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Abstract We present an inverse power method for the computation of the first homogeneous
eigenpair of the p(x)-Laplacian problem. The operators are discretized by the finite element
method.The innerminimizationproblems are solvedby aglobally convergent inexactNewton
method. Numerical comparisons are made, in one- and two-dimensional domains, with other
results present in literature for the constant case p(x) ≡ p and with other minimization
techniques (namely, the nonlinear conjugate gradient) for the p(x) variable case.

Keywords p(x)-Laplacian · Eigenpairs · Inverse power method

1 Introduction

In this paper we consider the generalization of the p-Laplacian eigenvalue problem with
homogeneous Dirichlet boundary conditions

− �pu(x) = ηp |u(x)|p−2 u(x) (1)

where �u(x) = div(|∇u(x)|p−2 ∇u(x)), Ω is a bounded domain in R
m , u ∈ W 1,p

0 (Ω) and
p > 1, to the case with variable exponent p(x).

The p-Laplacian operator appears in several mathematical models that describe nonlinear
problems in physics and mechanics [7,9]. Examples include fluid dynamics [11], modeling
of non-Newtonian fluids and glaciology [4,10,12,20,27,28], turbulent flows [15], climatol-
ogy [16], nonlinear diffusion (where the equation is called the N -diffusion equation, see
Ref. [29] for the original article and Ref. [21] for some current developments), flows through
porous media [30], power law materials [5] and torsional creep [24].
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The p-Laplacian operator where p is replaced by p(x), 1 < p− ≤ p(x) ≤ p+ < +∞,
is deeply related to generalized Lebesgue and Sobolev spaces, which have been vigorously
studied and whose theory has been ripe for applications to PDEs. The common assump-
tion in literature is that the exponent p(x) is a measurable function and 1/p(x) is globally
log-Hölder continuous [17]. There have been many contributions to nonlinear elliptic prob-
lems associated with the p(x)-Laplacian from various view points (see Ref. [1,2,14] and
Ref. [22] for a survey), whereas there are much less contributions to parabolic problems [3]
and eigenvalue problems [18].

If p is constant, it is well known that the smallest eigenvalue satisfies

ηp = inf
u∈W1,p

0 (Ω)

u �=0

∫
Ω

|∇u|p dx
∫
Ω

|u|p dx . (2)

The trivial generalization of quotient (2) to the case p = p(x) yields a problem in which
the homogeneity is lost, that is if u is a minimizer then ωu, ω �= 0, is not. In Ref. [19], the
homogeneity is restored considering

λ = inf
u∈W1,p(x)

0 (Ω)

u �=0

‖∇u‖p(x)

‖u‖p(x)
,

where the norm ‖·‖p(x) is the so called Luxemburg norm

‖u‖p(x) = inf
γ>0

{

γ :
∫

Ω

∣
∣
∣
∣
u(x)

γ

∣
∣
∣
∣

p(x) dx

p(x)
≤ 1

}

. (3)

The use of dx/p(x) (rather than the classical dx) just simplifies the equations a little (see
Ref. [19]). The corresponding Euler–Lagrange equation is

− div

(∣
∣
∣
∣

∇u(x)

‖∇u‖p(x)

∣
∣
∣
∣

p(x)−2 ∇u(x)

‖∇u‖p(x)

)

= λT

∣
∣
∣
∣

u(x)

‖u‖p(x)

∣
∣
∣
∣

p(x)−2 u(x)

‖u‖p(x)
, (4)

where

T =
∫
Ω

∣
∣
∣ ∇u(x)
‖∇u‖p(x)

∣
∣
∣ dx

∫
Ω

∣
∣
∣ u(x)
‖u‖p(x)

∣
∣
∣ dx

.

We notice that in the constant case p(x) ≡ p, since p ‖u‖p
p = ‖u‖p

L p ,

(λ, u) eigenpair for (4) ⇔ (λp, u/ p
√
p) eigenpair for (1) (5)

with ‖u‖p = ∥
∥u/ p

√
p
∥
∥
L p = 1.

Although some different numerical methods for the eigenvalue problem with constant p
are available, see Ref. [7,9,13], to the knowledge of the authors the first numerical method,
based on the nonlinear conjugate gradient method, for computing

λ2 = Λ = inf
u∈W1,p(x)

0 (Ω)

u �=0

‖∇u‖2p(x)
‖u‖2p(x)

(6)

and the corresponding minimizer was proposed by the first author in Ref. [6], where only
the case p(x) ≥ 2 was considered. Here we use a preconditioned quadratic model for the
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minimization problem, either with the exact Hessian, if p(x) ≥ 2, or with amodifiedHessian,
otherwise. The new method turns out to be more general, more robust and faster (see the
numerical experiments in Table 3, Sect. 3) than the previous one.

