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Abstract Recent analysis andnumerical experiments show that the deferred correctionmeth-
ods are competitive numerical schemes for time dependent differential equations. These
methods differ in the mathematical formulations, choices of collocation points, and numeri-
cal integration or differentiation strategies. Existing analyses of these methods usually follow
traditional ODE theory and study each algorithm’s convergence and stability properties as
the step size Δt varies. In this paper, we study the deferred correction methods from a dif-
ferent perspective by separating two different concepts in the algorithm: (1) the properties
of the converged solution to the collocation formulation, and (2) the convergence procedure
utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the
provisional solution. This new viewpoint allows the construction of a numerical framework to
integrate existing techniques, by (1) selecting an appropriate collocation discretization based
on the physical properties of the solution to balance the time step size and accuracy of the
initial approximate solution; and by (2) applying different deferred correction strategies for
reducing different components in the error of the provisional solution. This paper discusses
properties of different components in the numerical framework, and presents preliminary
results on the effective integration of these components for ODE initial value problems. Our
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results provide useful guidelines for implementing “optimal” time integration schemes for
general time dependent differential equations.

Keywords Deferred correction methods · Krylov subspace methods · Collocation
formulations · Preconditioners · Jacobian-free Newton–Krylov methods

Mathematics Subject Classification 65B05 · 65M70 · 65M12

1 Introduction

The accurate and efficient solution of time dependent differential equations has been an
active research area for more than 50years. For ordinary differential equation (ODE) ini-
tial value problems (IVPs), the linear multistep methods and Runge–Kutta methods have
been extensively studied in both theory and implementation and have become standard top-
ics in entry level numerical analysis textbooks [1,2,23,39]. Widely used ODE IVP solvers
include the backward differentiation formula (BDF) based DASPK [7,34] and Runge–Kutta
method based Radau5 [20]. Instead of detailed descriptions and references in this paper, we
refer interested readers to [37] for existing theoretical results, different algorithms, and soft-
ware packages. Many of these numerical simulation tools have been successfully applied in
research studies and have significantly advanced our knowledge in science and engineering.
However, these advances in turn also revealed the limitations of existing numerical algo-
rithms. For example, to understand the biological cycles of a typical ion channel consisting
of thousands of particles, current molecular dynamics simulation tools usually require mil-
lions of time steps to fully resolve the opening and closing dynamics using existing low
order time stepping schemes (e.g., the Verlet integration scheme). Even with the acceleration
of the fast N-body solvers [18,36] for each time step, most simulations require weeks or
longer to get any biologically relevant results. In recent years, several schemes were intro-
duced to address the challenges in designing accurate and efficient algorithms for large-scale
long-time simulations. Examples include the parareal algorithm and its variants for efficient
parallelization in time [14,35]; the high order temporal discretization using an orthogonal
basis and pseudo-spectral formulations for each time step, to allow larger step sizes [6,24,32];
the spectral deferred correction (SDC), integral deferred correction (InDC), iterated defect
correction (IDeC) andKrylov deferred correction (KDC)methods for their efficient solutions
[3,11,12,25]; and the parallel full approximation scheme in space and time (PFASST) which
combines different preconditioning techniques [13].

In this paper, we focus on the high order temporal collocation discretization and deferred
correction methods, and describe how to integrate these techniques to construct an “optimal”
numerical framework for solving ordinary differential equations. In existing literature, each
involved technique usually only addresses a particular aspect of this framework. In [19,
21], the Gauss collocation formulations using only 2, 4, and 6 nodes were implemented as
geometric integrators for Hamiltonian systems, however without the deferred correction or
other acceleration techniques, numerical results suggest that the resulting solvers are not as
efficient as other linear multistep methods (see Fig. 5.1 in [19]). Also, when analyzing the
iterated, integral, and spectral deferred (defect) correction methods, most existing results
follow traditional numerical ODE theory and study the convergence and stability region
properties for varying step size Δt . However, note that when the magnitude of the error is
large in the deferred correction iterations, one wouldn’t accept such results in the numerical
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implementation, implying that most of the existing analyses are not applicable. Instead, it is
more appropriate to consider the mathematical and numerical properties of the underlying
collocation formulation. Another commonly encountered problem in the deferred correction
methods is the order reduction and divergence of the numerical procedure for stiff ODE and
DAE systems.

Wepresent a different perspective to understand and integrate thesemethods in a numerical
framework for solving ODE systems. In this framework, we consider the deferred correction
techniques as efficient iterative schemes to reduce the error in the convergence procedure, and
different deferred correction strategies can be applied to reduce different error components in
the provisional solution. Within the prescribed convergence criterion, we analyze the mathe-
matical properties of the solution by studying the underlying collocation formulations. In the
optimal numerical implementation of this framework, the collocation formulation is selected
based on the physical properties of the solution. We treat each low order deferred correction
scheme as a preconditioner, and integrate these preconditioning techniques with existing
iterative solvers (e.g., fixed point iterations or Jacobian-free Newton–Krylov methods) for
better convergence.

This paper is organized as follows. In Sect. 2, we study the converged solution by devel-
oping the “collocation formulations database” for the numerical framework for solving ODE
initial value problems and by discussing the properties of each formulation. In Sect. 3, we
start from the backward Euler based spectral deferred correction methods and their conver-
gence properties, and then study different deferred correction methods to form the “deferred
correction methods database” in the convergence procedure, an iterative procedure to reduce
the errors in the provisional solution. In Sect. 4, we discuss several algorithm design guide-
lines to integrate different components to efficiently converge to the solution of an “optimal”
discretization in the numerical framework. We provide preliminary numerical experiments
to validate each guideline, and demonstrate the performance of the framework by compar-
ing a very primitive implementation with some existing techniques. This paper is our first
step to design optimal space–time parallel adaptive numerical methods for time dependent
differential equations, and in Sect. 5, we summarize our results and discuss several related
research topics to further improve the efficiency of our numerical framework for large-scale
long-time simulations of differential equations.

2 Collocation Formulations and Properties

For long time simulations, it is in general impractical to use one single step for the entire inter-
val from t = 0 to tfinal (e.g., by using a spectral formulation for [0, tfinal]).We therefore follow
the standard practice of adaptively dividing the whole interval into a sequence of subinter-
vals (time steps) based on the properties of the solution and any step size constraints. In this
section, we discuss different collocation formulations for each time step. These formulations
differ in the mathematical formulations, choices of collocation points, and numerical inte-
gration or differentiation strategies. We leave the discussions of their accurate and efficient
solutions to later sections.

Spectral and pseudo-spectral methods have been widely used for solving spatial differen-
tial equations in simple geometries (i.e., Fourier series for periodic solutions, or Chebyshev
polynomials for rectangular or cubic geometries) [8,16,17]. One advantage of these methods
is that when the number of expansion terms (in the spectral formulation) or node points (in the
pseudo-spectral type collocation formulation) increases, the approximation error decays very
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rapidly for smooth functions; and unlike traditional linear multistep methods or low order
explicit Runge–Kutta methods for the temporal initial value problems, the stability region
constraint is in general not a big concern. Not surprisingly, as time is only one dimensional
and there is no complex geometry involved, these methods have also been applied for solving
time dependent differential equations in the past. In this section, we first discuss the Legendre
polynomial based Gauss collocation formulation, and then discuss other collocation formu-
lations for initial value problems. Clearly, when an iterative scheme is applied to a specific
collocation formulation and is convergent (up to a prescribed precision), the numerical prop-
erties of the solution are then determined by the properties of the collocation formulation,
not the convergence procedure. Unlike existing analysis of the deferred correction methods,
this new viewpoint allows us to study the mathematical properties of the framework (e.g.,
order and stability) by focusing on the converged solution of the collocation formulation, and
to consider the convergence procedure (describing how the iterations converge) separately.

2.1 Gauss Collocation Method

We first present a variant of the well-studied Gauss collocation formulation (also referred to
as the Gauss Runge–Kutta (GRK)method) for ODE initial value problems y′(t) = f (t, y(t))
with given initial data y(0) [21,23]. To march one step from t = 0 to t = Δt , we define
Y (t) = y′(t) as the new unknown function and recover y(t) using y(t) = y(0)+∫ t

0 Y (τ )dτ .
This will give what we call the “yp-formulation” as

Y (t) = f (t, y(0) +
∫ t

0
Y (τ )dτ). (1)

In the Gauss collocation formulation, p Gaussian quadrature nodes t = [t1, t2, . . . , tp]T
are used to discretize the yp-formulation in [0,Δt]. For the given function values Y =
[Y1, Y2, . . . , Yp]T at the Gaussian nodes, we can construct the (p − 1)th degree Legendre
polynomial expansion to approximateY (t) = y′(t)where the coefficients are computed using
the Gaussian quadrature rules. We can integrate this interpolating polynomial analytically
from 0 to tm , m = 1, . . . , p, to form a linear mapping that maps the function values Y to
the integrals of Y (t) at the node points. Taking out the scalar factor Δt in this mapping, the
integral

∫ t
0 Y (τ )dτ can be approximated byΔt SY, where S is called the “spectral integration

matrix” [17] which can be precomputed. The discretizedGauss collocation formulation using
p node points in the time interval [0,Δt] is given by

Y = F(t, y0 + Δt SY). (2)

The following theorem, mostly from [23], summarizes several nice properties of this formu-
lation, assuming it is solved exactly.

Theorem 1 For ODE initial value problems, the Gauss collocation formulation in Eq. (2)
with p nodes is of order 2p (super convergence), A-stable, B-stable, symplectic (structure
preserving), and symmetric (time reversible). In addition, the error decays exponentially
when p increases.

Interested readers are referred to [5,22] for the proof of the theorem. These nice properties
allow the use of very large time step sizes when solving ordinary differential equation initial
value problems.
Comment The yp-formulation can be easily generalized to differential algebraic equations
(DAEs) of the form F(t, y, y′) = 0, and the discretized system becomes

F(t, y0 + Δt SY,Y) = 0.

