity
matrices, and recover the numerical scheme in [31] for conforming interface problems.
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3.1.1 Stability Analysis by the Energy Method

In the stability analysis below, the norm-contracting property of the interpolation operators
is used to derive an energy estimate. The same interpolation operators are used for the
Schrödinger equation in [26], but for that case the norm-contracting property is not needed
for energy stability. For the Euler equations, the norm-contracting property is not needed
when the standard SBP operators are used for the discretization, but needed when upwind
SBP operators are used [20].

Theorem 1 If the interpolation operators IF2C and IC2F are norm-compatible and norm-
contracting, then the semi-discretization (3) is stable for any τ such that

τ ≥ max

(
1

2αhxL
,

1

2αhxR

)

.

Proof Multiplying Eq. (3a) by uTt (HxL ⊗ HyL) and Eq. (3b) by vTt (HxR ⊗ HyR) from the
left, and using the equality ELR = ET

RL and the norm-compatible condition in Definition 2,
we obtain

d

dt

(
uTt (HxL ⊗ HyL)ut + vTt (HxR ⊗ HyR)vt

)

= d

dt

(
−uT (MxL ⊗ HyL)u + uT (E0L SxL ⊗ HyL)u − τuT (E0L ⊗ HyL)u

− vT (MxR ⊗ HyR)v − vT (E0RSxR ⊗ HyR)v − τvT (E0R ⊗ HyR)v

− uT (STxL ELR ⊗ HyL IF2C )v + vT (STxR ERL ⊗ HyR IC2F )u

+ 2τuT (ELR ⊗ HyL IF2C )v − uT (HxL ⊗ MyL)u − vT (HxR ⊗ MyR)v
)

. (6)

Since the penalty terms for the boundary conditions are omitted, the B matrix of D2 in Defi-
nition 1 is adjusted accordingly: the nonzero element corresponding to the omitted boundary
condition is changed to zero. Next, the following equality is obtained by moving all terms
on the right hand side of (6) to the left

d

dt
EW
H = 0, (7)

where

EW
H = uTt (HxL ⊗ HyL)ut + vTt (HxR ⊗ HyR)vt

+ uT (MxL ⊗ HyL)u − uT (E0L SxL ⊗ HyL)u + τuT (E0L ⊗ HyL)u

+ vT (MxR ⊗ HyR)v + vT (E0RSxR ⊗ HyR)v + τvT (E0R ⊗ HyR)v

+ uT (STxL ELR ⊗ HyL IF2C )v − vT (STxR ERL ⊗ HyR IC2F )u

− 2τuT (ELR ⊗ HyL IF2C )v + uT (HxL ⊗ MyL)u + vT (HxR ⊗ MyR)v. (8)

It remains to show that EW
H ≥ 0 for all u and v. In this case, EW

H is a discrete energy of the
semi-discretized Eq. (3). Since the interpolation operators are norm-contracting, it follows
that

uT (E0L ⊗ HyL)u ≥ uT (E0L ⊗ HyL IF2C IC2F )u

= uT (E0L ⊗ I TC2F HyR IC2F )u

= ((E0L ⊗ IC2F )u)T (IxL ⊗ HyR)((E0L ⊗ IC2F )u).

123



1010 J Sci Comput (2016) 68:1002–1028

Consequently, we have for u:

uT (E0L ⊗ HyL)u ≥ 1

2
uT (E0L ⊗ HyL)u

+ 1

2
((E0L ⊗ IC2F )u)T (IxL ⊗ HyR)((E0L ⊗ IC2F )u), (9)

and for v:

vT (E0R ⊗ HyR)v ≥ 1

2
vT (E0R ⊗ HyR)v

+ 1

2
((E0R ⊗ IF2C )v)T (Ix R ⊗ HyL)((E0R ⊗ IF2C )v). (10)

In addition, Lemma 1 gives:

MxL = M̃xL + hxLα(E0L SxL)T (E0L SxL),

MxR = M̃x R + hxRα(E0RSxR)T (E0RSxR),
(11)

where M̃xL and M̃x R are symmetric positive semi-definite matrices. We then substitute (9),
(10) and (11) to (8), and obtain

EW
H ≥ ϒ1 + ϒ2 + ϒ3,

where

ϒ1 = uTt (HxL ⊗ HyL)ut + vTt (HxR ⊗ HyR)vt + uT (M̃xL ⊗ HyL)u

+ vT (M̃x R ⊗ HyR)v + uT (HxL ⊗ MyL)u + vT (HxR ⊗ MyR)v,

ϒ2 = hxLα(E0L SxLu)T HyL(E0L SxLu)

− (E0L SxLu)T HyL(E0Lu − (ELR ⊗ IF2C )v)

+ τ

2
(E0Lu − (ELR ⊗ IF2C )v)T HyL(E0Lu − (ELR ⊗ IF2C )v),

ϒ3 = hxRα(E0RSxRv)T HyR(E0RSxRv)

− (E0RSxRv)T HyR((ERL ⊗ IC2F )u − E0Rv)

+ τ

2
((ERL ⊗ IC2F )u − E0Rv)T HyR((ERL ⊗ IC2F )u − E0Rv).

Since M̃xL and M̃x R are positive semi-definite, it followsϒ1 ≥ 0. We also need to make sure
that ϒ2 ≥ 0 and ϒ3 ≥ 0. Consider ϒ2 first and let

a = E0L SxLu and b = E0Lu − (ELR ⊗ IF2C )v,

then

ϒ2 = hxLαaT HyLa − aHyLb + τ

2
bT HyLb. (12)

We apply Young’s inequality

aHyLb ≤ δ

2
aT HyLa + 1

2δ
bT HyLb

to the second term in (12) with δ = 2hxLα, and obtain

ϒ2 ≥ τ

2
bT HyLb − 1

4hxLα
bT HyLb
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To have ϒ2 ≥ 0, we need τ/2 ≥ 1/(4hxLα), which implies τ ≥ 1/(2hxLα). In the same
way, we find that to have ϒ3 ≥ 0 it requires τ ≥ 1/(2hxRα). Therefore, for any

τ ≥ max

(
1

2αhxL
,

1

2αhxR

)

,

we have EW
H ≥ 0 and an energy estimate is obtained so that (3) is stable. 	