2 The Inverse Power Method for a Nonlinear Eigenproblem

Given R : R
n → R+ and S : R

n → R+ convex, differentiable, even and positively
2-homogeneous functionals, with the further assumption that S(u) = 0 only if u = 0,
then the critical points u∗ of F(u) = R(u)/S(u) satisfy

∇u F(u∗) = ∇u R(u∗) − R(u∗)
S(u∗)

∇u S(u∗) = 0.

If we define r(u) = ∇u R(u), s(u) = ∇u S(u) and Λ∗ = R(u∗)
S(u∗) , then the critical point u∗

satisfies the nonlinear eigenproblem

r(u∗) − Λ∗s(u∗) = 0. (7)

If R(u) = 〈u, Au〉, where A : Rn → R
n is linear and S(u) = 〈u, u〉, 〈·, ·〉 being the scalar

product in R
n × R

n , the standard linear eigenproblem is retrieved. The generalization of
the inverse power method for the computation of the smallest eigenvalues is the following
algorithm:

1. take ũ0 random and compute u0 = ũ0

S(ũ0)1/2
and Λ0 = F(u0) = R(u0)

2. repeat

– ũk = argmin
u

{R(u) − 〈u, s(uk−1)〉}

– uk = ũk

S(ũk)1/2

– Λk = F(uk) = R(uk)

until convergence

It is proven [23] that the sequence {(uk,Λk)}k produced by the algorithm satisfies F(uk)
< F(uk−1) and converges to an eigenpair (u∗,Λ∗) for problem (7), with u∗ a critical point
of F .

Let now u(x) be a linear combination of basis functions

u(x) =
n∑

j=1

u jφ j (x),

with u = (u1, . . . , un)T the vector of coefficients, and let us apply the algorithm described
above to the case

R(u) =
∥
∥
∥
∥
∥
∥

n∑

j=1

u j∇φ j (·)
∥
∥
∥
∥
∥
∥

2

, S(u) =
∥
∥
∥
∥
∥
∥

n∑

j=1

u jφ j (·)
∥
∥
∥
∥
∥
∥

2

In our numerical experiments, the set of functions {φ j (x)}nj=1 will be a proper set of finite

element basis functions. With abuse of notation, we will write for short R(u) = ‖∇u‖2p(x)
and S(u) = ‖u‖2p(x).
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We remind that the algorithm does not guarantee the convergence to the smallest eigen-
value. On the other hand, it is possible to apply it to different initial guesses and then take
the smallest eigenvalue.

2.1 Initial Values and Exit Criteria

Although ũ0 can be chosen randomly, it is clear that the more it is close to u∗, the faster the
algorithm converges. In order to speed up the convergence, we use a continuation technique
over p(x), starting from p(x) ≡ 2 for which the solution is known at least for common
domains Ω . By employing a convex combination

pm(x) = 2 · (1 − θm) + p(x) · θm, θm =
√

m

M
, m = 0, 1, . . . , M, (8)

the mth problem is solved by providing as initial condition the solution of the (m − 1)th
problem.

For the minimization problem (called inner problem)

ũk = argmin
u

{R(u) − 〈u, s(uk−1)〉}, given uk−1

we use an iterative method as well. Since the inverse power method, at convergence, ensures

r(uk−1) − Λk−1s(uk−1) ≈ 0 ⇒ r

(
uk−1

Λk−1

)

− s(uk−1) ≈ 0,

and (at each iteration)
r(ũk) − s(uk−1) = 0,

a good choice for the initial value of ũk is uk−1/Λk−1. By the proof of Lemma 3.1 in
Ref. [23], we know that the descent in F is guaranteed not only for the exact solution of the
inner problem but also for any vector ūk which satisfies the condition

R(ūk) − 〈ūk, s(uk−1)〉 < R

(
uk−1

F(uk−1)

)

−
〈

uk−1

F(uk−1)
, s(uk−1)

〉

.

Since F(uk−1) = Λk−1, uk−1/F(uk−1) is precisely the above suggested choice for the initial
value of ũk . Therefore, in principle, starting from this value, the use of a descent method
for the inner problem would require a single step in order to guarantee the descent in F .
More realistically, this means that far from convergence (for instance during the continuation
technique) it makes no sense to solve the inner problem too accurately. For this reason, an exit
criterion could encompass both a relatively large tolerance and a relatively small maximum
number of iterations.

