
J Sci Comput (2016) 68:826–847
DOI 10.1007/s10915-015-0160-y

A Hybridized Discontinuous Galerkin Method for 2D
Fractional Convection–Diffusion Equations

Shuqin Wang1,2 · Jinyun Yuan2 · Weihua Deng1 ·
Yujiang Wu1

Received: 23 June 2015 / Revised: 16 November 2015 / Accepted: 28 December 2015 /
Published online: 18 January 2016
© Springer Science+Business Media New York 2016

Abstract A hybridized discontinuous Galerkin method is proposed for solving 2D frac-
tional convection–diffusion equations containing derivatives of fractional order in space on a
finite domain. TheRiemann–Liouville derivative is used for the spatial derivative. Combining
the characteristic method and the hybridized discontinuous Galerkin method, the symmet-
ric variational formulation is constructed. The stability of the presented scheme is proved.
Theoretically, the order of O(hk+1/2 + Δt) is established for the corresponding models and
numerically the better convergence rates are detected by carefully choosing the numerical
fluxes. Extensive numerical experiments are performed to illustrate the performance of the
proposed schemes. The first numerical example is to display the convergence orders, while
the second one justifies the benefits of the schemes. Both are tested with triangular meshes.
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1 Introduction

Fractional differential equations (FDEs) have become more and more popular in applied
science and engineering field recently. The history andmathematical background of fractional
differential operators are given in [25] with definitions and applications of fractional calculus.
This kind of equations has been used increasingly in many fields, for example, in Nature [16]
fractional operators applied in fractal stream chemistry and its implications for contaminant
transport in catchments, in [19] the fractional calculus motivated into bioengineering, and
its application as a model for physical phenomena exhibiting anomalous diffusion, Lévy
motion, turbulence [1,2,28], etc.

Let us briefly review the development of numerical methods for the fractional convection–
diffusion equations. Several authors have proposed a variety of high-order finite difference
schemes for solving time-fractional convection–diffusion equations, for example [10,17,29,
31], and solving space-fractional convection–diffusion equations [6,18]. In [20,21,23], W.
Mclean and K. Mustapha have used the piecewise-constant and piecewise-linear discon-
tinuous Galerkin (DG) methods to solve the time-fractional diffusion and wave equations,
respectively. But these methods require more computational costs. In order to tackle those
problems, in [22] W. Mclean has proposed an efficient scheme called fast summation by
interval clustering to reduce the implementation memory; more recent works on this issue
can been in [9,24]. Furthermore, in [11] Deng and Hesthaven have developed DG methods
for fractional spatial derivatives and given a fundamental frame to combine the DG methods
with fractional operators. In [30] Xu and Hesthaven have applied the DG methods to the
fractional convection–diffusion equations in one dimension. In the two dimensional case,
Ji and Tang [15] have applied the DG methods to recast the fractional diffusion equations
in rectangular meshes with the numerically optimal convergence order O(hk+1). However,
there are no theoretical results. So far very few literatures deal with the fractional problems
in triangular meshes, besides [26]. This motives us to consider a successful DG method for
solving the fractional problems in triangular meshes.

Here, we consider the time-dependent space-fractional convection–diffusion problem

⎧
⎪⎨

⎪⎩

∂t u + b · ∇u − ∂αu
∂xα − ∂βu

∂yβ = f, (x, y, t) ∈ Ω × J,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × J,

(1.1)

in the domain Ω = (a, b) × (c, d) and J = [0, T ] with the superdiffusion operators which

are defined by the left Riemann–Liouville fractional derivatives ∂αu
∂xα and ∂βu

∂yβ , 1 < α, β < 2.

The function f ∈ L2(J ; L2(Ω)) is a source term; the convection coefficient b is supposed
to satisfy b ∈ L∞(J ; W 1,∞(Ω)2), and the initial function u ∈ L2(Ω).

In this work, we shall design a stable and accurate DG method for (1.1). The stability
and convergence are proved in multi-dimensional case. This development is built on the
extension of the previous DG works found in [11,30], where a qualitative study of the high-
order local DG methods was discussed and some theoretical results were offered in one
space dimension. In order to perform the error analysis, the authors defined some projection
operators to prove the convergence results.Unfortunately, the definedprojection operators can
not be easily extended to two dimensional case (see [11,30]). Hence, to avoid this difficulty,
a different DG method is designed in this paper by carefully choosing the numerical fluxes
and adding penalty terms. The presented hybridized discontinuous Galerkin (HDG) method
has the following attractive properties: (1) The HDGmethod can be used for other fractional
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problems, for example, fractional diffusion equations; (2) It has excellent provable stability,
i.e., the stability can be proved in any space dimensions; (3) Theoretically, the error analysis
can be more easily performed with the general analytical methods in any space dimensions.

The outline of this paper is as follows. In Sect. 2, we introduce some basic definitions,
notations and review a few lemmas which are useful for the following analysis. In Sect. 3, we
present the computational schemes and give some discussions. In Sect. 4, we perform the sta-
bility and convergence analysis for the 2D space-fractional convection–diffusion equations.
In Sect. 5, we make the numerical experiments and show some simulation results to verify
the theoretical results and illustrate the performance of the proposed schemes. We conclude
the paper with some remarks in the last section.

2 Preliminaries

In the following we give some definitions of fractional integrals, derivatives, and their prop-
erties.

Definition 1 ([25]) For any μ > 0, the left and right Riemann–Liouville fractional integrals
of function u(x) defined on (a, b) are defined by

aI μ
x u(x) =

∫ x

a

(x − ξ)μ−1

Γ (μ)
u(ξ)dξ,

and

xI μ
b u(x) =

∫ b

x

(ξ − x)μ−1

Γ (μ)
u(ξ)dξ.

Definition 2 ([25]) For any μ > 0, n − 1 < μ < n, n ∈ N+, the left and right Riemann–
Liouville fractional derivatives of function u defined on (a, b) are defined by

aDμ
x u(x) = dn

dxn

∫ x

a

(x − ξ)n−μ−1

Γ (n − μ)
u(ξ)dξ,

and

xDμ
b u(x) = (−1)n dn

dxn

∫ b

x

(ξ − x)n−μ−1

Γ (n − μ)
u(ξ)dξ.

Definition 3 ([25]) For any μ > 0, n − 1 < μ < n, n ∈ N+, Caputo’s left and right
fractional derivatives of function u(x) on (a, b) are defined by

C
a Dμ

x u(x) =
∫ x

a

(x − ξ)n−μ−1

Γ (n − μ)

dnu(ξ)

dξn
dξ,

and

C
x Dμ

b u(x) =
∫ b

x

(ξ − x)n−μ−1

Γ (n − μ)

(−1)ndnu(ξ)

dξn
dξ.

