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Abstract The ordered upwind method (OUM) is used to approximate the viscosity solution
of the static Hamilton–Jacobi–Bellman with direction-dependent weights on unstructured
meshes. The method has been previously shown to provide a solution that converges to the
exact solution, but no convergence rate has been theoretically proven. In this paper, it is
shown that the solutions produced by the OUM in the boundary value formulation converge
at a rate of at least the square root of the largest edge length in the mesh in terms of maximum
error. An example with similar order of numerical convergence is provided.

Keywords Error bound ·Convergence rate ·Ordered upwind methods ·Anisotropic optimal
control · Viscosity solution · Hamilton–Jacobi–Bellman equation

1 Introduction

The staticHamilton–Jacobi–Bellman (HJB) equationwith a prescribed value on the boundary
of a region Ω ⊂ R

n where the solution is found on the interior of Ω arises in a number of
optimization problems. Applications include optimal escape from a region [1], area patrol
and perimeter surveillance [15], modelling folds in structural geology [17] and reactive fluxes
[8].
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There are two classes of semi-Lagrangian approximations [19] that approximate a solu-
tion to the static HJB equation. These approximations are known as semi-Lagrangian
because the solution is approximated along short segments of characteristics dependent
on the discretization. Both are solved on a fixed simplicial mesh or grid that discretizes
the region of interest. The difference between them is the method in which the control is
approximated.

In the first approach, the control is assumed to be held constant within an element of a
mesh [16]. Non-iterative schemes such as the ordered upwind method (OUM), monotone
acceptance ordered upwind method (MAOUM) [2] and fast marching method (FMM) [18]
use this approximation. In OUM, MAOUM and FMM, the order in which the solution
on the vertices of the mesh (or grid) is found explicitly much like in Dijkstra’s algo-
rithm [11] resulting in a significant speed up in computation, despite the coupling between
vertices.

In the other semi-Lagrangian approximation, the control is assumed to be held fixed for
a small time �t . To determine the solution at a mesh point, a first-order reconstruction from
nearby points on the discretization is required. An error bound O(�t) has been shown for
controls that have bounded variation [6]. Results of higher-order convergence rates using
higher-order semi-Lagrangian approximation schemes of this type exist [14]. Many iterative
algorithms [5,10] have been devised that use this approximation.

Convergence rate results exist for the related time-dependent Hamilton–Jacobi equation,
where similar half-order convergence is observed in terms of the longest time step (rather
than edge length). These results have been proven for grid like discretizations [9,23] and
have been extended to the use of triangular meshes [4] both using finite difference schemes.
In [5], convergence rate results are given using similar schemes that include both time step
and spatial discretizations. The proof of the main result in this work draws on some similar
ideas such as doubling the variables in the use of an auxiliary function as in [5] and [13,
Chapter 10].

It is proven in this paper that the convergence rate of the approximate solution provided by
OUM to the viscosity solution of the static HJB boundary value problem is at leastO(

√
hmax )

in terms of maximum error, where hmax is the longest edge length of a mesh. In [21], the
OUMwas shown to provide an approximate solution to the staticHJB equation that converges
as hmax → 0, but no convergence rate was obtained. The proof in this work is based on a
similar result for FMM in [20]. The OUM however is a different algorithm used to solve a
wider class of problems where the weight (or speed) function can depend on position and
direction and the boundary function can depend on position. The result in [20] is proven on a
uniform grid whereas the result here holds on a simplicial mesh. Simplicial meshes are better
suited towards discretizing regions with complex geometries. A finer discretization may be
required to obtain the same accuracy when the discretization is restricted to grids. A key
step in the proof for the OUM convergence rate is showing the existence of a directionally
complete stencil that is consistent with the result of OUM, an idea which was first presented
in [2].

The optimal control problem along with an introduction to viscosity solutions will be
presented in Sect. 2. In Sect. 3, a general discretization of Ω ⊂ R

n , known as a simplicial
mesh, will be described. The ordered upwind method [21] will be reviewed in Sect. 4.
Properties of the OUM algorithm required in the proof of the main result will be presented
in Sect. 5. The convergence rate result will be proven in Sect. 6. An example demonstrating
numerical convergence close to the proven theoretical rate will be presented in Sect. 7.
Conclusions and directions of future work will be discussed in Sect. 8.
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2 Problem Formulation

A point is denoted x ∈ R
n and the Euclidean norm is denoted ‖·‖. The set of positive real

numbers is denoted R+. Let Ω ⊂ R
n be open, connected, bounded with non-empty interior

and boundary ∂Ω . Let Ω = Ω ∪ ∂Ω be the closure of Ω .
Let U = {u(·) : R+ ∪ {0} → S

n−1|u(·) is measurable} where Sn−1 = {u ∈ R
n | ‖u‖ = 1}

be the set of admissible controls and the trajectory y : R+ ∪ {0} → Ω is governed by control
u(·) ∈ U ,

ẏ(t) = u(t), y(0) = x0, x0 ∈ Ω. (1)

The control problem is to steer y(·) from x0 ∈ Ω to any point on the boundary x f ∈ ∂Ω .
The trajectory with initial condition y(0) = x0 may be written yx0(·).
Definition 1 The exit-time T : Ω ×U → R+ ∪ {0} is the first time yx0(·) reaches x f ∈ ∂Ω

under the influence of the control u(·),
T (x0,u(·)) = inf{t |yx0(t) ∈ ∂Ω}. (2)

To discuss optimality, a cost is assigned to each control.

Definition 2 The cost function, Cost: Ω × U → R is

Cost(x0,u(·)) =
∫ T (x0,u(·))

0
g(yx0(s),u(s))ds + q(yx0(T (x0,u(·)))), for x0 ∈ Ω (3)

where q : ∂Ω → R is the boundary exit-cost and g : Ω × S
n−1 → R+ is the weight.

The optimal control problem is to find a control u∗(·) that minimizes (3).

Definition 3 The value function V : Ω → R at x ∈ Ω is the cost associated with the
optimal control u∗(·) for reaching any x f ∈ ∂Ω from x,

V (x) = inf
u(·)∈U Cost(x,u(·)). (4)

The value function at x ∈ Ω is the lowest cost to reach ∂Ω from x. The value function
satisfies the continuous Dynamic Programming Principle (DPP).

Theorem 1 (Dynamic Programming Principle [13, Theorem 10.3.1]) For h > 0, t ≥ 0,
such that 0 ≤ t + h ≤ T (x0,u∗(·)),

V (yx0(t)) = inf
u(·)∈U

{∫ t+h

t
g(yx0(s),u(s))ds + V (yx0(t + h))

}
. (5)

ForV to be continuous onΩ , continuity betweenV onΩ andq on ∂Ω must be established.
Let L : Ω × Ω be

L(x1, x2) = inf
u(·)∈U

{∫ τ

0
g(yx1(s),u(s))ds

∣∣∣ yx1(τ ) = x2, yx1(t) ∈ Ω, t ∈ (0, τ )

}
. (6)

Definition 4 The exit-cost q is compatible (with the continuity of V ) if

q(x1) − q(x2) ≤ L(x1, x2) (7)

for all x1, x2 ∈ ∂Ω .
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Definition 5 The speed profile of g(x,u) is

Ug(x) =
{

tu
g(x,u)

∣∣∣u ∈ S
n−1 and t ∈ [0, 1]

}
.

In R
2, the speed profile is the shape centred at x with radius 1/g(x,u) at the angle corre-

sponding to the direction u.
The optimal control problem (1), (3) will be assumed to satisfy the following:

(P1) The boundary function q is compatible with the continuity of V .
(P2) There exist constants Gmin,Gmax ∈ R+ and continuous functions gmin, gmax : Ω →

R+ such that for all x ∈ Ω and u ∈ S
n−1,

0 < Gmin ≤ gmin(x) ≤ g(x,u) ≤ gmax (x) ≤ Gmax < ∞. (8)

(P3) There exists Lg ∈ R+ such that for x1, x2 ∈ Ω and u ∈ S
n−1,

|g(x1,u) − g(x2,u)| ≤ Lg ‖x1 − x2‖ . (9)

(P4) For all x1, x2 ∈ Ω and λ ∈ (0, 1), λx1 + (1 − λ)x2 ∈ Ω .
(P5) The speed profile Ug(x) is convex for all x ∈ Ω .

