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Abstract Error estimates with the optimal convergence order are proved for a pressure-
stabilized characteristics finite element scheme for the Oseen equations. The scheme is a
combination of Lagrange–Galerkin finite element method and Brezzi–Pitkäranta’s stabiliza-
tion method. The scheme maintains the advantages of both methods; (i) It is robust for
convection-dominated problems and the system of linear equations to be solved is symmet-
ric. (ii) Since the P1 finite element is employed for both velocity and pressure, the number
of degrees of freedom is much smaller than that of other typical elements for the equations,
e.g., P2/P1. Therefore, the scheme is efficient especially for three-dimensional problems.
The theoretical convergence order is recognized by two- and three-dimensional numerical
results.
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1 Introduction

The purpose of this paper is to prove the stability and convergence of a pressure-stabilized
characteristics finite element scheme for the Oseen equations. The core part of this
scheme consists of a characteristics (Lagrange–Galerkin) method and Brezzi–Pitkäranta’s
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stabilization method. A similar scheme has been proposed by us for the Navier–Stokes
equations [21,23]. To the best of our knowledge it is the earliest work which combines
the two methods, characteristics and stabilization. The stability of this scheme has its own
interesting structure (Theorem 1), which is effectively used in the convergence proof not
only for the Oseen equations here but also for the Navier–Stokes equations in a forthcoming
paper [25].

Historically, in order to deal with convection-dominated problems, a lot of ideas have been
proposed, e.g., upwind methods [1,4,8,15,18,20,33,35], characteristics(-based) methods
[3,11,13,14,21–24,26–29,32] and so on. Our scheme belongs to the second group, and is
the simplest one, i.e., the trajectory of fluid particle is discretized by the backward Euler
method. It has common advantages of characteristics methods, robust stability with little
numerical diffusion and symmetry of the resulting matrix of the system of linear equations.

For the purpose of reducing the number of degrees of freedom (DOF) we apply the sta-
bilization method. We employ Brezzi–Pitkäranta’s pressure-stabilization method [7], where
the cheapest P1 element is used for both velocity and pressure. The number of DOF of this
element is much smaller than that of typical stable finite elements, P2/P1 (Hood-Taylor) and
P1-bubble/P1 (mini) [17]. As for other stabilized methods, e.g., pressure-stabilizing/Petrov–
Galerkin (PSPG) andGalerkin-least-square (GLS)methods, cf. [4,15,16,35], the numbers of
DOF become larger than that of P1/P1 element. Furthermore, the advantage of the symmetric
matrix is lost when combined with the characteristics method, e.g., PSPG.

Thus, the scheme to be considered in this paper leads to a small-size symmetric result-
ing matrix, which can be solved by efficient iterative solvers for symmetric matrices, e.g.,
minimal residual method (MINRES), conjugate residual method (CR) and so on [2,30]. It
is, therefore, efficient especially in three-dimensional computation. The scheme is proved to
be essentially unconditionally stable (the required condition is only (6)) and convergent with
optimal error estimates. A stabilized characteristics finite element scheme with an L2-type
pressure-stabilization is proposed in [19] for the Navier–Stokes equations and the conver-
gence is proved under a strong stability condition on the discretization parameters. Since the
stability condition is caused from the estimate of the incompressibility, it will be still required
in the convergence proof for the Oseen equations if the proof is applied directly.

The paper is organized as follows. A pressure-stabilized characteristics finite element
scheme for the Oseen equations is shown in Sect. 2. The main results on stability and error
estimates are stated in Sect. 3 and they are proved in Sect. 4. The theoretical convergence order
is recognized in two- and three-dimensional computations in Sect. 5. Finally conclusions are
given in Sect. 6.

2 A Pressure-Stabilized Characteristics Finite Element Scheme

In this section we set the Oseen problems and state our pressure-stabilized characteristics
finite element scheme.

Let Ω be a bounded domain in R
d(d = 2, 3), Γ ≡ ∂Ω be the boundary of Ω and

T be a positive constant. Let m be a non-negative integer. We use the Sobolev spaces
W 1,∞(Ω),W 1,∞

0 (Ω), Hm(Ω) and H1
0 (Ω). For any normed space X with norm ‖ · ‖X ,

we define function spaces C0([0, T ]; X) and Hm(0, T ; X) consisting of X -valued functions
in C0([0, T ]) and Hm(0, T ), respectively. We use the same notation (·, ·) to represent the
L2(Ω) inner product for scalar-, vector- and matrix-valued functions. L2

0(Ω) is a function
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space defined by

L2
0(Ω) ≡ {

q ∈ L2(Ω); (q, 1) = 0
}
.