A classical exit criterion for the inverse power method is
∣
∣
∣Λk − Λk−1

∣
∣
∣ ≤ tol ·

∣
∣
∣Λk

∣
∣
∣ (9)

for a given tolerance tol. As soon as it is satisfied, we assume that Λk ≈ Λ∗ and thus

r(uk) − Λks(uk) ≈ 0. (10)

We call the left hand side residual; clearly, its infinity norm could be used as a different exit
criterion.
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2.2 Approximation of the Luxemburg Norm

If u(x) is not zero almost everywhere, then its Luxemburg norm γ is implicitly defined by

F(u, γ ) =
∫

Ω

∣
∣
∣
∣
u(x)

γ

∣
∣
∣
∣

p(x) dx

p(x)
− 1 = 0. (11)

Hereafter we remove the integration domainΩ from the notation. The derivative with respect
to γ of F(u, γ ) is

∂γ F(u, γ ) = − 1

γ

∫ ∣
∣
∣
∣
u(x)

γ

∣
∣
∣
∣

p(x)

dx (12)

and thusNewton’smethod can be easily applied. For a given u(x), F(u, γ ) is amonotonically
decreasing convex C 2 function in γ . This guarantees the convergence of Newton’s method
whenever the initial guess γ0 > 0 is chosen such that F(u, γ0) ≥ 0.

For the initial guess γ0, we use the following estimates

γ0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(∫ |u(x)|p(x)
p(x)

dx

) 1
pmax

if
∫ |u(x)|p(x)

p(x)
dx ≥ 1

(∫ |u(x)|p(x)
p(x)

dx

) 1
pmin

if
∫ |u(x)|p(x)

p(x)
dx < 1

where pmax = max p(x) and pmin = min p(x). In fact, if we consider the first case,

F(u, γ0) =
∫ ∣

∣
∣
∣
u(x)

γ0

∣
∣
∣
∣

p(x) dx

p(x)
− 1 ≥

∫ |u(x)|p(x)
γ
pmax
0

dx

p(x)
− 1

= 1
∫ |u(x)|p(x)

p(x) dx

∫
|u(x)|p(x) dx

p(x)
− 1 = 0.

2.3 The Inner Problem

In the inverse power method, we need to solve the inner problem

ũk = argmin
u

f (u) = argmin
u

{R(u) − 〈u, s(uk−1)〉}, given uk−1.

We first compute 〈v, s(u)〉 = 〈v,∇u S(u)〉 for given vectors u and v. Since γ (u) = ‖u‖p(x)
is implicitly defined by F(u, γ (u)) = 0, the differentiation of implicit functions leads to

〈v,∇u F(u, γ (u))〉 = 〈v, ∂u F(u, γ (u))〉 + 〈v, ∂γ F(u, γ (u))∇uγ (u)〉 = 0,

from which

〈v,∇u ‖u‖p(x)〉 = 〈v,∇uγ (u)〉 = −〈v, ∂u F(u, γ (u))〉
∂γ F(u, γ (u))

.

By recalling that, in general,

∂ui

(∫
g(u(x))dx

)

=
∫

g′(u(x))φi (x)dx,

for v(x) = ∑n
j=1 v jφ j (x) we have

〈

v, ∂ui

(∫
g(u(x))dx

)〉

=
∫

g′(u(x))v(x)dx
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and thus

〈v, ∂u F(u, γ )〉 =
∫ ∣

∣
∣
∣
u(x)

γ

∣
∣
∣
∣

p(x)−2 u(x)

γ

v(x)

γ
dx .

By employing (12) we get

〈v,∇u ‖u‖p(x)〉 =
∫ ∣

∣
∣ u(x)
‖u‖p(x)

∣
∣
∣
p(x)−2 u(x)

‖u‖p(x)
v(x)dx

∫ ∣
∣
∣ u(x)
‖u‖p(x)

∣
∣
∣
p(x)

dx
,

from which

〈v, s(u)〉 = 〈v, 2 ‖u‖p(x) ∇u ‖u‖p(x)〉 = 2

∫ ∣
∣
∣ u(x)
‖u‖p(x)

∣
∣
∣
p(x)−2

u(x)v(x)dx

∫ ∣
∣
∣ u(x)
‖u‖p(x)

∣
∣
∣
p(x)

dx
. (13)

Given uk−1 of unitary Luxemburg norm, the problem reduces to find the minimizer of

f (u) = R(u) − 〈u, s(uk−1)〉

= ‖∇u‖2p(x) − 2

∫ ∣
∣uk−1(x)

∣
∣p(x)−2

uk−1(x)u(x)dx
∫ ∣

∣uk−1(x)
∣
∣p(x) dx

(14)

We use a line search method based on the sufficient decrease condition. If uc is the solution
at the current iteration, its update is

u+ = uc + δd, (15)

where d is a descent direction, i.e. 〈∇u f (uc), d〉 < 0, and δ is such that

f (uc + δd) < f (uc) + αδ〈∇u f (uc), d〉 (16)

with α = 10−4. Condition (16) is usually called Armijo’s rule.

