
J Sci Comput (2016) 68:573–595
DOI 10.1007/s10915-015-0149-6

Computation Algorithm for Convex Semi-infinite
Program with Second-Order Cones: Special Analyses
for Affine and Quadratic Case

Shunsuke Hayashi1 · Soon-Yi Wu2,3 · Liping Zhang4

Received: 9 September 2014 / Revised: 1 July 2015 / Accepted: 30 November 2015 /
Published online: 15 December 2015
© Springer Science+Business Media New York 2015

Abstract We focus on the convex semi-infinite program with second-order cone constraints
(for short, SOCCSIP), which has wide applications such as filter design, robust optimization,
and so on. For solving the SOCCSIP, we propose an explicit exchange method, and prove
that the algorithm terminates in a finite number of iterations. In the convergence analysis, we
do not need to use the special structure of second-order cone (SOC) when the objective or
constraint function is strictly convex. However, if both of them are non-strictly convex and
constraint function is affine or quadratic, then we have to utilize the SOC complementarity
conditions and the spectral factorization techniques associatedwithEuclidean Jordan algebra.
We also show that the obtained output is an approximate optimum of SOCCSIP. We report
some numerical results involving the application to the robust optimization in the classical
convex semi-infinite program.

Keywords Continuous optimization · Semi-infinite program · Exchange method ·
Second-order cone

Mathematics Subject Classification 90C30 · 90C33

This research was supported in part by JSPS KAKENHI Grant Number 26330022, and by National Center
for Theoretical Sciences, Taiwan.

B Soon-Yi Wu
soonyi@mail.ncku.edu.tw

Shunsuke Hayashi
s_hayashi@plan.civil.tohoku.ac.jp

Liping Zhang
lzhang@math.tsinghua.edu.cn

1 Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

2 Department of Mathematics, National Cheng Kung University, Tainan 70101, Taiwan

3 National Center for Theoretical Sciences, Tainan, Taiwan

4 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-015-0149-6&domain=pdf


574 J Sci Comput (2016) 68:573–595

1 Introduction

The semi-infinite program (SIP) [11,16,29] is a constrained optimization with the feasible
region defined by means of infinitely many inequality constraints. This problem has strong
practical backgrounds in engineering problems such as optimal control, optimal filter design
in signal processing, resource allocation in decentralized systems, decision making under
competition, least square problems, equilibriumproblems, and soon [12,23,35,36].However,
the SIP is much more difficult than the standard nonlinear program (NLP) since the infinitely
many inequality constraints have to be dealt with.

So far,many numerical algorithms have been proposed for solving SIPs (see [18,21,28,30]
and references therein). A typical algorithm for solving an SIP generates a sequence of
finitely constrained subproblems that can be solved by some standard algorithms for NLPs.
Existing methods for SIPs can be roughly divided into three types: exchange methods [19,
28], discretization methods, and reduction-based methods (see, e.g. [28,31] and references
therein). The exchange and the discretization methods are numerically expensive in general
since the cost per iteration increases dramatically as the cardinality of the auxiliary problem
grows. The reduction-based methods, on the other hand, require strong assumptions for
global convergence, and are often conceptual methods which can be implemented in a rather
simplified form merely. Hence the exchange and the discretization methods are often used
only for the first stage of the solution process, whereas the reduction-based methods are
typically employed only in the final stage in order to provide a higher accuracy of the solution
and a better rate of convergence. Wu et al. [33] proposed an iterative method for solving
KKT systems of the SIP in which they drop some redundant points at certain iterations. Qi
et al. [27] and Li et al. [20] presented semismooth/smoothing Newton methods in which the
index set � is specified by � = {s | c j (s) ≤ 0 ( j = 1, . . . , r)} with twice continuously
differentiable functions c j : Rm → R ( j = 1, . . . , r). They proved that their algorithms
have nice convergence properties, but those two methods cannot ensure the feasibility. For
linear SIPs, Lai and Wu [19] proposed the explicit algorithm in which they solve a linear
program with a finite index set Ek . They dropped out redundant points in Ek at each iteration
and only kept active points ensuring |Ek | ≤ n for each k, and hence the algorithm is very
efficient in saving the computational time.

In this paper, we focus on the following convex semi-infinite program with “second-order
cone constraints” (SOCCSIP):

(SOCCSIP)
minimize f (x)
subject to x ∈ K, c(x, s) ≤ 0 ∀s ∈ �,

(1.1)

where f : Rn → R is continuously differentiable and convex, c : Rn+m → R is continuously
differentiable and convex with respect to x , � ⊆ R

m is a given compact set playing a role
of index set, and K is the Cartesian product of several second order cones (SOCs), i.e.,
K = Kn1 × · · · ×Knm with n = n1 + · · · + nm and

Kn j :=
{{

x = (x1, x̃) ∈ R× R
n j−1

∣∣∣ x1 ≥ ‖x̃‖2} (n j ≥ 2)

{x ∈ R | x ≥ 0} (n j = 1).

In the remainder of the paper, the Euclidean norm ‖ · ‖2 is denoted as ‖ · ‖.
The SOCCSIP can be applied to many practical problems. One possible application is

a robust optimization problem [2–4,26] with spherical or ellipsoidal uncertainty. Since the
typical example will be given in Sect. 5, we omit the details here. Another application is
the finite impulse response (FIR) filter design problem. Let h1, h2, . . . , h2N ∈ R be the

123



J Sci Comput (2016) 68:573–595 575

coefficients (impulse response) of a FIR filter with length 2N . Then the frequency response
function H : [0, 2π] → C is defined as H(ω) := ∑2N

k=1 hke− j (k−1)ω, where j := √−1.
Suppose that the filter coefficients have symmetric structure, i.e., xk := hk = h2N+1−k for
k = 1, . . . , N . According to the calculation steps in [22, Sect. 3.3], we obtain H(ω) =
e− j (N− 1

2 )τ (ω)
x with x := (x1, x2, . . . , xN )
 and τ(ω) := 2(cos(N − 1
2 )ω, cos(N −

3
2 )ω, . . . , cos 1

2ω)
. We also have |H(ω)| = |τ(ω)
x | since |e− j (N− 1
2 )| = 1. Now, we

aim to design the filter as follows: (i) we let the filter magnitude |H(ω)| be upper-bounded
by β > 0 in the stopband ω ∈ [ωs, π ]; (ii) we let |H(ω)| be as close as possible to 1
in logarithmic scale in the passband ω ∈ [0, ωp]. Then, the FIR filter design problem is
formulated as

Minimize
x

max
ω∈[0,ωp]

∣∣∣ log ∣∣τ(ω)
x
∣∣− log 1

∣∣∣
subject to

∣∣τ(ω)
x
∣∣ ≤ β (∀ω ∈ [ωs, π]),

which can be reformulated equivalently as

Minimize
u,v,x,y

u

subject to u ≥ 0, v ≥ 0, y ∈ K3,

(u + v, u − v, 2)
 − y = 0,
v ≤ τ(ω)
x ≤ u (∀ω ∈ [0, ωp]),
−β ≤ τ(ω)
x ≤ β (∀ω ∈ [ωs, π]),

by introducing the auxiliary variables u, v ∈ R and y ∈ R
3. (More detailed reformulation

techniques are found in [22]). This problem is certainly of the form SOCCSIP (1.1).
Since x ∈ Kn ⇔ u
x ≥ 0 (∀u ∈ U ) with U = {u ∈ R

n | u1 = ‖(u2, . . . , un)‖ = 1},
the SOC constraint can be rewritten equivalently by an infinite number of linear constraints.
Thus, SOCCSIP (1.1) can be cast as a standard convex SIP and existing SIP solvers can be
applied. However, this approach is not sensible due to the following two aspects.

(i) The dimension of the index set increases from m to n + m. (When K = Kn , the index
set of the equivalent convex SIP becomes �⊕U ).

(ii) Some nice structures of the SOC such as the self-duality is destroyed, and hence the
Euclidean Jordan algebra cannot be applied.

Indeed, the numerical results in [13] point out that the SOC constraint should not be handled
as infinitely many linear constraints, but should be handled in a direct manner, especially
when the dimension of the SOC is large.

The main goal of the paper is to design an explicit exchange method for solving SOCC-
SIP (1.1) and study its convergence properties. The algorithm inherits Lai and Wu’s explicit
exchange technique [19], but we also introduce the relaxed scheme in which a maximiza-
tion problem with respect to s ∈ � need not be solved in each iteration. (It suffices to find
some s ∈ � such that a certain criterion with small η > 0 is satisfied. This scheme is also
installed in the algorithms proposed in [13,37]). When either of f or c(·, s) is strictly con-
vex, we can obtain a finite convergence result without using the special structure of SOCs
(Sect. 4.2). Therefore, even when both of f and c(·, s) are non-strictly convex, we can have
the “approximate optimum” by solving the perturbed SOCCSIP in which the objective func-
tion is replaced by f (x)+ε‖x‖2 with a very small ε > 0 (Sect. 4.4). However, without using
such a regularization technique, we can have the finite convergence result when c(·, s) is
affine or quadratic (Sect. 4.3). In this case, we have to utilize the SOC complementarity con-
ditions and the spectral factorization techniques associated with Euclidean Jordan algebra. In

123



576 J Sci Comput (2016) 68:573–595

the classical studies on the cutting plane or the exchange type methods (see [18,21,23,28,32]
and references therein), the convergence properties were analyzed in a componentwise man-
ner. However, such analyses does not make sense for SOCCSIP anymore since the SOC does
not have componentwisely independent structure.

Also, we have to mention the related works [13,25,37] published recently. The topics and
the ideas studied in those papers are similar to our work in some parts. However, they are
different in other parts, which are summarized as follows.