We often omit [0, T ] and/or Ω if there is no confusion, e.g., C0(H1) in place of
C0([0, T ]; H1(Ω)). The integer d is also often omitted from superscripts. For t0 and t1 ∈ R

we introduce a function space

Zm(t0, t1) ≡
{
v ∈ H j

(
t0, t1; Hm− j (Ω)d

)
; j = 0, . . . ,m, ‖v‖Zm (t0,t1) < ∞

}
,

where the norm ‖ · ‖Zm (t0,t1) is defined by

‖v‖Zm (t0,t1) ≡
{ m∑

j=0

‖v‖2H j (t0,t1;Hm− j (Ω))

}1/2

.

We denote Zm(0, T ) by Zm .
We consider an initial boundary value problem; find (u, p) : Ω × (0, T ) → R

d ×R such
that

Du

Dt
− ∇(

2νD(u)
) + ∇ p + λu = f in Ω × (0, T ), (1a)

∇ · u = 0 in Ω × (0, T ), (1b)

u = 0 on Γ × (0, T ), (1c)

u = u0 in Ω, at t = 0, (1d)

where u is the velocity, p is the pressure, f ∈ C0([0, T ]; L2(Ω)d) is a given external force,
u0 ∈ H1

0 (Ω)d is a given initial velocity, λ : Ω × (0, T ) → R
d×d is a given reaction rate, ν

is a viscosity, D(u) is the strain-rate tensor defined by

Di j (u) ≡ 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
(i, j = 1, . . . , d),

and D/Dt is a material derivative defined by

D

Dt
≡ ∂

∂t
+ w · ∇

for a given velocity w : Ω × (0, T ) → R
d .

Remark 1 If w is replaced by u and λ = 0, (1) becomes the Navier–Stokes problem. Here,
we focus on the Oseen problem (1). The discussion on the Navier–Stokes problem will be
presented in the forthcoming paper [25].

We impose assumptions for the given velocity w and reaction rate λ.

Hypothesis 1 The function w satisfies w ∈ C0([0, T ];W 1,∞
0 (Ω)d).

Hypothesis 2 The function λ satisfies λ ∈ C0([0, T ]; L∞(Ω)d×d).

Let V ≡ H1
0 (Ω)d and Q ≡ L2

0(Ω) be function spaces. We define bilinear forms a on
V × V, b on V × Q, d(t) on V × V and A on (V × Q) × (V × Q) by

a(u, v) ≡ 2ν
(
D(u), D(v)

)
, b(v, q) ≡ −(∇ · v, q), d(t)(u, v) ≡ (λ(t)u, v),

A ((u, p), (v, q)) ≡ a(u, v) + b(v, p) + b(u, q),

respectively. Then, we can write the weak formulation of (1); find (u, p) : (0, T ) → V × Q
such that for t ∈ (0, T )
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(Du

Dt
(t), v

)
+ A ((u, p)(t), (v, q)) + d(t)(u(t), v) = ( f (t), v), ∀(v, q) ∈ V × Q, (2)

with u(0) = u0.
Let X : (0, T ) → R

d be a solution of the system of ordinary differential equations,

dX

dt
= w(X, t). (3)

Then, if u is smooth, it holds that

Du

Dt
(X (t), t) = d

dt
u
(
X (t), t

)
.

Let Δt be a time increment, NT ≡ 	T/Δt
 be a total number of time steps, tn ≡ nΔt for
n = 0, . . . , NT and X (·; x, tn) be the solution of (3) satisfying an initial condition X (tn) = x .
Then, we can consider a first order approximation of the material derivative at (x, tn) (n ≥ 1)
as follows.

Du

Dt
(x, tn) = d

dt
u
(
X (t; x, tn), t)

∣
∣
∣
t=tn

= u(X (tn; x, tn), tn) − u(X (tn−1; x, tn), tn−1)

Δt
+ O(Δt)

= un − un−1 ◦ Xn
1

Δt
(x) + O(Δt), (4)

where Xn
1 (x) is a function defined by

Xn
1 (x) ≡ x − wn(x)Δt,

and we have used notations, un ≡ u(·, tn) and
v ◦ Xn

1 (x) ≡ v(Xn
1 (x)).

The point Xn
1 (x) is called an upwind point of x . The approximation (4) of Du/Dt is the

basic idea to devise numerical schemes based on the method of characteristics. It has been
combined with finite element and difference methods to lead to powerful numerical schemes
for flow problems, cf. [11,22,24,27,29].

The next proposition gives a sufficient condition to guarantee all upwind points are in Ω .

Proposition 1 ([29, Proposition 1]) Under Hypothesis 1 and the inequality

Δt <
1

‖w‖C0(W 1,∞(Ω))

, (5)

it holds that for any n = 0, . . . , NT

Xn
1 (Ω) = Ω.

Here we fix Δt0, which satisfies (5) and

det
(∂Xn

1

∂x

)
≥ 1

2
, ∀n ∈ {0, . . . , NT }, ∀Δt ∈ (0,Δt0].