2.3.1 The Quadratic Model for the Inner Problem, p(x) ≥ 2

We first consider the case p(x) ≥ 2 and approximate f (u) in (14) with a quadratic model

f (u) ≈ f (uc) + 〈∇u f (uc), u − uc〉 + 1

2
〈u − uc, H(uc)(u − uc)〉

where H(uc) is the exact Hessian of f at the current iteration uc. For p(x) ≥ 2, R(u) is twice
continuously differentiable and convex, i.e. the Hessian of f is symmetric positive definite.
Therefore

∇u f (u+) ≈ ∇u f (uc) + H(uc)(u+ − uc) = 0 ⇔ u+ − uc = −H(uc)
−1∇u f (uc)

and hence the descent direction is d = −H(uc)−1∇u f (uc). If condition (16) is not satisfied
for a given δ, then it is repeatedly reduced (backtracking) until the condition is satisfied, using
a quite standard cubic polynomial model for p(δ) = f (uc + δd) (see Ref. [26]).

Let us compute ∇u f (u) and H(u)v, for a given v ∈ R
n . With the arguments used to

obtain (13), we immediately have

ri (u) = ∂ui R(u) = 2
‖∇u‖p(x)

∫ ∣
∣
∣ ∇u(x)
‖∇u‖p(x)

∣
∣
∣
p(x)−2 ∇u(x)

‖∇u‖p(x)
· ∇φi (x)dx

∫ ∣
∣
∣ ∇u(x)
‖∇u‖p(x)

∣
∣
∣
p(x)

dx
(17)
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where here · denotes the scalar product in R
m × R

m . Since uk−1 has unitary Luxemburg
norm,

∂ui f (u) = 2
K

∫ ∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇φi
∫ ∣

∣∇u
K

∣
∣p

− 2

∫ ∣
∣uk−1

∣
∣p−2

uk−1φi
∫ ∣

∣uk−1
∣
∣p

(18)

where we set K = ‖∇u‖p(x) and omitted the dependency on x in the integrals in order to
reduce the notation. By introducing

Ni (u) =
∫ ∣

∣
∣
∣
∇u

K

∣
∣
∣
∣

p−2

∇u · ∇φi , D(u) =
∫ ∣

∣
∣
∣
∇u

K

∣
∣
∣
∣

p

the i th row of H(u)v is

(H(u)v)i = 2
D(u)〈v,∇u Ni (u)〉 − Ni (u)〈v,∇u D(u)〉

D(u)2

= 2

∫
(p − 2)

∣
∣∇u
K

∣
∣p−4 ∇u

K · ∇vK−∇u〈v,∇u K 〉
K 2 ∇u · ∇φi + ∣

∣∇u
K

∣
∣p−2 ∇v · ∇φi

D(u)
+

− 2
Ni (u)

∫
p

∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇vK−∇u〈v,∇u K 〉
K 2

D(u)2

= 2

∫
(p − 2)

∣
∣∇u
K

∣
∣p−4 ∇u

K · ∇v ∇u
K · ∇φi

D(u)
+

− 2
〈v,∇uK 〉 ∫

(p − 2)
∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇φi

D(u)
+ 2

∫ ∣
∣∇u
K

∣
∣p−2 ∇v · ∇φi

D(u)
+

− 2
Ni (u)
K

∫
p

∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇v

D(u)2
+ 2

Ni (u)
K 〈v,∇uK 〉 ∫

p
∣
∣∇u
K

∣
∣p

D(u)2
.

By using again (13), the inner product 〈v,∇uK 〉 can be recast as

〈v,∇uK 〉 =
∫ ∣

∣∇u
K

∣
∣p−2 ∇u

K · ∇v

D(u)

and the i th row of H(u)v becomes

(H(u)v)i = 2

∫
(p − 2)

∣
∣∇u
K

∣
∣p−4 ∇u

K · ∇v ∇u
K · ∇φi

D(u)
+

− 2

∫ ∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇v
∫
(p − 2)

∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇φi

D(u)2
+

+ 2

∫ ∣
∣∇u
K

∣
∣p−2 ∇v · ∇φi

D(u)
+

− 2

∫ ∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇φi
∫
p

∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇v

D(u)2
+

+ 2

∫ ∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇φi
∫ ∣

∣∇u
K

∣
∣p−2 ∇u

K · ∇v
∫
p

∣
∣∇u
K

∣
∣p

D(u)3
. (19)