• When f and c(·, s) are affine, SOCCSIP (1.1) reduces to the SOCLSIP studied in [13].
However, the results for SOCLSIP cannot be applied to SOCCSIP (1.1) directly since,
in case of SOCCSIP, we have to evaluate the residual values f (xk+1) − f (xk) −
∇x f (xk)
(xk+1 − xk) and c(xk+1, s) − c(xk, s) − ∇x c(xk, s)
(xk+1 − xk) in each
iteration, which are absent when f and c(·, s) are affine.

• In [25], the authors study the regularized explicit exchange method for solving SIP with
infinitely many conic constraints. However, they analyze the convergence property of the
algorithm only for the problems whose constraint function is affine. (See Sects. 3 and 4 in
[25]). On the other hand, we consider more general cases. Moreover, the regularization
technique is not installed in our algorithm when c(·, s) is affine or quadratic.

• In [37], the authors propose the explicit exchange method, in which they introduce the
finite index set �0 ⊂ � whose elements are never dropped throughout the iterations. We
also use the same technique in the algorithm. However, [37] only focuses on the case
where either f or c(·, s) is strictly convex, whereas we study the case where both f and
c(·, s) are non-strictly convex.

This paper is organized as follows. In Sect. 2, we give some preliminaries needed for the
later analyses. In Sect. 3, we develop an explicit exchangemethod for solving SOCCSIP (1.1).
In Sect. 4, we establish the convergence analysis of the proposed algorithm. In Sect. 5, we
give some numerical results.

2 Preliminaries

In this section, we give some fundamental knowledge on SOCCSIP (1.1) and the SOC which
will be necessary in the subsequent sections.

Throughout the paper, we suppose that SOCCSIP (1.1) satisfies the following assumption.

Assumption A (i) The optimum set of SOCCSIP (1.1) is nonempty and compact. (ii) It holds
inf{ f (x) | x ∈ K} < inf{ f (x) | x ∈ K, c(x, s) ≤ 0 (∀s ∈ �)}. (iii) There exists an x ∈ K
such that c(x, s) < 0 for all s ∈ �.

This assumption is expected to hold in most cases. Assumption A (i) obviously holds
when the optimum set is a singleton. Assumption A (ii) claims that there exists at least one
index s ∈ � such that the inequality constraint c(x, s) ≤ 0 is strictly active at the optimum.
Therefore, if this assumption does not hold, then the infinite constraint c(x, s) ≤ 0 (∀s ∈ �)

in SOCCSIP (1.1) does not make sense anymore. Assumption A (iii) is nothing more than the
well-known Slater condition. Under this assumption we have the following theorem, which
can be proved by using [5, Proposition2.3.1], [1, Lemma3.1], and the convergence theorem
for the discretization method [28, Chap.7].

Theorem 2.1 Suppose that Assumptions A (i) and A (ii) hold. Then, there exists �0 =
{s01 , . . . , s0m0

} ⊂ � such that the following statements hold:

123



J Sci Comput (2016) 68:573–595 577

• f is level-bounded on the set K ∩ {
x

∣∣ c(x, s0i ) ≤ 0 (i = 1, 2, . . . ,m0)
}
.

• inf
{
f (x)

∣∣ x ∈ K}
< inf

{
f (x)

∣∣ x ∈ K, c(x, s0i ) ≤ 0 (i = 1, 2, . . . ,m0)
}
.

We next give some properties on the SOC. We introduce the spectral factorization for a
single SOC K	 in Euclidean Jordan algebra [9,10]. For any vector y := (y1, ỹ) ∈ R×R

	−1
with 	 ≥ 2, its spectral factorization is defined by

y = λ1(y)v1(y)+ λ2(y)v2(y),

where λi (y) ∈ R and vi (y) ∈ R
	 (i = 1, 2) are the spectral values and vectors, respectively,

defined by

λi (y) := y1 + (−1)i‖ỹ‖,

vi (y) :=

⎧⎪⎨
⎪⎩
1

2

(
1, (−1)i ỹ

‖ỹ‖
)

if ỹ �= 0,

1

2

(
1, (−1)iw)

if ỹ = 0.
(2.1)

Here, w ∈ R
	−1 is an arbitrary vector with ‖w‖ = 1. It is obvious that

λ1(y) ≤ λ2(y), λ1(y) ≥ 0⇔ y ∈ K	,

λ1(y) = 0⇔ y ∈ bdK	, λ1(y) > 0⇔ y ∈ intK	

and

‖v1(y)‖ = ‖v2(y)‖ = 1/
√
2, v1(y)


v2(y) = 0.

Now, we study the relation between the complementarity on SOCs and the spectral
factorization. The vectors x ∈ R

n and z ∈ R
n are said to satisfy the second-order cone

complementarity if
x ∈ K, z ∈ K, x
z = 0. (2.2)

It is easily seen that (2.2) holds if and only if

x j ∈ Kn j , z j ∈ Kn j , and x
j z j = 0, ( j = 1, . . . ,m) (2.3)

where x j and z j denote the Cartesian subvectors of x and z, respectively, i.e.,

x = (x1, . . . , xm), z = (z1, . . . , zm) ∈ R
n1 × · · · × R

nm . (2.4)

Moreover, by [13, Prop. 2.3], we have

v1(x j ) = v2(z j ) and v2(x j ) = v1(z j ).

3 The Explicit Exchange Method for SOCCSIP

In this section, we propose an explicit exchange method for solving SOCCSIP (1.1) and
give some fundamental properties. In each iteration of the algorithm, we solve a finitely
constrained convex program as a subproblem. For a finite set E = {s1, . . . , sm} ⊂ �, let
CSOCP(E) denote the finitely constrained convex second-order cone program defined as

CSOCP(E) : minimize f (x)
subject to x ∈ K, c(x, s j ) ≤ 0 ( j = 1, . . . ,m).

123



578 J Sci Comput (2016) 68:573–595

Then, the first-order optimality condition of CSOCP(E) is given by

z := ∇ f (x)+
m∑
j=1

ν(s j )∇x c(x, s j ) ∈ K, x ∈ K, x
z = 0,

c(x, s j )ν(s j ) = 0, c(x, s j ) ≤ 0, ν(s j ) ≥ 0 ( j = 1, . . . ,m),

(3.1)

where ν(s j ) ( j = 1, . . . ,m) denotes the Lagrange multiplier corresponding to the constraint
c(x, s j ) ≤ 0. For more details on the optimality conditions, see e.g., [6,7]. Actually, (3.1)
reduces to a monotone second-order cone complementarity problem (SOCCP), which can be
solved by existing algorithms [8,10,14,15,24]. Nonlinear second-order cone program such
as CSOCP(E) is also studied by some researchers [17,34], but they are still immature.

The concrete scheme of the algorithm is written as follows.

Algorithm 1

Step 0. Find a finite index set �0 = {s01 , . . . , s0m0
} satisfying Theorem 2.1, and let E0 be

such that �0 ⊂ E0 ⊂ � and |E0| < ∞. Solve CSOCP(E0) to obtain its optimum
x0. Choose a small number η > 0 and set k := 0.

Step 1. Find an sknew ∈ � such that

c
(
xk, sknew

)
> η. (3.2)

If such an sknew does not exist, i.e., maxs∈� c(xk, s) ≤ η, then stop. Otherwise, let

Ek+1 := Ek ∪ {sknew}.
Step 2. Solve CSOCP(Ek+1) to obtain its optimum xk+1 and the Lagrange multipliers

{νk+1(s)|s ∈ Ek+1}.
Step 3. Let

Ek+1 := �0 ∪
{
s ∈ Ek+1 \�0

∣∣ νk+1(s) > 0
}
.

Let k := k + 1 and go to Step 1.

In Step 1, it is also possible to choose multiple elements satisfying (3.2). Although we
merely deal with the single-point exchange scheme in the following analyses, they are also
applicable to multiple exchange type algorithms. In Step 2, CSOCP(Ek+1) can be solved
by using an existing method. Step 3 is to remove the constraints that are inactive at the
optimum xk+1 and corresponding to t ∈ Ek+1 \ �0. Here, we note that xk+1 also solves
CSOCP(Ek+1). Moreover, the sequence {xk} is bounded since we have �0 ⊂ Ek+1 for all
k. (See Proposition 4.1 given later).

Next, we define some notations for convenience. For a finite set E = {s1, . . . , sm} ⊂ �,
we denote the feasible set and the optimal value of CSOCP(E) by F(E) ⊂ R

n and V (E) ∈
[−∞,+∞), respectively, i.e.,

F(E) := {
x

∣∣ x ∈ K, c(x, s j ) ≤ 0 ( j = 1, . . . ,m)
}
,

V (E) := inf
{
f (x)

∣∣ x ∈ K, c(x, s j ) ≤ 0 ( j = 1, . . . ,m)
}
.