123



488 J Sci Comput (2016) 68:484–520

(a) (b)

10
−4

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time Step  Δ t

M
ax

 E
rr

or
Errors in  x

  1
(t)

Order  2 

Order 3
Order 4

10
− 9.0

10
−0.8

10
−0. 7

10
−15

10
−10

10
−5

Errors in x
1
  (t)

M
ax

 E
rr

or

p=3

p=4

p=5

Time Step  Δ t

Fig. 1 Accuracy in x1 for different step sizes using a traditional BDF methods, orders 2, 3, 4 (from [1]) and
b Gauss collocation methods using 3, 4, 5 Gaussian nodes

Similar to theODE case, the pseudo-spectral type collocation formulation allowsmuch larger
time step sizes in the numerical simulation. In Fig. 1, we compare the Gauss collocation
formulation with traditional BDF methods for the DAE system from [1]
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)
and can be resolved

to machine precision using a 15-term Legendre polynomial expansion for each component
when t ∈ [0, 1]. It can be observed that the fourth order BDF method requires a time step
size of 10−3 for 10 digits of accuracy, as shown in (a) of Fig. 1 (also see [1], p. 268). On
the other hand, the Gauss collocation discretization using a step size of 10−1 and 5 Gaussian
nodes gives 14 digits accuracy [see (b) in Fig. 1]. The step size differences are further studied
by comparing the accuracy regions of the Gauss collocation and BDF schemes. For a given
error tolerance ε > 0, the accuracy region associated with a numerical scheme is defined to
be the subset of the complex plane C consisting of all λ such that when the scheme is applied
to the model problem y′(t) = λy(t), y(0) = 1 on the interval [0, 1], the error between the
numerical solution ỹ and analytical solution y satisfies the relation |ỹ(1)− y(1)| < ε. For the
qth order BDFq scheme, exact values are used at nodes tk = k/q , k = 0, . . . , q −1 to derive
the numerical solution at tq = 1. In Fig. 2, we plot the accuracy regions of the 4-node Gauss
collocation and BDF4 schemes for ε = 10−10. It can be observed that the Gauss collocation
formulation has a much larger accuracy region than BDF4.

We refer interested readers to [20] and references therein for further analysis of differ-
ent collocation formulations for DAE systems, and to [24,25] for more numerical examples
demonstrating the step size-accuracy relations of the pseudo-spectral type collocation for-
mulations for both ODE and DAE problems.

2.2 Different Collocation Formulations

In the Gauss collocation formulation discussed in the previous section, the Legendre poly-
nomial based Gaussian quadrature nodes are used and the spectral integration matrix is
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Fig. 2 Accuracy regions of 4-node Gauss collocation and 4th order BDF schemes

constructed accordingly for the yp-formulation. Other types of formulations, quadrature
nodes, and numerical differentiation or integration techniques have also been studied in the
literature. In this subsection, we present different collocation formulations to form our “col-
location formulation database” for ODE initial value problems.
Mathematical Formulations For the ODE initial value problem y′ = f (t, y), most existing
collocation formulations use y as the unknown and solve the differential equation directly.
In the “differential quadrature method” [10] and other traditional pseudo-spectral colloca-
tion formulations, the “spectral differentiation matrix” is constructed by differentiating the
interpolating polynomial of y at the collocation points and evaluating the derivative polyno-
mial to form the spectral differentiation matrix D mapping y at the collocation points to y′.
We refer to this class of formulations as the “differential formulation”, and the discretized
ODE system can be represented as Dy = f(t, y). An alternative formulation is to use the
equivalent Picard integral equation formulation y(t) = y0 + ∫ t

0 f (τ, y(τ ))dτ and discretize
the ODE system as in y = y0 + Δt Sf(t, y) where y are the unknowns at the collocation
points, and S is the (scaled) spectral integration matrix. We refer to this formulation as the
“integral formulation”. When this formulation is coupled with uniform collocation points,
the resulting deferred correction methods are called the integral deferred correction methods
(InDC) [11]. In the previous subsection, we also presented the “yp-formulation” using y′
as the unknown and using the spectral integration matrix to form the discretized collocation
formulation given by Y = f(t, y0 + Δt SY).

Although these formulations are equivalent mathematically, they have very different
numerical properties as will be discussed in Sect. 3.5. For example, for non-stiff problems,
the yp-formulation can be one order higher (in Δt) than the integral formulation. However
for stiff problems, when |Δtλ| � 1, the integral formulation is preferred due to the additional
Δtλ factor in the yp-formulation (see Eqs. 18, 19). Also, it is not easy to generalize some
of these formulations to more complicated differential equation systems. For example, for
a general DAE system F(t, y, y′) = 0, it is nontrivial to derive the standard Picard integral
equation for y in the integral formulation, and one may prefer the differential formulation or
yp-formulation.
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Collocation Points, Integration and Differentiation Matrices Instead of Gaussian quadrature
nodes, other node points have also been studied in the literature: when Radau Ia nodes
are used, the left end-point t = 0 is added when constructing the numerical integration or
differentiation matrices; when Radau IIa nodes are used, the right end-point t = Δt is added;
in the Gauss-Lobatto scheme, both end points are added in the collocation formulation;
and one can also use the Chebyshev polynomial based Clenshaw–Kurtis quadrature and
corresponding spectral differentiation or integration matrices to take advantage of the “near-
minimax” approximation properties of the Chebyshev polynomial expansion and the fast
Fourier transform [40]. As these collocation points are closely related with the underlying
orthogonal polynomials, one can very stably construct the least squares polynomial using
the corresponding Gaussian-type quadratures, and differentiate or integrate the resulting
polynomial to construct the spectral differentiation or integration matrices. Note that for
ODE problems, when considering the errors at both the interior and boundary collocation
points, these collocation formulations have similar order properties as shown in traditional
ODE analysis. However, when only considering the solution at the right end point t = Δt ,
the Legendre polynomial based collocation formulations are preferred due to their relatively
higher order of convergence. Also, for DAE problems, the orders at t = Δt will be different
for the “differential” and “algebraic” components (see, e.g. [23]) for different choices of
nodes, and the Radau IIa or Gauss-Lobatto nodes are usually preferred due to their relative
higher order properties for the algebraic components.

More recently, assuming the solution can be better approximated by exponential sums as
in the case for linear homogeneousODEs, collocation nodes and spectral integrationmatrices
are designed using skeletonization techniques by Rokhlin et. al. for ODE systems [15,32].
When the solution can be approximated by the so-called “band-limited” functions, in [6],
quadrature nodes and the corresponding spectral integration matrix using the “prolate spher-
oidal wave functions” were applied to initial value problems. These collocation formulations
only differ in the set of node points and precomputed spectral differentiation matrix D or
integration matrix S. It is therefore possible to precompute and form the collocation formu-
lation database. For a given ODE system, based on the physical properties of the solution
and different measures of the error, one can choose a particular set of nodes and the corre-
sponding matrix to form the “optimal” formulation. Also note that unlike traditional ODE
solvers, for better accuracy, in addition to changing to a smaller step size and reducing the
error using the “order of convergence” concept, one can also add more points to the interval
in the collocation formulation to take full advantage of the convergence properties in the
orthogonal basis based pseudo-spectral methods. The latter option may be more favorable if
the resulting system can be solved efficiently, and usually allows much larger step sizes in
the simulation.
Comment When a smaller number of nodes (e.g., less than 10 node points) is preferred
(e.g., due to memory constraints), in the existing integral deferred correction methods [11],
the uniform nodes are usually applied as they show better convergence properties in the
deferred correction iterations as will be discussed in the next section. However, such uniform
collocation formulations may have serious numerical problems (especially when the number
of nodes increases) due to the stability and accuracy issues from the underlying uniform
polynomial interpolation schemes, such as the well-knownRunge’s phenomenon.We believe
such collocation formulations should be avoided in the final converged solution, however one
may want to take advantage of their fast convergence in the deferred correction iterations
as will be discussed in Sect. 4. Also, generalization of the collocation schemes to partial
differential equations is straightforward and interested readers are referred to [9,26,27] for
preliminary results along this direction.
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3 Deferred Correction Methods and Properties

Despite the aforementioned excellent properties of many of the high order collocation for-
mulations, the higher order (p ≥ 10 node points) collocation formulation is rarely used
in most of today’s numerical simulations. The main reason is the efficiency of the solution
algorithms. Assuming an ODE system with N equations is resolved using p Gaussian nodes
in the Gauss collocation formulation, as the spectral differentiation matrix D or integration
matrix S is dense (solutions at current time depend both on history data and solutions at future
times), the Newton’s method and direct Gauss elimination (for each linearized system) will
require O((Np)3) operations. This number increases cubicly as p increases. In most BDF
type methods, the operation is only N 3 for each time step. Also, when the step size is large,
the initial value may no longer serve as a good initial guess for the solution in the time
interval, resulting in convergence problems in the nonlinear solver.

Instead of direct Gauss elimination, in recent years, different deferred correction methods
were proposed to improve the efficiency when solving the discretized collocation formu-
lations iteratively. We first present the backward Euler based spectral deferred correction
(SDC) methods for the yp-Gauss collocation formulation.

3.1 Backward Euler Preconditioned SDC for yp-Gauss Collocation Formulation

We consider the yp-formulation in Eq. (2) using the Gaussian nodes. The first step in a
SDC method is to use a low order “predictor” to find an approximate solution of Y (t) at the
collocation points in [0,Δt], denoted by Ỹ = [Ỹ1, Ỹ2, . . . Ỹp]T . When the backward Euler’s
method is applied, the predictor solves the low order discretized system given by

Ỹ1 = f (t1, y0 + Δt1Ỹ1)

Ỹ2 = f (t2, y0 + Δt1Ỹ1 + Δt2Ỹ2)

· · · · · ·
Ỹp = f (tp, y0 + Δt1Ỹ1 + Δt2Ỹ2 + · · · + ΔtpỸp)

where Δti = ti − ti−1 (t0 = 0) is the time step size from ti−1 to ti . In matrix form, this is
equivalent to solving

Ỹ = F(t, y0 + Δt S̃Ỹ) (4)

where

Δt S̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Δt1 0 · · · 0 0
Δt1 Δt2 · · · 0 0
Δt1 Δt2 · · · 0 0
...

Δt1 Δt2 · · · Δtp−1 Δtp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5)

is the first order rectangular rule (using the right end point) for approximating
∫ ti
0 Y (τ )dτ .

Unlike the spectral integration matrix S where solutions at current time depend on both
the history and future data, in the low order discretization represented succinctly in Eq. (4),
solutions are “decoupled” due to the lower triangular structure of S̃, reducing the solution time
toO(N 3 p) forODEsystemsof size N , assumingGauss elimination is used for each stepof the
Newton iterations when solving the nonlinear system Ỹk = f (tk, y0+Δt1Ỹ1+Δt2Ỹ2+· · ·+
Δtk Ỹk)when marching from tk−1 to tk . We use Ỹ (t) to represent the corresponding Legendre

123



492 J Sci Comput (2016) 68:484–520

interpolating polynomial of Ỹ, where the expansion coefficients are stably computed using
the Gaussian quadrature.