If the mesh size is the same in the x and y directions, then hxR = 1
2hxL and

τ ≥ 1

αhxL

results in an energy estimate.
Although there is no upper bound for the parameter τ from the energy analysis, it is not

good to choose a very large value because then a small time step must be used for stability.

3.1.2 Convergence Rate

We discuss the accuracy property of (3) by analyzing the truncation error of (3a). Equation
(3b) can be analyzed in a similar way. The truncation errors of the SBP operators D2xL and
D2xR are both O(h2p) in the interior and O(h p) near the interface. In the first penalty term
SATu1 in Eq. (4), the truncation error is dominated by an interpolation errorO(h p) located at
the corners of mesh blocks connected by the non-conforming grid interface. Due to the h−1

factor in both H−1
x and STxL , the largest truncation error of SATu1 is therefore O(h p−2) and

is localized at a few grid points. Similarly, we find that the largest truncation errors of SATu2
and SAT∂u areO(h p−2) andO(h p−1), and are localized at a few grid points. The number of
such grid points is independent of mesh sizes. Consequently, the dominated truncation error
of the semi-discretization (3a) is O(h p−2) localized at a finite number of grid points.

In [32], the convergence of the SBP-SAT discretization of the second order wave equation
in one space dimension with a grid interface is analyzed. The result is that if the penalty
parameter is chosen strictly larger than the limit value required for stability, the truncation
errorO(h p) localized at a few grid points near the grid interface results in an errorO(h p+1)

in the solution for p = 1, and an errorO(h p+2) for p ≥ 2. In other words, we gain one order
in convergence if p = 1 and two orders if p ≥ 2.

In our case, the spatial dimension is two and there is the possibility of another gain in
convergence. That is, the number of grid points with truncation error O(h p−2) is finite and
independent of mesh sizes. Hence, the H -norm (equivalent to the standard L2 norm in finite
dimension) of this truncation error is O(h p−1), and is one order higher than the pointwise
truncation error. Therefore, we can hope to get an extra gain in convergence comparing with
the corresponding one dimensional case.

By a convergence test in Sect. 5, we find that the extra gain is one order, which gives a
total gain of two orders for p = 1 and three orders for p ≥ 2. That is, the truncation error
O(h p−2) localized at a few grid points results in an error O(h p) in the solution for p = 1,
and an error O(h p+1) for p ≥ 2. To obtain this convergence rate, it is important to note that
the penalty parameter must be strictly larger than the value required for stability.

Comparing with the case with only conforming grid interfaces, the convergence rate
obtained in our numerical experiments is one order lower. Even though a non-conforming grid
interface allows for a local mesh refinement, the loss of accuracy may attenuate its efficiency
in practice. To overcome the accuracy reduction by the non-conforming grid interfaces, we
have tried to build interpolation operators with errorO(h2p) in the interior and errorO(h p+1)
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(a) (b) (c)

Fig. 2 Non-conforming mesh blocks with T-junction interfaces

near the ends of the interface, based on both diagonal and block norm SBP operators by using
the symbolic software MAPLE and the approach presented in [20]. However, we could not
find a solution to the resulting system of equations.

3.2 An Extension to T-junction Interfaces

So far, we have only considered conforming mesh blocks as shown in Fig. 1a, b. The grid at
the interface between the two mesh blocks on the left in Fig. 1b is conforming. It is then in
many cases desirable not to consider it as a grid interface, but to use themesh shown in Fig. 2a
instead, where the interface forms a T-junction and themesh blocks become non-conforming.
This is because SBP operators have a larger truncation error near the grid interface than in
the interior. The usage of redundant grid interfaces results in additional errors in the solution.
Moreover, avoiding T-junction interfaces may lead to a bad partitioning of the computational
domainwithmanyunnecessarymeshblocks.However, one has to dealwith an extra difficulty:
near the interface intersection point in Fig. 2a, the SBP norm in the vertical direction has the
interior weights in the left mesh block, and the boundary weights in the two mesh blocks
on the right. As a consequence, the norm-compatible condition is violated and no energy
estimate can be derived.

In [25], T-junction operators are constructed to make the SBP norms compatible at a T-
junction interface, and are used in the numerical scheme of solving the advection equation
and the Schrödinger equation in the SBP-SAT framework. Stability is proved by the energy
method, but it comeswith the cost that theT-junction operators introduce an extra contribution
to the truncation error ofO(h p−1) for the advection equation andO(h p−2) for theSchrödinger
equation. Such errors occur even there is no hanging nodes in the mesh, though they are only
localized at a few grid points near the T-junction intersection point. The T-junction operators
in [25] can also be used together with the interpolation operators to handle non-conforming
grid interfaces. One constraint for the T-junction operators is that the interface intersection
point must be a grid point in all involved mesh blocks, for example a close-up T-junction
interface in Fig. 2b. It is not straightforward to handle the T-junction interface shown in Figure
2c by the same technique. This kind of problem can be handled by the projection operators,
which are used in this paper and discussed in Sect. 4.

4 Non-conforming Grid Interfaces and Mesh Blocks Handled
by Projection Operators

In [14], a new methodology of handling grid interfaces is introduced. In contrast to the inter-
polation operators which are based on a direct interpolation technique, the new methodology
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is based on a projection method. The highlights are that there is no strict requirement on the
mesh refinement ratio, and the mesh blocks do not need to be conforming.

To illustrate how the projection method works, we consider again the mesh Ω shown in
Figure 1a, and denote yL in ΩL and yR in ΩR the grids on the interface. In addition, zL and
zR denote the discrete finite difference solutions on yL and yR . In a general setting, eight
projection operators are used to move zL and zR between the two grids on the interface.
Firstly, the discrete finite difference solution zL is projected by a projection operator PL

f 2p
to a piecewise polynomial function on the grid yL . By a piecewise polynomial function on
a grid, we mean that the function is a polynomial in each grid interval between any two
adjacent grid points, but is not necessarily continuous at any grid point. The associated mass
matrix ML on yL is diagonal positive definite since orthogonal polynomials are used as the
basis functions. Next, the glue grid y with the mass matrix Mg is defined as the grid that
consists of the grid points on both yL and yR . The projection operator PL

p2g is used to project
the piecewise polynomial function from yL to y, and is viewed as a basis transformation
between polynomial spaces. Similarly, PL

p2 f and PL
g2p are projection operators in the reversed

direction corresponding to PL
f 2p and PL

p2g , respectively. P
R
f 2p , P

R
p2 f , P

R
p2g and PR

g2p are the
corresponding projection operators for the grid yR . For a more detailed discussion, we refer
to the theory in §2 and the illustration in Figure 2.2 in [14].