Moreover, we denote the optimal value of SOCCSIP (1.1) by V ∗ ∈ R, i.e.,

V ∗ := inf
{
f (x)

∣∣ x ∈ K, c(x, s) ≤ 0 (∀s ∈ �)
}
. (3.3)

123



J Sci Comput (2016) 68:573–595 579

Let {xk} and {νk(s)} be the sequences generated by Algorithm 1, and {zk} be defined as
zk := ∇ f (xk)+

∑
s∈Ek

νk(s)∇x c(x
k, s). (3.4)

Then, the complementarity slackness condition (3.1) yields

xk ∈ K, zk ∈ K, (xk)
zk = 0,

c(xk, s) ≤ 0, νk(s) ≥ 0, c(xk, s)νk(s) = 0, ∀s ∈ Ek .
(3.5)

Moreover, by using the spectral factorization for Cartesian subvectors xkj and zkj (see (2.4)),

we define x̂ ki j , ẑ
k
i j ∈ R and êki j ∈ R

n j for each k as follows:

• When n j = 1,

x̂ k1 j := x̂ k2 j :=
1

2
xkj , ẑk1 j := ẑk2 j :=

1

2
zkj , êk1 j := êk2 j := 1. (3.6)

• When
[
n j ≥ 2 and k = 1

]
or

[
n j ≥ 2, k ≥ 2, and ‖√2v1(xkj )− êk−11 j ‖ ≤ ‖

√
2v1(xkj )−

êk−12 j ‖
]
,

x̂ k1 j := λ1(xkj )/
√
2, x̂ k2 j := λ2(xkj )/

√
2, ẑk1 j := λ2(zkj )/

√
2, ẑk2 j := λ1(zkj )/

√
2,

êk1 j :=
√
2v1(xkj ) =

√
2v2(zkj ), êk2 j :=

√
2v2(xkj ) =

√
2v1(zkj ).

(3.7)

• When n j ≥ 2, k ≥ 2, and ‖√2v1(xkj )− êk−11 j ‖ > ‖√2v1(xkj )− êk−12 j ‖,
x̂ k1 j := λ2(xkj )/

√
2, x̂ k2 j := λ1(xkj )/

√
2, ẑk1 j := λ1(zkj )/

√
2, ẑk2 j := λ2(zkj )/

√
2,

êk1 j :=
√
2v2(xkj ) =

√
2v1(zkj ), êk2 j :=

√
2v1(xkj ) =

√
2v2(zkj ).

(3.8)

Then, we have

xk = (xkj )
m
j=1 =

(
x̂ k1 j ê

k
1 j + x̂ k2 j ê

k
2 j

)m
j=1 , zk = (zkj )

m
j=1 =

(
ẑk1 j ê

k
1 j + ẑk2 j ê

k
2 j

)m
j=1 , (3.9)

for each k. For such factorizations, we have the following proposition

Proposition 3.1 [13, Prop. 3.4] Let xkj and z
k
j be factorized as (3.9). Then, for each i = 1, 2,

j = 1, . . . ,m, and k ≥ 1, the following statements hold.

(a) max(x̂ ki j , ẑ
k
i j ) ≥ 0 and min(x̂ ki j , ẑ

k
i j ) = 0.

(b) (i) ‖êki j‖ = 1. (ii) êki j ∈ bdKn j and (êk1 j )

êk2 j = 0 if n j ≥ 2

(c) (êki j )

êk+1i j ≥ 1/2.

We also define

dk := xk+1 − xk,

Fk := f (xk+1)− f (xk)− ∇ f (xk)
dk,
Gk := f (xk)− f (xk+1)+ ∇ f (xk+1)
dk

Pk(s) := c(xk+1, s)− c(xk, s)− ∇x c(x
k, s)
dk,

Qk(s) := c(xk, s)− c(xk+1, s)+ ∇x c(x
k+1, s)
dk .

123



580 J Sci Comput (2016) 68:573–595

Since f and c(·, s) are continuously differentiable and convex, we have
Fk = o(‖dk‖), Gk = o(‖dk‖), Fk ≥ 0, Gk ≥ 0
Pk(s) = o(‖dk‖), Qk = o(‖dk‖), Pk(s) ≥ 0, Qk(s) ≥ 0.

4 Convergence Analysis

In this section, we show that the proposed algorithm terminates in a finite number of iterations
under some mild conditions. Furthermore, we prove that the last output is sufficiently close
to the optimal solution of SOCCSIP (1.1) if the criterion value is sufficiently close to zero.

4.1 Some Technical Propositions

In this subsection, we give some technical propositions that are important and convenient for
analyzing the convergence of Algorithm 1.

The following proposition shows the boundedness of the generated sequence. The proof
can be obtained easily since Theorem 2.1 guarantees the compactness of {x | f (x) ≤ V ∗} ∩
F(�0) ⊃ {xk}, where V ∗ is defined by (3.3).

Proposition 4.1 The sequence {xk} generated by Algorithm 1 is bounded, i.e., there exists
M > 0 such that ‖xk‖ ≤ M for all k.

The following proposition evaluates the increment of the optimal value of CSOCP(Ek)

in each iteration.

Proposition 4.2 For all k ≥ 0, we have

f (xk+1)− f (xk) = (zk)
xk+1 + Fk +
∑
s∈Ek

νk(s)
(
Pk(s)− c(xk+1, s)

)
(4.1)

= −(zk+1)
xk − Gk −
∑
s∈Ek

νk+1(s)
(
Qk(s)− c(xk, s)

)

+νk+1(sknew)
(
c(xk, sknew)− Qk(s

k
new)

)
(4.2)

= −(zk+1)
xk − Gk −
∑
s∈Ek

νk+1(s)
(
Qk(s)− c(xk, s)

)

−νk+1(sknew)∇x c(x
k+1, sknew)
dk (4.3)

Proof By the definitions of dk , zk , Fk and Pk(s), we have

(zk)
xk+1 = (zk)

(
xk+1 − xk

)
+

∑
s∈Ek

νk(s)c(x
k, s)

=
(
∇ f (xk)+

∑
s∈Ek

νk(s)∇x c(x
k, s)

)

dk +

∑
s∈Ek

νk(s)c(x
k, s)

= ∇ f (xk)
dk +
∑

s∈Ek
νk(s)

(
∇x c(x

k, s)
dk + c(xk, s)
)

= f (xk+1)− f (xk)− Fk +
∑

s∈Ek
νk(s)

(
c(xk+1, s)− Pk(s)

)
,

where the first equality follows from (3.5). Thus we have (4.1).

123



J Sci Comput (2016) 68:573–595 581

Next, we show the last two equalities. By the definitions of dk , zk+1, Gk and Qk(s), we
have

−(zk+1)
xk = (zk+1)

(
xk+1 − xk

)
+

∑
s∈Ek+1

νk+1(s)c(xk+1, s)

=
(
∇ f (xk+1)+

∑
s∈Ek+1

νk+1(s)∇x c(x
k+1, s)

)

dk

+
∑

s∈Ek+1
νk+1(s)c(xk+1, s)

= ∇ f (xk+1)
dk +
∑

s∈Ek+1
νk+1(s)

(
∇x c(x

k+1, s)
dk + c(xk+1, s)
)

= ∇ f (xk+1)
dk +
∑

s∈Ek+1
νk+1(s)

(
Qk(s)− c(xk, s)

)
= ∇ f (xk+1)
dk +

∑
s∈Ek

νk+1(s)
(
Qk(s)− c(xk, s)

)
+νk+1(sknew)

(
Qk(s

k
new)− c(xk, sknew)

)
= ∇ f (xk+1)
dk +

∑
s∈Ek

νk+1(s)
(
Qk(s)− c(xk, s)

)
+νk+1(sknew)∇x c(x

k+1, sknew)
dk,

where the first equality follows from (3.5) with k := k + 1, the fifth equality follows from
Ek+1 = Ek ∪ {sknew} and νk+1(s) = 0 for any s ∈ Ek+1 \ Ek+1, and the last equality holds
since νk+1(sknew) c(xk+1, sknew) = 0. Thus we have (4.2) and (4.3). ��

Note that we have Fk ≥ 0, νk(s) ≥ 0, c(xk+1, s) ≤ 0, and Pk(s) ≥ 0 for any s ∈ Ek .
Moreover, zk ∈ K and xk+1 ∈ K entail (zk)
xk+1 ≥ 0. These inequalities and (4.1) lead us
to the following corollary.

Corollary 4.1 The sequence of optimal values { f (xk)} of {CSOCP(Ek)} is monotonically
nondecreasing, i.e.,

f (x0) ≤ f (x1) ≤ · · · ≤ f (xk) ≤ f (xk+1) ≤ · · · ≤ V ∗.

The following proposition shows that the distance between xk and xk+1 never converges
to 0.

Proposition 4.3 Let {xk}be the sequence generated byAlgorithm1. Then, there exists dmin >

0 such that ‖xk − xk+1‖ ≥ dmin for all k.

Proof Note that function c(·, sknew) is locally Lipschitzian since it is convex and c(x, sknew) <

∞ for any x ∈ R
n . Also, we have c(xk, sknew) > η and c(xk+1, sknew) ≤ 0 for all k. Thus,

noticing the boundedness of {xk} and �, we have

0 < η ≤ c
(
xk, sknew

)
− c

(
xk+1, sknew

)
≤ L‖xk − xk+1‖,

where L > 0 is the Lipschitzian constant. Hence, letting dmin := η/L > 0, we obtain the
result. ��

The following two propositions show that the sequences {∑s∈Ek
νk(s)} and {‖zk‖} are

bounded, and
∑

s∈Ek
νk(s) is positive away from 0.

123



582 J Sci Comput (2016) 68:573–595

Proposition 4.4 Let {xk} and {νk} be the sequences generated by Algorithm 1, and {zk} be
defined by (3.4). Then, there exists M > 0 such that ‖zk‖ ≤ M and

∑
s∈Ek

νk(s) ≤ M for
all k.