In the second step of the SDC method, define the error as δ(t) = Y (t) − Ỹ (t). We can
find the “error’s equation” given by

Ỹ (t) + δ(t) = f

(

t, y0 +
∫ t

0

(
Ỹ (τ ) + δ(τ )

)
dτ

)

(6)

with initial value δ(0) = 0. As Ỹ at the Gaussian nodes is given, we can apply the spectral
integration matrix to

∫ t
0 Ỹ (τ )dτ to accurately evaluate its integral. For the unknown δ(t),

similar to the predictor step, the backward Euler’s method can be applied to obtain a low
order approximation of the error δ(t) by solving the equation system

Ỹ + δ̃ = F
(
t, y0 + Δt SỸ + Δt S̃δ̃

)
(7)

where δ̃ = [δ̃1, δ̃2, . . . , δ̃p]T is the low order solution at each collocation node. Next, we can
add δ̃ to Ỹ to obtain an “improved” approximation of Y (t), define the new error, and repeat
the second step. We refer to each such iteration as one SDC correction. In the SDC methods,
this procedure is stopped either when δ̃ is smaller than a prescribed accuracy requirement
or after a fixed number of iterations. In the latter case, if the error is still large, one reduces
the step size and solves the collocation formulation in a smaller interval. In other words, one
accepts the SDC results only when δ̃ in Eq. (7) is within certain error tolerance. Notice that
in this case, Ỹ approximately satisfies (up to O(δ̃) error) Ỹ = F(t, y0 + Δt SỸ) which is
exactly the Gauss collocation formulation in Eq. (2). Therefore, SDC is simply an iterative
scheme trying to converge to the Gauss collocation formulation.
Comment When analyzing the deferred correction methods, most existing results follow
traditional numerical ODE theory and study the convergence and stability region properties
for varying step size Δt . However, note that when the error is large in the deferred correction
iterations, the results will not be accepted and smaller step sizes have to be used until the
error is small enough. This implies that most existing analyses cover inapplicable numerical
regimes which never appear in real implementations. It is therefore more appropriate to
separate the study of the convergence procedure from that of the converged solutions. When
the corrections are convergent, the numerical properties of the algorithm are determined by
the underlying collocation formulation.
Comment Generalization of the SDCmethods to the DAE problems is straightforward.When
the backward Euler’s method is applied, the corresponding low order discretization for the
error is given by F(t, y0 +Δt SỸ+Δt S̃δ̃, Ỹ+ δ̃) = 0. For a given provisional solution, only
O(N 3 p) operations are required to get the low order error approximation δ̃ in each SDC
correction due to the lower triangular structure of S̃.

3.2 Understanding Deferred Correction Iterations

To get further insight of the deferred correction iterations, we first consider the SDC scheme in
matrix form applied to a linear ODE of the form y′(t) = λy+ f (t)with given initial condition
y(0) = y0, and the corresponding collocation formulation becomes Y = λ(y0 +Δt SY)+F
with given y0 = [y0, y0, . . . , y0]T and F = [ f (t1), f (t2), . . . , f (tp)]T . Therefore the linear
system for Y is given by

(I − λΔt S)Y = λy0 + F. (8)
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In the first step, using the backward Euler’s method as the predictor to solve the low order
discretization

(
I − λΔt S̃

)
Y = λy0 + F, (9)

we get the initial provisional solution

Ỹ[0] =
(
I − λΔt S̃

)−1
(λy0 + F). (10)

In each SDC correction, assuming the provisional solution from the previous correction step
is denoted by Ỹ[n], the discretized low order error’s equation in Eq. (7) becomes

Ỹ[n] + δ̃ = λ
(
y0 + Δt SỸ[n] + Δt S̃δ̃

)
+ F. (11)

Using Eq. (10) to write (λy0 + F) as (I − λΔt S̃)Ỹ[0], δ̃ is then given by

δ̃ = Ỹ[0] −
(
I − λΔt S̃

)−1
(I − λΔt S) Ỹ[n]. (12)

Therefore we have the recursive relation

Ỹ[n+1] = Ỹ[n] + δ̃ = Ỹ[0] + CỸ[n] (13)

where the matrix C is given by

C = I −
(
I − λΔt S̃

)−1
(I − λΔt S) = I −

(
I − λΔt S̃

)−1 (
I − λΔt S̃ + λΔt S̃ − λΔt S

)

=
(
I − λΔt S̃

)−1
λΔt (S − S̃),

and is called the “correction matrix” in this paper. Solving the recursive equation in Eq. (13),
we get

Ỹ[n] = Ỹ[0] + CỸ[0] + C2Ỹ[0] + · · · + CnỸ[0]. (14)

Instead of the above step-by-step analysis of the SDC method, a more straightforward
viewpoint is to consider the collocation formulation in Eq. (8) and apply the low-order
preconditioner (I − λΔt S̃)−1 to get a preconditioned system

(
I − λΔt S̃

)−1
(I − λΔt S)Y =

(
I − λΔt S̃

)−1
(λy0 + F) = Ỹ[0]. (15)

Notice that as S̃ is a low order approximation of S (or when λΔt is small), (I −λΔt S̃)−1(I −
λΔt S) = I − C is close to the Identity matrix. Applying Neumann series to the equation
(I − C)Y = Ỹ[0], we can derive Eq. (14) directly. Therefore, for linear ODE problems, we
conclude that the SDCmethod is simply a Neumann series expansion for solving the optimal
collocation formulation preconditioned by the low order methods. The convergence of the
deferred correction methods is then determined by the following theorem.

Theorem 2 For linear ODE initial value problems, the spectral deferred correction itera-
tions in Eq. (14) are convergent if and only if the spectral radius ρ(C) (the supremum among
the absolute values of all the eigenvalues) of the correction matrix C is less than 1.

For nonlinear problems, the SDC approach can be considered as a simplified Newton’s
method. For a given input provisional solution Y[k], denoting the low order approximation
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of the error δ̃ as an implicit function of Y[k] as δ̃ = H(Ỹ[k]), one can apply the Newton’s
method to find the zero of H,

Y[k+1] = Y[k] − J−1
H H

(
Ỹ[k]) = Y[k] − J−1

H δ̃.

Applying the implicit function theorem to Eq. (7), and it is straightforward to show that the
Jacobianmatrix is close to the negative Identitymatrix−I when the low-order preconditioner
is effective, therefore the Newton’s method is simplified to Y[k+1] = Y[k] + δ̃.

3.3 Properties of Deferred Correction Iterations

Our numerical results (also see [12]) show that for many ODE initial value problems, the
properly implemented deferred correction methods outperform many existing commonly
used solvers in efficiency for the same accuracy requirement, especially when very high
accuracy (i.e., more than 6 digits accuracy) is required. However, we also observe the “order
reduction” phenomenon when deferred correction iterations are applied to very stiff ODE
systems. For some DAE systems, the deferred correction scheme becomes divergent, inde-
pendent of the selected step size. We refer interested readers to Fig. 7 in [25], where the
SDC method is applied to Andrews’ squeezing problem (see [37] for the full description of
this DAE system) and becomes divergent after a few iterations for different step sizes. One
observation is that when the Gauss collocation formulation is solved exactly, “order reduc-
tion” or divergence is never a concern in the converged solution. This observation means
that the order reduction or divergence is not caused by the final converged solution, but by
the deferred correction convergence procedure, in particular, the spectral radius ρ(C) of the
correction matrix C and the error in the initial provisional solution.

3.3.1 ρ(C) and Convergence Region

We first define the “convergence region” to measure when the deferred correction methods
are convergent for linear problems.

Definition 1 For linear ODE initial value problems, we define the “convergence region” Ω

of a deferred correction method as Ω = {λΔt : ρ(C(λΔt)) < 1, λ ∈ C}. The method is
called “A-convergent” if Ω contains the left half complex plane. It is called “L-convergent”
if it is “A-convergent” and lim|λΔt |→∞ ρ(C(λΔt)) → 0 for λΔt on the left half complex
plane.

For the backward Euler preconditioned SDC methods for yp-Gauss collocation formula-
tion, the correction matrix is

C =
(
I − λΔt S̃

)−1
(λΔt)

(
S − S̃

)
. (16)

In Fig. 3, we plot the numerically computed convergence region (contour = 1) and other
contour lines of ρ(C) for (a) p = 4 and (b) p = 10. Both seem to be A-convergent.

For the correction matrix C(λΔt), we are particularly interested in two regimes to under-
stand the properties of the deferred correction iterations: when |λΔt | � 1 (non-stiff systems),
and when |λΔt | → ∞ (“strongly stiff limit” for stiff systems). For non-stiff systems where
|λΔt | � 1, after each iteration, clearly the error will decay approximately by the factor
(λΔt)(S − S̃) as

Cns =
(

I +
(
λΔt S̃

)
+

(
λΔt S̃

)2 + · · ·
)

(λΔt)
(
S − S̃

)
. (17)
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Fig. 3 Contour of ρ(C(λΔt)) for a p = 4 and b p = 10 for SDC, λΔt = x + iy

Table 1 ρ(Cs) for different numbers of Gaussian nodes, stiff case, SDC

n 2 3 4 5 6 7 8

ρ(Cs) 0.3170 0.4210 0.5610 0.6653 0.7420 0.7998 0.8448

n 9 10 11 12 13 14 15

ρ(Cs) 0.8805 0.9096 0.9337 0.9540 0.9713 0.9861 0.9991

n 16 17 18 19 20 25 50

ρ(Cs) 1.0105 1.0205 1.0295 1.0375 1.0448 1.0724 1.1280

However in the strongly stiff limit, the correction matrix becomes Cs = I − S̃
−1

S. The
convergence of the iterations will then depend on how accurate the low order integration rule
in S̃ approximates the high order rule in S. In Table 1, we list ρ(Cs) for different numbers of
node points. It can be seen that “order reduction” becomes a serious problem as the number
of nodes increases. For 8 points, the modulus of the largest eigenvalue of the correction
matrix is 0.8448. This means that for general stiff ODE systems, one error component will
decay asymptotically by the factor 0.8448 after each SDC iteration due to the “unresolved”
stiff components (as |λΔt | � 1) in the iterations. When p = 16, the SDC method becomes
divergent as ρ(Cs) = 1.0105. Clearly, when p > 15, the methods are not A-convergent, and
the error will eventually start to increase when the number of iterations increases. For several
cases when p ≤ 15, our numerical results show that the methods are A-convergent. Also,
from Table 1, we see that none of these methods are L-convergent. In Fig. 4, we also plot the
eigenvalue distributions of Cs for p = 10 and p = 40.
Comment We want to point out that “L-convergence” is different from the classical “L-
stability” concept. “L-convergence” studies the convergence properties of the SDC and other
iterative methods, while the classical “L-stability” concept shows the “amplification factor”
Am(λ) (see [12]) in the SDC methods after a fixed number of iterations. More specifically,
a careful study of the error formulas in Eqs. (18, 19) in Sect. 3.5 shows that the integral
formulation based SDC methods are L(α)-stable due to the factor (I − λΔt S̃)−1 (also see
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Fig. 4 Distributions of correction matrix eigenvalues for p = 10 and p = 40, stiff case, SDC

[33]). The yp-formulation based SDCmethods, on the other hand, aremostly not L(α)-stable,
but they have the same correction matrix as their integral formulation based counterparts and
hence have the same convergence behaviors.