In the following we suppose that

Δt ∈ (0,Δt0]. (6)
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For the sake of simplicity we assume Ω is a polygonal (d = 2) or polyhedral (d = 3)
domain. LetTh = {K } be a triangulation of Ω̄ (= ⋃

K∈Th
K ), hK be a diameter of K ∈ Th ,

and h ≡ maxK∈Th hK be the maximum element size. We consider a regular family of
subdivisions {Th}h↓0 satisfying the inverse assumption [9], i.e., there exists a positive constant
α0 independent of h such that

h

hK
≤ α0, ∀K ∈ Th, ∀h. (7)

We define function spaces Xh, Mh, Vh and Qh by

Xh ≡ {vh ∈ C0(Ω̄)d ; vh |K ∈ P1(K )d , ∀K ∈ Th},
Mh ≡ {qh ∈ C0(Ω̄); qh |K ∈ P1(K ), ∀K ∈ Th},

Vh ≡ Xh ∩V and Qh ≡ Mh ∩ Q, respectively, where P1(K ) is a polynomial space of linear
functions on K ∈ Th . Let δ0 be a positive constant and (·, ·)K be the L2(K )d inner product.
We define bilinear forms Ch on H1(Ω)× H1(Ω) andAh on (V × H1(Ω))× (V × H1(Ω))

by

Ch(p, q) ≡ δ0
∑

K∈Th

h2K (∇ p,∇q)K , (8)

Ah((u, p), (v, q)) ≡ a(u, v) + b(v, p) + b(u, q) − Ch(p, q),

respectively. Let fh = { f nh }NT
n=1 ⊂ L2(Ω)d and u0h ∈ Vh be given. Our pressure-stabilized

characteristics finite element scheme is to find {(unh, pnh )}NT
n=1 ⊂ Vh × Qh such that for

n = 1, . . . , NT

(unh − un−1
h ◦ Xn

1

Δt
, vh

)
+ Ah((u

n
h, p

n
h ), (vh, qh)) + dn(un−1

h , vh) = ( f nh , vh),

∀(vh, qh) ∈ Vh × Qh,

(9)

where we have simply denoted d(tn) by dn .

Remark 2 (i) We can replace the third term by dn(unh, vh) and prove the stability and con-
vergence of the scheme. The scheme, however, loses such an advantage of the Galerkin
characteristics method that the resulting matrix is symmetric unless λ is symmetric. That is
the reason why we consider scheme (9). (ii) Scheme (9) is equivalent to

( unh
Δt

, vh

)
+ a(unh, vh) + b(vh, p

n
h ) =

(
f nh + un−1

h ◦ Xn
1

Δt
, vh

)
− dn(un−1

h , vh), ∀vh ∈ Vh,

b(unh, qh) − Ch(p
n
h , qh) = 0, ∀qh ∈ Qh .

Selecting specific bases of Vh and Qh and expanding unh and pnh in terms of the associated
basis functions, we get an algebraic system involving a symmetric matrix of the form

(
A BT

B −C

)
.

Here, A, B and C are sub-matrices derived from 1
Δt (u

n
h, vh) + a(unh, vh), b(u

n
h, qh) and

Ch(pnh , qh), respectively, and the matrix is independent of the velocityw and current time tn .
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3 Main Results

In this section we present the main results of stability and error estimates, which are proved
in Sect. 4.

We use c with or without subscript to represent the generic positive constant indepen-
dent of the discretization parameters h and Δt , and it can take different values at different
places. For k ∈ N, c(A1, . . . , Ak)means a positive constant depending on A1, . . . , Ak , which
monotonically increases as each Ai , i ∈ {1, . . . , k}, increases. Constants c0, c1, c2 and c∗
have particular meanings in this paper,

c0 = c(‖w‖C0(L∞)), c1 = c(‖λ‖C0(L∞)),

c2 = c(‖w‖C0(W 1,∞), ‖λ‖C0(L∞), 1/ν, ν),

c∗ = c
(‖w‖C0(W 1,∞), ‖λ‖C0(L∞), 1/ν, ν, T

)
. (10)

Constants c′, c′
0 and c′

1, having the same meaning as c, c0 and c1, are used when they
are distinguished from c, c0 and c1 near by, respectively. We use norms and seminorms,
‖ · ‖k ≡ ‖ · ‖Hk (Ω) (k = 0, 1, 2), ‖ · ‖Vh ≡ ‖ · ‖V ≡ ‖ · ‖1, ‖ · ‖Qh ≡ ‖ · ‖Q ≡ ‖ · ‖0,

‖u‖l∞(X) ≡ max
n=0,...,NT

‖un‖X , ‖u‖l2(X) ≡
{
Δt

NT∑

n=1

‖un‖2X
}1/2

,

|q|h ≡
{ ∑

K∈Th

h2K (∇q,∇q)K

}1/2
, |p|l∞(|·|h) ≡ max

n=0,...,NT
|pn |h,

|p|l2(|·|h) ≡
{
Δt

NT∑

n=1

|pn |2h
}1/2

,

for X = Hk(Ω) and Hk(Ω)d (k = 0, 1). DΔt is the backward difference operator defined
by

DΔt a
n ≡ an − an−1

Δt
.