Proof Let x ∈ K and β > 0 be chosen so that c(x, s) ≤ −β for any s ∈ �. (Such a vector
and a positive number exist from Assumption A). Then, we have

0 ≤ (zk)
(x − xk)+
∑

s∈Ek
νk(s)c(x

k, s)

= ∇ f (xk)
(x − xk)+
∑

s∈Ek
νk(s)

(
∇x c(x

k, s)
(x − xk)+ c(xk, s)
)

≤ ∇ f (xk)
(x − xk)+
∑

s∈Ek
νk(s)c(x, s)

≤ ∇ f (xk)
(x − xk)− β
∑

s∈Ek
νk(s),

where the first inequality follows from (zk)
x ≥ 0 and (3.5), the second inequality is due
to the convexity of c(·, s), and the last inequality follows from c(x, s) ≤ −β. Hence, we
have

∑
s∈Ek

νk(s) ≤ ∇ f (xk)
(x−xk)/β, which implies the boundedness of {∑s∈Ek
νk(s)}

since∇ f is continuous and {xk} is bounded. The boundedness of {‖zk‖} can be easily shown
by the definition of zk and the boundedness of {∑s∈Ek

νk(s)}. ��

Proposition 4.5 Let {xk} and {νk} be the sequences generated by Algorithm 1. Then, there
exists α > 0 such that

∑
s∈Ek

νk(s) ≥ α for all k.

Proof Assume that the statement does not hold for contradiction. Then, Algorithm 1
does not terminate finitely, and lim infk→∞

∑
s∈Ek

νk(s) = 0. Since {xk} is bounded

from Proposition 4.1, there exists K ⊆ {1, 2, . . .} such that x := limk→∞,k∈K xk and
limk→∞,k∈K

∑
s∈Ek

νk(s) = 0. Also, we have limk→∞,k∈K zk = ∇ f (x) from (3.4) and

the boundedness of {∇x c(xk, s)}. Thus, by (3.5), we have x ∈ K, ∇ f (x) ∈ K and
x
∇ f (x) = 0, which imply f (x) = min{ f (x) | x ∈ K}.1 Hence, by Theorem 2.1 and
�0 ⊂ Ek , we must have f (x) < V (�0) ≤ V (Ek) = f (xk). However, this contradicts
f (xk) ≤ f (xk+1) ≤ · · · ≤ f (x). ��
4.2 Finite Termination for Strictly Convex Case

When f or c(·, s) is strictly convex, we can readily obtain the finite termination as follows.

Assumption B At least one of the following statements holds: (a) f is strictly convex; (b)
c(·, s) is strictly convex for any s ∈ �.

Theorem 4.1 Suppose that Assumption B holds. Then, Algorithm 1 terminates in a finite
number of iterations.

Proof We can prove the theorem by using Corollary 4.1 and the argument similar to the proof
of [37, Thm.3.1]. (Here, we do not use the special structure of the SOC). ��

1 Function f and cone K are convex. Moreover, the KKT condisions of the problem “min f (x) s.t. x ∈ K”
can be written as x ∈ K, ∇ f (x) ∈ K and x
∇ f (x) = 0.

123



J Sci Comput (2016) 68:573–595 583

4.3 Finite Termination Without Strict Convexity

In this section, we discuss the finite termination property of Algorithm 1 without assuming
the strict convexity on f or c(·, s). We first consider the case (Case 1) where the constraint
function c(·, s) is affine or quadratic. Then, we consider the more general case (Case 2).
Case 1: Affine or Quadratic Constraint Function

Now, we first suppose that the following assumption holds.

Assumption C The constraint function c(·, s) satisfies either of the following two condi-
tions:

(a) c(·, s) is affine for any s ∈ �;
(b) c is quadratic with respect to x , i.e., it is given as

c(x, s) := x
M(s)x + 2q(s)
x + r(s),

where M : � → R
n×n , q : � → R

n and r : � → R are continuous, and M(s) ∈ R
n×n

is symmetric and positive semidefinite for any s ∈ �. Moreover, it holds that q(s)
ξ �= 0
for any s ∈ � and ξ ∈ R

n \ {0} with ξ
M(s)ξ = 0.

Then, we provide two lemmas below, which play crucial roles in the finite convergence
analysis appearing later.

Lemma 4.1 Suppose that either of Assumption C(a) or C(b) holds. Then, there exists a
μ > 0 such that, for all k,

∇x c
(
xk+1, sknew

)
 (
xk − xk+1

)
≥ μ. (4.4)

Proof WhenAssumptionC(a) holds,we have∇x c(xk+1, sknew)
(xk−xk+1) = c(xk, sknew)−
c(xk+1, sknew) since c(·, sknew) is affine.Moreover,wehave c(xk, sknew)>η and c(xk+1, sknew) ≤
0 by Algorithm 1. Therefore, by letting μ := η, we readily have (4.4).

Next we consider the case where Assumption C(b) holds. Let sk ∈ Ek be an arbi-
trary element with νk(sk) > 0. Let ξ k ∈ R

n be any vector such that ‖ξ k‖ = 1 and
∇x c(xk, sk)
ξ k = 2(M(sk)xk + q(sk))
ξ k = 0. Then we have

c(xk + ξ k, sk) = (xk + ξ k)
M(sk)(xk + ξ k)+ 2q(sk)
(xk + ξ k)+ r(sk)

=
[
(xk)
M(sk)xk + 2q(sk)
xk + r(sk)

]
+(ξ k)
M(sk)ξ k + 2(M(sk)xk + q(sk))
ξ k

= (ξ k)
M(sk)ξ k,

where the last equality follows since∇x c(xk, sk)
ξ k = 0 and c(xk, sk) = 0 from νk(sk) > 0.
We first show that there exists δ′ > 0 such that

(ξ k)
M(sk)ξ k ≥ δ′ (4.5)

for all k. Suppose for contradiction that there does not exist such an δ′ > 0. Then, we must
have lim infk→∞(ξ k)
M(sk)ξ k = 0. Since {xk}, {ξ k} and {sk} are bounded and M(s) is
continuous, there exists K ⊂ {0, 1, . . .} such that limk→∞,k∈K xk = x , limk→∞,k∈K ξ k = ξ ,

limk→∞,k∈K sk = s, and ξ


M(s)ξ = 0. Notice that ξ



M(s)ξ = 0 implies M(s)ξ = 0.

Moreover, we have ∇x c(x, s)
ξ = 0 since ∇x c(xk, sk)
ξ k = 0 for all k. We thus have 0 =
∇x c(x, s)
ξ = 2(M(s)x + q(s))
ξ = q(s)
ξ . However, this contradicts the assumption.

123



584 J Sci Comput (2016) 68:573–595

Next, we show that there exists δ′′ > 0 such that

− ∇x c(x
k, sk)
(xk+1 − xk) ≥ δ′′ (4.6)

for all k. LetPk :=
{
x

∣∣ ∇x c(xk, sk)
(x−xk)} = 0, x̃ k+1 be theEuclideanprojection of xk+1
ontoPk , and θk be the angle between xk+1−xk and x̃ k+1−xk . Notice thatwe always have 0 ≤
θk ≤ π/2 since (xk+1−xk)
(x̃ k+1−xk) = (

(x̃ k+1 − xk)− (x̃ k+1 − xk+1)
)


(x̃ k+1−xk) =
‖x̃ k+1−xk‖2, where the last equality follows from (x̃ k+1−xk+1) ⊥ (x̃ k+1−xk). If θk > π/4,
then we have −∇x c(xk, sk)
(xk+1 − xk) = ‖∇x c(xk, sk)‖‖xk+1 − xk‖ cos(π/2 − θk) >

γ dmin/
√
2, where dmin > 0 is defined in Proposition 4.3 and γ > 0 is the positive number

such that

‖∇x c(x
k, sk)‖ ≥ γ (4.7)

for all k.2 If θk ≤ π/4, then we have ‖x̃ k+1− xk‖ = ‖xk+1− xk‖ cos θk ≥ dmin/
√
2. Hence,

letting ξ k := (x̃ k+1 − xk)/‖x̃ k+1 − xk‖ and τk := ‖x̃ k+1 − xk‖, we have

c
(
x̃ k+1, sk

)
=

(
x̃ k+1

)

M(sk)x̃ k+1 + 2q(sk)
 x̃ k+1 + r(sk)

= (xk + τkξ
k)
M(sk)(xk + τkξ

k)+ 2q(sk)
(xk + τkξ
k)+ r(sk)

= τ 2k (ξ k)
M(sk)ξ k

≥ d2minδ
′/2,

where the last equality follows since c(xk, sk) = 0 and ∇x c(xk, sk)
ξ k = 0, and the
inequality is due to (4.5) and τk = ‖x̃ k+1 − xk‖ ≥ dmin/

√
2. Since c(xk+1, sk) ≤ 0 and c is

locally Lipschitzian, there exists L > 0 such that d2minδ
′/2 ≤ c(x̃ k+1, sk) − c(xk+1, sk) ≤

L‖x̃ k+1 − xk+1‖, that is, ‖x̃ k+1 − xk+1‖ ≥ d2minδ
′/(2L). So we have

−∇x c(x
k, sk)


(
xk+1 − xk

)
= ‖∇x c

(
xk, sk

)
‖‖x̃ k+1 − xk+1‖ ≥ γ d2minδ

′/(2L),

where γ > 0 is a positive number given by (4.7).
Finally, we show that (4.4) holds. Notice that

∇ f
(
xk+1

)
 (
xk+1 − xk

)
≥ ∇ f (xk)


(
xk+1 − xk

)
=

[
zk −

∑
s∈Ek

νk(s)∇x c(x
k, s)

]
 (
xk+1 − xk

)
≥

∑
s∈Ek

νk(s)δ
′′ ≥ αδ′′, (4.8)

where the first inequality is due to the convexity of f , the second inequality follows from
(4.6) and (zk)
xk = 0 ≤ (zk)
xk+1, and the last inequality is due to Proposition 4.5. We
thus have

2 AssumptionA(iii) andProposition 4.1 yield 0 < −c(x, smax) ≤ c(xk , sk )−c(x, sk ) ≤ ∇x c(xk , sk )
(xk−
x) ≤ ‖∇x c(xk , sk )‖(M + ‖x‖), where smax := argmaxs∈�c(x, s). Therefore, we can choose γ :=
−c(x, smax)/(M + ‖x‖) > 0.