3.3.2 Eigenvectors of C and Initial Error

In addition to spectral radius ρ(C) which determines the asymptotic convergence prop-
erties of the deferred correction iterations, the initial error (and its corresponding eigen-
decomposition) in the provisional solution also plays an important role in the “convergence
procedure”. This will be explained in this subsection by comparing the SDC iterations with
standard Picard iterations for non-stiff linear ODE systems (Picard iterations are divergent
for stiff systems). In the SDC iterations, a low order method is applied to precondition
the original formulation as in Eq. (15), while in the “standard” Picard iteration, the solu-
tion is derived by applying the Neumann series directly (without any preconditioner) to
(I − λΔt S)Y = b ≡ (λy0 +F) as Y = b+CP

nsb+ (CP
ns)

2b+ · · · where the new correction
matrix is given by CP

ns = λΔtS. The “standard” Picard iteration can be considered as the
discretized version of the Picard iteration y[k+1](t) = y0 + ∫ t

0 f (τ, y[k](τ ))dτ for ODE
initial value problems.

To understand the asymptotic convergence properties, we notice that after each standard
Picard iteration, similar to the SDC iterations, the error will be reduced by a factor of O(λΔt).
We therefore compare the constant prefactor determined by the spectral radius of S − S̃ in
the SDC correction matrices Cns and the radius of S in the Picard correction matrix CP

ns.
In (a) of Fig. 5, we compare the spectral radius (modulus of the largest eigenvalue |λ|max )
of S for Picard iteration and that of S − S̃ for SDC. It can be seen that asymptotically the
SDC iterations have a similar convergence rate as the Picard iterations when λΔt is small.
In (b) of Fig. 5, we also show how the second largest eigenvalues change as a function of the
number of Gaussian nodes for the SDC and Picard iterations. In Fig. 6, we plot the eigenvalue
distributions of the matrix S − S̃ in the SDC method and S in the Picard iterations for (a)
p = 10 and (b) p = 20, respectively. In Fig. 7, we plot the normalized eigenvectors of the
matrix S− S̃, and in Fig. 8, the normalized eigenvectors of S, both for p = 15. These vectors
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can be considered as the discretized eigenfunctions. Each component v j in the eigenvector
v is considered as the eigenfunction value at t j .

One interesting observation is that even though the spectral radii of the two correction
matrices are similar in magnitude (which implies similar convergence rates for a large num-
ber of iterations), the eigenvalue distributions and structures of the eigenvectors are very
different. For example, for the matrix S− S̃ in the SDC iterations, zero is an eigenvalue and
the corresponding eigenvector is the constant vector. Notice that for both methods, when a
Taylor expansion is applied to the error term in the initial provisional solution, the constant
component is usually the largest term, followed by linear, then quadratic, and then higher
degree terms. So one should expect smaller initial error when using the SDC method and
SDC can effectively eliminate the dominating “low-frequency” error components. This is
validated numerically in Fig. 9, by implementing both the SDC and Picard iterations for the
model problem y′(t) = y(t) + f (t), where f (t) is chosen so that the analytical solution
is given by y(t) = 1

1+t . The figure shows how the errors decay after each SDC or Picard
iteration in one time step [0, 0.6]. In the simulation, p = 15 is used for both methods, and
the spectral radius of S − S̃ is approximately 0.049. It can be seen that the error from the
SDC iterations is smaller than that of the Picard iterations, and the asymptotic decay slope
of the Picard iterations approaches that of the SDC method. Also, the numerical value of the
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slope of the SDC curve is approximately −3.37, which is very close to the theoretical value
−3.53 ≈ log(0.6 · 0.049).

When the SDC methods are applied to the stiff systems where |λΔt | � 1, in Fig. 10,
we plot all the eigenvectors of the correction matrix Cs for p = 15. It can be observed that
higher frequency errors decay slower than the lower frequency errors because the moduli of
the corresponding eigenvalues are larger. Recall that for the initial provisional solution in the
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Fig. 10 Real (o) and imaginary (+) components of each eigenvector at the collocation points, stiff case,
p = 15, backward Euler preconditioned Gauss collocation formulation

SDC iterations, the low frequency errors are usually the dominating components. The overall
errors will therefore decay rapidly in the first few iterations, but “order reduction” or even
“divergence” is expected eventually for a large number of corrections due to the asymptotic
convergence properties determined by the spectral radius ρ(Cs). One interesting numerical
example can be found in Fig. 7 in [25], where the SDC method is applied to Andrews’
squeezing DAE system. For this specific example and different step sizes, the errors decay
in the first few iterations and start to increase once the dominating error becomes the high
frequency component corresponding to the largest eigenvalue. In existing deferred correction
implementations, such divergence (and order reduction for smaller p) was usually controlled
by fixing the total number of iterations to bound the growth of the eigenvectors corresponding
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to eigenvalues of large moduli, and by using smaller step sizes to reduce the magnitude of
the coefficients of these eigenvectors in the initial error.
Comment For general DAE systems, it is usually expected that in the discretized algebraic

equations, as S̃
−1

is applied to precondition S directly by applying the implicit function
theorem, the convergence of the SDC method for DAE systems will most likely depend on

the spectral radius of I − S̃
−1

S, especially for higher index DAE systems, and the numerical
properties of the SDC methods will be similar to the strongly stiff limit case for ODEs.

3.4 Different Deferred Correction Methods

In this subsection, we discuss several deferred correction strategies and present their proper-
ties. We focus on the “yp-formulation” but other formulations have also been studied and can
be included in the “deferred correction methods database”. In the “convergence procedure”,
appropriate deferred correction schemeswill be selected to reduce different error components
in the initial solution for faster convergence to the collocation formulation.

3.4.1 Backward Euler for Radau and Lobatto Collocation Formulations

We also studied the backward Euler preconditioned SDC type methods for the Radau IIa
collocation formulation (SDC-Radau) where the right end point t = Δt is included in the
spectral integration, and the Lobatto formulation (SDC-Lobatto) with both end points t = 0
and t = Δt used in the formulation.

For Radau IIa nodes, we found that the convergence behaviors of the SDC-Radau schemes
are similar to those of the Gaussian nodes in both the non-stiff (|λΔt | small) and stiff (|λΔt |
large) cases. In Table 2, we show the spectral radius ρ(C) of the correction matrices for
different numbers of Radau IIa nodes for the stiff case. It can be seen that when p ≥ 12, the
SDC-Radau methods become divergent. We also plot the convergence region of the SDC-
Radau in Fig. 11. Similar to the Gauss collocation case, our numerical results show that the
methods are A-convergent for smaller p, but become divergent when p is large. Also, none
of these formulations are L-convergent.

For Lobatto nodes, the left end point (t = 0) is included in the integration quadrature and
we also add t0 = 0 to the collocation formulation. It is easy to see that all entries in the first
row of the integration matrix S (representing

∫ 0
0 Y (τ )dτ ) will be zero. We denote

S =
[
01×1 01×(p−1)
S21 S22

]

,

Table 2 ρ(C) for different numbers of nodes, SDC-Radau

n 2 3 4 5 6 7 8

ρ(C) 0.2500 0.4344 0.6184 0.7364 0.8161 0.8726 0.9146

n 9 10 11 12 13 14 15

ρ(C) 0.9469 0.9724 0.9931 1.0101 1.0244 1.0365 1.0470

n 16 17 18 19 20 25 50

ρ(C) 1.0560 1.0639 1.0709 1.0772 1.0827 1.1037 1.1444
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Fig. 11 Contour of ρ(C) for a p = 4 and b p = 10 for SDC-Radau, λΔt = x + iy

where S21 is the (p− 1)× 1 vector and S22 is the (p− 1)× (p− 1) submatrix. The equation
at t = 0 is simply the initial consistency condition Ỹ0 = f (t0, y0). The low order quadrature
rule can be represented in a similar way as

S̃ =
[
01×1 01×(p−1)

S̃21 S̃22

]

.

When the backward Euler’s method (rectangular rule using the right end point) is used, S̃21
is a zero vector, and S̃22 contains the lengths of the subintervals between adjacent Lobatto
quadrature nodes similar to Eq. (5). Applying the Woodbury matrix identity, the correction
matrix can be simplified as

C = I −
[
1 0
(I − ΔtλS̃22)−1ΔtλS̃21 (I − ΔtλS̃22)−1

] [
1 0
−λΔt S21 (I − λΔt S22)

]

=
[
0 0
(I − λΔt S̃22)−1λΔt (S21 − S̃21) I − (I − λΔt S̃22)−1(I − λΔt S22)

]

.

One therefore only needs to study the “sub-correction matrix” I − (I − λΔt S̃22)−1(I −
λΔt S22) to understand the convergence properties of the original correction matrix. For stiff
systems when |λΔt | is large, one needs to study the matrix I − S̃−1

22 S22. In Table 3, we show
the spectral radius of this matrix for stiff ODE systems. Similar to the Gaussian and Radau
IIa cases, the SDC-Lobatto methods become divergent when p > 14 and order reduction
is expected for smaller numbers of nodes. For comparison, we also plot the convergence
regions of SDC-Lobatto methods in Fig. 12.
Comment In most existing analysis and implementations of deferred correction methods, a
fixed number of iterations is performed and the resulting “solution”may still be far away from
the converged solution in each time step, hence one should expect a relatively large error in
the initial value y0 for the next step. For stiff problems, the large errormay accumulate rapidly
when the number of time steps increases in any yp-formulation using the left end point t = 0.
This can be shown by studying the initial provisional solution Ỹ[0] = (I −λΔt S̃)−1(λy0+F)

[also see Eq. (10)]. When the left end point is used in the collocation formulation, as
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Table 3 ρ(C) for different numbers of nodes, SDC-Lobatto methods

n 3 4 5 6 7 8 9

ρ(C) 0.5000 0.5922 0.6837 0.7576 0.8150 0.8600 0.8957

n 10 11 12 13 14 15 16

ρ(C) 0.9247 0.9485 0.9685 0.9853 0.9998 1.0123 1.0233

n 17 18 19 20 21 25 50

ρ(C) 1.0330 1.0415 1.0492 1.0560 1.0622 1.0820 1.1333

(a) (b)

0.20.4

0.6

0.8

1

1.2

1.4

1.6

5 0 5

5

0

5

x

y 0.60.70.8

0.9

1

1.1

1.2

200 100 0 100 200
100

50

0

50

100

x

y

Fig. 12 Contour of ρ(C) for a p = 4 and b p = 10, SDC-Lobatto methods, λΔt = x + iy

(
I − λΔt S̃

)−1 =
[
1 0
(
I − ΔtλS̃22

)−1
ΔtλS̃21

(
I − ΔtλS̃22

)−1

]

,

the error in the first entry (corresponding to the left end point) of Ỹ[0] will be λ times the
error from the initial value y0. When this entry is used in the spectral integration scheme, this
error will propagate to other collocation points and magnify the overall error by O(λ) in the
final solution at each time step, resulting in an unstable numerical time marching scheme.
Therefore, the yp-formulation with the left end point t = 0 should be avoided in the standard
deferred correction methods.