Assumption (P5) is needed to guarantee uniqueness in the optimizing direction in the
approximated problem provided ∇V exists [2,25].

Lemma 1 The boundary function q : ∂Ω → R is Lipschitz-continuous.

The proof follows from (P1), (P2), and (P4) with Lipschitz constant 2Gmax .
Since q is Lipschitz-continuous on a compact subset of Rn , there exist qmin, qmax ∈ R

such that
qmin ≤ q(x) ≤ qmax . (10)

Define the Hamiltonian H : Ω × R
n → R

H(x,p) = − min
u∈Sn−1

{p · u + g(x,u)}. (11)

The corresponding static Hamilton–Jacobi–Bellman (HJB) equation which can be derived
from a first-order approximation of (5) [25] is

H(x,∇V ) = min
u∈Sn−1

{(∇V (x) · u) + g(x,u)} = 0, x ∈ Ω,

V (x) = q(x), for x ∈ ∂Ω. (12)

Definition 6 The characteristic direction u∗ : Ω → S
n−1 at x ∈ Ω is an optimizer of (12)

at x.

Even for smooth g(x,u), q(x) and ∂Ω , ∇V (and hence unique u∗) may not exist over
all of Ω . The weaker notion of viscosity solutions [5], is used to describe solutions of (11).
Let Ck(Ω), k ∈ N ∪ {∞} denote the space of functions on Ω that are k-times continuously-
differentiable.

Definition 7 [5] A function V : Ω → R is a viscosity subsolution of (12) if for any
φ ∈ C∞(Ω),

H(x0,∇φ(x0)) ≤ 0, (13)

at any local maximum point x0 ∈ Ω of V − φ.
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Definition 8 [5] A function V : Ω → R is a viscosity supersolution of (12) if for any
φ ∈ C∞(Ω),

H(x0,∇φ(x0)) ≥ 0, (14)

at any local minimum point x0 ∈ Ω of V − φ.

Definition 9 [5] A viscosity solution of the static HJB (12) is both a viscosity subsolution
and a viscosity supersolution of (12).

3 Simplicial Meshes

Viscosity solutions are often difficult to find analytically. The region Ω will be discretized
using a simplicial mesh on which V (4) will be solved approximately.

Definition 10 A set of points F = {x0, . . . , xk} ⊂ R
n is affinely independent if the vectors

{x1 − x0, . . . , xk − x0} are linearly independent.

Definition 11 A k-simplex (plural k-simplices) s = xs0x
s
1 . . . xsk is the convex hull of an

affinely independent set of points F = {xs0, xs1 . . . , xsk}.
Definition 12 Suppose s is a k-simplex defined by the convex hull of F . A face of s is
any m-simplex (−1 ≤ m ≤ k) forming the convex hull of a subset of F containing m + 1
elements.

Definition 13 A simplicial mesh, X is a set of simplices such that

1. Any face of a simplex in X is also in X .
2. The intersection of two simplices s1, s2 ∈ X is a face of X .

Definition 14 A k-simplicial mesh is a simplicial mesh where the highest dimension of any
simplex in X is k.

Denote X j , 0 ≤ j ≤ n the set of j-simplices of X . Elements of X0, the 0-simplices of X
are denoted xi and known as vertices. Elements of X1, the 1-simplices of X , are known as
edges.

Suppose X ⊂ R
n is an n-simplicial mesh. For 0 ≤ k ≤ n, define

Ξk =
⎧⎨
⎩(ζ0, ζ1, . . . , ζk) ∈ R

k+1
∣∣∣

k∑
j=0

ζ j = 1, ζ j ∈ [0, 1] ∀ 0 ≤ j ≤ k − 1

⎫⎬
⎭ . (15)

Definition 15 The barycentric coordinates of x ∈ R
n belonging to a k-simplex s is a vector

ζ = (ζ0, . . . , ζk) ∈ Ξk such that x = ∑k
j=0 ζ jxsj .

Definition 16 A closed region A ⊂ [Rn is contained in an n-simplicial mesh X if for every
x ∈ A, there exists s = xs0x

s
1 . . . xsn and ζ = (ζ0, ζ1, . . . , ζn) ∈ Ξn such that x = ∑n

j=0 ξ jxsj .

Definition 17 The maximum edge length hmax is the length of the longest edge of X .

Definition 18 Let 1 ≤ k ≤ n. A neighbour of simplex x0x1 . . . xk−1 ∈ Xk−1, is a vertex
xk ∈ X0 such that x0x1 . . . xk ∈ Xk .
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Fig. 1 An example of Ω ⊂ R
2

contained in a 2-simplicial mesh
X

Definition 19 The minimum simplex height hmin of X is the shortest perpendicular dis-
tance between any s ∈ Xn−1 with its neighbours.

If n = 2, then hmin is the shortest triangle height. The following assumptions will be
made on the (n-simplicial) mesh X ⊂ R

n on which the approximation of V in the optimal
control problem (1), (3) will be found.

(M1) There exists M ∈ R+ such that 1 ≤ hmax
hmin

≤ M .

(M2) The region Ω is contained (Definition 16) in the mesh X .
(M3) The mesh X is bounded and has a finite number of vertices X0.

The value M is a measure of the worst-case degeneracy for a mesh X . An example of
Ω ⊂ R

2 being contained in a mesh X is shown in Fig. 1. With the discretization definitions
and assumptions stated, the OUM will now be presented.

4 Review of the Ordered Upwind Method

The OUM [21] is used to find an approximation Ṽ : X0 → R of V in (5) on the vertices of
an n-simplicial mesh X ⊂ R

n satisfying (M1)–(M3).
The vertices of X0 are assigned and updated between the following labels throughout the

execution of the OUM.

Far These vertices have values Ṽ (xi ) = K , where K is a large value. Computation
of Ṽ has not yet started.

Considered These vertices have tentative values Ṽ < K and are computed using an update
formula.

Accepted These vertices have finalized values Ṽ .

At any instant of the algorithm, each vertex in X must be labelled exactly one of Accepted,
Considered or Far. Simplices with Accepted label are further classified.

Accepted
Front

The subset of vertices X0 with Accepted label that have a neighbour labelled
Considered.

AF The subset of Xn−1 made of vertices on the Accepted Front that have a neigh-
bouring vertex labelled Considered.

Definition 20 Let Γ = Gmax
Gmin

denote the global anisotropy coefficient where Gmin and
Gmax are described in (8).
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Fig. 2 OUM labels—an example for Ω ⊂ R
2. The vertex xi with Considered label is updated from the set

of directions provided by NF(xi ). Vertices labelled Accepted are shaded, including vertices on the edges that
make up AF and the Near Front of xi , NF(xi ). Vertices outside Ω are also labelled Accepted. BΓ hmax (xi )
is the closed ball with radius Γ hmax and centre xi . Vertices labelled Considered are marked with a triangle.
Unmarked vertices are labelled Far

Near Front of xi (NF(xi )) - Let xi be labelled Considered. Define

NF(xi ) =
{
s ∈ AF

∣∣∣ ∃ x̃ ∈ s
∣∣∣ ‖̃x − xi‖ ≤ Γ hmax

}
. (16)

See Fig. 2. The sets AF, NF(xi ) ⊂ Xn−1 change throughout the execution of the OUM due
to the vertices of X being relabelled from Far to Considered to Accepted.

Define the discrete set of controls Ũ

Ũ =
{̃
u(·) ∈ U

∣∣∣̃u(t) = ũi , ũi ∈ S
n−1 while y(t) ∈ s ∈ X

}
. (17)

The distance between vertex xi and x ∈ s ∈ Xn−1, where x = ∑n−1
j=0 ζ jxsj is denoted

τs(xi , ζ ) =
∥∥∥∑n−1

j=0 ζ jxsj − xi
∥∥∥ = ‖x − xi‖. The direction from xi to x isus(xi , ζ ) = x−xi

τs(xi ,ζ )
.