123



J Sci Comput (2016) 68:573–595 585

νk+1
(
sknew

)
∇x c

(
xk+1, sknew

)
 (
xk − xk+1

)
= −νk+1

(
sknew

)
∇x c

(
xk+1, sknew

)
 (
xk+1 − xk

)
=

[
−zk+1 + ∇ f (xk+1)+

∑
s∈Ek

νk+1(s)∇x c(x
k+1, s)

]

(xk+1 − xk)

≥ αδ′′ +
∑

s∈Ek
νk+1(s)

[
Qk(s)− c(xk, s)+ c(xk+1, s)

]
≥ αδ′′, (4.9)

where the first inequality is due to (4.8), (zk+1)
xk+1 = 0 ≤ (zk+1)
xk , and the definition
of Qk(s), and the last inequality follows from νk+1(s) ≥ 0, Qk(s) ≥ 0, c(xk, s) ≤ 0 and
νk+1(s)c(xk+1, s) = 0. By Proposition 4.4, we have νk+1(sknew) ≤ M . Hence, dividing both
sides of (4.9) by νk+1(sknew) > 0, we obtain

∇x c
(
xk+1, sknew

)
 (
xk − xk+1

)
≥ αδ′′

νk+1(sknew)
≥ αδ′′

M
,

which implies (4.4) with μ := αδ′′/M . ��
Lemma 4.2 Let θ : Rn → R be an arbitrary continuously differentiable convex function,
and x, y ∈ R

n be arbitrary vectors. Then we have

θ(y)− θ(x)− ∇θ(x)
(y − x) = 0 ⇐⇒ θ(x)− θ(y)+ ∇θ(y)
(y − x) = 0.

Proof The above formula holds evidently when x = y. Also, if we have (⇒), then (⇐)

holds automatically by swapping x for y. Therefore, we only show (⇒) with x �= y.
Let x and y be arbitrary vectors such that x �= y and θ(y)− θ(x)−∇θ(x)
(y − x) = 0.

Choose α ∈ (0, 1) arbitrarily. Then, we have

0 = αθ(y)− αθ(x)− α∇θ(x)
(y − x)

= [(1− α)θ(x)+ αθ(y)− θ ((1− α)x + αy)]

+
[
θ ((1− α)x + αy)− θ(x)− ∇θ(x)
 ((1− α)x + αy − x)

]
,

which implies

(1− α)θ(x)+ αθ(y)− θ((1− α)x + αy) = 0 (4.10)

and θ((1− α)x + αy)− θ(x)−∇θ(x)
((1− α)x + αy− x) = 0 since θ is convex. Hence,
we have

−∇θ(y)
(y − x) = ∇θ(y)
(x − y)

= lim
t↓0 (θ((1− t)y + t x))− θ(y))/t

= lim
t↓0

(
(1− t)θ(y)+ tθ(x))− θ(y)

)
/t

= θ(x)− θ(y),

where the third equality follows from (4.10) with α := 1− t . This completes the proof. ��
To show thefinite iteration of the algorithm,we further introduce the following assumption.

Assumption D (strict complementarity and activeness) There exists a small number δ > 0
such that the following statements hold for each k:

123



586 J Sci Comput (2016) 68:573–595

(i) max(x̂ ki j , ẑ
k
i j ) ≥ δ; (ii) max(νk(s),−c(xk, s)) ≥ δ (∀s ∈ Ek); (iii) νk+1(sknew) ≥

δ.

Statements (i) and (ii) claim that the strict complementarity should be satisfied in (3.5) in
the sense of δ > 0. Due to the complementarity, we always have min(νk(s),−c(xk , s)) =
min(x̂ ki j , ẑ

k
i j ) = 0. Statement (iii) implies that the newly added constraint is sufficiently

active.
Now, by using the aforementioned assumption and lemma, we provide the theorem for

the finite iteration of Algorithm 1.

Theorem 4.2 Suppose that Assumptions C and D holds. Then, Algorithm 1 terminates in a
finite number of iterations.

Proof Suppose to the contrary that Algorithm 1 does not finitely terminate. Then, by Corol-
lary 4.1 we have

f (x1) ≤ · · · ≤ f (xk) ≤ f (xk+1) ≤ · · · ≤ V ∗,

which implies

lim
k→∞

(
f (xk+1)− f (xk)

)
= 0. (4.11)

Hence, each term in (4.1) also converges to 0 due to its nonnegativity. Let E+k := {s ∈
Ek | νk(s) > 0} = {s ∈ Ek | νk(s) ≥ δ}, and skmax := argmaxs∈E+k Qk(s). Moreover, noticing

the boundedness of {xk} and �, let (x, x+, smax) ∈ R×R×� be an arbitrary accumulation
point of {(xk, xk+1, skmax)}. Then, there exists an index set K ⊆ {0, 1, 2, . . .} such that
limk→∞,k∈K (xk, xk+1, skmax) = (x, x+, smax). Since we have Proposition 4.3, it must hold
x �= x+.

We first show that, for each s ∈ �0, there exists k̄ such that either

νk(s) ≥ δ (∀k ≥ k̄) or νk(s) = 0 (∀k ≥ k̄). (4.12)

Fix s ∈ �0 arbitrarily. Then, by Assumption D (ii), we must have either lim supk→∞ νk(s) =
0 or lim supk→∞ νk(s) ≥ δ. If lim supk→∞ νk(s) = 0, then we obviously have νk(s) = 0
for all k sufficiently large. If lim supk→∞ νk(s) ≥ δ, then there exists K ′ ⊂ {1, 2, . . .} such
that |K ′| = ∞ and νk(s) ≥ δ for all k ∈ K ′. Since νk(s)c(xk+1, s) converges to 0, we have
an ε ∈ (0, δ2) and k̄′ ≥ k̂ such that 0 ≤ −νk(s)c(xk+1, s) < ε for all k ≥ k̄′. Now, choose
an arbitrary k̄ ≥ k̄′ such that νk̄(s) ≥ δ. Then, we have 0 ≤ −c(xk̄+1, s) < ε/δ < δ, which

implies c(xk̄+1, s) = 0 and νk̄+1(s) ≥ δ from Assumption D(ii). We thus obtain (4.12)
recursively.

We next show

lim
k→∞

∑
s∈Ek

νk+1(s)c(xk, s) = 0, lim
k→∞Gk = 0, lim

k→∞
∑
s∈Ek

νk+1(s)Qk(s) = 0. (4.13)

We readily have limk→∞
∑

s∈Ek
νk+1(s)c(xk, s) = 0 since (4.12) implies that either νk+1(s)

or c(xk, s) is 0 for all k sufficiently large. Since limk→∞ Fk = 0, we have

lim
k→∞,k∈K Fk = f (x+)− f (x)− ∇ f (x)
(x+ − x) = 0.

Hence, by Lemma 4.2, we have

lim
k→∞,k∈K Gk = f (x)− f (x+)+ ∇ f (x+)
(x+ − x) = 0.

123



J Sci Comput (2016) 68:573–595 587

Since x and x+ are arbitrary accumulationpoints, the above equality implies limk→∞ Gk = 0.
Also, since limk→∞

∑
s∈Ek

νk(s)Pk(s) = 0, Pk(s) ≥ 0, skmax ∈ E+k , and νk(s) ≥ δ for all

s ∈ E+k , we have

0 = lim
k→∞,k∈K Pk(s

k
max) = c(x+, smax)− c(x, smax)− ∇x c(x, smax)


(x+ − x).

Hence, by Lemma 4.2, we have limk→∞,k∈K Qk(skmax) = 0. Now, by Proposition 4.4, there
exists M > 0 such that

∑
s∈E+k νk+1(s) ≤ ∑

s∈Ek+1 νk+1(s) = ∑
s∈Ek+1 νk+1(s) ≤ M for

all k. Moreover, νk+1(s) = 0 for all s ∈ Ek \ E+k and sufficiently large k since we have (4.12)
and Ek \ E+k ⊂ �0. We thus have

0 ≤
∑
s∈Ek

νk+1(s)Qk(s) =
∑
s∈E+k

νk+1(s)Qk(s) ≤ Qk(s
k
max)

∑
s∈E+k

νk+1(s) ≤ MQk(s
k
max),

which yields limk→∞,k∈K
∑

s∈Ek
νk+1(s)Qk(s) = 0. Since x , x+ and smax are arbitrary

accumulation points, we have limk→∞
∑

s∈Ek
νk+1(s)Qk(s) = 0.

Now, choose a sufficiently small number ε > 0 arbitrarily. By Lemma 4.1, we have

− ∇x c
(
xk+1, sknew

)

dk = ∇x c

(
xk+1, sknew

)
 (
xk − xk+1

)
≥ μ > 0. (4.14)

Hence, by (4.1) and (4.3) together with (4.11), (4.13) and (4.14), we have some positive
integer L = L(ε) such that

0 ≤ (zk)
xk+1 < ε, (xk)
zk+1 >
δμ

2
=: γ (4.15)

for all k ≥ L . Choose k ≥ L arbitrarily, and let Ik
1 and Ik

2 be defined as

Ik
1 :=

{
(i, j)

∣∣ x̂ ki j > 0
}

, Ik
2 :=

{
(i, j)

∣∣ x̂ ki j = 0
}

.