Lemma 1 (Adjoint property [11,13,30]) For any μ > 0, the left and right Riemann–
Liouville fractional integral operators are adjoints for any functions u(x), v(x) ∈ L2(a, b),
i.e.,

∫ b

a
aI μ

x u(x)v(x)dx =
∫ b

a
u(x)xI μ

b v(x)dx . (2.1)
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Lemma 2 ([11,30]) Suppose that u(x) is a function defined on (a, b), u(k)(x) = 0 when
x = a or x = b, ∀ 0 ≤ k ≤ n − 1 (n − 1 < μ < n), n ∈ N+. There are

aDμ
x u(x) = Dn

aI n−μ
x u(x) = aI n−μ

x

(
Dnu(x)

)
,

or

xDμ
b u(x) = (−D)n

xI n−μ
b u(x) =x I n−μ

b

(
(−D)nu(x)

)
.

Note that, fromDefinitions 2, 3 and Lemma 2 if the solution u of (1.1) satisfies u(x, y) = 0
when x = a or y = c, then for any 1 < α, β < 2, the left fractional Riemann–Liouville
derivatives of function u(x, y) on Ω = (a, b) × (c, d) can be rewritten as (see [11,30]):

∂αu

∂xα
= ∂

∂x
aI 2−α

x

(
∂

∂x
u(x, y)

)

, (2.2)

∂βu

∂yβ
= −∂

∂y
cI

2−β
y

(−∂

∂y
u(x, y)

)

. (2.3)

For the convenience, we use the notation

I ᾱ
x =

(

aI α1
x , cI

α2
y

)
, (2.4)

where (α1, α2) = (2 − α, 2 − β) and α1, α2 ∈ (0, 1).

Definition 4 (The left and right fractional spaces [11]) For 0 < μ < 1, extend u(x) outside
of I := (a, b) by zero. Define the norms

‖ u ‖J−μ
L (R)

:=‖−∞ I μ
x u ‖L2(R), (2.5)

‖ u ‖J−μ
R (R)

:=‖x I μ∞u ‖L2(R) . (2.6)

Let the two spaces J−μ
L (R) and J−μ

R (R) denote the closures of C∞
0 (R) with respect to

‖ · ‖J−μ
L

and ‖ · ‖J−μ
R

, respectively.

Lemma 3 ([11,13,30]) For μ > 0, assume that u(x) is a real function. Then
(
−∞I μ

x u,x I μ∞u
) = cos(μπ) ‖ u ‖2

J−μ
L (R)

= cos(μπ) ‖ u ‖2
J−μ

R (R)
. (2.7)

Generally, we consider the case in which the problem is in a bounded domain instead of
R. Thus we restrict the definitions to I = (a, b).

Definition 5 ([11,30])Define the spaces J−μ
L ,0 (I) and J−μ

R,0(I) as the closures ofC∞
0 (I) under

their respective norms.

Theorem 4 ([11,30]) If −μ2 < −μ1 < 0, then J−μ1
L ,0 (I) and J−μ1

R,0 (I) are embedded into

J−μ2
L ,0 (I) and J−μ2

R,0 (I), respectively. Furthermore, L2(I) is embedded into both of them.

Definition 6 ([11,30]) By Lemmas 1, 3, Definitions 4 and 5, we obtain
∫ d

c

(
aI α1

x u(·, y), u(·, y)
)

L2(a,b)
dy = cos(α1π/2)

∫ d

c
‖ u(·, y) ‖2

J
−α1/2
R,0 (a,b)

dy, (2.8)

∫ b

a

(

cI
α2
y u(x, ·), u(x, ·)

)

L2(c,d)
dx = cos(α2π/2)

∫ b

a
‖ u(x, ·) ‖2

J
−α2/2
R,0 (c,d)

dx . (2.9)

Let the spaces J−α1/2
R,0 (a, b) and J−α2/2

R,0 (c, d) denote the closures of C∞
0 (a, b) and C∞

0 (c, d)

under their respective norms, and α1 = 2 − α, α2 = 2 − β, α1, α2 ∈ (0, 1).
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3 Derivation of the Numerical Schemes

Wefirst review somenotations, and then focus on deriving the fully discrete numerical scheme
of the 2D space-fractional convection–diffusion equation.

3.1 Notations

For the mathematical setting of the DG methods, we describe some spaces and notations.
The domain Ω is subdivided into elements E . Here E is a triangle in 2D. We assume that the
intersection of two elements is either empty, or an edge (2D). The mesh is called regular if

∀E ∈ Eh,
hE

ρE
≤ C,

where Eh is the subdivision of Ω , C a constant, hE the diameter of the element E , and ρE

the diameter of the inscribed circle in element E . Throughout this work h = maxE∈Eh hE .
We introduce the broken Sobolev space for any real numbers s by

Hs(Eh) = {
v ∈ L2(Ω) : ∀E ∈ Eh, v|E ∈ Hs(E)

}
,

equipped with the broken Sobolev norm:

‖ v ‖Hs (Eh)=
⎛

⎝
∑

E∈Eh

‖ v ‖2Hs (E)

⎞

⎠

1
2

.

The set of edges of the subdivision Eh is denoted by E B
h . Let E i

h denote the set of interior
edges, and E b

h = E B
h \E i

h denote the set of edges on ∂Ω . With each edge e, the unit normal
vector is ne. If e is on the boundary ∂Ω , then ne is taken to be the unit outward vector normal
to ∂Ω [27].

If v belongs to H1(Eh), then the trace of v along any side of one element E is well defined.
If two elements Ee

1 and Ee
2 are neighbours and share one common side e, then there are two

traces of v belonging to e. We assume that the normal vector ne is oriented from Ee
1 to Ee

2.
Then the average and jump are defined, respectively, by

{v} = 1

2
(v|∂ Ee

1
+ v|∂ Ee

2
), �v� = (v|∂ Ee

1
− v|∂ Ee

2
), ∀e ∈ ∂ Ee

1

⋂
∂ Ee

2.

If e is on ∂Ω , we have

{v} = �v� = v|e, ∀e ∈ ∂ E
⋂

∂Ω.

3.2 HDG Scheme

For designing the DG method of fractional derivative, we rewrite (1.1) as a low order system
(see [11,30]). Firstly, we introduce two auxiliary variables p, σ and set

{
p = ∇u,

σ = I ᾱ
x p = (

aI α1
x px ,c I α2

y py
)
.

As Ref. [4], let ψ(x, t) = (1+ |b(x, t)|2) 1
2 , where |b(x, t)|2 = b21 + b22. Hence, the charac-

teristic direction associated with ∂t u + b · ∇u is denoted by ∂τ = ∂t
ψ

+ b·∇
ψ

. Then, from (2.2)
and (2.3), Eq. (1.1) can be rewritten as a mixed form [3,7,8,11,30]:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ∂τ u − ∇ · σ = f, (x, y, t) ∈ Ω × J,

σ − I ᾱ
x p = 0, (x, y, t) ∈ Ω × J,

p − ∇u = 0, (x, y, t) ∈ Ω × J,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × J,

(3.1)

where I ᾱ
x is defined in (2.4).