The update for xi provided by s = xs0x
s
1 . . . xsn−1 is a first-order approximation of the DPP

(1),

C̃s(xi ) = min
ζ∈Ξn−1

⎧⎨
⎩

n−1∑
j=0

ζ j Ṽ (xsj ) + τs(xi , ζ )g(xi ,us(xi , ζ ))

⎫⎬
⎭ , (18)

where ζ = (ζ0, ζ1, . . . , ζn−1) ∈ Ξn−1. The optimizing direction is captured by updating xi
from its Near Front [21]. The update formula over all of NF(xi ) is

C̃(x) = min
s∈NF(xi )

C̃s(xi ). (19)

Note that the minimizing update along all of NF(xi ) (19) does not necessarily come from
s ∈ Xn−1 where xi is a neighbour of s.

The algorithm can now be stated. Recall that any vertex xi ∈ X0 is labelled only one of
Accepted, Considered or Far at any instant of the algorithm.

1. Label all vertices xi ∈ X0 Far, assigning Ṽ (xi ) = K (where K is large).
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2. For each vertex xi ∈ X0 ∩ Ωc, relabel xi Accepted, and set Ṽ (xi ) = q(x̂) where
x̂ = arg miñx∈∂Ω ‖xi − x̃‖.

3. Relabel all neighbours of Accepted vertices xi that have Far label, to Considered. For
these vertices, compute Ṽ (xi ) = C̃(xi ) according to (19).

4. Relabel vertex xi with Considered label with lowest value Ṽ (xi ) with Accepted label. If
all vertices in X are labelled Accepted, terminate the algorithm.

5. Relabel all neighbouring vertices xi of xi withFar label toConsidered. For these vertices,
compute C̃(xi ) using (19) and set Ṽ (xi ) = C̃(xi ).

6. Recompute C̃(xi ) for all other xi withConsidered label using (19) such that xi ∈ NF(xi ),
using only s ∈ NF(xi ) such that xi ∈ s. If Ṽ (xi ) > C̃(xi ), then update Ṽ (xi ) = C̃(xi ).
Go to Step 4.

The domain of Ṽ will be extended from X0 to all of X . Define

ΩX =
⎧⎨
⎩

⋃
s∈Xn

⋃
ζ∈Ξn

n∑
j=0

ζ jxsj

⎫⎬
⎭ . (20)

From (M2), Ω ⊆ ΩX .
The domain of the spatial dimension of value function V and g (and as a result H ) are

extended from Ω to ΩX . For x ∈ Ω
c ∩ ΩX , let

x̂ = arg min
x̃∈∂Ω

‖x − x̃‖ , V (x) = q(x̂), and g(x,u) = g(x̂,u).

The domain of Ṽ is extended from X0 to ΩX by linear interpolation using barycentric
coordinates. For x ∈ s = xs0x

s
1 . . . xsn ∈ Xn ,

Ṽ (x) =
n∑
j=0

ζ j Ṽ (xsj ), where x =
n∑
j=0

ζ jxsj .

Most of the effort in the implementation of the OUM occurs in the maintenance and
the searching of AF and NF(xi ). The focus of this paper however is on the accuracy and its
convergence to the true solution in relation to discretization properties. Additional discussion
on the implementation and computational complexity of OUM can be found in [21].

5 Properties of the Approximated Value Function and Numerical
Hamiltonian

An approximation of the Hamiltonian H (11) known as the numerical Hamiltonian will be
defined on the vertices X0 of X . A similar numerical Hamiltonian was proposed in [2]. As in
[2], the numerical Hamiltonian will be shown to be both monotonic and consistent with the
Hamiltonian (11). The consistency statement here resembles that in [20], which was given
as an assumption for the half-order convergence proof for FMM. The proof of consistency
relies on directional completeness introduced in [2].

Consider the OUMalgorithm at the instant the vertex xi ∈ X0∩Ω is about to be relabelled
Accepted. The Near Front of xi at this instant is denoted NF(xi ).
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Definition 21 The approximated characteristic direction ũ∗̃
s : X0 ∩ Ω × Ξn−1 → S

n−1

at xi ∈ X0 ∩ Ω from the OUM algorithm is

ũ∗̃
s (xi , ζ̃

∗) = x̃∗ − xi
‖̃x∗ − xi‖ =

∑n−1
j=0 ζ̃ ∗

j x̃
s∗
j − xi

τ̃s∗(xi , ζ̃ ∗
j )

where x̃ =
n−1∑
j=0

ζ̃ ∗
j x̃

s∗
j (21)

where s̃∗ ∈ NF(xi ) and ζ̃ ∗ ∈ Ξn−1 are the minimizers of (18), (19) when xi is labelled
Accepted.

Definition 22 Let φ : X0 ∩ Ω → R. The numerical Hamiltonian H̃ : X0 ∩ Ω × R → [R
is

H̃ [S, φ[S]](xi , μ) = −min
s∈S min

ζ∈Ξn−1

⎧⎨
⎩

∑n−1
j=0 ζ jφ(xsj ) − μ

τs(xi , ζ )
+ g(xi , us(xi , ζ ))

⎫⎬
⎭ , (22)

where S ⊂ Xn−1.

The argument φ[S] of H̃ denotes the use of the values of φ on the vertices that make up the
(n − 1)-simplices of φ[S] in the optimization of (22). For notational brevity, the argument
of φ will be dropped.

The numerical HJB equation for the OUM algorithm for all xi ∈ X0 ∩ Ω is

H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi )) = 0. (23)

Theorem 2 [1, Prop 5.3] Let S ⊂ Xn−1. The solution μ to H̃ [S, Ṽ ](xi , μ) = 0 with H̃
defined by (22) is unique, and is given by

μ̃ = min
s∈S min

ζ∈Ξn−1

⎧⎨
⎩

n−1∑
j=0

ζ j Ṽ (xsj ) + τ(xi , ζ )g(xi ,us(xi , ζ ))

⎫⎬
⎭ . (24)

Furthermore, if s̃∗ ∈ S and ζ̃ ∗ ∈ Ξn−1 are the minimizers in (22), then s̃∗ and ζ̃ ∗ also
minimize (24).

From Theorem 2, finding the solution Ṽ (xi ) to (23) is equivalent to solving the update (19)
in the OUM algorithm for S = NF(xi ).

Definition 23 [2, Section 2.2] The set S ⊆ Xn−1 is directionally complete for a vertex
xi ∈ X0 if for all u ∈ S

n−1 there exists x ∈ s where s ∈ S such that

u = x − xi
‖x − xi‖ .

A subset A ⊂ R
n has no holes if its complement Ac is connected.

Lemma 2 Prior to each instance of Step 4 of the OUM algorithm, (n − 1)-simplices of AF
form the boundaries AFk of j (1 ≤ k ≤ j < ∞) bounded open subsets ΩAF j ⊂ ΩX , such

that each Ωc
AF j

is connected and
⋃ j

k=1 AFk = AF.
Furthermore, if xm ∈ X0 ∩ ΩAFk , then

1. the set of (n − 1)-simplices AFk is directionally complete for xm, and
2. xm is not labelled Accepted.
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Fig. 3 Lemma 2: three cases in R
2. a After relabelling xi Accepted, AF3 is no longer part of AF, b after

relabelling xi Accepted, the other vertices in the interior of AF1 are still not yet Accepted and c relabelling xi
Accepted splits AF1 into two regions, each only containing not yet Accepted vertices in their interiors

Proof At the initialization (Steps 1–3) of the OUM algorithm, only vertices in X0 ∩ Ωc are
labelled Accepted. From (M2) and (P4), j = 1 and AF1 = AF form a single boundary that
encloses ΩAF1 ⊇ Ω . The lemma is satisfied in the first instance of Step 4.

The Accepted Front and AF change only in Step 4 of the OUM. Proof by induction will
be used. The lemma is assumed to hold prior to Step 4 of the OUM. Let xi ∈ X0 ∩ ΩAFk be
the vertex to be relabelled Accepted for some 1 ≤ k ≤ j . Only AFk and ΩAFk may change
while ΩAF j �=k will remain unchanged.

If xi has no neighbours in X0 ∩ ΩAFk , then the resulting ΩAFk and X0 ∩ ΩAFk are both
empty. See Fig. 3a.

If xi has a neighbour in X0∩ΩAFk , then xi is added to theAccepted Front. IfΩAFk remains
a single open connected subset of Rn , xm ∈ X0 ∩ ΩAFk\{xi }, AFk remains directionally
complete and xm is not labelled Accepted. See Fig. 3b.