Then, we note that Ik
1 ∪ Ik

2 = {1, 2} × {1, . . . ,m}, and
(i, j) ∈ Ik

1 ⇐⇒ x̂ ki j ≥ δ ⇐⇒ ẑki j = 0,
(i, j) ∈ Ik

2 ⇐⇒ x̂ ki j = 0 ⇐⇒ ẑki j ≥ δ
(4.16)

from Proposition 3.1(a) and Assumption D(i). Let (i ′, j ′) ∈ Ik
2 be chosen arbitrarily.3 Then

we have

ε >

2∑
i=1

m∑
j=1

ẑki j x̂
k+1
i j (êki j )


êk+1i j ≥ ẑki ′ j ′ x̂
k+1
i ′ j ′ (êki ′ j ′)


êk+1i ′ j ′ ≥
1

2
x̂ k+1i ′ j ′ δ,

where the second inequality is due to the nonnegativity of x̂ k+1i j , ẑki j and (êk+1i j )
êki j , and the
last inequality follows from Proposition 3.1(c) and (i ′, j ′) ∈ Ik

2 . Since ε > 0 can be chosen
arbitrarily small and we have (4.16), the above inequality means x̂ k+1i ′ j ′ = 0. Hence, we have

Ik
2 ⊂ Ik+1

2 .

3 When Ik2 = ∅, we immediately obtain the desired result Ik2 ⊆ Ik+12 .

123



588 J Sci Comput (2016) 68:573–595

Now, by (4.15), we have

γ <

2∑
i=1

m∑
j=1

ẑk+1i j x̂ ki j

(
êk+1i j

)

êki j =

∑
(i, j)∈Ik+1

1

ẑk+1i j x̂ ki j

(
êk+1i j

)

êki j

+
∑

(i, j)∈Ik
2

ẑk+1i j x̂ ki j

(
êk+1i j

)

êki j

+
∑

(i, j)∈Ik+1
2 \Ik

2

ẑk+1i j x̂ ki j

(
êk+1i j

)

êki j

=
∑

(i, j)∈Ik+1
2 \Ik

2

ẑk+1i j x̂ ki j

(
êk+1i j

)

êki j ,

which implies Ik+1
2 \ Ik

2 �= ∅. Since k ≥ L can be chosen arbitrarily, it must hold

|IL
2 | < |IL+1

2 | < |IL+2
2 | < · · · .

However, this contradicts the boundedness of {|Ik
2 |}. Thus, Algorithm 1 must terminate in a

finite number of iterations. ��
Case 2: More General Constraint Function

When the constraint function c(·, s) is neither affine nor quadratic, we may consider the
following perturbed problem instead of the original SOCCSIP:

(SOCCSIPε)
minimize f (x)+ ε‖x‖2
subject to x ∈ K, c(x, s) ≤ 0 ∀s ∈ �,

where ε > 0 is a very small constant. Since the objective function of SOCCSIPε is strictly
convex, the finite convergence result in Sect. 4.2 can be applied. In this case, it is important
to see that, if we choose a sufficiently small ε > 0, then the optimum of SOCCSIPε is
sufficiently close to the original SOCCSIP optimum. The following theorem provides the
positive answer for that.

Theorem 4.3 Let x∗ε be the unique optimum of SOCCSIPε . Let X be the optimum set of the
original SOCCSIP. Then we have limε↘0 dist(x∗ε , X) = 0.

Proof Let S : R → 2R
n
be the set-valued mapping such that S(ε) is the solution set of

SOCCSIPε . Then we have S(ε) = {x∗ε } for all ε > 0 and S(0) = X . Since it is known
that the optimal set mapping S is upper semi-continuous, any accumulation point of S(ε) is
contained in S(0). Thus we have limε↘0 dist(x∗ε , X) = 0. ��
4.4 Approximation Analysis for Obtained Solution

So far, we have shown the finite termination property of Algorithm 1 via the aforementioned
theorems. Nevertheless, these theorems would be meaningless if the obtained solution is far
from the optimum of SOCCSIP (1.1). The following theorem guarantees that if η > 0 is
sufficiently close to 0, then the last output of Algorithm 1 is also close to the optimal solution
of SOCCSIP (1.1).

Theorem 4.4 Suppose that Algorithm 1 terminates in a finite number of iterations. Let k∗(η)

be the number of iterations in which Algorithm 1 terminates. Then, limη→0 dist(xk
∗(η),S) =

0.

123



J Sci Comput (2016) 68:573–595 589

Proof Let h : Rn → R, X ⊂ R
n , and Sη ⊂ R

n be defined by

h(x) := max
s∈�

c(x, s), X := K ∩
{
x

∣∣∣ f (x) ≤ V ∗
}

, Sη := X ∩
{
x

∣∣∣ h(x) ≤ η
}

.

Then, h is continuous and convex, X is closed and convex, and S0 coincides with the solution
set of SOCCSIP (1.1). Moreover, since f (xk

∗(η)) ≤ V ∗, it follows xk∗(η) ∈ Sη for any η > 0.
We can show the remainder of the proof in a way analogous to [13, Thm.3.4]. ��
Remark In Step 1 of Algorithm 1, we may also choose l (≥ 2) different points {sk1 , . . . , skl }
such that c(xk, ski ) > η for i = 1, . . . , l with Ek+1 := Ek ∪{sk1 , . . . , skl }. For such a multiple
explicit exchange method, Theorems 4.2–4.4 can be shown by using analogous techniques.

5 Numerical Results

In this section, we report some numerical results. We implement Algorithm 1 by Matlab
7.10.0 (R2010a) and run the experiments on a computer with Pentium(R) CPUs 3.19GHz and
3.20GHzwith 0.99MBRAM. Throughout the experiments, we set η := 10−6 and E0 := �0.
In Step 1, we find an sknew ∈ � with c(xk, sknew) > η as follows. We first test N (≈ 100)
grid points4 s̃1, . . . , s̃N ∈ � to find sk := argmaxi=1,2,...,N c(xk, s̃i ). If c(xk, sk) > η, then
we set sknew := sk . Otherwise, we solve the constrained maximization problem: “maximize
c(xk, s) subject to s ∈ �” by means of fmincon solver in Matlab Optimization Toolbox with
the initial point sk . In Step 2, we solve CSOCP(Ek+1) by using the SOCCP reformulation
technique together with the regularized smoothing Newton method [15]. In Step 3, we relax
the criterion νk+1(s) > 0 to νk+1(s) > 10−6. We stop the iteration of Algorithm 1 when
max{c(xk, s)|s ∈ �} ≤ η. For all test problems, we checked that the required assumptions
are satisfied.

5.1 Experiment 1 (Solving SOCCSIPs with Various Choices of Parameters)

Let p : R2 → R, q : R2 → R
n and r : R2 → R be defined as

p(s) := 0.1 s21 (1+ sin s2), q(s) :=
(
cos (−1) j (s1s2 + 0.5π)

)n
j=1 + e,

r(s) := −(5+ sin s1 + log(s2 + 10)),

where e ∈ R
n denotes the identity element with respect to K. (For example, e =

(1, 0, 0, 0, 1, 0, 0)
 when K = K4 × K3). Then, we solve the following SOCCSIP:

minimize f (x) := log(1+ exp(x
Ax))+ b
x
subject to c(x, s) := p(s)(x
Mx)1.5 + q(s)
x + r(s) ≤ 0 ∀s ∈ � := [−βπ, βπ]2

x ∈ K, (5.1)

where β > 0 is a given constant, and A ∈ R
n×n and M ∈ R

n×n are positive semidefinite
symmetric matrices. Function f is convex, but is not strictly convex when rank(A) < n.
Also c is convex with respect to x , but is not strictly convex when rank(M) < n. Therefore,
we replace the objective function by f (x) + 10−10‖x‖2 so that the finite convergence is

4 When � = [ls , us ] ⊂ R, we test the 101 points ls + i(us − ls )/100 with i = 0, 1, . . . , 100. When
� = [ls , us ]2 ⊂ R

2, we test the 121 points (ls + i(us − ls )/10, ls + j (us − ls )/10)
 with i = 0, 1, . . . , 10
and j = 0, 1, . . . , 10.

123



590 J Sci Comput (2016) 68:573–595

Table 1 Obtained results for SOCCSIP (5.1) with various choices of β

Problem β Output (K = K10, rm = 8, ra = 6)

λ1 λ2 �ite cpu(s) Efinal
k \�0

Problem1 0.1 0 5.97 1 0.39 (−0.1π, 0.1π)


Problem2 0.1 0 8.29 1 0.50 (−0.1π, 0.1π)


Problem3 0.1 0 8.13 1 0.85 (−0.1π, 0.1π)

Problem4 1 0 0.95 0 0.21 ∅
Problem5 1 0 1.41 5 2.96 (−π, 0.492π)
, (π, 0.492π)


Problem6 1 0 1.63 2 0.54 (π, 0.483π)


Problem7 1.6 0 1.37 4 4.80 (1.592π,−1.305π)


Problem8 1.6 0 1.39 6 6.85 (1.6π,−1.550π)

Problem9 1.6 0 0.54 0 0.11 ∅
Problem10 2 0 1.42 8 6.91 (−2π,−1.567π)


Problem11 2 0 1.08 5 6.20 (2π,−1.636π)


Problem12 2 0 2.06 4 1.22 (2π,−1.652π)


obtained theoretically. Matrices A and M are defined as A := PP
 and M := QQ
, where
P and Q are respectively (n × ra)- and (n × rm)-dimensional matrices whose components
are randomly chosen from [−1, 1]. Since P and Q are randomly generated, we almost
always have rank(A) = min(n, ra) and rank(M) = min(n, rm). Also, each component of
vector b is randomly chosen from [−1, 1]. In applying Algorithm 1, we set �0 := {0} since
K∩ {x | c(x, 0) ≤ 0} is compact. SOCCSIP (5.1) has a Slater point since c(0, s) = r(s) < 0
for all s ∈ �.