For an arbitrary subset E ∈ Eh , we multiply the first, second, and the third equation of
(3.1) by the smooth test functions v,ω, and q, respectively. In order to obtain a symmetric
weak variational formulation, we only integrate the first equation of (3.1) by parts, and obtain

⎧
⎪⎨

⎪⎩

∫

E ψ∂τ uvdx + ∫

E σ · ∇vdx − ∫

∂ E σ · nEvds = ∫

E f vdx,
∫

E σ · ωdx − ∫

E I ᾱ
x p · ωdx = 0,

∫

E p · qdx − ∫

E ∇u · qdx = 0,

(3.2)

where nE is the outward unit normal to ∂ E . Note that the above equations are well defined
for the functions (u, σ , p) and (v,ω, q) in V × Q × Q, where

V = {
u ∈ L2(Ω) : u|E ∈ H1(E), ∀E ∈ Eh

}
,

Q = {
p ∈ (L2(Ω))2 : p|E ∈ (H1(E))2, ∀E ∈ Eh

}
.

Next we will approximate the exact solution (u, σ , p) with the functions (uh, σ h, ph) in
the finite element spaces Vh × Qh × Qh ⊂ V × Q × Q, where

Vh =
{

uh ∈ L2(Ω) : uh |E ∈ Pk(E), ∀E ∈ Eh

}
,

Qh =
{
ph ∈ (L2(Ω))2 : ph |E ∈ (Pk(E))2, ∀E ∈ Eh

}
,

where the finite element space Pk(E) denotes the set of polynomials of degree less than or
equal to k ≥ 0.

Thus, the approximate solution (uh, σ h, ph) satisfies the weak formulation, for all
(v,ω, q) ∈ Vh × Qh × Qh ,

⎧
⎪⎨

⎪⎩

∫

E ψ∂τ uhvdx + ∫

E σ h · ∇vdx − ∫

∂ E σ 
h · nEvds = ∫

E f vdx,
∫

E σ h · ωdx − ∫

E I ᾱ
x ph · ωdx = 0,

∫

E ph · qdx − ∫

E ∇uh · qdx = 0,

(3.3)

where the numerical fluxes are well chosen as σ 
h = {σ h}, ∀e ∈ E B

h in order to ensure the
stability of the scheme and its accuracy.

It is well known that the fluxes σ 
h = {σ h} are consistent. Inspired by the penalty Galerkin

methods [27] and noting the fact that �u�
∣
∣
e = 0,∀e ∈ E B

h and �σ � = 0,∀e ∈ E i
h , a

symmetric and stable DG scheme is derived as follows. Substituting the flux σ 
h = {σ h}

into (3.3), summing over all the elements, and adding the penalty terms, we observe that for
(uh, σ h, ph) ∈ Vh × Qh × Qh , the semi-discrete variational formulation is given by

⎧
⎪⎪⎨

⎪⎪⎩

(ψ∂τ uh, v) + (σ h,∇v) − ({σ h} · ne, �v�)E B
h

+ ε1(�uh�, �v�)E B
h

= ( f, v),

(σ h,ω) − (
I ᾱ
x ph,ω

) = 0,

( ph, q) − (∇uh, q) + (�uh�, {q} · ne)E B
h

+ ε2(�σ h�, �q�)E i
h

= 0.

(3.4)

123



832 J Sci Comput (2016) 68:826–847

For any (v,ω, q) ∈ Vh×Qh×Qh , the exact solution of (1.1) is expected to be continuously
differentiablewith respect to the variables x and y, which keeps the consistency of the scheme.
The term (�u�, {q} · ne)E B

h
vanishes since the exact solution u satisfies �u�

∣
∣
e = 0,∀e ∈

E B
h . Note that ε1(�u�, �v�)E B

h
penalizes the jump of the function u, whereas ε2(�σ �, �q�)E i

h
penalizes the jump of the function σ . Here ε1 and ε2 are the positive constants to be chosen.
Unfortunately the third equation of (3.4) makes the DG method lose its locality, since ph is
a function of uh and σ h , ph can not be eliminated from the third equation. So we have to
simultaneously solve the three unknowns uh, pxh, pyh . Although the extra unknowns can not
be eliminated in the HDG methods, our choice of fluxes makes the error analysis available.
Above and throughout, the following notations are used,

(w, v) =
∑

E∈Eh

(w, v)E , (w, v)E i
h

=
∑

e∈E i
h

(w, v)e, (w, v)E B
h

=
∑

e∈E B
h

(w, v)e.

3.3 Dealing with Time

After performing the HDG approximation, we discretize the time derivative with the char-
acteristic method. For the given positive integer N , let 0 = t0 < t1 < · · · < t N = T be a
partition of J into subintervals J n = (tn−1, tn] with uniform mesh and the interval length
Δt = tn − tn−1, 1 ≤ n ≤ N . The characteristic tracing back along the field b of a point
x = (x, y) ∈ Ω at time tn to tn−1 is approximated by [4,5,12]

x̌(x, tn−1) = x − b(x, tn)Δt.

Therefore, the approximation for the hyperbolic part of (1.1) at time tn canbe approximated
as

ψn∂τ un ≈ un − ǔn−1

Δt
,

where un = u(x, tn), ǔn−1 = u(x̌(x, tn−1), tn−1), and ǔ0 = u0(x).

Remark 1 (see [12]) Assume that the solution u of (1.1) is sufficiently regular. Under the
assumption of the function b, we have

∥
∥
∥
∥ψn∂τ un − un − ǔn−1

Δt

∥
∥
∥
∥

2

L2(Ω)

≤ C ‖ ψ(4) ‖L∞(J ;L∞(Ω))‖ ∂ττ u ‖2L2(J n;L2(Ω))
Δt.

Thus, the fully discrete scheme corresponding to the variational formulation (3.4) is to find
(un

h, σ n
h, pn

h) ∈ Vh × Qh × Qh , for any (v,ω, q) ∈ Vh × Qh × Qh , such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
un

h−ǔn−1
h

Δt , v

)

+ (
σ n

h,∇v
) − ({σ n

h} · ne, �v�)E B
h

+ ε1(�un
h�, �v�)E B

h
= ( f n, v),

(
σ n

h,ω
) − (

I ᾱ
x pn

h,ω
) = 0,

(
pn

h, q
) − (∇un

h, q
) + (�un

h�, {q} · ne)E B
h

+ ε2(�σ
n
h�, �q�)E i

h
= 0,

(3.5)

where ǔn−1
h = uh(x̌(x, tn−1), tn−1), ǔ0

h = u0.
Define the bilinear forms by

a
(
σ n

h, v
) := (

σ n
h,∇v

) − ({
σ n

h

} · ne, �v�
)

E B
h

, c
(
pn

h, q
) := (

pn
h, q

)
,

d
(
un

h, v
) := ε1(�un

h�, �v�)E B
h

, e(σ n
h, q) := ε2

(
�σ n

h�, �q�)E i
h
,

123



J Sci Comput (2016) 68:826–847 833

and the linear form

F (v) := ( f n, v) ∀v ∈ Vh .