The reason for computing the action of H(u) to a vector is that H(u) is not a sparse matrix,
even if finite elements are used. Therefore, the descent direction−H(uc)−1∇u f (uc) is com-
puted through an iterative method such as the preconditioned conjugate gradient method,
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which only requires the action of H(uc) to a vector v. A good choice for the preconditioner
in computing ũk can be suggested by the modified gradient

∂ui fc(u) = 2

∫ ∣
∣
∣
∣
∇uc
Kc

∣
∣
∣
∣

p−2

∇u · ∇φi

∫ ∣
∣
∣
∣
∇uc
Kc

∣
∣
∣
∣

p − 2

∫ ∣
∣uk−1

∣
∣p−2

uk−1φi
∫ ∣

∣uk−1
∣
∣p

and the corresponding modified Hessian Hc, whose entries are

2

∫ ∣
∣
∣
∣
∇uc
Kc

∣
∣
∣
∣

p−2

∇φ j · ∇φi

∫ ∣
∣
∣
∣
∇uc
Kc

∣
∣
∣
∣

p . (20)

In fact, this preconditioner turns out to be sparse in case the basis functions {φ j (x)} correspond
to a finite element method. It is possible to use a fixed preconditioner for each iteration of
the inverse power method (and not a preconditioner for each iteration of the inner problem),
starting from the modified gradient

∂ui f
k−1(u) = 2

∫ ∣
∣
∣
∣
∇uk−1

Kk−1

∣
∣
∣
∣

p−2

∇u · ∇φi

∫ ∣
∣
∣
∣
∇uk−1

Kk−1

∣
∣
∣
∣

p − 2

∫ ∣
∣uk−1

∣
∣p−2

uk−1φi
∫ ∣

∣uk−1
∣
∣p

and the corresponding modified Hessian Hk−1, whose entries are

2

∫ ∣
∣
∣
∣
∇uk−1

Kk−1

∣
∣
∣
∣

p−2

∇φ j · ∇φi

∫ ∣
∣
∣
∣
∇uk−1

Kk−1

∣
∣
∣
∣

p . (21)

Once the modified Hessian is computed, it is factorized by Choleski’s method and
the triangular factors are inverted in order to get the preconditioned conjugate gradient
iterations.

2.3.2 The Quadratic Model for the Inner Problem, p(x) ≥ p− > 1

If, for some values of x , p(x) is less than two and ∇u(x) is zero, than the first and the third
term in the Hessian (19) are not defined, while the gradient (18) is still well defined, in the
sense that

|∇u(x)|p(x)−2 ∇u(x) · ∇φi (x) = 0 if ∇u(x) = 0.

We can consider (see Ref. [9]) the modified Hessian arising from

N εn
i (u) =

∫ (

ε2n +
∣
∣
∣
∣
∇u

K

∣
∣
∣
∣

2
) p−2

2

∇u · ∇φi , D(u) =
∫ ∣

∣
∣
∣
∇u

K

∣
∣
∣
∣

p

where εn is a small quantity, possibly depending on the number n of basis functions φ j (x)

123



706 J Sci Comput (2015) 65:698–714

2

∫
(p − 2)

(
ε2n + ∣

∣∇u
K

∣
∣2

) p−4
2 ∇u

K · ∇v ∇u
K · ∇φi

D(u)
+

− 2

∫ ∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇v
∫
(p − 2)

(
ε2n + ∣

∣∇u
K

∣
∣2

) p−2
2 ∇u

K · ∇φi

D(u)2
+

+ 2

∫ (
ε2n + ∣

∣∇u
K

∣
∣2

) p−2
2 ∇v · ∇φi

D(u)
+

− 2

∫ (
ε2n + ∣

∣∇u
K

∣
∣2

) p−2
2 ∇u

K · ∇φi
∫
p

∣
∣∇u
K

∣
∣p−2 ∇u

K · ∇v

D(u)2
+

+ 2

∫ (
ε2n + ∣

∣∇u
K

∣
∣2

) p−2
2 ∇u

K · ∇φi
∫ ∣

∣∇u
K

∣
∣p−2 ∇u

K · ∇v
∫
p

∣
∣∇u
K

∣
∣p

D(u)3

We notice that, in this way, the integrand function of the first term above side is equal to zero
where ∇u(x) = 0, and well defined otherwise, even without ε2n . Therefore we replace

ε2n +
∣
∣
∣
∣
∇u

K

∣
∣
∣
∣

2

with
(
1 − sign |∇u|2) +

∣
∣
∣
∣
∇u

K

∣
∣
∣
∣

2

in that term. Indeed, such a modification is useful in the numerical implementation of f , its
gradient and its exact Hessian, even in the case p(x) ≥ 2, for the evaluation of terms (see,
for instance, the second, the fourth and the fifth above) like

|z|p−2 z,

which can be numerically computed as

(
(1 − sign |z|2) + |z|2)

p−2
2 z.