Otherwise, ΩAFk is no longer a single open connected subset of R
n . Thus, ΩAFk has been

split into p ≥ 2 non-intersecting open connected regions ΩAFk1 ,ΩAFk2 , . . . , ΩAFkp with a
subset of the resultant AFk as the boundary of each. Vertices xm ∈ X0 ∩ ΩAFk\{xi } are still
not labelled Accepted, and AFkl is directionally complete for xm ∈ ΩAFkl . See Fig. 3c. ��
Definition 24 For every xi ∈ X0 ∩ Ω , let S(xi ) ⊂ Xn−1 such that

1. NF(xi ) ⊆ S(xi ),
2. S(xi ) is directionally complete for xi .
3. For all s ∈ S(xi ), if a point x ∈ s, then

‖x − xi‖ ≤ (2Γ + 1)hmax .

4. H̃ [S(xi ), Ṽ ](xi , Ṽ (xi )) = H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi ))

Such S(xi ) will now be constructed for all xi ∈ X0 ∩ Ω and shown to satisfy Definition
24. Let Br (x) = {̃x ∈ R

n | ‖x − x̃‖ ≤ r, r ∈ R+}.
Definition 25 Assume theOUMalgorithm is at the instant that vertex xi labelledConsidered
is about to be relabelled Accepted. LetAF(xi ) be the subset ofAF described in Lemma 2 for
xi labelled Considered.

Two cases are considered.

Case 1 The set AF(xi ) lies in the interior of B2Γ hmax (xi ), where hmax and Γ have been
defined in Definitions 17 and 20 respectively. Let

S(xi ) = AF(xi ) ∪ NF(xi ).
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Fig. 4 S(xi ) inR2—Left edges ofNF(xi ),AF(xi ) and ∂R(xi ) are shown. Right S(xi ) is the union ofNF(xi )
with the boundary of the intersection of regions R(xi ) with AF(xi ). Vertices strictly inside S(xi ) are not
labelled Accepted

Case 2 Otherwise, let R(xi ) be the region described by the smallest subset of Xn in which
ΩX ∪ B2Γ hmax (xi ) is contained, and ∂R(xi ) its boundary.

Let SAFR(xi ) ⊂ Xn−1 form the boundary of the compact region ΩAF(xi )
∩ R(xi ). Finally

for Case 2,
S(xi ) = SAFR(xi ) ∪ NF(xi ). (25)

See Fig. 4.
In both cases, the union with NF(xi ) ensures that s ∈ NF(xi )\AF(xi ) are still included in

S(xi ), just as in OUM.
By construction, S(xi ) satisfies the first three properties of Definition 24. It remains to

show Property 4 in Definition 24 is satisfied.

For xi ∈ X0 ∩ Ω , let Ṽ
AFxi
min be the minimum value on the Accepted Front AF just before

xi is labelled Accepted.

Lemma 3 [21, Lemma 7.3(i) and (iii)] Assume the vertex xi ∈ X0 is about to be labelled
Accepted. Then

1. Ṽ
AFxi
min + hminGmin ≤ Ṽ (xi ) ≤ Ṽ

AFxi
min + hmaxGmax .

2. If xi is labelled Accepted before x j then Ṽ
AFxi
min ≤ Ṽ

AFx j
min .

Lemma 4 Let x̃ = ∑n−1
j=0 ζ jxsj where s = xs0x

s
1 . . . xsn−1 ∈ Xn−1, ζ ∈ Ξn−1. If xi ∈ X0 is

labelled Accepted before all of xs0, x
s
1, . . . , x

s
n−1 and ‖̃x − xi‖ > Γ hmax , then

Ṽ (xi ) <

n−1∑
j=0

ζ j Ṽ (xsj ) + ‖̃x − xi‖ g
(
xi ,

x̃ − xi
‖̃x − xi‖

)
. (26)
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Proof From Lemma 3, (P2), Definition 20 and Ṽ
AFxsj
min < Ṽ (xsj ) for j = 1, . . . , n − 1,

Ṽ (xi ) ≤ Ṽ
AFxi
min + hmaxGmax ,

≤
n−1∑
j=0

ζ j min

{
Ṽ

AFxs0
min , Ṽ

AFxs1
min , . . . , Ṽ

AFxsn−1
min

}
+ Γ hmaxGmin

<

n−1∑
j=0

ζ j Ṽ (xsj ) + ‖̃x − xi‖ g
(
xi ,

x̃ − xi
‖̃x − xi‖

)
.

��
Lemma 5 [21, Lemma 7.1] Let xi be the vertex with Considered label that is about to be
relabelled Accepted. Let

W̃ (xi ) = min
s∈AF min

ζ∈Ξn−1

⎧⎨
⎩

n−1∑
j=0

ζ j Ṽ (xsj ) + τs(xi , ζ )g(xi ,us(xi , ζ ))

⎫⎬
⎭ . (27)

Then W̃ (xi ) = Ṽ (xi ).

The minimizing update from AF must come from NF(xi ). The next theorem states that the
minimizing update Ṽ (xi ) from S(xi ) must come from NF(xi ).

Theorem 3 Let Ṽ : X0 → R be computed by the OUM on mesh X, with weight function g
and boundary function q. Then for xi ∈ X0 ∩ Ω ,

Ṽ (xi ) = min
s∈S(xi )

min
ζ∈Ξn−1

⎧⎨
⎩

n−1∑
j=0

ζ j Ṽ (xsj ) + τ(xi , ζ )g(xi ,us(xi , ζ ))

⎫⎬
⎭ . (28)

Proof Let the OUM algorithm be at the instant where vertex xi with Considered label is
about to be relabeled Accepted.

Recall Case 1, whereAF(xi ) is entirely inside B2Γ hmax (xi ) and S(xi ) = AF(xi )∪NF(xi ).
SinceAF(xi ) ⊆ AF andNF(xi ) ⊆ AF, S(xi ) ⊆ AF. By Lemma 5,NF(xi ) must contain the
minimizers s̃∗ and ζ̃ ∗ of (28).

Recall Case 2, where S(xi ) = SAFR(xi )∪NF(xi ). The minimizing s̃∗, ζ̃ ∗ of S(xi ) will be
shown to come fromNF(xi ) by showing the updates of S(xi )\NF(xi ) = (AF(xi )\NF(xi ))∪
(S(xi )∩∂R(xi )) are at least the value from OUM. By Lemma 5, the minimizers are not from
AF(xi )\NF(xi ).

It remains to show that updates (18) from s ∈ S(xi ) ∩ ∂R(xi ) (which are just outside
B2Γ hmax (xi )) are at least the value obtained from OUM. Because vertices of s lie on or inside
AF(xi ), they must either be on the Accepted Front or not yet Accepted (Lemma 2). Three
cases are considered.

1. If none of the vertices of s have been labelled Accepted, Lemma 4 applies. The update
for xi from s ∈ S(xi ) ∩ ∂R(xi ) is greater than Ṽ (xi ) from OUM.

2. If the vertices of s are all on the Accepted Front, then s ∈ AF and Lemma 5 applies. The
update from s is at least Ṽ (xi ) from OUM.

3. If at least one but not all the vertices of s are on the Accepted Front, then the rest of the
vertices on s (that are not labelledAccepted)must be labelledConsidered. Let theAccepted

123



J Sci Comput (2016) 68:889–913 901

and Considered vertices of s be denoted {xsa1 , . . . , xsal } and {xsc1 , . . . , xsck } respectively.
Let s be rewritten
s = xsa1 . . . xsal xsc1 . . . xsck where l + k = n since s has n vertices. Let ζ =
(ζ sa

1 , . . . , ζ sa
l , ζ sc

1 , . . . , ζ sc
k ) be the barycentric coordinates for x ∈ s. By Lemma 3,

Ṽ (xi ) > Ṽ
AFxi
min and Definition 20, for all 1 ≤ j ≤ k,

Ṽ (xi ) ≤ Ṽ
AFxi
min + hmaxGmax < Ṽ (xscj ) + Γ hmaxGmin .