We can rewrite (3.5) as a compact formulation: Find (un
h, σ n

h, pn
h) ∈ Vh × Qh × Qh at time

t = tn , such that
⎧
⎪⎪⎨

⎪⎪⎩

(
un

h−ǔn−1
h

Δt , v

)

+ a(σ n
h, v) + d(un

h, v) = F (v), ∀v ∈ Vh,

c(σ n
h,ω) − c(I ᾱ

x pn
h,ω) = 0, ∀ω ∈ Qh,

c( pn
h, q) − a(q, un

h) + e(σ n
h, q) = 0, ∀q ∈ Qh .

(3.6)

4 Stability Analysis and Error Estimate

This section focuses on providing the proof of the unconditional stability and the error
estimates of the schemes.

4.1 Stability Analysis

In the following,C indicates a generic constant independent of h andΔt , which takes different
values in different occurrences.

Lemma 5 ([4]) If b ∈ L∞(J ; W 1,∞(Ω)2), for any function v ∈ L2(Ω) and each n, there is

‖ v̌ ‖2L2(Ω)
− ‖ v ‖2L2(Ω)

≤ CΔt ‖ v ‖2L2(Ω)
, (4.1)

where v̌(x) = v(x − b(x, tn)Δt).

Theorem 6 (Numerical stability) If b ∈ L∞(J ; W 1,∞(Ω)2), the HDG scheme (3.5) is
stable, i.e., for any integer N = 1, 2, . . ., there is

‖ uN
h ‖2L2(Ω)

+2Δt
N∑

n=1

∣
∣(un

h, σ n
h, pn

h)
∣
∣2
A

≤ CΔt
N∑

n=1

‖ f n ‖2L2(Ω)
+C ‖ u0 ‖2L2(Ω)

, (4.2)

where u0
h = u0, and the semi-norm | · |A is defined as

∣
∣(un

h, σ n
h, pn

h)
∣
∣2
A

= d(un
h, un

h) + c(I ᾱ
x pn

h, pn
h) + e(σ n

h, σ n
h)

= cos(α1π/2)
∫ d

c
‖ pn

xh(·, y) ‖2
J

−α1/2
R,0 (a,b)

dy + ε1
∑

e∈E B
h

‖ �un
h� ‖2L2(e)

+ cos(α2π/2)
∫ b

a
‖ pn

yh(x, ·) ‖2
J

−α2/2
R,0 (c,d)

dx + ε2
∑

e∈E i
h

‖ �σ n
h� ‖2L2(e) .

(4.3)

Proof Let v = 2Δtun
h, ω = −2Δt pn

h, q = 2Δtσ n
h in the equations of (3.6), respectively.

By the symmetry of the bilinear formulas, adding the above equations, we obtain

2ΔtF (un
h) = 2Δtc(I ᾱ

x pn
h, pn

h) + 2Δte(σ n
h, σ n

h) + 2
(

un
h − ǔn−1

h , un
h

)
+ 2Δtd(un

h, un
h).
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Following from

2
(

un
h − ǔn−1

h , un
h

)
≥‖ un

h ‖2L2(Ω)
− ‖ ǔn−1

h ‖2L2(Ω)
,

the Young inequality, the definition of F and | · |A , and Lemma 5, we have

‖ un
h ‖2L2(Ω)

− ‖ un−1
h ‖2L2(Ω)

+2Δt
∣
∣(un

h, σ n
h, pn

h)
∣
∣2
A

≤ CΔt ‖ un−1
h ‖2L2(Ω)

+Δt
(
‖ un

h ‖2L2(Ω)
+ ‖ f n ‖2L2(Ω)

)
.

Summing from n = 1, 2, . . . , N , we get

‖ uN
h ‖2L2(Ω)

+2Δt
N∑

n=1

∣
∣(un

h, σ n
h, pn

h)
∣
∣2
A

≤ CΔt
N∑

n=1

‖ un
h ‖2L2(Ω)

+(1 + CΔt) ‖ u0
h ‖2L2(Ω)

+Δt
N∑

n=1

‖ f n ‖2L2(Ω)
.

Using the discrete Grönwall inequality, with CΔt < 1, ∀ N ≥ 1, there is

‖ uN
h ‖2L2(Ω)

+2Δt
N∑

n=1

∣
∣(un

h, σ n
h, pn

h)
∣
∣2
A

≤ C ‖ u0
h ‖2L2(Ω)

+CΔt
N∑

n=1

‖ f n ‖2L2(Ω)
.

(4.4)

4.2 Error Estimates

In this subsection we state and discuss the error bounds for the HDG scheme. The main
steps of our error analysis follow the classical methods in finite element analysis, i.e., the
so-called Galerkin orthogonality property. As usual, we denote the errors (en

u , en
σ , en

p) =
(un − un

h, σ n − σ n
h, pn − pn

h) by
(

en
u , en

σ , en
p

)
= (un − Πun, σ n − Πσ n, pn − Π pn) +

(
Πen

u ,Πen
σ ,Πen

p

)
,

where Π and Π = (Π,Π) are the L2-projection and (L2)2-projection operators from V and
Q onto the finite element spaces Vh andQh , respectively. From (3.6), we obtain the compact
form (

un
h − ǔn−1

h

Δt
, v

)

+ A
(
un

h, σ n
h, pn

h; v,ω, q
) = F (v), (4.5)

where

A
(
un

h, σ n
h, pn

h; v,ω, q
)

= a
(
σ n

h, v
)+d

(
un

h, v
)+c

(
σ n

h,ω
) − c

(
I ᾱ
x pn

h,ω
)
+c

(
pn

h, q
) − a

(
q, un

h

) + e
(
σ n

h, q
)
.

(4.6)

Lemma 7 Assume that the solution u of problem (1.1) is sufficiently regular. Then
(

ψn∂τ un − un
h − ǔn−1

h

Δt
,Πen

u

)

+ ∣
∣(Πen

u ,Πen
σ ,Πen

p)
∣
∣2
A

= A
(
Πun − un,Πσ n − σ n,Π pn − pn;Πen

u ,−Πen
p,Πen

σ

)
.