When using the projection operators, the penalty terms for the interface coupling are
constructed on the glue grid. To this end, we define the operators

PL
f 2g = PL

p2g P
L
f 2p P R

f 2g = PR
p2g P

R
f 2p (13)

and

PL
g2 f = PL

p2 f P
L
g2p P R

g2 f = PR
p2 f P

R
g2p (14)

that project the discrete finite difference solution directly to the glue grid, and vice versa. The
operators PL/R

f 2g and PL/R
g2 f have a projection error O(h2p) in the interior and O(h p) near the

ends of the interface with p = 1, 2, 3, 4, 5.
As described in Sect. 3, the interpolation operators interpolate between two finite differ-

ence grids. The projection operators, on the other hand, project between a finite difference
grid and a glue grid. The projection operators in [14] satisfy an analog of the norm-compatible
condition in Definition 2.

Definition 4 Let Pf 2g and Pg2 f beprojectionoperators projectingbetween afinite difference
grid and a glue gird. They are called norm-compatible if

HPg2 f = (MgPf 2g)
T , (15)

where H is the diagonal SBP norm on the finite difference grid and Mg is the diagonal mass
matrix on the glue grid.

4.1 The Wave Equation with a Non-Conforming Grid Interface

We start by considering a non-conforming grid interface with conforming mesh blocks, and
define

IL2R = PR
g2 f P

L
f 2g and IR2L = PL

g2 f P
R
f 2g. (16)

The operator IL2R projects the discrete finite difference solution from the grid on the left to
the grid on the right, and IR2L projects in the other direction. Therefore, I pL2R and I pR2L in
(16) can be used to impose grid interface conditions in the same way as the interpolation
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operators discussed in Sect. 3. In addition, I pL2R and I pR2L have similar accuracy property as
the interpolation operators in [20]. For energy stability, we need the following lemma.

Lemma 2 If the projection operators in (13) and (14) are norm-compatible according to
Definition 4, then the operators IL2R and IR2L defined in (16) satisfy

HR IL2R = (HL IR2L)T ,

where HL and HR are the diagonal SBP norms at the grids on the left and on the right of
the interface, respectively. In this case, IL2R and IR2L are norm-compatible according to
Definition 2.

Proof The proof follows in a direct calculation by using (16) and Definition 4.

HR IL2R = HRP
R
g2 f P

L
f 2g = (

MgPR
f 2g

)T
PL
f 2g

= ((
PL
f 2g

)T
Mg PR

f 2g

)T = (
HL P

L
g2 f P

R
f 2g

)T = (
HL IR2L

)T
.

	

We have the following theorem for the stability of the scheme using projection operators to
handle a non-conforming grid interface.

Theorem 2 Consider the semi-discretization (3) with IC2F and IF2C replaced by IL2R and
IR2L in (16). If IL2R and IR2L defined in (16) are norm-compatible and norm-contracting,
then the semi-discretization is stable for any τ such that

τ ≥ max

(
1

2αhxL
,

1

2αhxR

)

.

The proof of Theorem 2 follows in the same way as for Theorem 1. In Sect. 5.1, we provide
an eigenvalue analysis to examine if the operators IL2R and IR2L are norm-contracting. The
accuracy discussion in Sect. 3.1.2 is also valid for the schemes with the operators IL2R and
IR2L . However, the interpolation operators IC2F (IF2C ) are not the same as I pL2R(I pR2L) in
(16). The latter one has a wider stencil.

In the construction procedure of the interpolation operators and projection operators, one
gets a system of linear equations after imposing stability and accuracy requirements. The
solution of the linear system has a few free parameters. There are different ways to tune
those free parameters. In [20], the free parameters are used to minimize the coefficients of
the leading interpolation error in L2 norm, while in [14] the free parameters are used to
minimize the distance between nearest eigenvalues of Pp2 f P f 2p for a finite difference grid
of size 64. The choice of tuning free parameters has no influence on the theoretical order
of accuracy, but may have an impact on whether the operators are norm-contracting and
the practical accuracy. The comparison between the interpolation operators and projection
operators is made in more detail in the numerical experiments in Sect. 5.

4.2 The Wave Equation with a T-junction Interface

The projection technique is very flexible to handle grid interfaces in the sense that we are free
to choose the interface structure, the mesh refinement ratio and the accuracy of the diagonal
normSBPoperators. In [14], the authors also couple the SBPfinite differencemethodwith the
discontinuous Galerkin method, inspired by the relation between the discontinuous Galerkin
spectral element method and the SBP-SAT finite difference method [7].
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If a T-junction interface is present in the mesh, for example in Fig. 2, we cannot use I pL2R
and I pR2L in a direct way. This is because near the junction point the SBP norm has the interior
weights on one side while boundary weights on the other side, and no energy estimate can be
obtained. To overcome the instability, the coupling is done on the glue grid. (This reduces to
use I pL2R and I pR2L in (16) directly when there is no T-junction interface in the mesh.) That is,
we project finite difference solutions to the glue grid, compute the penalty terms there, and
project them back to the finite difference grids. In this way, we avoid the instability caused
by the SBP norms since the penalty terms are computed on the common glue grid.

For completeness, in “Appendix 1”, we derive an SBP-SAT finite difference discretization
of the wave equation (2) on the mesh shown in Fig. 2a by using the projection operators to
handle the T-junction interface. The energy analysis for the scheme is also given in “Appendix
1”.

5 Numerical Experiments

In this section, numerical experiments are performed to compare the schemeswith the interpo-
lation operators [20] and the projection operators [14], and verify their stability and accuracy
properties. Moreover, we also give two practical examples to study local mesh refinement by
solving the wave equation on a domain with a complex geometry.