Firstly we show the stability result.

Theorem 1 (Stability) Suppose that Hypotheses 1 and 2 hold. Assume condition (6). Let
fh = { f nh }NT

n=1 ⊂ L2(Ω)d and u0h ∈ Vh be given and (uh, ph) be the solution of (9). Suppose
that there exists p0h ∈ Qh such that

b(u0h, qh) − Ch(p
0
h, qh) = 0, ∀qh ∈ Qh . (11)

Then, there exists a constant c∗ of (10) such that

‖uh‖l∞(H1), ‖DΔt uh‖l2(L2), |ph |l∞(|·|h), ‖ph‖l2(L2) ≤ c∗(‖u0h‖1 + |p0h |h + ‖ fh‖l2(L2)).

(12)

Remark 3 The relation (11) is satisfied if (u0h, p
0
h) ∈ Vh×Qh is chosen as a Stokes projection

of (u0, 0) (cf. Definition 1 below).

Secondarywe give error estimates after preparing a (pressure-stabilized) Stokes projection
using P1/P1-element and a hypothesis.
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Definition 1 (Stokes projection) For (u, p) ∈ V × Q we define the Stokes projection
(ûh, p̂h) ∈ Vh × Qh of (u, p) by

Ah((ûh, p̂h), (vh, qh)) = A ((u, p), (vh, qh)), ∀(vh, qh) ∈ Vh × Qh . (13)

Hypothesis 3 The solution (u, p) of (2) satisfies u ∈ H1(0, T ; V ∩ H2(Ω)d) ∩ Z2 and
p ∈ H1(0, T ; Q ∩ H1(Ω)).

Theorem 2 (Error estimate) Suppose Hypotheses 1–3 hold. Assume condition (6). Suppose
fh = f and that u0h is the first component of the Stokes projection of (u0, 0) by (13). Let
(uh, ph) be the solution of (9). Then, there exists a constant c∗ of (10) such that

‖uh − u‖l∞(H1),

∥
∥
∥DΔt uh − ∂u

∂t

∥
∥
∥
l2(L2)

, ‖ph − p‖l2(L2)

≤ c∗(Δt‖u‖Z2 + h‖(u, p)‖H1(0,T ;H2×H1)). (14)

Remark 4 In the case of the inhomogeneous Dirichlet boundary condition u = ub in place
of (1c), similar stability and convergence results are obtained if there exists a function ũb ∈
H1(H2(Ω)d) ∩ Z2 such that ũb|Γ = ub.

4 Proofs of Theorems 1 and 2

This section is devoted to the proofs of Theorems 1 and 2.

4.1 Preliminaries

We prepare six lemmas and a proposition to be used in the proofs. We omit the proofs of the
first five lemmas only by referring to the related bibliography.

Lemma 1 (Discrete Gronwall’s inequality, [34, Lemma 4.6]) Let a1 be a non-negative num-
ber, Δt be a positive number, and {xn}n≥0, {yn}n≥1 and {bn}n≥1 be non-negative sequences.
Suppose

DΔt x
n + yn ≤ a1x

n−1 + bn, ∀n ≥ 1.

Then, it holds that

xn + Δt
n∑

i=1

yi ≤ exp(a1nΔt)
(
x0 + Δt

n∑

i=1

bi
)
, ∀n ≥ 1.

Lemma 2 (Korn’s inequality, [12]) LetΩ be a bounded domain with a Lipschitz-continuous
boundary. Then, we have the following.

(i) There exists a positive constant α1 such that

(‖D(v)‖20 + ‖v‖20)1/2 ≥ α1‖v‖1, ∀v ∈ H1(Ω)d .

(ii) The norms ‖D(·)‖0 and ‖ · ‖1 are equivalent in H1
0 (Ω)d .

Lemma 3 ([5,9,10]) There exist linear operators Πh : H2(Ω) → Xh and ΠC
h : L2

0(Ω) →
Qh, which satisfy

‖Πhv − v‖1 ≤ α2h‖v‖2, ∀v ∈ H2(Ω)d , (15a)

‖ΠC
h q − q‖0 ≤ α3h‖q‖1, ∀q ∈ L2

0(Ω) ∩ H1(Ω), (15b)

where α2 and α3 are positive constants independent of h.
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Remark 5 Πh is nothing but the Lagrange interpolation operator and ΠC
h is the Clément

interpolation operator.