On the other hand, if ∇u(x) = 0, the third term in the Hessian above is not defined without
ε2n , but it is well defined if ∇u(x) �= 0. Therefore, we replace

ε2n +
∣
∣
∣
∣
∇u

K

∣
∣
∣
∣

2

in the third term of the Hessian above and in the corresponding modified Hessian (see (20))
with

ε2n · (
1 − sign |∇u|2) +

∣
∣
∣
∣
∇u

K

∣
∣
∣
∣

2

.

When p(x) → 1+ for some values of x , the eigenvalue problem is numerically quite
difficult. This is due not only to the fact that the exact Hessian does not exist, but also to the
high derivatives of the solution at the boundaries. In fact, as reported in Fig. 1 for the case of
p constant, when p → 1+ the first eigenfunction on the ball converges to its characteristic
function (see Ref. [25]).
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3 Numerical Results

3.1 Details of the Algorithm

For the computation of the Luxemburg norm, Newton’s method is stopped when the relative
difference of two successive solutions is smaller then 10 ·ε, where ε is the machine precision.

From our numerical experience, we found that a number of continuation steps in (8)
chosen as

M =

⎧
⎪⎨

⎪⎩

⌈
max p(x)

2

⌉

if min p(x) ≥ 2

�−3 log(min p(x) − 1)� if min p(x) < 2

provides a satisfactory behavior. Moreover, the mth problem in (8) is solved with tolerance

tolm = tol0 · (1 − θm) + tol · θm

where tol0 = 100 · tol and tol is the tolerance in the exit criterion (9) for the inverse power
method. It is chosen proportional to hr+1, where r is the degree of the finite element piecewise
polynomial basis. The same tolerance is used for inner problem (14). Four exit criteria are
used. Since we use (modified) Newton’s method, if the infinity norm of the descent direction
δd in (15) is smaller than tol · ‖uc‖∞ already with δ = 1, we stop the iterations. Then we
consider the ratio between the relative change in f (u+) and the relative change in u+. If

∥
∥
∥
∥
∇u f (u+) ◦ u+

f (u+)

∥
∥
∥
∥∞

≤ tol,

where ◦ denotes Hadamard’s product, we stop the iterations. We stop the iterations if the
method stagnates, that is if ‖δd‖∞ ≤ 0.1 · tol · ‖uc‖∞, too. Finally, we fix the maximum
number of iterations to 10. The value of εn for the modified Hessian is 10−5.

3.2 One-Dimensional Case

We implemented and run the one-dimensional case in GNU Octave 3.8, using piecewise
linear basis functions φ j (x) and approximating the arising integrals by midpoint quadrature
formulas.

The initial solution u0(x) corresponding to p(x) ≡ p = 2 is the (piecewise linear inter-
polation of the) first eigenfunction of

−u′′(x) = η2u(x), x0 < x < x1

normalized in order to have
∥
∥u0

∥
∥
2 = 1, that is

u0(x) = 2√
x1 − x0

sin

(
x − x0
x1 − x0

π

)

, η2 = η2 =
(

π

x1 − x0

)2

.

The first test aims at comparing our results with the analytical solution, which is known
for constant values of p(x) ≡ p in the interval (−1, 1) (see, for instance, Ref. [8])

ηp =
(
2 p
√
p − 1(π/p)

2 sin(π/p)

)p

Table 1 reports the eigenvalue λp , computed with 101 basis functions, and the relative differ-
ence with the corresponding analytical value ηp [see (5)]. Figure 1 shows the eigenfunction
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Table 1 Values of λp and
relative error with respect to ηp

for some values of constant
p(x) ≡ p, in the interval (−1, 1)

p λp
∣
∣
∣ηp − λp

∣
∣
∣ /ηp

1.1 1.28 8.6e−05

1.2 1.46 1.9e−05

1.3 1.61 4.8e−05

1.4 1.75 5.9e−05

1.5 1.88 6.5e−05

1.6 2.00 6.8e−05

1.7 2.12 7.1e−05

1.8 2.24 7.5e−05

1.9 2.35 7.8e−05

2.0 2.47 8.2e−05

3.0 3.54 1.6e−04

4.0 4.56 3.0e−04

5.0 5.58 5.1e−04

6.0 6.59 8.0e−04

7.0 7.59 1.2e−03

8.0 8.59 1.6e−03

9.0 9.59 2.1e−03

10.0 10.59 2.6e−03

u
(x
)