(4.7)
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Proof By the consistency of the numerical fluxes, the exact solution (u, σ , p) satisfies (3.4).
Taking v = Πen

u ,ω = −Πen
p, q = Πen

σ and subtracting (3.5) from (3.4) yield

(

ψn∂τ un − un
h − ǔn−1

h

Δt
,Πen

u

)

+ A
(

en
u , en

σ , en
p;Πen

u ,−Πen
p,Πen

σ

)
= 0 (4.8)

and
∣
∣(Πen

u ,Πen
σ ,Πen

p)
∣
∣2
A

= A
(
Πen

u ,Πen
σ ,Πen

p;Πen
u ,−Πen

p,Πen
σ

)
. (4.9)

By the Galerkin orthogonality, there is

A
(

en
u , en

σ , en
p;Πen

u ,−Πen
p,Πen

σ

)

= A
(
Πen

u ,Πen
σ ,Πen

p;Πen
u ,−Πen

p,Πen
σ

)

− A
(
Πun − un,Πσ n − σ n,Π pn − pn;Πen

u ,−Πen
p,Πen

σ

)
.

(4.10)

Substituting the equalities (4.9) and (4.10) into (4.8) leads to the desired result.

Next we review two lemmas for our analysis. The first one is the standard approximation
result for the L2-projection operator Π from Hs+1(E) onto Vh(E) = {v; v

∣
∣
E ∈ Pk(E)}

satisfying Πv = v for any v ∈ Pk(E). The second one is the standard trace inequality.

Lemma 8 ([3]) Let v ∈ Hs+1(E), s ≥ 0. Π is the L2-projection operator from Hs+1(E)

onto Vh(E) such that Πv = v for any v ∈ Pk(E). Then, for m = 0, 1,

{∣
∣v − Πv

∣
∣

Hm (E)
≤ Chmin{s,k}+1−m

E ‖ v ‖Hs+1(E),

‖ v − Πv ‖L2(∂ E)≤ Ch
min{s,k}+ 1

2
E ‖ v ‖Hs+1(E) .

(4.11)

Lemma 9 ([3]) There exists a generic constant C being independent of hE , for any v ∈
Vh(E), such that

‖ v ‖L2(∂ E)≤ Ch
− 1

2
E ‖ v ‖L2(E) . (4.12)

Now we are ready to prove our main results.

4.2.1 The Characteristic Term

In this subsection, we estimate the first left-side term of (4.7).

Lemma 10 ([4]) If b ∈ L∞(J ; W 1,∞(Ω)2), for any function v ∈ H1(Ω) and each n,

‖ v − v̌ ‖L2(Ω)≤ CΔt ‖ ∇v ‖L2(Ω), (4.13)

where v̌ = v(x̌) = v(x − bnΔt).

The following result is a straightforward consequence of the estimate of the first left-side
term of (4.7).
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Theorem 11 Assume that the solution u of problem (1.1) is sufficiently smooth and un
h

satisfies (3.5). If b ∈ L∞(J ; W 1,∞(Ω)2), we have
(

ψn∂τ un − un
h − ǔn−1

h

Δt
,Πen

u

)

≥ 1

2Δt

(
‖ Πen

u ‖2L2(Ω)
− ‖ Πen−1

u ‖2L2(Ω)

)
− C ‖ Πen−1

u ‖2L2(Ω)

− CΔt ‖ ∂ττ u ‖2L2(J n;L2(Ω))
− C

Δt
‖ ∂t (Πu − u) ‖2L2(J n;L2(Ω))

− C ‖ ∇(Πun−1 − un−1) ‖2L2(Ω)
−C ‖ Πen

u ‖2L2(Ω)
.

(4.14)

Proof From (4.7), it can be noted that
(

ψn∂τ un − un
h − ǔn−1

h

Δt
,Πen

u

)

=
(

Πen
u − Π ěn−1

u

Δt
,Πen

u

)

+
(

ψn∂τ un − un − ǔn−1

Δt
,Πen

u

)

−
(

(Πun − un) − (Π ǔn−1 − ǔn−1)

Δt
,Πen

u

)

=
3∑

i=1

Bi .

(4.15)

Using Lemma 5, we obtain

B1 =
(

Πen
u − Π ěn−1

u

Δt
,Πen

u

)

= 1

2Δt

(
‖ Πen

u ‖2L2(Ω)
− ‖ Π ěn−1

u ‖2L2(Ω)
+ ‖ Πen

u − Π ěn−1
u ‖2L2(Ω)

)

≥ 1

2Δt

(
‖ Πen

u ‖2L2(Ω)
− ‖ Π ěn−1

u ‖2L2(Ω)

)

≥ 1

2Δt

(
‖ Πen

u ‖2L2(Ω)
− ‖ Πen−1

u ‖2L2(Ω)

)
− C ‖ Πen−1

u ‖2L2(Ω)
,

where Π ěn−1
u = Π ǔn−1 − ǔn−1

h . Also by the Taylor expansion and the Hölder inequality,
there are

| B2 | =
∣
∣
∣
∣

(

ψn∂τ un − un − ǔn−1

Δt
,Πen

u

)∣
∣
∣
∣

≤ CΔt ‖ ∂ττ u ‖2L2(J n;L2(Ω))
+C ‖ Πen

u ‖2L2(Ω)

and

−B3 =
(

(Πun − un) − (Π ǔn−1 − ǔn−1)

Δt
,Πen

u

)

=
(

(Πun − un) − (Πun−1 − un−1)

Δt
,Πen

u

)

+
(

(Πun−1 − un−1) − (Π ǔn−1 − ǔn−1)

Δt
,Πen

u

)
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= S1 + S2,

where

S1 =
(

(Πun − un) − (Πun−1 − un−1)

Δt
,Πen

u

)

≤ 1

Δt
‖ Πen

u ‖L2(Ω)

∫ tn

tn−1
‖ ∂t (Πu − u) ‖L2(Ω) dt

≤ C ‖ Πen
u ‖2L2(Ω)

+ C

Δt
‖ ∂t (Πu − u) ‖2L2(J n;L2(Ω))

,

and

S2 =
(

(Πun−1 − un−1) − (Π ǔn−1 − ǔn−1)

Δt
,Πen

u

)

≤ C ‖ Πen
u ‖2L2(Ω)

+C ‖ ∇(Πun−1 − un−1) ‖2L2(Ω)
,

follow from Cauchy–Schwarz’s inequality, Young’s inequality and Lemma 10. Substituting
B1,B2,B3 into (4.15), the desired result is reached.

4.2.2 The Right-Hand Side Term

In this subsection, we use the general analytic methods to get the bound of the right side term
of (4.7).

Theorem 12 Let u be sufficiently smooth solution of (3.1). (Πun,Πσ n,Π pn) are stan-
dard L2-projection operators of (un, σ n, pn), and (un

h, σ n
h, pn

h) solve (3.5). If b ∈
L∞(J ; W 1,∞(Ω)2), we have

∣
∣
∣A

(
Πun − un,Πσ n − σ n,Π pn − pn;Πen

u ,−Πen
p,Πen

σ

)∣
∣
∣

≤ Cεα1

∫ d

c
‖ Πen

px
(·, y) ‖2

J
−α1/2
R,0 (a,b)

dy +
(

C

ε1
+ Cε1

)

h2k+1 + C

εα1

h2k+2

+ Cεα2

∫ b

a
‖ Πen

py
(x, ·) ‖2

J
−α2/2
R,0 (c,d)

dx +
(

C

ε2
+ Cε2

)

h2k+1 + C

εα2

h2k+2

+ ε1

2

∑

e∈E B
h

‖ �Πen
u� ‖2L2(e) +ε2

2

∑

e∈E i
h

‖ �Πen
σ � ‖2L2(e) .