The diagonal norm SBP operators used in the numerical experiments can be found in [28]
for D1 ≈ ∂/∂x and in [23] for D2 ≈ ∂2/∂x2 up to eighth order accuracy. The corresponding
operators of tenth order accuracy can be found in [19]. The SBP operators approximating
second derivative with variable coefficient are in [18] up to sixth order accuracy.

The L2 error and maximum error are computed as the norm of the difference between the
exact solution uex and the numerical solution uh according to

‖uh − uex‖L2 =
√
hd(uh − uex )T (uh − uex ),

‖uh − uex‖∞ = max |uh − uex |,
where d is the spatial dimension of the equation. The convergence rate is computed by

q = log

( ‖uh − uex‖
‖u2h − uex‖

) /

log

(
1

2

)

.

5.1 Stability Study

We begin with an eigenvalue analysis to determine if the interpolation operators in [20] and
projection operators in [14] are norm-contracting. The computational domain is x ∈ [−1, 1]
and y ∈ [0, 1] with a grid interface at x = 0. In the left domain the number of grid points
is 26 in both x and y directions, while in the right domain the number of grid points is 51
in both x and y directions. The mesh refinement ratio is 1:2 across the grid interface, which
makes both the interpolation operators and projection operators applicable. The matrices�L

and �R , constructed as in Definition 3, are symmetric, so they have real eigenvalues. We
denote kL and kR the smallest eigenvalue of �L and �R , scaled by the mesh size:

kL = min(eig(�L))/hyL kR = min(eig(�R))/hyR .

In Table 3, we list kL and kR for the interpolation operators and the projection operators
in Column three and four, respectively. The second and fourth order accurate interpolation
operators are norm-contracting with errors up to machine precision. For the second order
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Table 3 IO: interpolation
operators, PO: projection
operators

Columns 3 and 4 correspond to
the numerical study of the
norm-contracting property and
Columns 5 and 6 correspond to
the eigenvalue analysis of (17)

2p IO PO IO PO

2 kL −6.2 · 10−17 −7.7 · 10−16 −12.44 −12.62

kR −1.0 · 10−16 −8.5 · 10−16

4 kL −6.7 · 10−17 −8.3 · 10−16 −12.34 −12.34

kR −1.4 · 10−16 −6.3 · 10−16

6 kL −6.9 · 10−1 −7.5 · 10−5 −12.34 −12.34

kR −8.0 · 10−1 −8.6 · 10−5

8 kL −3.1 · 101 −4.4 · 10−4 2.2 · 107 −12.34

kR −7.4 · 101 −4.8 · 10−4

10 kL −4.8 · 10−4 −12.34

kR −1.1 · 10−3

accurate case, we can prove that kL , kR ≥ 0 independent of h, because �L is diagonally
dominant and �R can be transformed to a diagonally dominant matrix without changing the
signs of the eigenvalues. For the sixth and eighth order cases, the interpolation operators
are not norm-contracting. The difference between these two cases is that kL and kR for the
eighth order case are about two magnitudes larger than kL and kR for the sixth order case in
absolute value. When increasing the number of grid points, the values of kL and kR remain
unchanged.

The projection operators are norm-contracting in the second and fourth order accurate
cases as well. The sixth, eighth and tenth order accurate projection operators are not norm-
contracting, but the values of kL and kR are a few magnitude smaller than those for the sixth
order accurate interpolation operators in absolute value, and they approach slightly to zero
as the mesh is refined.

Another way of analyzing stability through numerical experiments is to write the semi-
discretized equation (3) as a system of ordinary differential equations

zt t = Qz + F, (17)

where Q is the discretization operator including the interface and outer boundary treatment,
and F contains the outer boundary data. It is stable if the eigenvalues of Q are real and
non-positive. We have computed the eigenvalues of Q by using the same mesh as for the
computation of kL and kR . All the eigenvalues are real. In Table 3, the largest eigenvalue of
Q (without any mesh size scaling) is shown in Column five and six for the schemes with the
interpolation operators and projection operators, respectively.

The numerical scheme with interpolation operators is stable for the second and fourth
order cases, which agrees with the stability analysis in Theorem 1. Though we cannot derive
an energy estimate for the sixth order accurate scheme, the eigenvalue analysis shows that
for this particular setting the scheme is stable. In addition, we find that the largest eigenvalue
of Q does not change with a refined mesh. The scheme is not stable for the eighth order
case, since the largest eigenvalue of Q is positive and grows when the mesh is refined.
The numerical schemes with the projection operators are stable for all cases even though
only second and fourth order accurate projection operators are norm-contracting. Moreover,
the largest eigenvalue of Q does not change with a refined mesh. The eigenvalue analysis
indicates that the norm-contracting property implies stability, but is not necessary.
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5.2 Accuracy Study

In this section, the convergence of the SBP-SAT method applied to the wave equation (2)
with a non-conforming grid interface and non-conforming mesh blocks is investigated. The
analytical solution to (2) ismanufactured,whichmeans that a closed form is chosen and is used
to obtain the initial and boundary data. At the outer boundaries, Dirichlet boundary condition
is imposedweakly by the SATmethod as described in [22]. The penalty parameter τ is chosen
1.5 times its limit value required by stability for both interface and boundary treatment.

5.2.1 A Non-conforming Grid Interface

In the first numerical experiment, the computational domain is [−1, 1] × [0, 1] where a grid
interface is located at x = 0, y ∈ [0, 1]. In the grid refinement level r = 0, the numbers of
grid points in the left block and right block are 26×26 and 51×51. Themesh sizes are halved
in both x and y directions when r is increased by one. In this setting, the grid refinement
ratio is 1:2, and both the interpolation operators and the projection operators are applicable
for the numerical treatment of interface conditions. We choose the final time T = 2, and use
the fourth order Runge–Kutta method as the time integrator with the step size in time chosen
so small that the temporal error is negligible compared with the spatial error.