Lemma 4 ([16, eq. (3.6)]) Let {Th}h↓0 be a regular family of triangulations of Ω̄ . Then,
there exists a positive constant α4 independent of h such that

|qh |h ≤ α4‖qh‖0, ∀qh ∈ Qh . (16)

Lemma 5 ([16, Lemma 3.2]) There exists a positive constant α5 = c(ν) independent of h
such that for any h

inf
(uh ,ph)∈Vh×Qh

sup
(vh ,qh)∈Vh×Qh

Ah((uh, ph), (vh, qh))

‖(uh, ph)‖V×Q‖(vh, qh)‖V×Q
≥ α5. (17)

Remark 6 The conventional inf-sup condition [17] requires a positive constant β∗ indepen-
dent of h such that

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖1‖qh‖0 ≥ β∗.

Although the condition does not hold true for the pair Vh and Qh of the P1/P1 finite element
spaces, Ah satisfies the stability inequality (17) for this pair.

The Stokes projection (13) has the following property, which is essentially proved in [6].

Proposition 2 Suppose (u, p) ∈ (V ∩H2(Ω)d)×(Q∩H1(Ω)). Then, there exists a positive
constant α6 = c(1/ν, ν) independent of h such that for any h the Stokes projection (ûh, p̂h)
of (u, p) by (13) satisfies

‖ûh − u‖1, ‖ p̂h − p‖0, | p̂h − p|h ≤ α6h‖(u, p)‖H2×H1 . (18)

Proof Let Πh and ΠC
h be the operators in Lemma 3. From (13) and Lemmas 3, 4 and 5 it

holds that

‖(ûh − Πhu, p̂h − ΠC
h p)‖V×Q

≤ 1

α5
sup

(vh ,qh)∈Vh×Qh

Ah((ûh − Πhu, p̂h − ΠC
h p), (vh, qh))

‖(vh, qh)‖V×Q

= 1

α5
sup

(vh ,qh)∈Vh×Qh

Ah((u − Πhu, p − ΠC
h p), (vh, qh)) + Ch(p, qh)

‖(vh, qh)‖V×Q

≤ c(1/ν, ν)
(‖(u − Πhu, p − ΠC

h p)‖V×Q + |p|h
)

≤ c′(1/ν, ν)h‖(u, p)‖H2×H1 ,

which implies (18). ��
Lemma 6 Assume Hypothesis 1 and condition (6). Then, for any n ∈ {0, . . . , NT } it holds
that

‖v − v ◦ Xn
1‖0 ≤ c0Δt‖v‖1, ∀v ∈ V . (19)

Proof Let any n ∈ {0, . . . , NT } be fixed. Let y(x, s) ≡ x − swn(x)Δt for s ∈ [0, 1] and
Js(x) ≡ det(∂y/∂x) be the Jacobian. It holds that

Js(x) ≥ 1/2, ∀s ∈ [0, 1],

v(x) − v ◦ Xn
1 (x) = [

v
(
y(x, s)

)]0
s=1 = Δt

∫ 1

0

[{wn(x) · ∇}v](
y(x, s)

)
ds.
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Changing the variable from x to y and using the above evaluation of the Jacobian, we have

‖v − v ◦ Xn
1‖0 ≤ c0Δt

∫ 1

0

∥
∥∇v

(
y(·, s))∥∥0ds ≤ c0

√
2Δt

∫ 1

0
‖∇v‖0ds ≤ c′

0Δt‖v‖1,

which completes the proof. ��
4.2 Proof of Theorem 1

From (9) with vh = 0 ∈ Vh and (11), it holds that for n = 0, . . . , NT

b
(
unh, qh

) − Ch
(
pnh , qh

) = 0, ∀qh ∈ Qh,

which gives for n = 1, . . . , NT

b
(
DΔt u

n
h, qh

) − Ch
(
DΔt p

n
h , qh

) = 0, ∀qh ∈ Qh . (20)

Substituting (DΔt unh, 0) ∈ Vh × Qh into (vh, qh) in (9) and using (20) with qh = −pnh , we
have for n = 1, . . . , NT

(unh − un−1
h ◦ Xn

1

Δt
, DΔt u

n
h

)
+ a

(
unh, DΔt u

n
h

) + Ch
(
DΔt p

n
h , p

n
h

) + dn
(
un−1
h , DΔt u

n
h

)

= (
f nh , DΔt u

n
h

)
.

(21)

We evaluate each term in (21) as follows.