(4.16)

Proof From the definition of A , we have

A
(
Πun − un,Πσ n − σ n,Π pn − pn;Πen

u ,−Πen
p,Πen

σ

)

≤ ∣
∣a(Πσ n − σ n,Πen

u)
∣
∣ + ∣

∣c(I ᾱ
x (Π pn − pn),Πen

p)
∣
∣

+ ∣
∣a(Πen

σ ,Πun − un)
∣
∣ + ∣

∣d(Πun − un,Πen
u)

∣
∣

+ ∣
∣e(Πσ n − σ n,Πen

σ )
∣
∣ + ∣

∣c(Πσ n − σ n,−Πen
p)

∣
∣

+ ∣
∣c(Π pn − pn,Πen

σ )
∣
∣

=
7∑

i=1

Ti .

(4.17)
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Using Hölder’s, Young’s inequalities and Lemma 8, we obtain

T1 = ∣
∣a(Πσ n − σ n,Πen

u)
∣
∣ = ∣

∣({Πσ n − σ n} · ne, �Πen
u�)E B

h

∣
∣

≤
∑

e∈E B
h

‖ {Πσ n − σ n} · ne ‖L2(e)‖ �Πen
u� ‖L2(e)

≤
∑

e∈E B
h

(
1

ε1
‖ {Πσ n − σ n} · ne ‖2L2(e) +ε1

4
‖ �Πen

u� ‖2L2(e)

)

≤ C

ε1
h2k+1 + ε1

4

∑

e∈E B
h

‖ �Πen
u� ‖2L2(e) .

From Lemmas 1, 8, Definitions 4, 6, and Theorem 4, it follows that

T2 = ∣
∣c(I ᾱ

x (Π pn − pn),Πen
p)

∣
∣

= ∣
∣(Πpn

x − pn
x , xI α1

b Πen
px

) + (Πpn
y − pn

y , yI
α2
d Πen

py
)
∣
∣

≤‖ Πpn
x − pn

x ‖L2(Ω)

(∫ d

c
‖ Πen

px
(·, y) ‖2

J
−α1
R,0 (a,b)

dy

) 1
2

+ ‖ Πpn
y − pn

y ‖L2(Ω)

(∫ b

a
‖ Πen

py
(x, ·) ‖2

J
−α2
R,0 (c,d)

dx

) 1
2

≤ C ‖ Πpn
x − pn

x ‖L2(Ω)

(∫ d

c
‖ Πen

px
(·, y) ‖2

J
−α1/2
R,0 (a,b)

dy

) 1
2

+ C ‖ Πpn
y − pn

y ‖L2(Ω)

(∫ b

a
‖ Πen

py
(x, ·) ‖2

J
−α2/2
R,0 (c,d)

dx

) 1
2

≤ C

εα1

h2k+2 + Cεα1

∫ d

c
‖ Πen

px
(·, y) ‖2

J
−α1/2
R,0 (a,b)

dy

+ C

εα2

h2k+2 + Cεα2

∫ b

a
‖ Πen

py
(x, ·) ‖2

J
−α2/2
R,0 (c,d)

dx,

where εα1 and εα2 are chosen as sufficiently small numbers such that Cεα1 ≤ cos(α1π/2)
and Cεα2 ≤ cos(α2π/2).

Integrating the first term ofa(Πen
σ ,Πun −un) by parts, and using the orthogonal property

of projection operator Π, we get

T3 = ∣
∣a(Πen

σ ,Πun − un)
∣
∣

= ∣
∣
(
Πen

σ ,∇(Πun − un)
) − ({Πen

σ } · ne, �Πun − un�
)

E B
h

∣
∣

=
∣
∣
∣
(
�Πen

σ �, {Πun − un}ne
)

E i
h

∣
∣
∣

≤
∑

e∈E i
h

‖ �Πen
σ � ‖L2(e)‖ {Πun − un}ne ‖L2(e)

≤
∑

e∈E i
h

(
1

ε2
‖ {Πun − un}ne ‖2L2(e) +ε2

4
‖ �Πen

σ � ‖2L2(e)

)
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≤ C

ε2
h2k+1 + ε2

4

∑

e∈E i
h

‖ �Πen
σ � ‖2L2(e) .

With the same deduction of T1, there is

T4 = ∣
∣d(Πun − un,Πen

u)
∣
∣

≤ ε1
∑

e∈E B
h

‖ �Πun − un� ‖L2(e)‖ �Πen
u� ‖L2(e)

≤ ε1
∑

e∈E B
h

(

‖ �Πun − un� ‖2L2(e) +1

4
‖ �Πen

u� ‖2L2(e)

)

≤ ε1Ch2k+1 + ε1

4

∑

e∈E B
h

‖ �Πen
u� ‖2L2(e) .

By Lemma 8, we get

T5 = ∣
∣e(Πσ n − σ n,Πen

σ )
∣
∣

≤ ε2
∑

e∈E i
h

‖ �Πσ n − σ n� ‖L2(e)‖ �Πen
σ � ‖L2(e)

≤ ε2
∑

e∈E i
h

(

‖ �Πσ n − σ n� ‖2L2(e) +1

4
‖ �Πen

σ � ‖2L2(e)

)

≤ Cε2h2k+1 + ε2

4

∑

e∈E i
h

‖ �Πen
σ � ‖2L2(e) .

Note that T6 and T7 vanish because of the orthogonal property of the projection Π.
Substituting Ti , i = 1, . . . , 7 into (4.17), the desired result is obtained.

4.2.3 Error Bounds

Assuming that the solution of (1.1) is sufficiently regular, we have the following error esti-
mates.

Theorem 13 Let (un, σ n, pn) be the exact solution of (3.1), (un
h, σ n

h, pn
h) the numerical

solution of the fully discrete HDG scheme (3.5). If b ∈ L∞(J ; W 1,∞(Ω)2), for any integer
N = 1, 2, . . ., there is

∥
∥
∥uN − uN

h

∥
∥
∥
2

L2(Ω)
+ Δt

N∑

n=1

⎛

⎜
⎝ε1

∑

e∈E B
h

‖�un − un
h�‖2L2(e) + ε2

∑

e∈E i
h

‖�σ n − σ n
h�‖2L2(e)

2Kα1

∫ d

c
‖(pn

x − pn
xh)(·, y)‖2

J
−α1/2
R,0 (a,b)

dy + 2Kα2

∫ b

a
‖(pn

y − pn
yh)(x, ·)‖2

J
−α2/2
R,0 (c,d)

dx

)

≤ C(Δt)2
N∑

n=1

‖∂ττ u‖2L2(J n;L2(Ω))
+ C

N∑

n=1

‖∂t (Πu − u)‖2L2(J n;L2(Ω))

+ Cεh2k+1 + CΔt
N∑

n=1

| Πun−1 − un−1 |2H1(Ω)
, (4.18)
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where α1 = 2−α, α2 = 2−β, Kα1 = cos(α1π/2)−Cεα1 ≥ 0, Kα2 = cos(α2π/2)−Cεα2 ≥
0, εα1 and εα2 are chosen as above, Cε is dependent of ε1, ε2.