3.4.2 Backward Euler for Uniform Collocation Formulations

It is well-known that the uniform interpolations suffer from the Runge phenomena when
a large number of interpolation points are used, so in existing implementations, only low
order uniform collocation formulations (e.g., p < 10) are considered in the integral deferred
correction (InDC) methods [11]. In this subsection, we analyze the backward Euler precon-
ditioned deferred correction methods for the uniform yp-collocation formulations (denoted
as InDC-yp). In Fig. 13, we show the convergence regions for p = 4 and p = 5. The numer-
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Fig. 13 Contour of ρ(C) for a p = 4 and b p = 5 for InDC-yp, λΔt = x + iy

ically computed convergence regions show that when p = 4, the method is A-convergent.
However, the method is no longer A-convergent when p > 4.

The most interesting feature of the InDC-yp is the following theorem for stiff systems.

Theorem 3 For the InDC-yp method, when |λΔt | → ∞, the correction matrix S̃−1S − I
has eigenvalues equal to zero; and its Jordan canonical form consists of one Jordan block.

The proof is sketched in the “Appendix”. Because there only exist zero eigenvalues, we
conclude that the InDC-yp methods are L-convergent for p < 5. Clearly, the InDC methods
have better convergence properties, but larger error is expected from the converged solution
due to the uniform collocation points for large p.

3.4.3 Higher Order Preconditioners

In this subsection, we study the convergence properties of the second order trapezoidal rule
preconditioned yp-formulations.

We first consider the non-stiff case. The left end point (t = 0) is used in the first subinterval
by the trapezoidal rule. We add it to the collocation formulation to compare the trapezoidal
rule preconditioned Lobatto collocation formulation (denoted as SDC-Lobatto-T and the
corresponding correction matrix is denoted as CT

ns) with the backward Euler preconditioned
Lobatto collocation formulation SDC-Lobatto. From Fig. 14, it can be seen that the spectral
radius of S − S̃ from CT

ns is smaller than that from the SDC-Lobatto. Therefore for non-stiff
problems, the second order trapezoidal rule preconditioned SDC-Lobatto-T should converge
asymptotically faster. Also, using the trapezoidal rule predictor, the initial low order solution
should have much better accuracy (smaller error). One interesting observation is that as the
spectral radius of the trapezoidal rule preconditioned SDC-Lobatto-T method is non-zero,
one should only expect the error to decay by the factor λΔt after each iteration, assuming
the initial error has all eigenmodes. This disagrees with some existing claims that the error
decays by a factor Δt2 after each 2nd order SDC correction. Such disagreements were also
pointed out in [11], where the integral deferred correction methods are studied as special
Runge–Kutta approaches.

For stiff problems, the second order trapezoidal rule preconditioned SDC-Lobatto-T iter-
ations show worse convergence properties. In Table 4, we show the spectral radius of the
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Table 4 ρ(C) of SDC-Lobatto-T, strongly stiff limit case

n 3 4 5 6 7 8 9

|λ|max 0.3333 0.6180 0.8934 1.1658 1.4370 1.7076 1.9780

n 10 11 12 13 14 15 16

|λ|max 2.2482 2.5183 2.7884 3.0585 3.3285 3.5986 3.8687

n 17 18 19 20 21 25 50

|λ|max 4.1388 4.4089 4.6789 4.9490 5.2191 6.2995 13.0530

correction matrix in this regime. It can be seen that the trapezoidal rule preconditioned SDC
iterations become divergent when p > 5. Therefore, without resolving the “order reduction”
and divergence problems, the higher order trapezoidal rule preconditioner is usually not
recommended for solving the pseudo-spectral discretization for stiff ODE and DAE systems.

Another interesting observation is obtained when the trapezoidal rule preconditioner is
applied to the uniform collocation formulation (denoted as InDC-yp-T) of non-stiff problems,
described in the following theorem, and the proof is given in the “Appendix”.

Theorem 4 For a non-stiff ODE system and its uniform collocation discretization, after each
trapezoidal rule preconditioned InDC-yp-T iteration, the error decays by the factor (Δt)2

before reaching its discretization order (Δt)p+1.

Therefore, higher order preconditioners are more effective to reduce the non-stiff errors
when the uniform nodes are used. However many of these schemes show worse convergence
properties for stiff systems in the standard deferred correction iterations, e.g., we found that
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for p = 6, the trapezoidal rule preconditioned iterations are divergent. For smaller p, severe
order reduction is observed.

3.4.4 Krylov Deferred Correction Methods

For non-stiff problems, existing numerical results show that theNeumann-series type deferred
correctionmethods are very effective in the solution procedure to converge to the correspond-
ing collocation formulation. This is unfortunately not true for stiff problems, and one has
to deal with the divergence and order reduction for stiff ODE systems in the convergence
procedure. One effective solution in existing literature is to search for the optimal solution
in the Krylov subspace. One can use the Krylov deferred correction (KDC) methods [24,25]
to solve the preconditioned formulation in Eq. (15). For linear stiff problems, instead of the
Neumann series solution in Eq. (14), one can search for the optimal least squares solution in
the Krylov subspace Kk(C, Ỹ[0]) = span{Ỹ[0],CỸ[0],C2Ỹ[0], . . . ,Ck−1Ỹ[0]} using exist-
ing Krylov subspace methods such as the GMRES or BiCGStab as the matrix C is usually
non-symmetric [4,28,38].

For nonlinear stiff problems, one can apply the Jacobian-free Newton Krylov (JFNK)
methods to find the root of the low-ordermethod preconditioned system δ̃ = H(Ỹ), where the
“input” variable Ỹ is the approximate solution and the “output” δ̃ is the low-order estimate of
the error in the SDC correction. Note that when Ỹ solves the original collocation formulation
in Eq. (2), the output δ̃ = 0. Also, when the output is a good estimate of the error in the input
variable Ỹ, by applying the implicit function theorem, one can show that the Jacobian matrix
ofH is close to−I. We refer interested readers to [29,31] for details of the JFNKmethods. In
the following we present the algorithmic structure of one step of the KDCmethods marching
from 0 to Δt using existing implementations of the JFNK methods.

Krylov deferred correction method: Subroutine OneStep(y(t0 + Δt), Y, y(t0), t0, Δt)

Comment:
Input: Initial values y(t0) at t = t0 and step size Δt .
Output: Solution y(t0 + Δt) at t0 + Δt and derivatives Y at collocation nodes.

Step 1, Predictor: Use a low order method to find an approximate solution Ỹ
as the initial guess.

Step 2, JFNK: Call existing JFNK solver to find the root Y of the equation
δ̃ = H(Ỹ) = 0.

Step 3, Output: Use high order quadrature and integrate Y to get y(t0 + Δt).

In the JFNK method, the function evaluation δ̃ = H(Ỹ) is simply one SDC iteration
for the given provisional solution Ỹ, and such a function evaluation module should be pro-
vided by the user. We refer interested readers to [24–26] for details of the KDC algorithm
and preliminary numerical results. Though KDC is a promising method, we do find that
straightforward application of existing JFNK packages in KDC is not optimal. For small Δt ,
existing JFNK methods often encounter difficulty converging to the collocation formulation
even though the original deferred correction approaches converge satisfactorily. Also, for
some settings, the deferred correction approach converges faster than the JFNK. We believe
the reason is that the general purpose JFNK solvers are unaware of the special structures in
the preconditioned system implicitly given by the functionH. Modification and optimization
of the JFNK methods for the numerical framework will be further addressed in Sect. 4.
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3.5 Integral Formulation, yp-Formulation, and Convergence

Our analysis also shows that using different formulations will also change the convergence
properties of the deferred correction iterations. In this subsection, we compare the integral
formulation with the yp-formulation for the linear ODE y′(t) = λy(t) + f (t) for both non-
stiff and stiff cases. In the yp-formulation, we use Y (t) = y′(t) as the unknown and solve the
discretized system in Eq. (8). The iterations for the yp-formulation are given in Eq. (14) and
the converged solutionY is explicitly given byY = (I −λΔt S)−1(λy0+F).After findingY,
the solution y is constructed using y = y0+Δt SY. In the integral formulation, one computes
y(t) directly by solving the Picard integral equation y(t) = y0 + ∫ t

0 (λy(τ ) + f (τ )) dτ .
The discretized system is given by y = y0 + Δt S (λy + F), and the converged solution is
given explicitly by y = (I − λΔt S)−1(y0 + Δt SF). The Neumann series expansion for the
preconditioned formulation

(
I − λΔt S̃

)−1
(I − λΔt S)y =

(
I − λΔt S̃

)−1
(y0 + Δt SF) = ỹ[0]

is given by

ỹ[n] = ỹ[0] + Cỹ[0] + C2ỹ[0] + · · · + Cn ỹ[0]

where C is the same correction matrix as in the yp-formulation. It is easy to verify that

y0 + Δt SY = y0 + Δt S
(
(I − λΔt S)−1(λy0 + F)

) = (I − λΔt S)−1(y0 + Δt SF),

therefore when convergent, the yp-formulation gives the same solution (left of the identity)
as that from the integral formulation (right of the identity).

However, after a fixed number K iterations, the truncated expansions will have different
properties. Assuming both series expansions are convergent, the error from the truncated
yp-formulation is then given by

erryp = Δt S

( ∞∑

k=K+1

CkỸ[0]
)

= Δt S

( ∞∑

k=K+1

Ck
(
I − λΔt S̃

)−1
(λy0 + F)

)

, (18)

and the error from the integral formulation is given by

errintegral =
∞∑

k=K+1

Ck ỹ[0] =
∞∑

k=K+1

Ck
(
I − λΔt S̃

)−1
(y0 + Δt SF) . (19)

Comparing the error terms, we can see that for non-stiff problems when |Δtλ| � 1, the error
from the yp-formulation should be one order higher (in Δt) than the integral formulation
due to the additional Δt factor. However for stiff problems when |Δtλ| � 1, the integral
form is preferred. Also, when the deferred correction methods are applied to the integral
formulations with the left end point t = 0, the numerical schemes should be more stable in
time marching than the corresponding yp-formulation case discussed in Sect. 3.4.1, as the
term λy0 doesn’t exist in the integral formulation.

4 Algorithm Design Guidelines and Numerical Experiments

In most existing deferred correction implementations, one applies a particular deferred cor-
rection method for the corresponding collocation formulation. For stiff systems, when the
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estimated error is still large after a fixed number of iterations due to the order reduction or
divergence, a commonly used strategy is to reduce the step size as the error components
corresponding to the “bad eigenvalue” in the provisional solution become smaller when Δt
decreases. One can therefore “control” the growth of the divergent or slowly convergent
components in the Neumann series expansion by stopping the iterations before they become
significant. The drawback of this strategy is that this approach only works when the step size
is reasonably small (due to the divergence or order reduction), and one can no longer take
advantage of the large step size in the optimal collocation formulations.

In the newnumerical framework, insteadof usingone single deferred correctionmethod for
a particular collocation formulation, different deferred correction techniques can be applied
to reduce different components in the error of the provisional solution, to more efficiently
converge to the solution of the “optimal” collocation formulation for the underlying ODE
system. In the following, we provide some guidelines for each step of the numerical frame-
work. Preliminary numerical experiments are also performed to support these guidelines. We
want to mention that the new perspective of looking at the deferred correction methods as
iterative schemes to converge to the optimal collocation formulation also allows the intro-
duction of other existing effective preconditioning techniques for faster convergence, e.g.,
domain decomposition or multigrid techniques commonly used in today’s spatial solvers.