(unh − un−1
h ◦ Xn

1

Δt
, DΔt u

n
h

)
=

(
DΔt u

n
h + 1

Δt
(un−1

h − un−1
h ◦ Xn

1 ), DΔt u
n
h

)

= ‖DΔt u
n
h‖20 + 1

Δt

(
un−1
h − un−1

h ◦ Xn
1 , DΔt u

n
h

)

≥ ‖DΔt u
n
h‖20 − 1

Δt
‖un−1

h − un−1
h ◦ Xn

1‖0‖DΔt u
n
h‖0

≥ ‖DΔt u
n
h‖20 − c0‖un−1

h ‖1‖DΔt u
n
h‖0 (by (19))

≥ ‖DΔt u
n
h‖20 −

(
c20‖un−1

h ‖21 + 1

4
‖DΔt u

n
h‖20

)

≥ 3

4
‖DΔt u

n
h‖20 − c′

0‖D
(
un−1
h

)‖20, (22a)

a(unh, DΔt u
n
h) = DΔt

(1
2
a(unh, u

n
h)

)
+ Δt

2
a(DΔt u

n
h, DΔt u

n
h)

= DΔt
(
ν‖D(unh)‖20

) + νΔt‖D(
DΔt u

n
h

)‖20
≥ DΔt

(
ν‖D(unh)‖20

)
, (22b)

Ch
(
DΔt p

n
h , p

n
h

) = DΔt

(1
2
Ch(p

n
h , p

n
h )

)
+ Δt

2
Ch

(
DΔt p

n
h , DΔt p

n
h

)

= DΔt

(δ0

2
|pnh |2h

)
+ δ0Δt

2
|DΔt p

n
h |2h

≥ DΔt

(δ0

2
|pnh |2h

)
, (22c)

−dn(un−1
h , DΔt u

n
h) = −(λnun−1

h , DΔt u
n
h)

≤ c1‖un−1
h ‖20 + 1

8
‖DΔt u

n
h‖20
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≤ c′
1‖D(un−1

h )‖20 + 1

8
‖DΔt u

n
h‖20, (22d)

(
f nh , DΔt u

n
h

) ≤ 2‖ f nh ‖20 + 1

8
‖DΔt u

n
h‖20, (22e)

where Lemma 2 has been used for (22a) and (22d). Combining (22) with (21), we have for
n = 1, . . . , NT

DΔt

(
ν‖D(unh)‖20 + δ0

2
|pnh |2h

)
+ 1

2
‖DΔt u

n
h‖20 ≤ (c′

0 + c′
1)‖D(un−1

h )‖20 + 2‖ f nh ‖20. (23)

Hence, the first three inequalities of (12) are obtained by applying Lemma 1 to (23).
Now we prove the last inequality of (12). From Lemmas 4, 5 and 6 it holds that

‖pnh‖0 ≤ ‖(unh, pnh )‖V×Q ≤ 1

α5
sup

(vh ,qh)∈Vh×Qh

Ah((unh, p
n
h ), (vh, qh))

‖(vh, qh)‖V×Q

= 1

α5
sup

(vh ,qh)∈Vh×Qh

( f nh , vh) − 1
Δt (u

n
h − un−1

h ◦ Xn
1 , vh) − dn(un−1

h , vh)

‖(vh, qh)‖V×Q

≤ 1

α5

{
‖ f nh ‖0 + ‖DΔt u

n
h‖0 + 1

Δt
‖un−1

h − un−1
h ◦ Xn

1‖0 + ‖λnun−1
h ‖0

}

≤ 1

α5

{‖ f nh ‖0 + ‖DΔt u
n
h‖0 + (c0 + c1)‖un−1

h ‖1
}
,

which yields the last inequality of (12) by the first and second inequalities of (12).

4.3 Proof of Theorem 2

Let (ûh, p̂h)(t) ∈ Vh×Qh be the Stokes projection of (u, p)(t) ∈ H2(Ω)d ×H1(Ω) by (13)
and set

enh ≡ unh − ûnh, εnh ≡ pnh − p̂nh , η(t) ≡ (u − ûh)(t).

From (2), (9), (13) and identity

enh = ηn − un + unh,

it holds that for any (vh, qh) ∈ Vh × Qh

(enh − en−1
h ◦ Xn

1

Δt
, vh

)
+ a(enh , vh) + b(vh, ε

n
h ) + b(enh , qh) − Ch(ε

n
h , qh) + dn(en−1

h , vh)

=
(ηn − ηn−1 ◦ Xn

1

Δt
− un − un−1 ◦ Xn

1

Δt
, vh

)
+

(Dun

Dt
, vh

)
+ dn(ηn−1 + un − un−1, vh)

=
(ηn − ηn−1 ◦ Xn

1

Δt
+

(Dun

Dt
− un − un−1 ◦ Xn

1

Δt

)
+ λn(ηn−1 + un − un−1), vh

)

= ( f̃ nh , vh), (24)

where

f̃ nh ≡ ηn − ηn−1 ◦ Xn
1

Δt
+

(Dun

Dt
− un − un−1 ◦ Xn

1

Δt

)
+ λn(ηn−1 + un − un−1).
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We evaluate ‖ f̃h‖l2(L2). It holds that

‖ f̃ nh ‖0 ≤
∥
∥
∥
ηn−ηn−1 ◦ Xn

1

Δt

∥
∥
∥
0
+

∥
∥
∥
Dun

Dt
− un − un−1 ◦ Xn

1

Δt

∥
∥
∥
0
+ ‖λn(ηn−1 + un − un−1)‖0

≡ I n1 + I n2 + I n3 .