Proof Substituting the results of Theorems 11 and 12 into (4.7), there is

1

2Δt

(
‖ Πen

u ‖2L2(Ω)
− ‖ Πen−1

u ‖2L2(Ω)

)
+ ε1

2

∑

e∈E B
h

‖ �Πen
u� ‖2L2(e)

+ ε2

2

∑

e∈E i
h

‖ �Πen
σ � ‖2L2(e) +(cos(α1π/2) − Cεα1)

∫ d

c
‖Πen

px
(·, y)‖2

J
−α1/2
R,0 (a,b)

dy

+ (cos(α2π/2) − Cεα2)

∫ b

a
‖Πen

py
(x, ·)‖2

J
−α2/2
R,0 (c,d)

dx

≤ C ‖ Πen−1
u ‖2L2(Ω)

+C ‖ Πen
u ‖2L2(Ω)

+CΔt ‖ ∂ττ u ‖2L2(J n;L2(Ω))

+ C

Δt
‖∂t (Πu − u)‖2L2(J n;L2(Ω))

+ C | Πun−1 − un−1 |2H1(Ω)
+Cεh2k+1.

WithΠe0u = 0, multiplying the above inequality by 2Δt on both sides, summing over n from
1 to N , and using the discrete Grönwall inequality, there is

‖ ΠeN
u ‖2L2(Ω)

+Δt
N∑

n=1

⎛

⎜
⎝ε1

∑

e∈E B
h

‖ �Πen
u� ‖2L2(e) +ε2

∑

e∈E i
h

‖ �Πen
σ � ‖2L2(e)

⎞

⎟
⎠

+ 2Δt
N∑

n=1

(cos(α1π/2) − Cεα1)

∫ d

c
‖ Πen

px
(·, y) ‖2

J
−α1/2
R,0 (a,b)

dy

+ 2Δt
N∑

n=1

(cos(α2π/2) − Cεα2)

∫ b

a
‖Πen

py
(x, ·)‖2

J
−α2/2
R,0 (c,d)

dx

≤ C(Δt)2
N∑

n=1

‖∂ττ u‖2L2(J n;L2(Ω))
+ C

N∑

n=1

‖∂t (Πu − u)‖2L2(J n;L2(Ω))

+ CΔt
N∑

n=1

| Πun−1 − un−1 |2H1(Ω)
+Cεh2k+1.

By the triangle inequality, we obtain the desired result.

5 Numerical Experiment

In this section, we illustrate the numerical performance of the proposed schemes by the
numerical simulations of two examples. In the first example, we take the vector function
b = 0 and verify the accuracy of the schemeswith the exact smooth solution u combiningwith
the left fractional Riemann–Liouville derivatives with respect to x-variable and y-variable,
respectively. When we compute the fractional integral part in triangular meshes (see Figs. 1,
2), the Gauss points and weights are used to deal with the terms relating with the fractional
operators element-by-element (see [14,26]). Since this part needs more time and memory
spaces (see [22]), we only use the piecewise linear basis functions to simulate the solution
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Fig. 1 All triangles in
x-direction affected by the Gauss
points (denoted by black square)
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Fig. 2 All triangles in
y-direction affected by the Gauss
points (denoted by black square)
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in triangular meshes. Tables 1, 2 and 3 illustrate that the schemes have a good convergence
order with piecewise linear basis function for different choices of the fluxes. In the second
example, we take b to be a vector function and perform some numerical experiments with
some figures (see Figs. 3, 4) which justify that the schemes simulate the solution very well
for 2D-fractional convection–diffusion problems.
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Table 1 The L2, L1-errors and convergence rates for u and ux , uy for Example 5.1

h ‖eu(t)‖L2 Rate ‖eu(t)‖L1 Rate ‖∂x eu(t)‖L2 Rate ‖∂yeu(t)‖L2

t = 0.1, (α, β) = (1.2, 1.4), (ε1, ε2) = (O(1),O(1))

1/6 1.3993e−04 – 1.0771e−04 – 1.4273e−03 – 6.4132e−03

1/10 5.6088e−05 1.79 4.1112e−05 1.89 7.2047e−03 1.34 6.8133e−03

1/14 2.9803e−05 1.88 2.1713e−05 1.90 4.8274e−04 1.19 6.9191e−03

1/18 1.8452e−05 1.91 1.3226e−05 1.97 3.4904e−04 1.29 6.9660e−03

t = 0.1, (α, β) = (1.5, 1.5), (ε1, ε2) = (O(1),O(1))

1/6 1.8283e−04 – 1.4041e−04 – 1.1688e−03 – 6.4118e−03

1/10 7.5004e−05 1.74 5.6669e−05 1.78 5.1740e−04 1.60 6.7972e−03

1/14 4.0967e−05 1.80 3.1156e−05 1.78 3.2141e−04 1.41 6.9127e−03

1/18 2.5475e−05 1.89 1.9258e−05 1.91 2.2281e−04 1.46 6.9610e−03

t = 0.1, (α, β) = (1.9, 1.6), (ε1, ε2) = (O(1),O(1))

1/6 2.6485e−04 – 1.9290e−04 – 1.1859e−03 – 6.4542e−03

1/10 1.1544e−04 1.63 8.6542e−05 1.57 5.3599e−04 1.56 6.7608e−03

1/14 6.7712e−05 1.59 5.0400e−05 1.61 3.3163e−04 1.43 6.8829e−03

1/18 4.5463e−05 1.59 3.3857e−05 1.58 2.3476e−04 1.38 6.9387e−03

Table 2 The L2, L1-errors and convergence rates for u and ux , uy for Example 5.1

h ‖eu(t)‖L2 Rate ‖eu(t)‖L1 Rate ‖∂x eu(t)‖L2 Rate ‖∂yeu(t)‖L2

t = 1, (α, β) = (1.2, 1.4), (ε1, ε2) = (O(1),O(1))

1/6 8.2881e−05 – 7.2374e−05 – 4.7733e−04 – 2.5556e−03

1/10 3.2222e−05 1.85 2.7700e−05 1.88 2.6204e−04 1.17 2.7560e−03

1/14 1.6162e−05 2.05 1.3515e−05 2.13 1.7748e−04 1.06 2.8077e−03

1/18 9.9448e−06 1.93 8.2787e−06 1.95 1.3085e−04 1.21 2.8291e−03

t = 1, (α, β) = (1.5, 1.5), (ε1, ε2) = (O(1),O(1))