The manufactured solution to (2) is chosen to be

U (x, y, t) = cos(5x + 1) cos(5y + 2) cos(5
√
2t + 3). (18)

In Fig. 3a, the L2 error of the solution computed by the SBP-SAT scheme with the inter-
polation operators is plotted versus the number of grid points in the x direction in the left
block. The time step is 	t = 0.1h. The convergence rates in L2 norm are about 1, 3 and 4
for the second, fourth and sixth order schemes, respectively. Though the sixth order accurate
scheme lacks a stability proof, it seems that for this particular setting the scheme is stable
and exhibits the expected convergence rate. Instability occurs when using the eighth order
accurate scheme.

The corresponding results with the projection operators are plotted in Fig. 3b. The con-
vergence rate in L2 norm is about one for the second order accurate scheme, and p + 1 for
the fourth, sixth, eighth and tenth order accurate schemes. We note that though we cannot
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Fig. 3 Convergence test for the case with a non-conforming grid interface. a Interpolation operators,
b projection operators
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Fig. 4 Convergence test for the
case with a T-junction, highly
non-conforming interface
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derive an energy estimate for the sixth, eighth and tenth order accurate cases, the schemes
are stable and converge as expected. The time step is 	t = 0.1h for 2p = 2, 4, 6. With
this time step, the tenth order accurate scheme yields slightly lower convergence rate than
expected, and the result shown in Fig. 3b is obtained with 	t = 0.05h. The eighth order
accurate scheme is a special one, since with 	t = 0.05h it is even unstable. To obtain the
result in Fig. 3b, 	t = 0.025h is used as the time step, which indicates that the eighth order
accurate semi-discretized equation is stiff. This is not surprising because the α value in the
borrowing trick is very small for the eighth order accurate case, which in return leads to a
very large τ value in the penalty term that increases stiffness. Moreover, the error obtained
with the eighth order accurate scheme is larger than the error obtained with the sixth order
accurate scheme, except for the finest mesh refinement level.

From Fig.3a, b, it is also observed that the errors are similar to each other for the schemes
of the same order of accuracy with interpolation operators and projection operators.

5.2.2 A T-junction Interface

Next, we consider the computational domain [−1, 1]2 that is divided into three mesh blocks
as shown in Fig. 2a. The interfaces are located at x = 0, y ∈ [−1, 1] and y = 0, x ∈ [0, 1].
In the grid refinement level r = 0, the numbers of grid points in Block 1 (left), Block 2
(top-right) and Block 3 (bottom-right) are 28 × 51, 27 × 25 and 51 × 50, respectively. The
mesh sizes are halved in both x and y directions when r is increased by one. This partitioning
and meshing result in a highly non-conforming grid interface with a close-up shown in
Fig. 2c. The interface conditions are imposed weakly by the SAT method with the projection
operators. To test convergence, (18) is used as the analytical solution. The computational
results are shown in Fig. 4.

Clearly, (p + 1)th convergence rate in L2 norm is obtained for p = 2, 3, 4, 5 and first
order convergence rate is obtained for p = 1. Here, we observe again that the schemes higher
than fourth order accuracy are stable even though we cannot derive an energy estimate.

5.3 Some Practical Examples

In many applications, the frequency of the present wave is given by initial and boundary data,
and internal forcing functions. The wavelength of a wave is determined by the ratio between
the wave speed of the material in which the wave is traveling and the frequency of the wave.
The accuracy of a numerical solution can be stated in terms of how many grid points per
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Fig. 5 An example of an acoustic time-harmonic plane wave impinging on a circular inclusion, where the
wavelength is much smaller inside the circular inclusion than that outside

(a) (b)

Fig. 6 An example of an acoustic time-harmonic plane wave impinging on a circular cavity with a grid, where
close to the cavity the grid size in the azimuthal direction is much smaller than that in the radial direction.
a A circular cavity, b a close-up of the mesh near the cavity

wavelength are used to resolve the present waves [15]. For waves with a fixed frequency
content, a reduction in wave speed confined to a subset of the physical domain yields waves
of a shorter wavelength localized in that subset. For accuracy it is therefore necessary to refine
the grid to compensate for the shorter present wavelengths. For computational efficiency it is
important that this refinement is done only in the subset that constitutes the slower medium,
since it is only in the slower medium that wavelengths are reduced. As an example, Fig. 5
shows the scattering and diffraction of an acoustic time-harmonic plane wave impinging on
a circular region of a slower material, the wavelength is seen to be reduced inside the circular
region.

Geometrical features of the physical domain such as a curved boundary or an internal
cavity introduces a local radius of curvature. A small local radius of curvature compared with
the present wavelengths can imply difficulties when generating a computational grid. As an
example, Fig. 6a shows the scattering of an acoustic time-harmonic plane wave impinging
on a circular cavity of a radius of curvature smaller than the wave length of the incoming
and scattered waves. A part of the grid used to represent the wave field is shown as an inset,
where it is seen in Fig. 6b that the quality of the grid is impaired as the grid spacing gets
unnecessarily small close to the cavity.

In the preceding experiments it has been verified that using interpolation operators [20] and
projection operators [14] to patch together the computational grid in a multi-block fashion
yields a stable discretization, the convergence rate, however, was seen to be reduced. In
the following experiments we give examples of the practical benefit of using interpolation
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Fig. 7 Computational domain of the circular cavity experiment. a N-partitioning, b T-partitioning

operators and projection operators in a region with a slower wave speed or a geometrical
feature of a small radius of curvature, albeit the reduction in order of accuracy. In particular,
we will consider experiments involving acoustic waves impinging on a circular cavity and a
circular inclusion of a differing material.

The numerical method used to solve the acoustic wave equation in the following exper-
iments is based on the SBP-SAT scheme described in [31]. The geometrical features are
handled by using a multi-block strategy to decompose the physical domain into blocks,
where each block allows for a mapping to curvilinear coordinates. In [31] the blocks that
constitute the domain are discretized by using conforming grids and patched together by the
SATmethod. In this paper we allow for non-conforming grids by implementing interpolation
operators as well as projection operators into the handling of the multi-block interfaces.

The following numerical experiments use two different two dimensional domains:

– D1: An acoustic plane with a circular cavity of radius a.
– D2: An acoustic plane with a circular inclusion of radius a.

The geometries of the domains are handled by decomposing each domain in a multi-block
fashion, and a curvilinear grid is used in each domain to resolve the curved boundaries. The
blocks are then patched together to compound the entire domain. A detailed description of
how these two grids are constructed is presented in “Appendix 2”.