Let y(x, s) ≡ x − (1− s)wn(x)Δt and t (s) ≡ tn−1 + sΔt (s ∈ [0, 1]). From Proposition 2
the terms I ni (i = 1, 2, 3) are evaluated as

I n1 ≤ ‖DΔtη
n‖0 + 1

Δt
‖ηn−1 − ηn−1 ◦ Xn

1‖0

≤ 1√
Δt

‖η‖H1(tn−1,tn;L2) + c0‖ηn−1‖1 (by (19))

≤ α6h
( 1√

Δt
‖(u, p)‖H1(tn−1,tn;H2×H1) + c0‖(u, p)n−1‖H2×H1

)
,

I n2 =
∥
∥
∥
{( ∂

∂t
+ wn(·) · ∇

)
u
}
(·, tn) −

∫ 1

0

{( ∂

∂t
+ wn(·) · ∇

)
u
}(

y(·, s), t (s))ds
∥
∥
∥
0

≤ Δt
∫ 1

0
ds

∫ 1

s

∥
∥
∥
{( ∂

∂t
+ wn(·) · ∇

)2
u
}(

y(·, s1), t (s1)
)∥∥
∥
0
ds1

≤ c0
√

Δt‖u‖Z2(tn−1,tn) (by det(∂y(·, s)/∂x) ≥ 1/2, ∀s ∈ [0, 1]),
I n3 ≤ c1(‖ηn−1‖0 + ‖un − un−1‖0)

≤ c1
(
α6h‖(u, p)n−1‖H2×H1 + √

Δt‖u‖H1(tn−1,tn;L2)

)
,

which imply

‖ f̃h‖l2(L2) ≤ c2(Δt‖u‖Z2 + h‖(u, p)‖H1(H2×H1)). (25)

From the definitions of (u0h, p
0
h) and (û0h, p̂

0
h) it holds that for any qh ∈ Qh

b(e0h, qh) − Ch(ε
0
h , qh) = b(u0h, qh) − Ch(p

0
h, qh) − {

b(û0h, qh) − Ch( p̂
0
h, qh)

}

= b(u0, qh) − b(u0, qh) = 0.

Applying Theorem 1 to (24), we obtain

‖eh‖l∞(H1), ‖DΔt eh‖l2(L2), ‖εh‖l2(L2)

≤ c∗
(‖e0h‖1 + |ε0h |h + Δt‖u‖Z2 + h‖(u, p)‖H1(H2×H1)

)
(26)

from (25). Since (u0h, p
0
h) and (û0h, p̂

0
h) are the Stokes projections of (u0, 0) and (u0, p0)

by (13), respectively, it holds that

‖e0h‖1 = ‖u0h − û0h‖1 ≤ ‖u0h − u0‖1 + ‖u0 − û0h‖1 ≤ cα6h‖(u0, p0)‖H2×H1 , (27a)

|ε0h |h = |p0h − p̂0h |h ≤ |p0h − 0|h + | p̂0h − p0|h + |p0|h ≤ cα6h‖(u0, p0)‖H2×H1 .

(27b)

Combining (27) with (26), we obtain (14). ��
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5 Numerical Results

In this section two- and three-dimensional test problems are computed by scheme (9). Theo-
rems 1 and 2 are valid for any positive number δ0 in (8). Here we concentrate on recognizing
the theoretical convergence order numerically and simply fix δ0 = 1.

Quadrature formulae of degree five for d = 2 (seven points) and 3 (fifteen points) [31]
are employed for computation of the integral

∫

K
un−1
h ◦ Xn

1 (x)vh(x) dx

appearing in scheme (9).
In the following examples, N is the division number of each side of the domain (square or

cube) and we (re)define h ≡ 1/N . The time incrementΔt is set to beΔt = h in order to keep
the same orders of both Δt and h, since the error estimates in Theorem 2 are of O(Δt + h).