1/6 8.7928e−05 – 7.4712e−05 – 4.1510e−04 – 2.5466e−03

1/10 3.5668e−05 1.77 2.9706e−05 1.81 1.9555e−04 1.47 2.7408e−03

1/14 1.8524e−05 1.95 1.4885e−05 2.05 1.2291e−04 1.38 2.8010e−03

1/18 1.1432e−05 1.92 9.0662e−06 1.97 8.6553e−05 1.40 2.8244e−03

t = 1, (α, β) = (1.9, 1.6), (ε1, ε2) = (O(1),O(1))

1/6 1.1250e−04 – 8.4393e−05 – 4.6409e−04 – 2.5983e−03

1/10 4.7998e−05 1.67 3.6510e−05 1.64 2.1614e−04 1.50 2.7410e−03

1/14 2.7916e−05 1.61 2.0971e−05 1.65 1.3512e−04 1.40 2.7985e−03

1/18 1.8767e−05 1.58 1.4104e−05 1.58 9.5762e−05 1.37 2.8216e−03

Example 5.1 Consider 2D space-fractional convection–diffusion problem (1.1) in domain
Ω = (0, 1) × (0, 1). The initial condition and the exact solution are specified as

⎧
⎨

⎩

u(x, y, t) = e−t x2(x − 1)2y2(y − 1)2,
u0(x, y) = x2(x − 1)2y2(y − 1)2,
b(x, y, t) = (0, 0).

(5.1)
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Table 3 The L2, L1-errors and convergence rates for u and ux , uy for Example 5.1

h ‖eu(t)‖L2 Rate ‖eu(t)‖L1 Rate ‖∂x eu(t)‖L2 Rate ‖∂yeu(t)‖L2

t = 1, (α, β) = (1.9, 1.6), (ε1, ε2) = (O(h−1),O(1))

1/6 5.2142e−05 – 4.1592e−05 – 4.0695e−04 – 2.5777e−03

1/10 1.9772e−05 1.90 1.5784e−05 1.90 1.7761e−04 1.62 2.7383e−03

1/14 9.5805e−06 2.15 7.5267e−06 2.20 1.1392e−04 1.32 2.7976e−03

1/18 5.8213e−06 1.98 4.6596e−06 1.91 7.8388e−05 1.49 2.8210e−03

t = 1, (α, β) = (1.9, 1.6), (ε1, ε2) = (O(h−1),O(h))

1/6 4.8702e−05 – 3.9358e−05 – 4.2857e−04 – 2.5666e−03

1/10 1.9169e−05 1.83 1.5766e−05 1.79 1.9937e−04 1.50 2.7356e−03

1/14 9.2520e−06 2.17 7.6271e−06 2.16 1.2817e−04 1.31 2.7962e−03

1/18 5.6525e−06 1.96 4.6650e−06 1.96 8.9725e−05 1.42 2.8202e−03

t = 1, (α, β) = (1.9, 1.6), (ε1, ε2) = (O(1),O(h))

1/6 8.6286e−05 – 6.6645e−05 – 4.5649e−04 – 2.5761e−03

1/10 3.4635e−05 1.79 2.8021e−05 1.70 2.0660e−04 1.55 2.7365e−03

1/14 1.7787e−05 1.98 1.4393e−05 1.98 1.2993e−04 1.38 2.7964e−03

1/18 1.0969e−05 1.92 8.9170e−06 1.91 8.9646e−05 1.48 2.8200e−03

Then the force term f is determined accordingly from (1.1). In this case, we present a few
results to numerically validate the analysis.

For the numerical simulations, in order to validate the stability and the accuracy of the
presented HDG scheme, we choose the time-stepsize, Δt = O(h3/2), used to advance the
discrete formulation from tn−1 to tn, n = 1, 2, . . . , N . The experimental convergence rate
is given by

rate =
log

(
‖ u(t) − uh1(t) ‖L2(Eh1 ) / ‖ u(t) − uh2(t) ‖L2(Eh2 )

)

log(h1/h2)
.

In Tables 1 and 2 we choose different observation time t = 0.1, 1 and α, β to justify that
the convergence rates at least have an order of O(h3/2) for the solution u in L2, L1-norms
based on the piecewise linear basis function. In Table 3 we take the same choice of ε1, ε2 as
Ref. [3] and see that the convergence rates increase to O(h2) (see the explanations in Ref.
[3]). Comparing the numerical results with the work [26], we can see that the HDG method
has smaller numerical errors for the first order polynomial approximation.

Example 5.2 In this example, we investigate the approximation solution of problem (1.1).
For convenience, we still choose the domainΩ = (0, 1)×(0, 1). The exact solution u, initial
value and the vector function b are given by

⎧
⎪⎨

⎪⎩

u(x, y, t) =e−t x2(x − 0.5)2(x − 1)2y2(y − 0.5)2(y − 1)2,

u0(x, y) = x2(x − 0.5)2(x − 1)2y2(y − 0.5)2(y − 1)2,

b = ((x − 0.5),−(y − 0.5)).

(5.2)

For the second example, in order to further support the theoretical convergence and justify the
powerful HDG scheme, we take b to be nonzero vector function and give some approximation
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solutions with the refining space-step h to compare with the exact solutions and display the
efficiency of the simulations.

Figure 3 displays the exact solution u and the numerical solutions uh based on different
space stepsizes h = 1

8 ,
1
16 at t = 1with α = 1.2, β = 1.4, ε1 = ε2 = 1. Figure 4 displays the

exact solution u and the numerical solutions uh based on different space stepsizes h = 1
8 ,

1
16

at t = 5 with α = 1.9, β = 1.6, ε1 = h−1, ε2 = 1. It is clear that the exact solution of
Example 5.2 is nonnegative with four hills. In the simulations, the P1-HDG solutions recover
the exact solution perfectly with all four hills in coarse meshes. Note that the numerical
results display that the approximations are more and more accurate with the refining of the
meshes.

6 Conclusions

By carefully introducing the auxiliary variables, constructing the numerical fluxes, adding
the penalty terms, and using the characteristic method to deal with the time derivative
and convective term, we design the effective HDG schemes to solve 2D space-fractional
convection–diffusion equations with triangular meshes. As we know, this work is the first
time to deal two-dimensional space-fractional convection–diffusion equation with triangular
mesh by the DG method. The stability and error bounds analysis are investigated.

Besides the general advantages of HDG method, the presented scheme is shown to have
the following benefits: (1) it is symmetric, so easy to deal with the fractional operators; (2)
theoretically, the stability can be more easily proved; (3) the penalty terms make the error
analysis more convenient; (4) numerically verified to have efficient approximations; (5) the
schemes are performed very well in triangular meshes; (6) it is possible to use this scheme
to solve nonlinear equations which is the future research task.
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