For all 1 ≤ j ≤ k, and 1 ≤ m ≤ l, xscj is labelled Considered and xsam is on its Near Front

NF(xscj ). Thus,

Ṽ (xscj ) ≤ Ṽ (xsam ) +
∥∥∥xsam − xscj

∥∥∥ g
⎛
⎝xscj ,

xsam − xscj∥∥∥xsam − xscj

∥∥∥

⎞
⎠ ≤ Ṽ (xsam ) + Γ hmaxGmin

Ṽ (xsam ) ≥ Ṽ (xscj ) − Γ hmaxGmin > Ṽ (xi ) − 2Γ hmaxGmin .

Consider the update for xi (18) from s ∈ S(xi ) ∩ ∂R(xi ). For any ζ ∈ Ξn−1,

n−1∑
j=0

ζ j Ṽ (xsj ) + τs(xi , ζ )g(xi ,us(xi , ζ ))

=
(

l∑
m=1

ζ sa
m Ṽ (xsam )

)
+

⎛
⎝ k∑

j=1

ζ sc
j Ṽ (xscj )

⎞
⎠ + τs(xi , ζ )g(xi ,us(xi , ζ )),

>

l∑
m=1

ζ sa
m (Ṽ (xi ) − 2Γ hmaxGmin) +

k∑
j=1

ζ sc
j (Ṽ (xi ) − Γ hmaxGmin) + 2Γ hmaxGmin,

≥ Ṽ (xi ),

since τs(xi , ζ ) > 2Γ hmax and (
∑l

m=1 ζ sa
m ) + (

∑k
j=1 ζ sc

j ) = 1.

Therefore s ∈ S(xi ) ∩ ∂R(xi ) provides an update larger or equal to OUM. By Lemma 5, a
minimizing update (28) in S(xi ) must always come from NF(xi ). ��

By Theorems 2 and 3,

H̃ [S(xi ), Ṽ ](xi , Ṽ (xi )) = H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi )).

Therefore, for xi ∈ X0 ∩ Ω , S(xi ) satisfies Definition 24.
The monotonicity and consistency of the numerical Hamiltonian will now be discussed.

Theorem 4 (Monotonicity) [2, Proposition 2.1] For φ, φ : X0 → R that satisfy φ(x j ) ≤
φ(x j ) for all x j ∈ X0 ∩ Ω , and φ(xi ) = φ(xi ) = φ(xi ) ∈ R,

H̃ [S(xi ), φ](xi , φ(xi )) ≥ H̃ [S(xi ), φ](xi , φ(xi )).

Theorem 5 (Consistency)There existsC1 ∈ R+ (not dependent on hmax ) for all xi ∈ X0∩Ω

and φ ∈ C2(Ω), such that

|H(xi ,∇φ) − H̃ [S(xi ), φ](xi , φ(xi ))| ≤ C1
∥∥∇2φ

∥∥
2 hmax .

where ‖A‖2 is the maximum singular value of A ∈ R
n×n.
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Proof Let φ ∈ C2(Ω) and xi ∈ X0 ∩ Ω . Recall S(xi ) is directionally complete, so the
characteristic direction (Definition 6) u∗ can be described using barycentric coordinates ζ ∗ =
(ζ ∗

0 , ζ ∗
1 , . . . , ζ ∗

n−1) ∈ Ξn−1 from an appropriate simplex s∗ ∈ S(xi ). Let x∗ = ∑n−1
j=0 ζ ∗

j x
s∗
j .

Taylor’s theorem will be used on H (11). Let c∗ and c∗
j for j = 0, 1, . . . , n − 1 denote the

points arising from Taylor’s theorem on the line segments between x∗ and xi and x∗ and xs
∗
j

respectively. Since
∑n−1

j=0 ζ ∗
j ∇φ(x∗)T (xs

∗
j − x∗) = ∇φ(x∗)T (x∗ − x∗) = 0, evaluating both

H and H̃ at s∗ and ζ ∗,

H(xi ,∇φ) − H̃ [S(xi ), φ](xi , φ(xi ))

≤ −
∑n−1

j=0
ζ ∗
j
2 (xs

∗
j − x∗)T∇2φ(c∗

j )(x
s∗
j − x∗) + 1

2 (x
∗ − xi )T∇2φ(c∗)(x∗ − xi )

τs∗(xi , ζ ∗)
,

≤ 1

hmin

(∑n−1
j=0 ζ ∗

j

2

∥∥∇2φ
∥∥
2 h

2
max + 1

2

∥∥∇2φ
∥∥
2 (2Γ + 1)2h2max

)
,

≤ M

2

∥∥∇2φ
∥∥
2 (1 + (2Γ + 1)2)hmax ,

since the point x∗ ∈ s∗ ∈ S(xi ) is at most (2Γ +1)hmax from xi and at most hmax away from
any of the vertices of s∗. The distance τs∗(xi , ζ ∗) is at least the minimum simplex height hmin

andM from (M1) satisfies 1 ≤ hmax
hmin

≤ M . The proof for H̃ [S(xi ), φ](xi , φ(xi ))−H(xi ,∇φ)

yields the same estimate using the minimizers of H̃ , (n − 1)-simplex s̃∗ ∈ S(xi ) and ζ̃ ∗ ∈
Ξn−1. The theorem is proved with C1 = M

2 (1 + (2Γ + 1)2). ��
A similar consistency property was assumed in [20] for the half-order proof for FMM.

A similar proof without rate using similar arguments was given in [2, Prop. 2.2] for the
Monotone Acceptance OUM.

6 OUM Error Bound

The error bound proof will be presented. Several definitions and results are first required.

Lemma 6 [3] Let x ∈ R
n. If Ω is convex, then z∗ = arg minz∈Ω ‖x − z‖ is unique, and

satisfies
(x − z∗) · (w − z∗) ≤ 0, for all w ∈ Ω. (29)

Lemma 7 The value function V is globally Lipschitz-continuous over Ω X . That is, there
exists LV ∈ R+ such that for any x1, x2 ∈ ΩX ,

|V (x1) − V (x2)| ≤ LV ‖x1 − x2‖ .

An outline of the proof is given using three cases.

Case 1 x1, x2 ∈ ΩX ∩ Ωc. This is an exercise in [7, Exercise 2.8d], which can be shown
using the Cauchy–Schwartz inequality and Lemma 1.

Case 2 x1, x2 ∈ Ω . This is shown in [25, Lemma 2.2.7] with constant Gmax .

Case 3 x1 ∈ Ω and x2 ∈ ΩX ∩ Ωc. This can be shown using Lemma 6 and

L(a,b) ≤ L(a, c) + L(c,b),

for a,b, c ∈ Ω . For x1, x2 ∈ ΩX , a valid Lipschitz constant is LV = 2Gmax .
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Lemma 8 [25, Lemma 2.2.9] Let x ∈ Ω X . Let x̃ = arg minz∈∂Ω |x− z|. The value function
V satisfies

qmin ≤ V (x) ≤ Gmax ‖x − x̃‖ + qmax .

The proof is shown in [25] for x ∈ Ω . The proof is trivial for x ∈ Ω X ∩ Ω
c
.

Lemma 9 [21, Lemma 7.5] Let Ṽ : X0 → R obtained by the ordered upwind method. There
exists LṼ ∈ R+ for any xi , x j ∈ X0, such that

|Ṽ (xi ) − Ṽ (x j )| ≤ LṼ |xi − x j |.
A possible Lipschitz constant for Ṽ is LṼ = M2Gmax [21], where M is described in (M1).
Similar proof from Case 1 and Case 3 of Lemma 7 is valid with a restriction of x ∈ X0 and
function L (6) is replaced with L̃ : X0 × X0 → R,

L̃(x1, x2) = inf
u(·)∈Ũ

{∫ τ

0
g(yx1(s),u(s))ds

∣∣∣ yx1(τ ) = x2, yx1(t) ∈ Ω, t ∈ (0, τ )

}
. (30)

where Ũ is defined in (17).

Lemma 10 [21, Lemma 7.2] Let x ∈ s where s ∈ Xn and x̃ = arg minz∈∂Ω ‖x − z‖ . Then

qmin ≤ Ṽ (x) ≤ Gmax |x − x̃| + qmax .

The proof is shown in [21] for x ∈ Ω . The proof is trivial for x ∈ Ω
c
.

The next lemma states that any point on the boundary ∂Ω must be at most hmax away
from its nearest vertex of X outside of Ω .