5.3.1 A Circular Cavity

In this numerical experiment, we consider a domain of an infinite homogeneous medium
with wave speed c > 0. A circular cavity of radius a = 1 is centered at the origin. Let a
plane harmonic wave uI = ei(ωt−γ x), γ = ω/c propagate in that domain and impinge on
the cavity. A scattered wave uS is generated when the incident wave hits the cavity, and
the total displacement uI + uS satisfies the wave equation. On the boundary of the cavity a
homogeneous Neumann boundary condition

∂

∂n
(uI + uS) = 0, on x2 + y2 = 1

is imposed. Here ∂
∂n denotes the normal derivative on the boundary of the cavity. A detailed

derivation of an analytical solution to this problem is found in [8, §7].
We take ω = 2π and c = 2.5, which give a wavelength of 2.5. The computational domain

D1 is chosen to be the rectangle [−25.5, 11.7]×[−11.7, 11.7]with the cavity centered at the
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Fig. 8 Relative maximum error of the numerical experiment with the circular cavity. a Fourth order accurate
scheme, b sixth order accurate scheme

origin. Two ways of partitioning the domain are considered, namely the N-partitioning and
the T-partitioning shown in Fig. 7a and 7b, respectively. In the N-partitioning approach, we
only use conforming gird interfaces and conforming mesh blocks. The cavity is surrounded
by four blocks that constitute the square [−11.7, 11.7]2, which is attached to a rectangular
domain on its left hand side. The numbers of grid points on each edge are shown in Fig. 7a, and
are chosen so that approximately 20 grid points per wavelength are used in the discretization.
In this setting, the mesh is of bad quality since the mesh size near the cavity is significantly
smaller than themesh size near the outer boundaries. To overcome this drawback, we propose
the T-partitioning where the cavity is surrounded by a small square block [−1.3, 1.3]2. Here,
all the grid interfaces are also conforming but a T-junction interface is present at x = −11.7
with the intersection points marked by the dots. Again we choose the mesh size so that there
are approximately 20 grid points per wavelength, and here it is only over-resolved in the small
block [−1.3, 1.3]2. The T-partitioning results in a mesh of 54903 grid points. The number of
grid points with the N-partitioning is about doubled to 109867.

We employ the fourth and sixth order SBP-SAT method to propagate the wave for ten
temporal periods with the T-junction interface handled by the projection operators [14], and
show the recorded relative maximum errors in Fig. 8a, b. The relative maximum error is
computed as the maximum error scaled by the maximum absolute value of the analytical
solution in space and time. In both cases, the relative maximum error with the T-partitioning
is about three times larger than that with the N-partitioning. The is not surprising because
the mesh with the T-partitioning has less grid points than the mesh with the N-partitioning,
and the corresponding scheme with the T-partitioning has one order lower convergence rate
than that of the N-partitioning. It does not seem to improve the efficiency by using T-junction
interfaces for this case.

Although using T-junction interfaces introduces a larger error in the solution, it could be
beneficial for a problem with a more complex geometry. For example, if there are several
cavities in the domain, an N-partitioning that only allows conforming mesh blocks would
produce a large number of small mesh blocks. With a higher order accurate scheme, the
boundary stencil gets wider and the number of grid points in each direction must be large
enough in every mesh block. It is therefore over-resolved in those small mesh blocks and
results in a suboptimal performance of the numerical scheme, and T-junction interfaces could
be desirable.
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Fig. 9 Computational domain of the circular inclusion experiment: solid lines are the boundary, dashed
lines are the conforming interfaces, and the dashed-dot lines in red are either conforming or non-conforming
interfaces (Color figure online)

5.3.2 A Circular Inclusion

Consider a circular domain of radius a = 1 embedded in an infinite surrounding medium of
differing material with wave speed c. Let the wave speed c′ of the circular domain be such
that c′ < c and let an incoming time-harmonic plane wave uI (x, y, t) = ei(ωt−γ x), γ = ω

c
travel in the x-direction and impinge on the circular inclusion. The resulting field consists of
the incoming wave uI , as well as the scattered and diffracted waves uS and uD , respectively.
The conditions at the interface of the circular inclusion are

uI + uS = uD,

c
∂

∂n
(uI + uS) = c′ ∂

∂n
uD,

on x2 + y2 = 1, (19)

where ∂
∂n denotes the normal derivative on the interface. Since c′ < c, the short wavelength

occurs inside the circular domain. An analytical expression for the solution is given in [2,
p. 667].

In the numerical experiments we take ω = 2π , c = 1 and c′ = 1/10, which give a
wavelength of 1 and 1/10 outside and inside the circular inclusion, respectively. To resolve
the geometric features, the computational domain is decomposed into 10 conforming blocks
as shown in Fig. 9. We set the length of the side of the square block outside the circular
inclusion to 2D = 2.6, and set the length of the side of the square inside the circular
inclusion to 2d = 0.7

√
2. Both square blocks are centered at the origin. The Cartesian block

[−5.9,−1.3]× [−1.3, 1.3] is then attached to the left of this representation. Firstly, we only
use conforming grid interfaces with the numbers of grid points in each block given in Table
4. The resolution outside the circular inclusion is about 16 and 51 points per wavelength in
the horizontal and vertical direction, respectively. Inside the circular inclusion the waves are
resolved by about 10 grid points per wavelength in both directions. Hence, the waves are
significantly over-resolved in the vertical direction outside the inclusion, which leads to a
suboptimal distribution of grid points.

To amend the over-resolution, we partition the computational domain in the same way as
above but use non-conforming interfaces denoted by the red dashed-dot line in Fig. 9. The
non-conforming grid interfaces with refinement ration 1:2 are handled by the interpolation
and projection operators. The numbers of grid points in each block are chosen as in Table 5.
Now the resolution is reduced to about 26 grid points per wavelength in the vertical direction
outside the circular inclusion. The interface conditions (19) are imposed numerically with
the SAT technique and at outer boundaries the exact solution is injected at all times. In [6],
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Table 4 Number of grid points
with conforming grid interfaces

Block Nξ Nη

B0 51 101

B(1)
1 –B(1)

4 101 26

B(2)
1 –B(2)

4 101 51

B(2)
5 101 101

Table 5 Number of grid points
with non-conforming grid
interfaces

Block Nξ Nη

B0 51 51

B(1)
1 –B(1)

4 51 26

B(2)
1 –B(2)

4 101 51

B(2)
5 101 101
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Fig. 10 Relative maximum error of the numerical experiment with the circular inclusion. a Fourth order
accurate scheme, b sixth order accurate scheme

the SBP finite difference method applied to the wave equation with the injection method to
impose the Dirichlet boundary condition is proved to be stable.