4.1 Optimal Collocation Formulation

A good collocation formulation can be selected from the “collocation formulation database”
based on the physical properties of the system. For ODE systems, our default choice is the
Legendre polynomial based Gauss collocation formulation. In general, the orthogonal basis
functions based collocation formulations are recommended, as it is a widely accepted fact
that they outperform the uniform nodes based formulations, by allowing larger step sizes and
better accuracy. This is demonstrated by comparing the solutions from the Gauss and uniform
collocation formulations for the non-stiff ODE system y′(t) = y(t) + f (t) with analytical
solution y(t) = 1

1+5(t−0.5)2
(and f (t) is determined accordingly). In Table 5, we list the

errors for different numbers of nodes for both formulations, where the numerical solution
is derived by solving the collocation formulations directly using Gauss elimination (instead
of deferred correction iterations) in one time step [0, 1], and the L2 error (at all collocation
points) is used for both cases. Similar experiments are performed for the functions y(t) = t20,
y(t) = e4t , y(t) = cos(4t), and y(t) = e−t2 , and results are presented in Fig. 15. Except for
the case y(t) = t20 and n = 20 where both formulations achieve machine precision, it can
be seen that for all other cases, the results from the Gauss collocation formulations are more
accurate than those from the uniform collocation formulations.

There are several factors in finding the optimal formulation for a specific ODE system.
One may need to know the properties of the solution to determine which formulation will
need fewer points for the same accuracy requirement. In general the orthogonal basis based
collocation formulations or the skeletonization based schemes should give good results
for most problems, and uniform collocation formulations should be avoided, especially
when one wants to use a big time step size with a large number of nodes for efficiency
considerations.

4.2 Techniques for Convergence Procedure

Existing studies of the deferred correction methods show that it is more efficient to solve
the collocation formulation using an iterative approach instead of the direct Gauss elimina-
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Table 5 Errors from Gauss and uniform collocation formulations, y(t) = 1
1+5(t−0.5)2

n 4 5 6 7 8 9 10

ErrU 1.51e−1 1.05e+0 4.82e−2 5.27e−1 1.78e−2 2.68e−1 7.11e−3

ErrG 3.83e−2 2.23e−2 5.91e−3 4.11e−3 1.05e−3 7.99e−4 1.99e−4

n 11 12 13 14 15 16 17

ErrU 1.36e−1 2.97e−3 6.94e−2 1.28e−3 3.52e−2 5.61e−4 1.78e−2

ErrG 1.57e−4 3.86e−5 3.11e−5 7.55e−6 6.17e−6 1.48e−6 1.23e−6

n 18 19 20 21 25 31 41

ErrU 2.50e−4 9.03e−3 1.13e−4 4.56e−3 1.15e−3 1.47e−4 4.66e−6

ErrG 2.93e−7 2.44e−7 5.81e−8 4.86e−8 1.94e−9 1.54e−11 4.88e−15
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Fig. 15 Accuracy comparisons of Gauss and uniform collocation formulations

tion, and the low-order methods are good preconditioners for the pseudo-spectral collocation
formulation. In the “convergence procedure” of the numerical framework, different precon-
ditioning techniques can be integrated to eliminate the errors of the provisional solutions
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Table 6 Errors and Orders of the backward Euler and trapezoidal rule preconditioned deferred correction
iterations for different collocation formulations, non-stiff case

nsteps 4 8 16 32 Order

yp, BE, Uniform+B, 0 SDC Iters 3.14e−1 7.55e−2 1.83e−2 4.48e−3 2.04

yp, BE, Uniform+B, 1 SDC Iters 2.64e−2 2.72e−3 3.06e−4 3.62e−5 3.17

yp, BE, Uniform+B, 2 SDC Iters 2.31e−3 1.00e−4 5.19e−6 2.94e−7 4.31

yp, BE, Lobatto, 0 SDC Iters 3.78e−1 9.39e−2 2.32e−2 5.76e−3 2.01

yp, BE, Lobatto, 1 SDC Iters 4.56e−2 4.93e−3 5.71e−4 6.85e−5 3.13

yp, BE, Lobatto, 2 SDC Iters 6.43e−3 2.80e−4 1.48e−6 8.53e−7 4.29

yp, TR, Uniform+B, 0 SDC Iters 1.49e−2 1.88e−3 2.28e−4 2.78e−5 3.02

yp, TR, Uniform+B, 1 SDC Iters 6.90e−5 1.62e−6 4.36e−8 1.30e−9 5.23

yp, TR, Uniform+B, 2 SDC Iters 3.11e−5 2.56e−7 1.33e−9 6.43e−12 7.42

yp, TR, Lobatto, 0 SDC Iters 2.18e−2 3.11e−3 4.01e−4 5.03e−5 2.92

yp, TR, Lobatto, 1 SDC Iters 7.44e−5 5.25e−6 3.74e−7 2.50e−8 3.84

yp, TR, Lobatto, 2 SDC Iters 2.74e−6 7.31e−8 2.25e−9 6.92e−11 5.08

Integral, BE, Uniform+B, 0 SDC Iters 6.20e−1 2.78e−1 1.32e−1 6.45e−2 1.08

Integral, BE, Uniform+B, 1 SDC Iters 5.38e−2 1.01e−2 2.22e−3 5.22e−4 2.23

Integral, BE, Uniform+B, 2 SDC Iters 5.44e−3 4.00e−4 3.89e−5 4.32e−6 3.43

Integral, BE, Lobatto, 0 SDC Iters 8.38e−1 3.71e−1 1.75e−1 8.46e−2 1.10

Integral, BE, Lobatto, 1 SDC Iters 9.88e−2 1.89e−2 4.15e−3 9.74e−4 2.22

Integral, BE, Lobatto, 2 SDC Iters 1.52e−2 1.11e−3 1.08e−4 1.19e−5 3.43

Integral, TR, Uniform+B, 0 SDC Iters 1.55e−2 3.89e−3 9.73e−4 2.43e−4 2.00

Integral, TR, Uniform+B, 1 SDC Iters 1.47e−5 1.17e−6 9.78e−8 6.46e−9 3.70

Integral, TR, Uniform+B, 2 SDC Iters 3.08e−5 2.52e−7 1.29e−9 5.80e−12 7.46

Integral, TR, Lobatto, 0 SDC Iters 2.62e−2 7.04e−3 1.80e−3 4.52e−4 1.96

Integral, TR, Lobatto, 1 SDC Iters 6.08e−5 2.76e−6 1.39e−7 7.76e−9 4.31

Integral, TR, Lobatto, 2 SDC Iters 7.98e−7 1.42e−8 9.46e−9 5.98e−10 3.50

efficiently. In this section, we compare different strategies for stiff and non-stiff problems,
and provide guidelines for faster convergence.

We first compare different schemes for the non-stiff model problem y′(t) = y(t) + f (t)
with analytical solution y(t) = 1

1+t (and f (t) determined accordingly). In Table 6, we show
how the errors change for different numbers of deferred correction iterations using different
low-order preconditioners and collocation schemes. We march from t = 0 to tfinal = 3
using “nsteps” time steps, and set the number of node points to p = 7 for each time step
in all cases. In the “Uniform+B(oth)” collocation formulation, both end points are used in
the formulation. We also tested the Radau IIa nodes and Gaussian nodes and results are very
similar to those from the Lobatto collocation formulation for the non-stiff case in Table 6.
We therefore neglect those results in the table. It can be seen that:

(a) The order of the yp-formulation is 1 order higher than the corresponding integral formu-
lation.

(b) After each correction, the backward Euler preconditioned deferred correction methods
improve the convergence order by 1 for both the yp-formulation and integral formulation.
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(c) For both the yp-formulation and integral formulation, the trapezoidal rule preconditioned
deferred correction methods improve the convergence order by 2 after each iteration for
the uniform collocation formulations. This is not true for the Lobatto nodes.

(d) For all cases in this table, the trapezoidal rule preconditioner outperforms the backward
Euler preconditioner for this non-stiff linear problem after the same amount of iterations.

These results agreewith our analysis in previous sections, and suggest the following strategies
to start the iteration procedure: (1) one should apply a high order “predictor” to uniform
collocation formulations to derive a more accurate initial provisional solution Y[0] using
the yp-formulation; (2) to reduce the non-stiff error components in the provisional solution,
the higher order method (e.g., trapezoidal rule) preconditioned deferred correction schemes
for the yp-formulation with uniform grids are preferred as they show better convergence

properties; (3) one should compare the result δ̃
[0]

from the first deferred correction iteration
to the initial provisional solution, to check if Y[0] is an acceptable initial guess for the
Newton’s method to converge to the collocation formulation solution. One possible measure

is to check if the ratio ||δ̃[0]||/||Y[0]|| is sufficiently small; and (4) for the first several deferred
correction iterations, as the dominating error comes from the non-stiff part, it is probably
unnecessary to search for the solution in the Krylov subspace, and the fixed point type
iterations (Neumann series for linear problems) should provide good convergence properties.

This can be measured by the ratio of ||δ̃[n+1]||/||δ̃[n]||. When the ratio is small, standard
deferred correction iterations should still be acceptable.

A relatively large ratio ||δ̃[n+1]||/||δ̃[n]|| (e.g.> 1/2) suggests that the dominating error no
longer comes from the non-stiff components, and algorithms which can efficiently reduce the
errors from the stiff components should be applied. It is unfortunately still an open problem
what the optimal strategy should be to reduce the errors from the stiff components. In this
paper, we consider possible strategies for two scenarios: (1) when only the Neumann series
type iterations are used as in standard deferred correction procedures, and (2)when theKrylov
subspace based iterative methods can be applied to further accelerate the convergence. Note
that many researchers prefer the standard deferred correction methods in the first scenario
as it doesn’t require additional overhead operations (e.g., solving the least squares problem
using the Krylov subspace methods) or additional memory to store the vectors in the Krylov
subspace. However when scenario (1) is used to solve stiff ODE systems, serious order
reduction (or even divergence) is expected unless very small time step sizes are used. In the
remainder of this subsection, we provide some guidelines for scenario (1), and in Sect. 4.4,
we show preliminary implementation of the numerical framework for scenario (2) based
on the Jacobian-free Newton–Krylov methods, which we believe are more appropriate for
reducing the stiff error components.