Lemma 11 If x ∈ ∂Ω , there exists xi ∈ X0 ∩ Ωc such that

‖x − xi‖ ≤ hmax . (31)

Proof Assumption (M2) states that Ω is contained in X . The point x ∈ s where s ∈ Xn .
Since Ω is convex (P4), and x can be described by barycentric coordinates of s, at least one
of the vertices of s must be outside Ω . Furthermore, for all 1 ≤ j ≤ n,∥∥∥x − xsj

∥∥∥ ≤ max
1≤k≤n

∥∥∥xsk − xsj
∥∥∥ ≤ hmax .

��
The following definitions provide a weaker description of the gradient for functions that

are not necessarily differentiable. Let A be a bounded subset of Rn .

Definition 26 The vector p ∈ R
n is a subgradient of a function f : A → R at x0 ∈ A if

there exists δ > 0 such that for any x ∈ Bδ(x0),

f (x) − f (x0) ≥ p · (x − x0).

Definition 27 The vector p ∈ R
n is a supergradient of a function f : A → R at x0 ∈ A if

there exists δ > 0 such that for any x ∈ Bδ(x0),

f (x) − f (x0) ≤ p · (x − x0).

Let D− f (x0) and D+ f (x0) denote the sets of all subgradients and supergradients of f at x0
respectively.
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Lemma 12 Let f : A → R be globally Lipschitz-continuous with Lipschitz constant C and
x0 ∈ A. If p ∈ D− f (x0) ∪ D+ f (x0) , then

‖p‖ ≤ C.

Proof Let x0 ∈ A,b ∈ S
n−1, δ > 0, such that x0+δb ∈ A. Letp ∈ D− f (x0) (Definition 26).

The Lipschitz continuity of f gives

C ‖x0 + δb − x0‖ ≥ f (x0 + δb) − f (x0) ≥ p · (x0 + δb − x0).

Choosing b = p
‖p‖ gives ‖p‖ ≤ C . The proof is analogous for p ∈ D+ f (x0). ��

Lemma 13 [5, Lemma 1.7] A vector p ∈ D− f (x0) if and only if there exists φ ∈ C1(Ω) →
R such that f −φ has a local minimum at x0. Similarly, a vector p ∈ D+ f (x0) if and only if
there exists φ ∈ C1(Ω) → R such that ∇φ(x0) = p, and f − φ has a local maximum at x0.

The approximated value function Ṽ is in a sense a viscosity solution for the numerical
HJB equation (23).

Definition 28 Let x̂ = arg minx∈∂Ω ‖xi − x‖. A subsolution of the numerical HJB equa-
tion (23) Ṽ : X0 → R satisfies

{
Ṽ (xi ) ≤ q(x̂) for xi ∈ X0 ∩ Ωc,

H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi )) ≤ 0 for xi ∈ X0 ∩ Ω.

Definition 29 Let x̂ = arg minx∈∂Ω ‖xi − x‖. A supersolution of the numerical HJB

equation (23) Ṽ : X0 → R satisfies{
Ṽ (xi ) ≥ q(x̂) for xi ∈ X0 ∩ Ωc,

H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi )) ≥ 0 for xi ∈ X0 ∩ Ω.

Definition 30 A solution of the numerical HJB equation (23) Ṽ is both a subsolution and
a supersolution of the numerical HJB equation (23).

By Theorem 2, the approximate value function Ṽ produced by the OUM algorithm is a
solution of the numerical HJB equation. Hence, it is both a subsolution and supersolution of
the numerical HJB equation. Recall the definition of Ω X (20).

Theorem 6 Let V : ΩX → R be a viscosity solution of (12) and Ṽ : X0 → R be a solution
of the numerical HJB equation (23). There exist C, h0 > 0, both independent of hmax such
that

max
xi∈X0

|V (xi ) − Ṽ (xi )| ≤ C
√
hmax , (32)

for every xi ∈ X0 and hmax < h0.

Proof The proof is trivial for xi ∈ X0 ∩ Ω
c
. Otherwise, xi ∈ X0 ∩ Ω . Since Ω ⊆ R

n is
bounded, define

dΩ = max
x,̃x∈∂Ω

‖x − x̃‖ , (33)

C0 = max{LV , LṼ , |qmin |, dΩGmax + |qmax |}, (34)

where LV , LṼ , |qmin |,Gmax , and |qmax | are from Lemmas 7, 8, 9, 10.
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For xi ∈ X0∩Ω , the result of the theorem is shown for V (xi )− Ṽ (xi ). A similar argument
for Ṽ (xi ) − V (xi ) can be made.

Two parameters ε and λ are used to determine the error bound. For ε > 0 and 0 < λ < 1,
define Φ : Ω × X0 → R

Φ(x, xi ) = λV (x) − Ṽ (xi ) − ‖x − xi‖2
2ε

. (35)

Let x ∈ Ω and xi ∈ X0 maximize Φ, over the compact set Ω × X0. Define

Mε,λ = max
x∈Ω,xi∈X0

Φ(x, xi ) = Φ(x, xi ). (36)

For xi ∈ X0 ∩ Ω , using (35) and (36) with V (xi ) ≤ C0 from Lemma 8 (boundedness of
V ),

V (xi ) − Ṽ (xi ) ≤ (1 − λ)V (xi ) + Mε,λ ≤ C0(1 − λ) + Mε,λ. (37)

Choose λ such that

1 − λ = 2

Gmin

(
C1

ε
hmax + C0Lgε

)
, (38)

where Lg is defined in (9), and C1 = M(1+(2Γ +1)2)
2 is defined in Theorem 5 with M in (M1)

and Γ = Gmax
Gmin

.

The result of the theorem will be true with ε = √
hmax . Therefore, it is sufficient to pick

h0 small enough so that for all hmax < h0, 0 < (1 − λ) < 1 is satisfied. Setting (38) less

than 1, with ε = √
hmax yields hmax <

G2
min

4(C1+C0Lg)2
. Let h0 = min{ G2

min
4(C1+C0Lg)2

, 1}.
The point x in (35) must belong to Ω or ∂Ω , while xi must belong to X0 ∩Ω or X0 ∩Ωc.

An outline of the remainder of proof is as follows.

Step 1 Show that at most only one of x and xi may be in Ω .
Step 2 Find an upper bound for Mε,λ in (36) given the restriction in Step 1.
Step 3 Find an upper bound on V (xi ) − Ṽ (xi ) (37) in terms of hmax .

Step 1 Define φ : Ω → R,

φ(x) = 1

λ

(
Mε,λ + Ṽ (xi ) + ‖x − xi‖2

2ε

)
and so ∇φ(x) = 1

λ

(
x − xi

ε

)
. (39)

Using (35), (36), (39), and Mε,λ ≥ Φ(x, xi ), it can be shown that V (x) ≤ φ(x) for all
x ∈ Ω and V (x) = φ(x). Therefore V − φ has a local maximum at x. By Lemma 13,
p = ∇φ(x) ∈ D+V (x). By Lemma 12, |∇φ(x)| is bounded by the Lipschitz constant LV ,
which by (34) and (39),

‖x − xi‖ ≤ λ ‖∇φ(x)‖ ε ≤ λC0ε.

From (38), and using 0 < λ < 1,

(1 − λ) >
1

Gmin

(
C1

ε
hmax + λLg ‖x − xi‖

)
. (40)

Define ψ : ΩX → R,

ψ(xi ) = −Mε,λ + λV (x) − ‖x − xi‖2
2ε

, and so ∇ψ(xi ) = x − xi
ε

. (41)
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Let u∗
xi
optimize the Hamiltonian (11) for arguments xi and ∇ψ(xi ),

H(xi ,∇ψ(xi )) = −∇ψ(xi ) · u∗
xi − g(xi ,u∗

xi ).