First, we solve SOCCSIP (5.1) with various choices of constant β > 0. We solve 12
problem instances, each of which has different values of A, M and b. For all instances, we
set K = K10, ra = 6 and rm = 8. Since A and M are rank-deficient, functions f and c(·, s)
are not strictly convex. We show the obtained results in Table 1, in which λ1 and λ2 denote
the spectral values defined by (2.1) of the obtained solutions x∗, �ite denotes the number of
iterations, cpu(s) denotes the CPU time in seconds, and Efinal

k \�0 denotes the final output of
Ek except�0. Notice that the number of �ite does not count the first subproblemCSOCP(E0).
Therefore, Algorithm 1 actually solves �ite + 1 CSOCPs for each instance. The rows with
�ite = 0 (Problems 4 and 9) imply that Algorithm 1 finds the SOCCSIP optimum x∗(= x0)
in Step 0, and there exists no s0new ∈ � with c(x0, s0new) > η. In other words, the convex
constraint corresponding to s = (0, 0)
 is active at the solution x∗. We can also see that,
when β = 0.1 (Problems 1–3), the algorithm finds the solution x∗ with k = 1, and the
final active index is s = (−0.1π, 0.1π)
. Notice that � is expressed as a two-dimensional
square, and (−0.1π, 0.1π)
 is one of its vertices. Since Algorithm 1 checks the values of
c(xk, s) at all the vertices in Step 1, we will find the SOCCSIP optimum very soon if the
final active index is located at the vertex of �. On the contrary, for Problems 5–8 and 10–12,
the final active indices are not located at the vertices of �.5 This may be the main reason

5 For Problem 7, the final active index is located in the interior of �, and for other six problems
(5, 6, 8, 10, 11, 12), they are located on the non-vertex boundary.

123



J Sci Comput (2016) 68:573–595 591

Table 2 Obtained results for SOCCSIP (5.1) with various choices of K
n K Output (rm = ra = 0.8n, β = 1)

λmin
1 λmax

1 λzero1 (%) λmin
2 λmax

2 λzero2 (%) �ite cpu(s)

10 (K1)10 0 0.98 51.2 – – – 1.70 1.41

10 (K2)5 0 0.91 79.2 0 1.46 27.0 1.37 0.98

10 K10 0 0 100 0.12 2.36 0 1.44 0.84

100 (K20)5 0 0 100 0.06 0.32 0 2.12 2.64

100 (K50)2 0 0 100 0.17 0.45 0 2.12 2.61

100 K100 0 0 100 0.27 0.63 0 2.24 2.98

200 (K20)10 0 0 100 0.02 0.17 0 2.37 11.63

200 (K50)4 0 0 100 0.07 0.24 0 2.09 10.76

200 K200 0 0 100 0.27 0.38 0 2.05 13.97

why Problems 5–8 and 10–12 need more iterations and cpu time than Problems 1–3. This
tendency seems to be more noticeable as β becomes larger.

Next, we solve SOCCSIP (5.1) with various choices of the Cartesian structure K. We
consider 9 different Cartesian structures, and solve 100 problems for each K. We therefore
solve 900 problems in total. For all problems, we set ra = rm = 0.8n and β = 1. Since A and
M are rank-deficient, functions f and c(·, s) are not strictly convex. We give the obtained
results in Table 2, in which λmin

i and λmax
i (i = 1, 2) denote the maximum and minimum

of the spectral values (2.1) among all Cartesian subvectors x∗1 , . . . , x∗m in 100 problems for
each K.6 (In case of K = (K1)10 = R

10+ , we only give the values for λ1). Also, λzeroi denotes
the frequency that the spectral values become 0, and �ite and cpu(s) are the average values
among the 100 trials for eachK. From the table, we can observe that the number of iterations
does not change so much even when the dimension n of the variables or the number m of
sub-SOCs increases. However, CPU time increases quite a bit as n becomes larger. This
implies that the computational cost for solving each subproblem (CSOCPs solved in Steps
0 and 2) becomes more expensive as n increases. Also, we can see that the spectral value
λ1 often becomes 0, which implies that each subvector x∗j is located on the boundary of

the SOC Kn j . When K = (K1)10 = R
10+ , approximately 50 % of obtained λ1s are greater

than 0, but it is not surprising since, in this case, each subvector x∗j coincides with the j-th

scalar component of vector x∗, and λ1(x∗j ) > 0 implies x∗j > 0. When K = (K2)5, we still
have more than 20 % positive λ1s. It is also convincing since the dimension of each SOC is
small (= 2) and the problems are generated randomly. In other seven cases with K = K10,
(K20)5, . . . ,K200, we always have λ1(x∗j ) = 0 and λ2(x∗j ) > 0, which means that all the
subvectors of x∗ are located on the boundary of SOCs.

Finally, we solve SOCCSIP (5.1) with various degrees of rank deficiency of matrices A
and M . For all problems, we set K = K20 × K30, β = 1, and r := ra = rm , and choose 7
different values for r . We solve 100 problems for each r , and hence solve 700 problems in

6 For example, when K = (K	)m , we have m subvectors x∗1 , . . . , x∗m ∈ R
	 for the optimum x∗. There-

fore, if the obtained solutions of the 100 problems are x∗,1, x∗,2, . . . , x∗,100, then we have λmax
i :=

max
{
λi (x

∗,p
j )

∣∣ ( j, p) ∈ {1, 2, . . . ,m} × {1, 2, . . . , 100}} and λmin
i := min

{
λi (x

∗,p
j )

∣∣ ( j, p) ∈
{1, 2, . . . ,m} × {1, 2, . . . , 100}} for each i = 1, 2.

123



592 J Sci Comput (2016) 68:573–595

Table 3 Obtained results for SOCCSIP (5.1) with various choices of r := ra = rm

r Output (K = K20 ×K30, β = 1)

λmin
1 λmax

1 λzero1 (%) λmin
2 λmax

2 λzero2 (%) �ite cpu(s)

1 0 0 100 0 12.03 30.0 12.56 12.11

2 0 0 100 0 12.03 19.0 13.01 11.65

5 0 0 100 0 11.99 2.0 13.20 10.31

10 0 0 100 0.859 8.91 0 8.80 7.08

20 0 0 100 0.181 4.50 0 2.88 2.68

50 0 0 100 0.085 0.56 0 1.16 0.96

100 0 0 100 0.031 0.27 0 0.03 0.27

total. Note that we usually have rank(A) = rank(M) = min(50, r). Therefore, f and c(·, s)
are not strictly convex when r < 50, and are (almost always) strictly convex when r ≥ 50.
We give the obtained results in Table 3, in which λmin

i , λmax
i and λzeroi are defined analogously

to the previous experiment, and �ite and cpu(s) are the average of 100 problems for each r .
As the table shows, we need a large number of iterations when r is small, i.e., matrices A and
M have high rank-deficiency. On the other hand, when r = 50 and 100, i.e., f and c(·, s) are
strictly convex, we obtain the solution in a very small number of iterations. Especially, when
r = 100, we often obtain the SOCCSIP optimum in the initial step with k = 0. Also we
can observe that, when r is small, the value of λ2 sometimes becomes 0, which implies that
the optimal solution of SOCCSIP (5.1) is x∗ = 0. Actually, the above-mentioned features
generally depend on the structure of each problem, but in many cases the ill-posedness of
a problem seems to be relevant to the rank deficiency of certain matrices involved in the
problem.

5.2 Experiment 2 (Application to Robust Optimization)

The robust optimization [2] is one of distribution-free methodologies for handling problems
with uncertain data. We usually assume that the uncertain data belong to some set, and try to
solve another optimization problem called robust counterpart (RC), which is composed with
taking the worst possible case into consideration.

Algorithm1 is also applicable to the robust optimization for convex semi-infinite programs
(CSIPs). Consider the following uncertain CSIP:

minimize b̂
x
subject to c(x, s) ≤ 0 ∀s ∈ �, (5.2)

where � := [−1, 1] and c(x, s) := x
�(s)x + η(s)
x + ζ(s) with

�(s) :=

⎡
⎢⎢⎢⎢⎣

19 3 −6 −7 5
3 18 −5 2 −4
−6 −5 15 4 −5
−7 2 4 10 −2
5 −4 −5 −2 16

⎤
⎥⎥⎥⎥⎦+ diag (sin(αs))5α=1

η(s) := (4, −3, 1, −2, 4)
 + (cos 1.3αs)5α=1 , ζ(s) := −10+ (5+ s)−1.

123



J Sci Comput (2016) 68:573–595 593

Table 4 Obtained results for SOCCSIP (5.4) with various choices of ρ

ρ Output (b = (4, 9,−6, 8,−5)
, K = K6)

u∗,ρ x∗,ρ λ1 λ2 �ite cpu(s)

0 1.167 (−0.567, 0.076, 0.394, −0.875, 0.336)
 0 2.334 2 1.768

0.5 1.147 (−0.555, 0.054, 0.391, −0.861, 0.331)
 0 2.295 2 2.089

1 1.126 (−0.542, 0.031, 0.388, −0.845, 0.326)
 0 2.252 3 3.485

1.5 1.103 (−0.529, 0.008, 0.384, −0.828, 0.321)
 0 2.207 4 1.748

2 1.079 (−0.514, −0.015, 0.380, −0.810, 0.315)
 0 2.159 3 1.625

2.5 1.054 (−0.499, −0.040, 0.376, −0.790, 0.310)
 0 2.109 2 1.268

3 1.028 (−0.483, −0.065, 0.371, −0.768, 0.303)
 0 2.057 2 1.014

Moreover, b̂ ∈ R
n is an uncertain vector such that b̂ = b+δb, where b = (−3, 4, 2, −4, 1)


is the nominal value of b̂, and δb is the error term belonging to a certain set B. Then, the RC
of CSIP (5.2) is written as

minimize max
δb∈B

(b + δb)

x

subject to c(x, s) ≤ 0 ∀s ∈ �. (5.3)

Now, suppose that B is a closed sphere with radius ρ, that is, B := {δb | ‖δb‖ ≤ ρ}.
Then, the objective function of RC(5.3) can be calculated as maxδb∈B(b + δb)


x =
b
x +max{δ
b x |‖δb‖ ≤ ρ} = b
x +ρ‖x‖. Therefore, by introducing an auxiliary variable
u ∈ R, RC(5.3) can be rewritten equivalently as

minimize
x,u

b
x + ρu

subject to ‖x‖ ≤ u, c(x, s) ≤ 0 ∀s ∈ �, (5.4)

which is of the form SOCCSIP (1.1) with x := (u
x

)
and K := Kn+1.