In Table 7, we check the numerical properties of different deferred correction schemes for
the stiff model problem y′(t) = λy(t) + f (t) with analytical solution y(t) = 1

1+t (and f (t)

determined accordingly). We set λ = −105 and use the same settings for other parameters
as in the non-stiff case. We show how the errors change for different numbers of deferred
corrections in a time marching scheme. In the table, we add the “uniform+R” collocation
formulation where only the right hand side is included in the spectral integration. We focus
on the first order backward Euler preconditioner, and neglect results from the trapezoidal
rule based schemes due to their poor convergence properties in the “strongly stiff limit” case
as summarized in Table 4. The purpose of this experiment is not to identify which method
should be used to reduce the stiff components errors, but to find out which methods should
be avoided when standard deferred correction methods are preferred, especially when one
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Table 7 Errors and orders of the backward Euler preconditioned deferred correction iterations for different
collocation formulations, stiff case

nsteps 4 8 16 32 Order

yp, Uniform+B, 0 SDC Iters 2.04e+9 9.89e+20 1.17e+42 3.80e+79 –

yp, Uniform+B, 2 SDC Iters 7.09e+6 2.86e+17 3.12e+36 1.11e+70 –

yp, Lobatto, 0 SDC Iters 1.62e−1 2.84e−1 2.31e+0 4.98e+2 –

yp, Lobatto, 2 SDC Iters 1.80e+5 9.16e+12 1.26e+26 5.81e+47 –

yp, Uniform+R, 0 SDC Iters 6.21e−1 8.61e+0 4.69e+3 4.46e+9 –

yp, Uniform+R, 2 SDC Iters 2.73e−2 1.39e−1 3.24e+1 1.64e+7 –

yp, Radau IIa, 0 SDC Iters 1.42e−1 2.57e−1 2.21e+0 5.31e+2 –

yp, Radau IIa, 2 SDC Iters 1.25e−4 2.61e−5 6.01e−6 1.44e−6 2.14

Integral, Uniform+B, 0 SDC Iters 3.99e−3 1.97e−3 9.82e−4 4.90e−4 1.01

Integral, Uniform+B, 2 SDC Iters 3.87e−4 1.50e−4 6.71e−5 3.17e−5 1.20

Integral, Lobatto, 0 SDC Iters 7.38e−4 1.41e−4 2.77e−5 3.78e−6 2.51

Integral, Lobatto, 2 SDC Iters 1.14e−3 6.12e−5 3.00e−5 2.34e−6 2.78

Integral, Uniform+R, 0 SDC Iters 3.41e−3 1.69e−3 8.41e−4 4.19e−4 1.01

Integral, Uniform+R, 2 SDC Iters 4.01e−6 4.66e−7 4.93e−8 9.87e−10 3.92

Integral, Radau IIa, 0 SDC Iters 7.96e−4 3.97e−4 1.99e−4 9.99e−5 1.00

Integral, Radau IIa, 2 SDC Iters 1.90e−4 7.49e−5 3.26e−5 1.50e−5 1.22

doesn’t require the iteration procedure to converge to the collocation formulation and hence
allows the existence of relatively large errors in the solution.

Our observations can be summarized as follows:

(a) Without converging to the collocation formulation, the deferred correction schemes for
the yp-formulation using the left end point should be avoided, as the large error in the
initial value will be magnified by the factor λ and will propagate to later steps when
marching in time, as discussed in Sect. 3.5 (see results fromUni f orm+B and Lobatto).

(b) When the iterations converge to an acceptable accuracy, the yp-formulation without the
left end point will become acceptable (see the case yp, Radau IIa, 2 SDC Iters).

(c) When there are large errors in the initial solution, the integral formulations give more
stable results than the yp-formulation, as discussed in Sect. 3.5 (see Eqs. 18, 19).

(d) After two SDC iterations, the best results are from the integral formulationwith uniform
grids without the left end point (Uniform+R). The better accuracy is the result of smaller
initial error (without using the left end point) and faster convergence due to the “close-
to-zero” eigenvalues in the correction matrix as studied in Theorem 3 in Sect. 3.4.2.

(e) Order reduction is observed for the Uni f orm + B, Lobatto, and Radau cases using
the integral formulation, due to one or both of the following two reasons: (1) slower
convergence due to the spectral radius of the correction matrix (Lobatto and Radau
cases, see Sects. 3.3.1 and 3.4), and (2) large initial error from using the left end point
(Uni f orm + B and Lobatto cases, see Sect. 3.4.1).

Note that in the previous numerical experiments, we follow the standard deferred correc-
tion schemes and consider both the converged and non-converged solutions in the simulations.
Also, in the initial error, we have both stiff and non-stiff components. In the new numerical
framework, as we first reduce the errors from the non-stiff components, it is therefore more
appropriate to focus on the rate of convergence (determined by the spectral radius of the
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Fig. 16 Convergence rate for backward Euler preconditioned Gauss (left) and uniform (right) collocation
formulations for different stiffness parameters λ

correction matrix discussed in Sect. 3) for different schemes for stiff problems (instead of
checking the errors in the first few iterations that also include the initial errors as in the pre-
vious experiments). In Fig. 16, we compare the rate of convergence for the backward Euler
preconditioned deferred correction iterations for the integral formulations using the Gauss
collocation points to that using the uniform collocation points. Both schemes are applied to
the model problem y′(t) + sin(t) = λ (y(t) − cos(t)) with initial value y(0) = 1. We march
from t = 0 to t = 1 using one big step, and use 10 node points in the discretization. We only
test real λ values for λ = −10k , k = 1, . . . , 6. Our numerical results show that the scheme
using the uniform nodes converges at a faster rate compared to that using the Gauss type
nodes. For λ = −1e + 6, the error decays rapidly when the uniform nodes are used. This
is consistent with the analysis in Theorem 3. We therefore conclude that when the standard
deferred correction scheme is preferred, the backward Euler preconditioned integral deferred
correction schemes for the uniform collocation formulation are acceptable schemes to reduce
the stiff error components. However order reduction (and divergence for large numbers of
nodes) is still expected, e.g., the case when λ = −1e + 2 in the numerical experiments.
However as we discussed in Sect. 4.1, when the accuracy of the converged solution of the
collocation formulation is considered, the Gauss type nodes based collocation formulations
are preferred.

4.3 Mapping Between Different Node Points

Analysis and numerical experiments in previous sections show that when the uniform nodes
are used in the “convergence procedure”, better convergence properties are usually expected
compared with deferred correction schemes using other types of nodes. However the con-
verged solutions are less accurate and may suffer from the Runge phenomenon. In this
subsection, we show how to use different nodes for the provisional solution Ỹ and error δ

for both the yp- and integral formulations, so that when the deferred correction iterations for
the uniform collocation formulations are convergent, the converged solution will solve the
orthogonal basis based collocation formulations.

We first consider the yp-formulation given in Eq. (6), and its error’s equation is given by

δ(t) =
(

f (t, y0 +
∫ t

0

(
Ỹ (τ ) + δ(τ ))dτ

)
− f

(

t, y0 +
∫ t

0
Ỹ (τ )dτ

))

+ ϕ(t)
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where ϕ(t) =
(
f (t, y0 + ∫ t

0 Ỹ (τ )dτ) − Ỹ (t)
)
is usually referred to as the residual function

in the spectral deferred correction methods. Introducing the linear mapping PuG which maps
the polynomial values at the Gauss nodes to those at the uniform nodes, we can discretize
the error’s equation at uniform node points as

δ̃u =
(
F

(
tu, y0+PuG

(
Δt SGỸG

)
+Δt S̃u δ̃u

)
− F

(
tu, y0 + PuG

(
Δt SGỸG

)))
+PuGϕG

(20)

where ϕG = F(tg, y0 + Δt SGỸG) − ỸG is the discretized residual at the Gauss colloca-
tion nodes, the sub-indices u and G represent that the corresponding vectors or integration
matrices are defined on the uniform (u) or Gauss (G) nodes, respectively. Once the low
order estimate of the error δ̃u is available, it can be mapped to the Gauss nodes using a
precomputed linear mapping PGu = P−1

uG , and PGu δ̃u can be added to the provisional solu-
tion ỸG defined on the Gauss nodes in the deferred correction procedure. Note that when
the residual ϕG = 0 (meaning that ỸG solves the Gauss collocation formulation), δ̃u = 0.
Similar to Sect. 3.2, for a linear ODE of the form y′(t) = λy + f (t) with given initial
condition y(0) = y0, detailed matrix analysis shows that this mapping procedure, if applied
from the beginning of the deferred correction iterations, is equivalent to solving the Gauss
collocation formulation YG = λ(y0 + Δt SGYG) + FG (with given y0 = [y0, y0, . . . , y0]T
and F = [ f (t1), f (t2), . . . , f (tp)]T ) using the preconditioner PGu(I − λΔt S̃u)−1PuG . The
preconditioned system is given by

PGu

(
I−λΔt S̃u

)−1
PuG

(
I−λΔt Sg

)
YG = PGu

(
I − λΔt S̃u

)−1
PuG (λy0 + FG)= Ỹ[0].

(21)

This mapping procedure can be applied in the same way to the integral Gauss collocation
formulation represented by yG = y0 + Δt SG f(tG , yG). Defining the residual function as
ϕG = y0 + Δt SG f(tG , yG) − yG , the discretized error’s equation at uniform nodes is then
given by

δ̃u = Δt S̃u
(
f
(
tu, PuGyG + δ̃u

)
− f (tu, PuGyG)

)
+ PuGϕG , (22)

where the operators PGu and PuG are the same operators as the yp-formulation. Clearly when
ϕG = 0, the error δ̃u = 0.

4.4 Revisit the Jacobian-Free Newton–Krylov Methods

The new numerical framework allows many different strategies to be applied to the “con-
vergence procedure”. In the previous sections, we mainly focused on the standard deferred
correction type schemes and their impacts to the convergence properties. There are other
techniques which can be introduced to further accelerate the convergence, e.g., the multigrid
(or multi-order) techniques. These additional techniques are currently being actively stud-
ied and tested numerically for different scenarios. The purpose of this paper is to present
the new perspective of studying existing deferred correction methods, and to introduce a
numerical framework for more accurate and efficient solutions of time dependent differential
equation problems. There are many open questions on the “optimal” strategies to accelerate
the “convergence procedure” for different types of problems. In the following, we present a
preliminary implementation of the numerical framework utilizing the Krylov deferred cor-
rection methods presented in Sect. 3.4.4, where a modified version of existing Jacobian-free
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Newton–Krylov method is adopted to accelerate the convergence procedure in the second
step of the KDC algorithm.

In the algorithm, we will continue using the deferred correction type function evaluations

δ̃
[k] = H(Ỹ[k−1] + δ̃

[k−1]
) as they effectively control the growth of the non-stiff errors, even

though the Jacobian matrix of the low order techniques preconditioned system is no longer
close to −I for the stiff components. We introduce a predefined but adjustable parameter
η1 < 1 to check if the initial provisional solution provided by the predictor can serve as a good
initial guess for the Newton’s method when solving the nonlinear collocation formulation,
and another parameter η2 < 1 to check if the standard deferred correction schemes are
still effective. When order reduction or divergence is observed, we search for the optimal
solution in the Krylov subspace using a modified Jacobian-free Newton–Krylov method,

where the Krylov subspace is updatedwhen the low order estimate δ̃
[k] = H(Ỹ[k−1]+ δ̃

[k−1]
)

shows no significant improvement compared with previous step results, and the optimal

solution for the linearized equation JHx = −δ̃
[k]

in each Newton’s iteration is sought in the
recycled and updated Krylov subspace. In the modified JFNK, instead of the finite difference

approximation as used in standard JFNK methods, the matrix-vector product JH δ̃
[k−1]

is
computed using the Taylor expansion

δ̃
[k] = H

(
Ỹ[k−1] + δ̃

[k−1]) ≈ H
(
Ỹ[k−1]) + JH δ̃

[k−1]
,

which is valid when O(||δ̃[k]||) ≈ O(||δ̃[k−1]||), i.e., when the result from one deferred
correction iteration no longer converges efficiently for stiff systems. We stop the iterations in
the “convergence procedure” when the solution is sufficiently close to that of the collocation
formulation, measured by a prescribed error tolerance. The algorithm is described in detail
by the following pseudo-code.