From (40), assumptions (P2), (P3) and definitions of ∇φ (35) and ∇ψ (41),

(1 − λ) g(xi ,u∗
xi ) >

C1

ε
hmax + λ

(
g
(
x,u∗

xi

)
− g

(
xi ,u∗

xi

))
,

x − xi
ε

· u∗
xi + g(xi ,u∗

xi ) − λ

(
1

λ
· x − xi

ε
· u∗

xi + g(x,u∗
xi )

)
>

C1

ε
hmax ,

∇ψ(xi ) · u∗
xi + g(xi ,u∗

xi ) − λ(∇φ(x) · u∗
xi + g(x,u∗

xi )) >
C1

ε
hmax . (42)

Since u∗
xi
is not necessarily the maximizer of H(x,∇φ(x)),

− λ
(
∇φ (x) · u∗

xi + g
(
x,u∗

xi

))
≤ λH (x,∇φ (x)) . (43)

It will now be shown that at most one of xi or x can be in Ω . Following (42) and using the
definition of the Hamiltonian (11), (43), u∗

xi
is the optimizer of H(xi ,∇ψ(xi )),

− H(xi ,∇ψ(xi )) + λH(x,∇φ(x)) >
C1

ε
hmax . (44)

Case 1 Let x ∈ Ω . From Definition 7, H(x,∇φ(x)) ≤ 0. From (44),

H(xi ,∇ψ(xi )) < −C1

ε
hmax . (45)

For all xi ∈ X0, ψ(xi ) ≤ Ṽ (xi ), ψ(xi ) = Ṽ (xi ). By Definition 24 and Theorem 4,

H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi )) = H̃ [S(xi ), Ṽ ](xi , Ṽ (xi )) ≤ H̃ [S(xi ), ψ](xi , ψ(xi )). (46)

It will be shown that xi ∈ X0 ∩ Ωc using proof by contrapositive. Since Ṽ is a solution
to the numerical HJB equation (23), it is a supersolution of the numerical HJB equation
(Definition 29). If xi ∈ X0 ∩ Ω , then

H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi )) = H̃ [S(xi ), Ṽ ](xi , Ṽ (xi )) ≥ 0. (47)

Furthermore if xi ∈ X0 ∩ Ω , Theorem 5 must also hold. That is, since
∥∥∇2ψ

∥∥
2 = 1

ε
,

|H(xi ,∇ψ(xi )) − H̃ [S(xi ), ψ](xi , ψ(xi ))| ≤ C1

ε
hmax . (48)

It will be shown (47) and (48) cannot simultaneously be true, implying xi ∈ X0 ∩Ωc. If (47)
is true, then by (46), H̃ [S(xi ), ψ](xi , ψ(xi )) ≥ 0. By (45),

H(xi ,∇ψ(xi )) − H̃ [S(xi ), ψ](xi , ψ(xi )) < −C1

ε
hmax .

Therefore (48) is false.
Otherwise, if (48) were true, using (45),

H(xi ,∇ψ(xi )) − H̃ [S(xi ), ψ](xi , ψ(xi )) ≥ −C1

ε
hmax > H(xi ,∇ψ(xi )).

Hence with (46),

H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi )) = H̃ [S(xi ), Ṽ ](xi , Ṽ (xi )) ≤ H̃ [S(xi ), ψ](xi , ψ(xi )) < 0.

Therefore (47) is false. Hence xi ∈ X0 ∩ Ωc.
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Case 2 If xi ∈ X0 ∩ Ω , from Theorem 5,

H̃ [S(xi ), ψ](xi , ψ(xi )) − H(xi ,∇ψ(xi )) ≤ C1

ε
hmax . (49)

From (46), Definition 24 and Ṽ is a supersolution of the numerical HJB (23) (Definition 29),

H̃ [S(xi ), ψ](xi , ψ(xi )) ≥ H̃ [S(xi ), Ṽ ](xi , Ṽ (xi )) = H̃ [NF(xi ), Ṽ ](xi , Ṽ (xi )) ≥ 0.

From (44) and (49),

C1

ε
hmax + H̃ [S(xi ), ψ](xi , ψ(xi )) − λH(x,∇φ(x)) <

C1

ε
hmax . (50)

Since xi ∈ X0 ∩ Ω , H̃ [S(xi ), ψ](xi , ψ(xi )) ≥ 0, from (50), and 0 < λ < 1,

H(x,∇φ(x)) > 0,

which implies by Definition 7 of the viscosity subsolution, x ∈ ∂Ω . Hence at most one of
maximizers of Mε,λ, x and xi can belong to Ω .

Step 2 An upper bound on Mε,λ (36) will be found.

Case 1 x ∈ Ω, xi ∈ X0 ∩ Ωc.

Let x̌ = arg minx∈∂Ω ‖xi − x‖. Let xi be the point on the line from x and xi intersecting
∂Ω . For x ∈ ∂Ω , xi = x. Since Ω is convex, by Lemma 6, the angle between vectors xi − x̌
and xi − x̌ is nonacute. Using the cosine law,

∥∥xi − xi
∥∥2 = ∥∥xi − x̌

∥∥2 + ∥∥xi − x̌
∥∥2 − 2(xi − x̌) · (xi − x̌),

≥ ∥∥xi − x̌
∥∥2 ,∥∥xi − xi

∥∥ ≥ ∥∥xi − x̌
∥∥ .

Since xi is on the line segment from x to xi , ‖x − xi‖ = ∥∥x − xi
∥∥ + ∥∥xi − xi

∥∥. With the
triangle inequality,

∥∥x − xi
∥∥ + ∥∥xi − xi

∥∥ ≥ ∥∥x − xi
∥∥ + ∥∥xi − x̌

∥∥ ,

‖x − xi‖ ≥ ∥∥x − x̌
∥∥ . (51)

By the Lipschitz-continuity of V with constant C0, 0 < λ < 1, |Ṽ | ≤ C0, and since Ṽ is a
supersolution to the numerical HJB equation (23), Ṽ (xi ) ≥ q(x̌),

Mε,λ = λV (x) − Ṽ (xi ) − ‖x − xi‖2
2ε

,

= λ(V (x) − Ṽ (xi )) − (1 − λ)Ṽ (xi ) − ‖x − xi‖2
2ε

,

≤ λ(V (x) − q(x̌)) + (1 − λ)C0 − ‖x − xi‖2
2ε

, (52)

If x ∈ Ω , V (x̌) ≤ q(x̌), from (52),

Mε,λ ≤ λ(V (x) − V (x̌)) + (1 − λ)C0 − ‖x − xi‖2
2ε

. (53)
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Otherwise x ∈ ∂Ω , and V (x) ≤ q(x), from (52),

Mε,λ ≤ λ(q(x) − q(x̌)) + (1 − λ)C0 − ‖x − xi‖2
2ε

. (54)

The Lipschitz continuity of both q and V with constant C0 in (53) and (54) and ‖x − xi‖ ≥∥∥x − x̌
∥∥ from (51), along with 0 < λ < 1 yield

Mε,λ ≤ C0
∥∥x − x̌

∥∥ + (1 − λ)C0 −
∥∥x − x̌

∥∥2
2ε

, (55)

which is quadratic in
∥∥x − x̌

∥∥. The quadratic is maximized with
∥∥x − x̌

∥∥ = C0ε. Thus,

Mε,λ ≤ (1 − λ)C0 + C2
0ε

2
. (56)

Case 2 x ∈ ∂Ω , xi ∈ X0 ∩ Ω .

From Lemma 11, there exists x̂i ∈ X0 ∩ Ωc such that
∥∥x − x̂i

∥∥ ≤ hmax . (57)

Let x̃ = arg minx∈∂Ω

∥∥x̂i − x
∥∥. Using 0 < λ < 1, Ṽ (x̂i ) ≥ q (̃x), V (x) ≤ q(x), Lipschitz-

continuity of q and Ṽ both with constant C0,

Mε,λ = λV (x) − Ṽ (xi ) − ‖x − xi‖2
2ε

,

= λ(V (x) − Ṽ (xi )) − (1 − λ)Ṽ (xi ) − ‖x − xi‖2
2ε

,

≤ λ(q(x) − q (̃x) + q (̃x) − Ṽ (xi )) + (1 − λ)C0 − ‖x − xi‖2
2ε

,

≤ λC0 ‖x − x̃‖ + λ(Ṽ (x̂i ) − Ṽ (xi )) + (1 − λ)C0 − ‖x − xi‖2
2ε

,

≤ C0(‖x − x̃‖ + ∥∥x̂i − xi
∥∥) + (1 − λ)C0 − ‖x − xi‖2

2ε
,

Using the triangle inequality,
∥∥x̂i − xi

∥∥ ≤ ∥∥x̂i − x̃
∥∥ + ‖̃x − x‖ + ‖x − xi‖, hence

Mε,λ ≤ (1 − λ)C0 + C0
(‖x − x̃‖ + ∥∥x̂i − x̃

∥∥ + ‖̃x − x‖ + ‖x − xi‖
) − ‖x − xi‖2

2ε
.