Table 4 shows the obtained results on SOCCSIP (5.4) with various choices of ρ. In the
table, u∗,ρ and x∗,ρ are the solutions of SOCCSIP (5.4), λ1 and λ2 are the spectral values
for

(u∗,ρ
x∗,ρ

)
, and �ite and cpu(s) denote the number of iterations and CPU time in seconds for

Algorithm 1, respectively. As the table shows, the solution of RC(5.3) moves continuously
as the radius ρ of B varies. Also, for all cases, we have λ1 = 0, i.e., u∗,ρ = ‖x∗,ρ‖, and the
algorithm finds the solution in a small number of iterations and CPU time.

Next, we investigate the distribution of the functional values to observe the actual effect of
the robust optimization. We generate 10,000 sample vectors δ1b, δ

2
b, . . . , δ

10000
b ∈ R

5 for the
error term δb. Each δib is defined as δib := γiv

i/‖vi‖, where γi ∈ R and each component of
vi ∈ R

5 independently follow the normal distribution with mean 0 and deviation 1.5. Since
the normal distribution contains 95% of the values within 2 standard deviations of the mean,
we will have ‖δib‖ ≤ 3 with 95% probability. To make the functional values more intuitive,
we add a positive constant (= 18) to the objective function, that is, we check the value of
fi (x∗,ρ) := (b + δib)


x∗,ρ + 18 for each i and ρ. The obtained results are summarized in
Table 5, where the columns of ‘best’, ‘mean’ and ‘worst’ denote the minimum, average, and
maximum of fi (x∗,ρ) among i = 1, 2, . . . , 10, 000 for each ρ, respectively. The column of
[6.5, 7) denotes the number of times that we had 6.5 ≤ fi (x∗,ρ) < 7 among 10, 000 sample
vectors of δib. (Other columns are similar). From the table, we can see that the values of ‘worst’

123



594 J Sci Comput (2016) 68:573–595

Table 5 Perturbed functional values of uncertain CSIP (5.2)

ρ Output ( fi (x
∗,ρ ) = (b + δib)


x∗,ρ + 18)

Best Mean Worst [6.5, 7) [7, 7.5) [7.5, 8) [8, 8.5) [8.5, 9) [9,+∞)

0 0.464 5.358 9.967 342 162 87 45 12 4

0.5 0.581 5.363 9.864 331 162 86 39 10 4

1 0.717 5.379 9.763 337 160 83 37 9 4

1.5 0.770 5.408 9.666 348 155 87 34 8 4

2 0.813 5.450 9.574 357 163 86 36 6 4

2.5 0.877 5.506 9.488 382 173 89 34 7 3

3 0.961 5.578 9.410 438 182 91 38 7 2

is smaller as ρ becomes larger, though it is opposite in the columns of ‘best’ and ‘mean’. This
means that the robust optimization may have disadvantage under average or lucky situations,
but the serious damage can be avoided or reduced even when an unlucky situation occurs.
Since we applied the normal distribution to generate the sample error vectors, we seldom
encountered the unlucky situations such as fi (x∗,ρ) > 8.5. However, if we apply another
type of distribution, we may encounter such an undesirable situation more often, and the
robust optimization can be more important.

References

1. Auslender, A., Goberna, M.A., López, M.A.: Penalty and smoothing methods for convex semi-infinite
programming. Math. Oper. Res. 34, 303–319 (2009)

2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton
(2009)

3. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res 23, 769–805 (1998)
4. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13

(1999)
5. Bertsekas,D.P.,Nedić,A.,Ozdaglar,A.E.:ConvexAnalysis andOptimization.AthenaScientific,Belmont

(2003)
6. Bonnans, J.F., Ramírez, H.: Perturbation analysis of second-order cone programming problems. Math.

Progr. 104, 205–227 (2005)
7. Bonnans, J.F., Shapiro, A.: Perturbation analysis of optimization problems. Springer, New York (2000)
8. Chen, X.D., Sun, D., Sun, J.: Complementarity functions and numerical experiments for second-order-

cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)
9. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon Press, New York (1994)

10. Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order cone complementarity
problems. SIAM J. Optim. 12, 436–460 (2001)

11. Goberna, M.A., López, M.A.: Linear semi-infinite programming: an updated survey. Eur. J. Oper. Res.
143, 390–405 (2002)

12. Gonzaga, C., Polak, E., Trahan, R.: An improved algorithm for optimization problems with functional
inequality constraints. IEEE Trans. Autom. Control 25, 49–54 (1980)

13. Hayashi, S., Wu, S.-Y.: An explicit algorithm for linear semi-infinite programming problem with second-
order cone constraints. SIAM J. Optim. 20, 1527–1546 (2009)

14. Hayashi, S., Yamaguchi, T., Yamashita, N., Fukushima, M.: A matrix splitting method for symmetric
affine second-order cone complementarity problems. J. Comput. Appl. Math. 175, 335–353 (2005)

15. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for
monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

16. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev.
35, 380–429 (1993)

123



J Sci Comput (2016) 68:573–595 595

17. Kato, H., Fukushima, M.: An SQP-type algorithm for nonlinear second-order cone programs. Optim.
Lett. 1, 129–144 (2007)

18. Kortanek, K., No, H.: A central cutting plane algorithm for convex semi-infinite programming problems.
SIAM J. Optim 3, 901–918 (1993)

19. Lai, H.C., Wu, S.-Y.: On linear semi-infinite programming problems: an algorithm. Numer. Funct. Anal.
Optim. 13, 287–304 (1992)

20. Li, D., Qi, L., Tam, J., Wu, S.-Y.: A smoothing newton method for semi-infinite programming. J. Glob.
Optim. 30, 169–194 (2004)

21. Lin, C.-J., Fang, S.-C., Wu, S.-Y.: An unconstrained convex programming approach to linear semi-infinite
programming. SIAM J. Optim. 8, 443–456 (1998)

22. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.
Linear Algebra Appl. 284, 193–228 (1998)

23. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)
24. Narushima,Y., Sagara,N.,Ogasawara,H.:A smoothingNewtonmethodwith Fischer-Burmeister function

for second-order cone complementarity problems. J. Optim. Theory Appl. 149, 79–101 (2011)
25. Okuno,T.,Hayashi, S., Fukushima,M.:A regularized explicit exchangemethod for semi-infinite programs

with an infinite number of conic constraints. SIAM J. Optim. 22, 1009–1028 (2012)
26. Özmen, A., Weber, G.-W., Batmazb, I., Kropat, E.: RCMARS: robustification of CMARS with different

scenarios under polyhedral uncertainty set. Commun.Nonlinear Sci. Numer. Simul. 16, 4780–4787 (2011)
27. Qi, L., Wu, S.-Y., Zhou, G.: Semismooth newton for solving semi-infinite programming problems. J.

Glob. Optim. 27, 215–232 (2003)
28. Reemtsen, R., Görner, S.: Numerical methods for semi-infinite programming: a survey. In: Reemtsen,

R., Rückmann, J. (eds.) Semi-Infinite Programming, pp. 195–275. Kluwer Academic Publishers, Boston
(1998)

29. Reemtsen, R., Rückmann, J.: Semi-Infinite Programming. Kluwer Academic Publishers, Boston (1998)
30. Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J.

Control Optim. 42, 769–788 (2003)
31. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Progr. 91, 53–69

(2001)
32. Wu, S.-Y., Fang, S.-C.: Solving convex programs with infinitely linear constraints by a relaxed cutting

plane method. Comput. Math. Appl. 38, 23–33 (1999)
33. Wu, S.-Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinite

programming. Optim. Methods Softw. 20, 629–643 (2005)
34. Yamashita,H.,Yabe,H.:Aprimal-dual interior pointmethod for nonlinear optimization over second-order

cones. Optim. Methods Softw. 24, 407–426 (2009)
35. Yuan, Y.X.: Recent advances in numerical methods for nonlinear equations and nonlinear least squares.

Numer. Algebra Control Optim. 1, 15–34 (2011)
36. Yuan, Y.X.: A trust region algorithm for Nash equilibrium problems. Pac. J. Optim. 7, 125–138 (2011)
37. Zhang, L., Wu, S.-Y., López, M.A.: A new exchange method for convex semi-infinite programming.

SIAM J. Optim. 20, 2959–2977 (2010)

123


	Computation Algorithm for Convex Semi-infinite Program with Second-Order Cones: Special Analyses  for Affine and Quadratic Case
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Explicit Exchange Method for SOCCSIP
	4 Convergence Analysis
	4.1 Some Technical Propositions
	4.2 Finite Termination for Strictly Convex Case
	4.3 Finite Termination Without Strict Convexity
	4.4 Approximation Analysis for Obtained Solution

	5 Numerical Results
	5.1 Experiment 1 (Solving SOCCSIPs with Various Choices of Parameters)
	5.2 Experiment 2 (Application to Robust Optimization)

	References