JFNK based “convergence procedure”

Step 1: Predictor: Use a “good” low order method to find an approximate solution Ỹ[0]
using the uniform yp-collocation formulation.

Step 2: Check Ỹ[0]: Use a “good” low order method to solve the error’s equation to

get a low order estimate of the error δ̃
[0] = H(Ỹ[0]).

if ||δ̃[0]||/||Ỹ[0]|| < η1,

Ỹ[1] = Ỹ[0] + δ̃
[0]
,

else
Select a smaller time step size, go to Step 1.

endif
Step 3: Standard Deferred Correction Iterations: Start from k = 1, update the

error’s equation and get a low order estimate of the error δ̃
[k] = H(Ỹ[k]).

if ||δ̃[k]|| < etol ,

Go to Step 5 with the converged solution Ỹ[k] + δ̃
[k]
.

elseif ||δ̃[k]||/||δ̃[k−1]|| < η2,

Ỹ[k+1] = Ỹ[k] + δ̃
[k]
, k + +, repeat Step 3.

else
Go to Step 4.

endif
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Step 4: Modified JFNK:

Evaluate δ̃
[k+1] = H(Ỹ[k] + δ̃

[k]
).

if ||δ̃[k+1]|| < etol ,
Go to Step 5 with the converged solution Ỹ[k].

elseif ||δ̃[k+1]||/||δ̃[k]|| < η2,

Update Ỹ[k+1] = Ỹ[k] + δ̃
[k]
, k + +, go to Step 4.

elseif too many iterations in Step 4,
Select a smaller time step size, go to Step 1.

else

Update the Krylov subspace, by adding δ̃
[k]

and updating the corresponding

JH δ̃
[k]
, and by removing any outdated (inaccurate) δ̃

[ j]
and JH δ̃

[ j]
.

Solve the linearized equation JHx = −δ̃
[k+1]

by searching for the optimal
solution in the Krylov subspace.

Set Ỹ[k+1] = Ỹ[k] + δ̃
[k]
, δ̃

[k+1] = x, k + +, go to Step 4.
endif

Step 5: Output: Output the computed approximate solution.

We demonstrate the performance of this numerical framework by comparing its prelimi-
nary implementation with the standard SDC method and an existing JFNK implementation
from [28]. We apply these methods to a nonlinear ODE system which models the behavior of
vacuum tube circuits. It was proposed by B. Van der Pol in the 1920’s, and is often referred
to as the Van der Pol oscillator described by

{
y′
1(t) = y2(t),
y′
2(t) = (

1 − y21 (t)y2(t) − y1(t)
)
/ε.

(23)

This is a stiff ODE system when ε is small for relatively large time step sizes. In our sim-
ulation, following the work in [30] (see page 156, Sec. 7.2), we set the initial values as
[y(0), y′(0)] = [2,−0.6666654321121172] and focus on one time step [0,Δt]. We use the
Lobatto nodes based collocation formulation with 10 node points, and test different ε andΔt
values. In Fig. 17, we set ε = 0.01 and show how the relative errors decay after each “func-
tion evaluation” δ̃ = H(Ỹ) for three different time step sizes Δt = π (stiff), Δt = π/10
(mildly stiff), and Δt = π/100 (non-stiff). For the stiff case (Δt = π), our implemented
framework requires approximately 50 iterations to converge to machine precision, while the
general purpose JFNK and standard SDCmethod require 200 and 400 iterations, respectively.
For the mildly stiff case (Δt = π/10), these numbers become 50, 140, and 200, and for the
non-stiff case, they are 20, 90, and 45. In the non-stiff case, the SDC method outperforms
the general purpose JFNK method, due to the additional overhead operations required by
the JFNK methods. For all three cases, the new framework (jfnk-new) outperforms other
methods. Very similar results are derived for the settings ε = 10−6, Δt = π · 10−4 (stiff),
Δt = π · 10−5 (mildly stiff), and Δt = π · 10−6 (non-stiff) and these results are neglected
in this paper.

In (d) of Fig. 17, we compare the converged solutions from different methods with the
results from the backward Euler method based predictor (“b. Euler” in the figure) for the
mildly stiff case Δt = π/10 in one step. It can be seen that when different iteration schemes
are convergent, they all converge to the solution of the collocation formulation.

Finally, wewant to emphasize that our current implementation is by nomeans optimal, but
it is an acceptable scheme which integrates different techniques presented in the algorithm
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Fig. 17 Comparison of the new framework with other methods, a Δt = π , b Δt = π/10, c Δt = π/100,
and d comparison of converged solutions for Δt = π/10

design guidelines in previous sections, and it shows great potential for large-scale long-
time differential equation simulations. We are currently testing different strategies to further
improve the performance of the modified JFNK solver specifically designed for finding the
roots of the function δ̃ = H(Ỹ), where most components of the output δ̃ are good estimates
of the errors in the input provisional solution Ỹ. Results will be reported in future papers.

5 Summary and Future Work

In this paper, we introduce a new perspective to understand the classical deferred correc-
tion methods, which separates the analysis of the “convergence procedure” from that of the
“converged solution” to the collocation formulations. In the resulting numerical framework,
an “optimal” collocation formulation is first selected based on the properties of the solution
from the “collocation formulation database”, and different deferred corrections schemes can
be selected from the “deferred correction methods database” to effectively reduce different
error components in the provisional solution. Numerical results from a very preliminary
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implementation integrating different techniques presented in this paper show that the new
framework is very promising for long-time large-scale simulations of differential equation
initial value problems.

In the “convergence procedure”, this paper only focuses on how to apply different schemes
from the “deferred correction methods database” to accelerate the convergence. We are
also studying how to further improve the efficiency of the framework by introducing new
preconditioning techniques for the “convergence procedure”. Examples include the multi-
grid multi-order preconditioners, operator splitting techniques, semi-implicit discretization
schemes for nonlinear differential equations, and domain decomposition based parareal-
type preconditioners for time parallelization. These techniques will form a more general
“convergence procedure toolbox”. After analyzing the properties of the solution, a proper
tool or tools can be selected from the toolbox to effectively reduce the errors for faster
convergence to the optimal collocation formulation. Finally, the new numerical framework
can be coupled with fast elliptic equations solvers or fast N-body problem solvers to allow
space–time parallel solution of time dependent partial differential equations. Research results
along these directions will be reported in future papers.
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Appendix

Proof of Theorem 3 Assuming p points {1/p, 2/p, . . . , (p−1)/p, 1} are used in the uniform
collocation formulation, then S̃ is a lower triangularmatrix and all non-zero entries (including
diagonal entries) are 1/p. Simple calculation shows that S̃−1 has zero entries everywhere
except along the diagonal and subdiagonal, with nonzero entries p on the diagonal and −p
on the subdiagonal,

S̃−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p 0 0 · · · 0 0
−p p 0 · · · 0 0
0 −p p · · · 0 0
0 0 −p · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −p p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Consider the vector V j = [(p − 1) j , (p − 2) j , . . . , 2 j , 1 j , 0]T ( j = 1, . . . , p − 1) and
V0 = [1, 1, . . . , 1, 1]T . As S integrates polynomials of degree ≤ p − 1 exactly, one can
show

(
S̃−1S − I

)
V j = 1

j + 1

j−1∑

l=0

(
l

j + 1

)

Vl and
(
S̃−1S − I

)
V0 = 0.

Define W0 = V0. The basis for the Jordan canonical form can be constructed recursively
by solving (S̃−1S − I )W j = W j−1, where W j consists of a linear combination of Vk ,
k = 0, . . . , j . �

To prove Theorem 4, we start from the following Lemma:
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Lemma 1 For the trapezoidal rule preconditioned uniform collocation formulation (InDC-
yp-T), the matrix S − S̃ maps the vector [( j

p )k]pj=0 := [( 0p )k, ( 1p )k, ( 2p )k, . . . , (
p−1
p )k, 1]T

(k ≤ p) to a linear combination of vectors [( j
p )m]pj=0, m = 0, . . . , k − 1.

Proof Assume p + 1 points {0/p, 1/p, 2/p, . . . , (p − 1)/p, 1} are used in the uniform
collocation formulation. As the integration matrix S integrates polynomials of degree p or
less exactly, we have

S

[(
j

p

)k
]p

j=0

=
[∫ j

p

0
xkdx

]p

j=0

= 1

k + 1

[(
j

p

)k+1
]p

j=0

.

Now consider the j th entry of the vector S̃[( j
p )k]pj=0 given by

S̃

[(
j

p

)k
]

j

= 1

p

⎛

⎝1

2

(
0

p

)k

+
j−1∑

n=1

(
n

p

)k

+ 1

2

(
j

p

)k
⎞

⎠ = 1

pk+1

⎛

⎝
j∑

n=1

nk − 1

2
j k

⎞

⎠

= 1

pk+1

(
j k+1

k + 1
+ 1

2
j k + lower order (< k) terms − 1

2
j k

)

.

Therefore, after cancelling the j k+1 and j k terms, we have

(S − S̃)

[(
j

p

)k
]p

j=0

=
k−1∑

m=0

cm

[(
j

p

)m]p

j=0
.

�

Proof of Theorem 4 We will Apply Lemma 1 and the Taylor expansion of the initial provi-
sional solution in the trapezoidal rule preconditioned deferred correction iterations for the
uniform collocation formulation (InDC-yp-T). From Eq. (17), we see that the correction
matrix has the expansion

Ct
ns = (λΔt)

(
S − S̃

)
+ (λΔt)2S̃

(
S − S̃

)
+ (λΔt)3S̃

2
(
S − S̃

)
+ · · · ,

and the initial provisional solution b has the expansion of the form (neglecting all (Δt)p+1

and higher order terms)

b ≈
p∑

m=0

(λΔt)mcm

[(
j

p

)m]

.

By induction and Lemma 1, it is straightforward to show that

(
Ct
ns

)k
b ≈ (λΔt)2k

p∑

m=0

cm,k

[(
j

p

)m]

,

neglecting (Δt)p+1 and higher order terms. Therefore, after each trapezoidal rule precondi-
tioned SDC iteration for the uniform collocation formation, the order will increase by (Δt)2,
until it reaches (Δt)p+1. �
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