The solution is propagated numerically for 10 temporal periods by the SBP-SAT method
and the relative maximum error is recorded at each time step. In Fig. 10a, b we plot the
recorded relative maximum error as functions of time. Here we see that the errors are similar
in both cases. The grid with conforming interfaces has 46460 grid points, whereas the grid
with non-conforming interfaces has 38710 grid points. The smallest grid size is determined
by the resolution inside the circular inclusion, for this reason the time step	t = 4×10−4 for
the sixth order SBP-SAT method and 	t = 5× 10−4 for the fourth order SBP-SAT method
are the same for both grids. We conclude that even though the formal order of accuracy is
lowered by using blocks with non-conforming interfaces it can be a beneficial strategy within
the SBP-SAT framework when the physical domain contains regions that require a higher
density of grid points. We also note that for more complex multi-block domains consisting of
a larger number of blocks the benefits of using blocks with non-conforming grid interfaces
are expected to increase.
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In the experiment with the sixth order SBP-SAT scheme with the interpolation opera-
tors, the numerical solution blows up quickly, which indicates that the scheme is unstable.
The corresponding scheme with the projection operators is stable. According to the stability
analysis in Sect. 5.1, for the sixth order accurate scheme neither the interpolation operator
nor the projection operator is norm-contracting. If the smallest eigenvalue of �L/R is non-
negative, then an energy estimate is obtained and ensures stability. The smallest eigenvalue
of �L/R scaled by the mesh size is in the magnitude of −10−1 for the sixth order accurate
interpolation operator, and −10−5 for the sixth order accurate projection operator. The vio-
lation of norm-contracting condition for the projection operator is much weaker than for the
interpolation operator.

6 Conclusion and Outlook

In this work, high order accurate SBP finite difference operators are used to discretize the
wave equation in the second order form on a block-structured mesh. Adjacent mesh blocks
are patched together by imposing suitable interface conditions via the SAT technique. The
emphasis is placed on the numerical treatment of non-conforming grid interfaces by the inter-
polation operators and projection operators, which are also compared in terms of the stability
and accuracy properties. In contrast to first order hyperbolic equation, energy stability of the
scheme for the second order wave equation introduces an additional condition on the numer-
ical treatment of non-conforming grid interfaces. This condition is satisfied for the second
and fourth order accurate cases, and an energy estimate is derived. For higher order accurate
schemes, the additional stability condition is violated. We show by the eigenvalue analy-
sis that the violation is stronger with interpolation operators than with projection operators.
Unphysical growth is observed in the numerical experiments with high order interpolation
operators, whereas with projection operators the scheme is stable in all the experiments we
have conducted.

We have also performed a truncation error analysis and an investigation of the convergence
property for the scheme, which indicates that the convergence rate is one order lower than
that in the corresponding case with conforming grid interfaces and mesh blocks. We present
two practical examples of problems with a complex geometry: a circular cavity and a circular
inclusion, where we show that it could be beneficial to use non-conforming grid interfaces
or mesh blocks.

For high order accurate interpolation operators and projection operators, there are free
parameters left in the construction process. It is desirable to tune the free parameters so that
the additional stability condition is satisfied. However, the resulting nonlinear problem seems
difficult to solve. To overcome the accuracy reduction, more accurate interpolation operators
or new ways of imposing interface conditions are needed.

Appendix 1

We use L , R1 and R2 as subscripts or superscripts to distinguish variables in the left, bottom-
right and top-right blocks in the mesh shown in Fig. 2a. The grid functions u, v1 and v2
are the numerical solution vectors in ΩL , ΩR1 and ΩR2 , respectively. The mesh blocks are
non-conforming, and the grid interfaces can be non-conforming as well. Furthermore, there
is no strict restriction on the mesh refinement ratio.

123



J Sci Comput (2016) 68:1002–1028 1025

Semi-discretization

In the following, we construct the penalty terms for the numerical treatment of the T-junction
interface conditions. The penalty terms for the outer boundaries are omitted. The semi-
discretized equation reads

utt = D2xL + D2 yLu + SATu1 + SATu2 + SAT∂u,

(
v1

v2

)

t t

=
(
D2xR1 + D2 yR1

D2xR2 + D2 yR2

) (
v1
v2

)

+ SATv1 + SATv2 + SAT∂v,

(20)

where

SATu1 = 1

2
H−1

xL S
T
xL

(

E0Lu − IR2L

(
v1

v2

))

,

SATu2 = −τ H−1
xL

(

E0Lu − IR2L

(
v1

v2

))

,

SAT∂u = −1

2
H−1

xL

(

E0L SxLu − IR2L

(
SxR1

SxR2

) (
v1

v2

))

,

IR2L = (E0L ⊗ PL
g2 f )I

u
v1v2

⎛

⎝
ELR1 ⊗ PR1

f 2g

ELR2 ⊗ PR2

f 2g

⎞

⎠ ,

(21)

and

SATv1 = −1

2

(
H−1

xR1 S
T
xR1

H−1
xR2 S

T
xR2

) ((
E0R1

E0R2

) (
v1

v2

)

− IL2Ru

)

,

SATv2 = −τ

(
H−1

xR1

H−1
xR2

) ((
E0R1

E0R2

) (
v1

v2

)

− IL2Ru

)

,

SAT∂v = 1

2

(
H−1

xR1

H−1
xR2

) ((
E0R1 SxR1

E0R2 SxR2

) (
v1

v2

)

− IL2RSxLu

)

,

IL2R =
⎛

⎝
ER1L ⊗ PR1

g2 f

ER2L ⊗ PR2

g2 f

⎞

⎠ Iv1v2u (E0L ⊗ PL
f 2g).