By Lemma 6, and the cosine law, ‖x − x̃‖ ≤ ∥∥x − x̂i
∥∥. From the definition of x̃,

∥∥x̂i − x̃
∥∥ ≤∥∥x − x̂i

∥∥. Therefore,

Mε,λ ≤ (1 − λ)C0 + 3C0
∥∥x − x̂i

∥∥ + C0 ‖x − xi‖ − ‖x − xi‖2
2ε

.

From (57) and maximizing over the quadratic ‖x − xi‖ with ‖x − xi‖ = C0ε,

Mε,λ ≤ (1 − λ)C0 + 3C0hmax + C2
0ε

2
. (58)
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Step 3 The upper bound of Mε,λ in (58) is larger than (56). From (37),

V (xi ) − Ṽ (xi ) ≤ C0(1 − λ) + Mε,λ,

≤ 2C0(1 − λ) + 3C0hmax + C2
0ε

2
,

≤ 2C0
2

Gmin

(
C1

ε
hmax + C0Lgε

)
+ 3C0hmax + C2

0ε

2
,

≤
(
4C0C1

Gmin
+ 4C2

0 Lg

Gmin
+ C2

0

2

)(
hmax

ε
+ ε

)
+ 3C0hmax ,

Since ε = √
hmax is a global minimum of ( hmax

ε
+ ε), and setting C = 2

(
4C0C1
Gmin

+ 4C2
0 Lg

Gmin

+C2
0
2 + 3C0

)
, for hmax < h0 = min{ G2

min
4(C1+C0Lg)2

, 1},

V (xi ) − Ṽ (xi ) ≤ C
√
hmax . (59)

Finally, a symmetrical argument using V a viscosity supersolution of (12) (Definition 8),
and Ṽ a subsolution of the numerical HJB equation (23) (Definition 28) can show (59) with
V (xi ) and Ṽ (xi ) reversed. Hence for hmax < h0,

max
xi∈X0

|Ṽ (xi ) − V (xi )| ≤ C
√
hmax .

��
Theorem 6 will now be extended to Ω X . Define V̂ : ΩX → R

V̂ (x) =
n∑
j=0

ζ j V (xsj ) for x =
n∑
j=0

ζ jxsj .

On xi ∈ X0, V (xi ) = V̂ (xi ) are equal.

Lemma 14 There exists D1 > 0 for all x ∈ ΩX , such that

|V (x) − V̂ (x)| ≤ D1hmax . (60)

Proof Let ζ ∈ Ξn and x ∈ s such that x = ∑n
j=0 ζ jxsj . Using V (xi ) = V̂ (xi ) for all vertices

xi ∈ X0,
∑n

j=0 ζ j = 1, Lemma 7, with Lipschitz constant LV = 2Gmax ,

|V (x) − V̂ (x)| ≤
n∑
j=0

ζ j |V (x) − V (x j )| ≤ 2Gmaxhmax .

��

Corollary 1 There exists D2 > 0 for all x ∈ ΩX such that

|V (x) − Ṽ (x)| ≤ D2

√
hmax , (61)

for hmax < h0 as described in Theorem 6.
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Proof Let ζ ∈ Ξn and x ∈ s such that x = ∑n
j=0 ζ jxsj . For x ∈ ΩX , Ṽ (x) = ∑n

j=0 ζ j Ṽ (xsj ).
From Lemma 14 and Theorem 6,

V (x) − Ṽ (x) ≤ D1hmax + V̂ (x) − Ṽ (x)

= D1hmax +
n∑
j=0

ζ j

(
V̂ (xsj ) − Ṽ (xsj )

)

≤ (D1 + C)
√
hmax ,

for hmax < h0. The proof for Ṽ (x) − V (x) is symmetrical. Hence D2 = D1 + C . ��

7 Numerical Convergence of OUM Example

An example of the error computed using OUM for the boundary value problem is given. The
OUM algorithm was programmed in MATLAB® on an ASUS X550L Laptop with Intel®

Core TM i5 -4210U CPU Processor (1.7GHz/2.4GHz) with 4GB RAM. As in [21], the
update for the OUM algorithm (19) was solved using the golden section search. For Ω =
[−500, 500] × [−500, 500], ∂Ω = {(x, y) ∈ Ω||x | = 500 or |y| = 500}, the weight g used
corresponded to a rectangular speed profile (Definition 5) centred about x with dimensions 6
in the x-direction and 2 in the y-direction. See Fig. 5a. The boundary function was q(x) = 0

Fig. 5 A numerical example: a Rectangular speed profile Ug(x) with length 6 in the x-direction and 2 in the
y-direction, b the exact solution V : a three dimensional view and c the error between Ṽ and V (viewed from
above) is greatest at points where ∇V is not defined
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Table 1 Accuracy of OUM for a boundary value problem—the OUM was used to solve the static HJB
problem with a rectangular profile on five meshes

Vertices Triangles hmax Avg. error ravg Max error rmax

4289 8256 24.07 0.3746 – 10.54 –

16,765 32,888 11.99 0.1914 0.9634 7.48 0.4931

66,291 131,300 6.438 0.0979 1.0779 5.38 0.5289

263,597 524,632 3.483 0.0499 1.0968 3.80 0.5643

1,051,261 2,097,400 1.785 0.0255 1.0062 2.74 0.4900

Both average error across the vertices and maximum vertex error are reported. The incremental rates of
convergence are also shown

Fig. 6 Average and maximum error for OUM convergence example—average error shown in red (below),
maximum error shown in black (above). The overall convergence rates measured were ravg = 1.043 and
rmax = 0.523 (Color figure online)

for x ∈ ∂Ω . The same speed profile was used for all x ∈ Ω . The analytic solution is made
up of the concatenation of 4 planes: y + z = 500, x + 3z = 500, −y + z = 500 and
−x + 3z = 500 within Ω . See Fig. 5b.

Given a set of boundary points, meshes with uneven triangles were generated using
Mesh2D [12]. The error values are given in Table 1 and a plot is provided in Fig. 6. Using
polyfit in MATLAB with the data provided in Table 1, affine approximations of the
log–log slope fit using least squares were found. Using all 5 data points, overall rates of
convergence of ravg = 1.043 and rmax = 0.523 were obtained for average error and maxi-
mum error across the vertices respectively. The convergence rate for maximum error in this
example matches closely to the theoretical results shown earlier. In average error, the OUM
algorithm is at most first-order accurate (as described in [21]) since the update formula (19)
is a first-order approximation. Since V is Lipschitz continuous, from Rademacher’s theo-
rem, ∇V can only be undefined on a set of measure zero. The error for all discretiztaions
had the same general shape, appearing greatest near where ∇V was undefined. See Fig. 5c.
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Characteristics flow into, but not out of such points where ∇V is undefined, preventing the
error from being propagated further [19], hence the expected first-order convergence rate in
average error.

8 Conclusions and Future Work

It was proven in this paper that the rate of convergence of the approximate solution provided
by OUM to the viscosity solution of the HJB for prescribed boundary values is at least
O(

√
hmax ) in maximum error. The basic idea of the proof is an extension of a similar proof

for FMMin [20].A key stepwas to show the existence of a directionally complete stencil. This
implied from existing results that the numerical Hamiltonian for the OUM is both consistent
and monotonic.

An extension of this work would be to provide a convergence rate proof for OUM in the
single-source point formulation of the static HJB. This will extend the applicability of the
result shown here to point-to-point path planning problems, such as for rovers [22] and other
robots [24]. Constructing a directionally complete stencil as done here may be difficult near
the source point.

Another direction of research could be to prove that the convergence in average error of
OUM is at a rate of O(hmax ) as was the case in the example in this paper. This could follow
because OUM is a first-order method, with V generally not differentiable only on a set of
measure zero. Additional assumptions of regularity, such as a continuously differentiable
speed profile, may lead to a proof for first-order convergence in average error applicable to
many problems.
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