x

p = 1.1

p = 1.5

p = 2.0

p = 10

Fig. 1 First eigenfunctions for some values of constant p(x) ≡ p

u(x) for different values of constant p. In the limit p → 1+ it tends to an almost constant
function with steep gradients at the boundaries due to the homogeneous boundary conditions,
whereas in the limit p → +∞ the eigenfunction resembles the absolute value of a linear
function (non differentiable at the origin).
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Figure 2 reports the first eigenfunction for two cases. In the first one (left), p(x) =
28+ 26 cos(2πx), in the second one (right) p(x) is discontinuous, p(x) = 1.1 if x < 0 and
p(x) = 10 otherwise. The second case, although does not satisfy the log-Hölder continuity
usually required to the exponent, was chosen as a limit case to check the robustness of the
method. The values of λ for the two cases are about 0.94548 and 1.25999, respectively;
the corresponding eigenfunctions are reported in the second row of plots. The values of
residuals (10) in infinity norm are 0.0018 and 0.64, respectively. The second residual is not
so small. In fact, the first part of the numerical residual contains terms like |∇u(x)|p(x)−1

[see (17)], with∇u(x) close to zerowhere p(x) is close to one. Those terms are approximated
by |∇u(x) + O(h)|p−1, where h themesh size, which can be quite far from their exact values.
A possible confirmation of such an explanation is the fact that the maximum of the residual
is taken at x̄ = 0.04, where ∇u(x̄) ≈ 0 and p(x̄) = 1.1. Similar values of the residuals were
observed for the smaller values of p in the constant case.

3.3 Two-Dimensional Cases

We implemented and run the algorithm with FreeFem++ 3.23, using piecewise quadratic
elements for u(x, y) and piecewise constant elements for p(x, y), in order to better manage
discontinuous functions p(x, y).

3.3.1 The Rectangle

The initial solution u0(x, y) corresponding to p(x, y) ≡ p = 2 is the first eigenfunction of

−∇2u(x, y) = η2u(x, y), x0 < x < x1, y0 < y < y1

normalized to have
∥
∥u0

∥
∥
2 = 1, that is

u0(x, y) =
√

8

(x1 − x0)(y1 − y0)
sin

(
x − x0
x1 − x0

π

)

sin

(
y − y0
y1 − y0

π

)

η2 = η2 =
(

π

x1 − x0

)2

+
(

π

y1 − y0

)2

.

For some constant values of p(x) ≡ p, Ref. [13, Table4, p-version] reports the values of
the eigenvalues λp with six significant digits for the unit square and Ref. [9, Table2] reports
the values for a wider range of p. In Table 2 we compare our results for p = 1.5, 2, 2.5 and
4.0 computed on a regular mesh with 26 × 26 vertices and 1,250 triangles. We find that our
results are closer to those obtained by the p-version of FEM algorithm used in Ref. [13] than
to those obtained in Ref. [9].

In order to test the code performance, we compared our new minimization method [called
precNewton(10) in Table 3] with the FreeFem++ function NLCG, which implements the
nonlinear conjugate gradient minimization method (see Table 3). In a first example, taken
from Ref. [6, Section2.2], p1(x, y) = 5+ 3 sin(3πx). Here, differently than in Ref. [6], we
implemented a preconditioner for the NLCGmethod based on modified Hessian (21) and set
themaximum number of iterations to 10. Therefore, themethod is denoted precNLCG(10)
in Table 3. In a second example we checked the case p2(x, y) = 4.5+ 3 sin(3πx), in which
p2(x, y) assumes values less than two. As shown in Table 3, our method outperforms the
preconditioned NLCG in terms of CPU time (with comparable residuals).

123



710 J Sci Comput (2015) 65:698–714

p(x)

x

p(x)

x

p(
x
)
≡

2

u(x)

x

u(x)

x

F
ig
.2

p(
x)

=
28

+
26

co
s(
2π

x)
(l
ef
t)
an
d
p(
x)

=
1.
1
if
x

<
0
an
d
p(
x)

=
10

if
x

≥
0
(r
ig
ht
)
an
d
th
e
co
rr
es
po

nd
in
g
ei
ge
nf
un

ct
io
ns

(b
ot
to
m
)

123



J Sci Comput (2015) 65:698–714 711

Table 2 Values of λp for some
values of constant p(x) ≡ p

p λp Ref. [13] Ref. [9]