In scheme (9) the initial function u0h is chosen as the first component of the Stokes pro-
jection of (u0, 0) by (13). Let (uh, ph) be the solution of scheme (9) and (u, p) be each
analytical solution set in the examples. We define Err by

Err ≡ ‖uh − Πhu‖l2(H1) + ‖ph − Πh p‖l2(L2)

‖Πhu‖l2(H1) + ‖Πh p‖l2(L2)

(28)

as the relative error between (uh, ph) and (u, p), where the same symbolΠh has been used as
its scalar version, i.e.,Πh : H2(Ω) → Mh . The system of linear equations in the coefficients
of unh and pnh of scheme (9) is solved by MINRES.

Example 1 (2D) Let d = 2. In problem (1) we set Ω = (0, 1)2, T = 1, four values of ν,

ν = 10−k, k = 1, . . . , 4,

and functions w and λ,

w(x, t) =
(
− ∂ψ

∂x2
,

∂ψ

∂x1

)
(x, t), λ(x, t) =

(
sin π(x1 + t) sin π(x2 + t)
cosπ(x2 + t) sin π(x1 + x2 + t)

)
,

where ψ is a function defined by

ψ(x, t) =
√
3

2π
sin2(πx1) sin

2(πx2) sin{π(x1 + x2 + t)}.

The functions f and u0 are given so that the exact solution is

(u, p)(x, t) = (
w(x, t), sin{π(x1 + 2x2 + t)}).

The solution is normalized so that ‖u‖C0(L∞) = ‖p‖C0(L∞) = 1.

We set N = 16, 32, 64, 128 and 256. The left of Fig. 1 shows a sample mesh (N = 16).
The right of Fig. 1 exhibits the graphs of Err versus h (= Δt) in logarithmic scale. We can
see that Err is almost of first order in h and Δt for all ν.
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10-3

10-2

10-1

100

1/256 1/128 1/64 1/32 1/16

E
rr

   h (= Δt)

1

1

ν=10-1

ν=10-2

ν=10-3

ν=10-4

Fig. 1 A sample mesh (left, N = 16) and graphs of Err versus h (right) for Example 1

Example 2 (3D) Let d = 3. In problem (1) we set Ω = (0, 1)3 and functions w and λ,

w(x, t) = rotΨ (x, t),

λ(x, t) =
⎛

⎝
sin π(x1 + t) sin π(x2 + t) sin π(x3 + t)
cosπ(x2 + t) sin π(x1 + x2 + t) sin π(x2 + x3 + t)
cosπ(x3 + t) cosπ(x2 + x3 + t) sin π(x1 + x2 + x3 + t)

⎞

⎠ ,

where Ψ is a function defined by

Ψ1(x, t) ≡ 8
√
3

27π
sin(πx1) sin

2(πx2) sin
2(πx3) sin{π(x2 + x3 + t)},

Ψ2(x, t) ≡ 8
√
3

27π
sin2(πx1) sin(πx2) sin

2(πx3) sin{π(x3 + x1 + t)},

Ψ3(x, t) ≡ 8
√
3

27π
sin2(πx1) sin

2(πx2) sin(πx3) sin{π(x1 + x2 + t)}.

Constants T and ν are the same as those in Example 1. The functions f and u0 are given so
that the exact solution is

(u, p)(x, t) = (
w(x, t), sin{π(x1 + 2x2 + x3 + t)}).

The solution is normalized so that ‖u‖C0(L∞) = ‖p‖C0(L∞) = 1.

We set N = 8, 16, 32 and 64. The left of Fig. 2 shows a samplemesh (N = 8). The right of
Fig. 2 exhibits graphs of Err versus h (= Δt) in logarithmic scale. We can see that Err is of
better order than first one for ν = 10−1 and is almost of first order for ν = 10−k (k = 2, 3, 4)
in h and Δt .

These results for both Examples 1 and 2 are consistent with Theorem 2.
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10-2

10-1

100

1/64 1/32 1/16 1/8

E
rr

   h (= Δt)

1

1

ν=10-1

ν=10-2

ν=10-3

ν=10-4

Fig. 2 A sample mesh (left, N = 8) and graphs of Err versus h (right) for Example 2

6 Conclusions

A combined finite element scheme with a characteristics method and Brezzi–Pitkäranta’s
stabilization method for the Oseen equations has been studied. Stability (Theorem 1) and
convergence (Theorem2) resultswith the optimal error estimates for the velocity and the pres-
sure have been proved. The scheme has the advantages of both of the characteristics method
andBrezzi–Pitkäranta’s stabilizationmethod, i.e., robustness for convection-dominated prob-
lems, symmetry of the resulting matrix and the small number of degrees of freedom. In order
to construct the initial approximate velocity we have also introduced a stabilized Stokes
projection, which works well in the analysis without any loss of convergence order. The the-
oretical convergence order has been recognized in two- and three-dimensional test problems
in Examples 1 and 2, respectively. To devise general higher-order stabilized characteristics
schemes is a future work. A corresponding stabilized characteristics scheme for the Navier–
Stokes equations will be studied in a forthcoming paper [25].
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