(22)

The elements in the matrices Iuv1v2 and Iv1v2u are either zero or one. These two matrices
are used to pick up the solution along the interface and put it in the right place for coupling.

Energy Analysis

We note that there is a similarity between the semi-discretization (20) and (3). Comparing
the penalty terms in (21) with the penalty terms in (4), the difference is that ELR ⊗ IF2C in
(4) is replaced by IR2L in (21). Similarly, ERL ⊗ IC2F in (5) is replaced by IL2R in (22). As
a consequence, the energy analysis for (20) follows in the same way as in Theorem 1, if the
corresponding norm-compatible condition (Definition 2) and the norm-contracting condition
(Definition 3) are satisfied.
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For the T-junction interface in consideration, the norm-compatible condition is

⎛

⎝
HyR1 PR1

g2 f

HyR2 PR2

g2 f

⎞

⎠ PL
f 2g =

⎛

⎝HyL P
L
g2 f

⎛

⎝
PR1

f 2g

P R2

f 2g

⎞

⎠

⎞

⎠

T

, (23)

and the norm-contracting condition is that the matrices

HyL

⎛

⎝IyL − PL
g2 f

⎛

⎝
PR1

f 2g

P R2

f 2g

⎞

⎠

⎛

⎝
PR1

g2 f

P R2

g2 f

⎞

⎠ PL
f 2g

⎞

⎠ ,

(
HyR1

HyR2

) ⎛

⎝

(
IyR1

IyR2

)

−
⎛

⎝
PR1

g2 f

P R2

g2 f

⎞

⎠ PL
f 2g P

L
g2 f

⎛

⎝
PR1

f 2g

P R2

f 2g

⎞

⎠

⎞

⎠

(24)

are symmetric positive semi-definite. It is straightforward to prove (23) by using (15) in
Definition 4, so (23) is satisfied for all the projection operators in [14]. However, the val-
idation of the norm-contracting property relies on eigenvalue analyse. We have performed
an eigenvalue analysis for the particular mesh setting used in Sect. 5.2.2, and found that the
norm-contracting condition is satisfied for the second and fourth order accurate cases. The
validation remains with a refined mesh.

Appendix 2

We give a detailed description for the construction of the two grids used in the efficiency
studies in Sect. 5.3. A general block Bi of a decomposition has four boundaries defined by
the parametrized curves

Ci S = (xi S(ξ), yi S(ξ)) , Ci N = (xi N (ξ), yi N (ξ)) ,

CiW = (xiW (η), yiW (η)) , Ci E = (xi E (η), yi E (η)) ,

where 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1. Ci S and Ci N describe one pair of opposing sides and CiW and
Ci E the other pair. Let Pi SW denote the point of intersection between the curves Ci S and CiW
e.t.c. A bijection (x, y) = Ti (ξ, η) from the unit square S = [0, 1]2 to the block Bi of the
decomposition is given by the transfinite interpolation [12] as

Ti (ξ, η) = (1 − η)Ci S + ηCi N + (1 − ξ)CiW + ξCi E
− ξηPi N E − ξ(1 − η)Pi SE − η(1 − ξ)Pi NW − (1 − ξ)(1 − η)Pi SW .

The unit square S is discretized by the points

ξ j = jhξ , hξ = 1/(Niξ − 1), j = 0, . . . , Niξ − 1,

ηk = khη, hη = 1/(Niη − 1), k = 0, . . . , Niη − 1,

where Niξ and Niη are integers determining the number of grid points in the spatial directions
of the discretization of the block Bi . The corresponding grid points are computed as

(x j , yk) = Ti (ξ j , ηk).

We now give details on how the grids in D1 − D2 are constructed. D1 represents a circular
cavity in an infinite surrounding medium. We construct the computational grid such that the
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cavity of radius a is centered inside a square of side 2D. This is done by introducing four
blocks B(1)

1 –B(1)
4 . The bounding curves of block B(1)

1 are given by

C(1)
1S = a

(

ξ
√
2 − 1/

√
2,

√
1 − (ξ

√
2 − 1/

√
2)2

)

,

C(1)
1N = (D, 2Dξ − D) ,

C(1)
1W =

(
−η(D − a/

√
2) − a/

√
2, η(D − a/

√
2) + a/

√
2
)

,

C(1)
1E =

(
η(D − a/

√
2) + a/

√
2, η(D − a/

√
2) + a/

√
2
)

.

The bounding curves of the remaining blocks B(1)
2 –B(1)

4 that constitute the square with the
cavity at the center are obtained via rotation by a factor π/2,

C(1)
i j = C(1)

i−1 j

[
cosπ/2 − sin π/2

sin π/2 cosπ/2

]

, i = 2, 3, 4, j = S, N ,W, E .

The domain D1 can now be represented by attaching the grid representing the cavity to one
or more Cartesian blocks.

The circular inclusion of D2 is decomposed into five blocks B(2)
1 –B(2)

5 . The block B(2)
1 is

a square at the center of the circular inclusion with corners at the points (±ad,±ad), 0 <

d <
√
2/2 defined by the bounding curves,

C(2)
1S = a (2dξ − d,−d) , C(2)

1N = a (2dξ − d, d) ,

C(2)
1W = a (−d, 2dη − d) , C(2)

1E = a (d, 2dη − d) .

Here a is the radius of the circular inclusion. The blockB(2)
2 is defined by its bounding curves,

C(2)
2S = C(2)

1N ,

C(2)
2N = C(1)

1S ,

C(2)
2W = a

(
−η(

√
2/2 − d) − d, η(

√
2/2 − d) + d

)
,

C(2)
2E = a

(
η(

√
2/2 − d) + d, η(

√
2/2 − d) + d

)
.

The bounding curves of the remaining blocks B(2)
3 –B(2)

5 that constitute the circular inclusion
ofD2 are obtained via rotations by a factor π/2 as in (6). The inclusion is then centered inside
a square of side 2D by attaching it to the blocksB(1)

1 –B(1)
4 above. The circular inclusion is now

the union of the nine blocks B(1)
1 –B(1)

4 and B(2)
1 –B(2)

5 . The domainD2 can now be represented
by attaching the grid representing the inclusion to one or more Cartesian blocks.
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