1.5 10.0722 10.0722 10.0720

2.0 19.7393 19.7392 19.7392

2.5 35.9490 35.9493 35.9487

4.0 176.618 176.693 176.598

Table 3 Comparison for the cases p1(x, y) = 5 + 3 sin(3πx) and p2(x, y) = 4.5 + 3 sin(3πx)

precNewton(10) precNLCG(10)

λ Residual CPUs λ Residual CPUs

p1(x) 4.0571 2.16e−4 38.46 4.0571 2.19e−4 84.42

p2(x) 4.1727 2.51e−4 49.32 4.1727 2.52e−4 77.14

1

0.8
x 0.6

0.4

0.2

0

0

0

y

0.5

1

1.5

2

0.8 1
0.60.4

0.2

Fig. 3 Eigenfunction for p3(x, y). λ = 4.3491, residual 0.16

As a final test, we considered a discontinuous case with

p3(x, y) =
{
1.1 if x2 + y2 ≤ 1

10 otherwise

The corresponding eigenfunction u(x, y) is shown in Fig. 3. Its shape resembles that of the
one-dimensional case (see Fig. 2, right).

3.3.2 The Disk

We computed the eigenvalues for the disk for some constant values of p(x) ≡ p, namely
p = 1.5, 2, 2.5 and 4. The initial solution u0(x, y) corresponding to p(x, y) ≡ p = 2 is the
normalized first eigenfunction of
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Table 4 Values of λp for some
values of constant p(x) ≡ p

p λp Ref. [9]

1.5 4.0167 4.0053

2.0 5.7815 5.7616

2.5 7.7081 7.6815

4.0 14.6785 14.6369

−∇2u(x, y) = η2u(x, y), x2 + y2 < r2

that is

u0(x, y) = ũ0(x, y)
∥
∥ũ0

∥
∥
2

, ũ0(x, y) = J0

(

j0,1

√
x2 + y2

r

)

, η2 = η2 =
(
j0,1
r

)2

where J0 is the Bessel function of the first kind of order zero and j0,1 ≈ 2.40482555769577
is its first zero, computed by the commands

f = @(z) besselj(0,z);
fzero(f,[2,3],optimset(‘TolX’,eps))

inGNUOctave 3.8. In Table 4we compare our results for the unit disk (r = 1), on ameshwith
2,032 vertices and 3,912 triangles, with those provided in Ref. [9, Table1] (there reported
with five or six significant digits). We notice that for p(x) ≡ 2, the analytical solution is
j20,1 ≈ 5.7832 and that our value is more accurate.

3.3.3 The Annulus

The initial solution u0(x, y) corresponding to p(x, y) ≡ p = 2 for the annulus is the
normalized first eigenfunction of

−∇2u(x, y) = η2u(x, y), a2 < x2 + y2 < b2

that is

u0(x, y) = ũ0(x, y)
∥
∥ũ0

∥
∥
2

, η2 = η2 =
(
k0,1
a

)2

where

ũ0(x, y) = J0(k0,1)Y0

(

k0,1

√
x2 + y2

a

)

− Y0(k0,1)J0

(

k0,1

√
x2 + y2

a

)

If we choose a = 0.5 and b = 1, then k0,1 ≈ 3.12303091959569 is the first zero of

J0(z)Y0

(

z
b

a

)

− Y0(z)J0

(

z
b

a

)

computed by the commands

a=0.5;,b=1;
f = @(z) besselj(0,z).*bessely(0,z*b/a)-
bessely(0,z).*besselj(0,z*b/a);
fzero(f,[2,4],optimset(‘TolX’,eps))

and Y0 being the Bessel function of the second kind of order zero.
The eigenvalues inTable 5were obtained on ameshwith 1,502vertices and2,780 triangles.

The exact value of η2 for the analytical known case p(x) ≡ 2 is 4k20,1.
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Table 5 Values of λp for some
values of constant p(x) ≡ p

p λp Exact

1.5 14.8932

2.0 38.9932 39.0133

2.5 95.0417

4.0 1,154.08

4 Conclusions

We described an effective method for the computation of the first eigenpair of the
p(x)-Laplacian problem. The numerical results, in one- and two-dimensional domains, agree
well with those analytical or numerical available in literature for the constant case p(x) ≡ p.
The main contribution of the present work is a fast and reliable method for the general case
of variable exponent p(x) ≥ p− > 1, applied for the first time to some test problems in the
critical range p(x) < 2 somewhere in the domain.

Acknowledgments The authors cordially thankDr. StefanRainer for the helpful discussions about numerical
methods for unconstrained minimization.
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