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Abstract Monotone finite difference methods provide stable convergent discretizations of a
class of degenerate elliptic and parabolic partial differential equations (PDEs). These meth-
ods are best suited to regular rectangular grids, which leads to low accuracy near curved
boundaries or singularities of solutions. In this article we combine monotone finite differ-
ence methods with an adaptive grid refinement technique to produce a PDE discretization
and solver which is applied to a broad class of equations, in curved or unbounded domains
which include free boundaries. The grid refinement is flexible and adaptive. The discretiza-
tion is combined with a fast solutionmethod, which incorporates asynchronous time stepping
adapted to the spatial scale. The framework is validated on linear problems in curved and
unbounded domains. Key applications include the obstacle problem and the one-phase Stefan
free boundary problem.

Keywords Finite difference methods · Adaptive grids · Elliptic partial differential
equations · Obstacle problem · Free boundary problems · Stefan problem · Monotone finite
difference methods

1 Introduction

In this article we numerically approximate a class of nonlinear elliptic and parabolic PDEs
using monotone finite difference methods. Finite difference methods are most easily imple-
mented on regular, rectangular grids. In this articlewe combine themonotone finite difference
methods with an adaptive quadtree grid, resulting in significantly improved accuracy near
boundaries. The effectiveness of the method is demonstrated on the Laplace equation on
curved and on unbounded domains. Key applications are the obstacle problem, and the Ste-
fan Free Boundary problems.
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Using the framework of nonlinear elliptic operators,we can combine the partial differential
equation with the boundary conditions (or even free boundaries) into a single degenerate
elliptic operator. This allows us to build adaptive discretizations and solvers using a unified
framework, and to experiment with different grid adaptation strategies.

Adaptive finite difference methods have been used in a similar context in a variety of
problems, but a not in a framework as general as this one. A review of data structures
and implementation of sparse grids for Partial Differential Equations can be found in [2].
Many approaches using finite differences methods combine the popular level set method for
tracking the boundary with a representation of the operator inside the boundary. A fourth
order adaptivemethod for the heat equation and stefan equation can be found in [12].Adaptive
grids for the Stefan problem were used in [7]. Adaptive grid refinement combined with a
level set representation of the free boundary was used for the Poisson–Boltzmann system
in [15,19].

An advantage of the finite difference implementation and the viscosity solution frame-
work is that the conditioning of the solvers does not break down as the equation becomes
degenerate. For example, fast solvers for the degenerate elliptic Monge-Ampere equation
have been built, where the Newton’s method solver speed is (nearly) independent of the
regularity of the solutions [10,11]. These problems were solved on a uniform grid using
wide stencil finite difference schemes, but the later article extended the problem to Opti-
mal Transportation boundary conditions, where the source domain is irregular, and the
target domain is convex [1]. However the anisotropy of the operator requires wide sten-
cils for monotone discretizations, which are more challenging to implement on an adaptive
grid.

In order to work with an adaptive grid, we need a refinement criteria. We take the point
of view that the equation itself should provide this criteria. By writing the entire problem
(including boundary conditions) as a single degenerate elliptic operator we are able to pro-
duce an effective refinement criteria.

The framework can be used for many purposes, including:

• Artificial Boundary Conditions for problems in an unbounded domain. We use coarse
grids in the exterior, and choose to adapt based on either the residual of the boundary
conditions or the distance from a reference point in the domain.

• Grid adaptation for PDEs on curved domains, using grid based discretizations.
• Obstacle problems or one phase free boundary problems such as the Stefan problem.
• Nonlinear iterative methods for stationary problems. On an adaptive grid, the iterations

are asynchronous, so there the nonlinear CFL condition is locally determined.

1.1 The Framework of Degenerate Elliptic Operators

We consider the class of degenerate elliptic equations [6], which include first order equations,
such as the eikonal equation, as well as fully nonlinear PDEs, such as the Monge-Ampere
equation, and free boundary problems. Singularities can be present in the solutions to these
equation, in particular at locations near the free boundary or where the equation changes
types. For this reason, weak solutions, are needed, which are the viscosity solutions [6].
The theory of viscosity solutions is by now well-established. To prove convergence of the
schemes, we require that that uniqueness hold for the underlying PDE. In most cases, this
is covered by the standard theory. Classical solutions of the Stefan problem arise only under
limited conditions [9]. For the one phase Stefan problem, uniqueness of viscosity solutions
is established in [16].
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Let� be a domain in Rn, Du and D2u denote the gradient and Hessian of u, respectively,
and let F(X, p, r, x) be a continuous real valued function defined on S

n × R
n × R × �, Sn

being the space of symmetric n × n matrices. Write

F[u](x) ≡ F(D2u(x), Du(x), u(x), x).

Definition 1.1 The operator F is degenerate elliptic if

F(X, p, r, x) ≤ F(Y, p, s, x) whenever r ≤ s and Y ≤ X,

where Y ≤ X means that Y − X is a nonnegative definite symmetric matrix.

If the operator F is degenerate elliptic, then we say the Partial Differential Equation on
the domain �

F[u](x) = 0, for x in

(along with, for example, Dirichlet boundary conditions, u(x) = g(x), or x on ∂�) is as
well. The initial-boundary value problem for the

ut (x, t) + F[u](x, t)
is called degenerate parabolic, when the operator F is degenerate elliptic.

Example 1 (Examples of degenerate elliptic operators). The obstacle problem,

min(−uxx , u − g(x)) = 0

is degenerate elliptic. The Hamilton–Jacobi equation

ut − |ux | = 0,

is degenerate parabolic. The equation

c(x)(−�u(x) + f (x)) + d(x)(u(x) − g(x)) (1)

is degenerate elliptic, provided c(x), d(x) ≥ 0.

1.2 Elliptic Finite Difference Methods

The class of finite differencemethods (or equations) we focus on are called elliptic, [20]. They
are a special class of monotone finite difference schemes which are automatically stable, and
arise from a simple construction. Consistent elliptic schemes, since they are monotone and
stable, converge, according to the theory presented in [5].

Finite difference equations can be defined on a general unstructured grid, regarded as a
weighted, directed graph. In our case the adaptive finite difference grid has a natural data
structure given by the quadtree, which is discussed below. But to define monotone schemes,
we can consider the abstract setting. The unstructured grid on the domain �; is a directed
graph consisting of a set of points, xi ∈ �, i = 1, . . . N , each endowed with a list of
neighbors, N (i) = (i1, . . . , id). A grid function is a real-valued function defined on the grid,
with values ui = u(xi ). The finite difference operator is represented at each grid point by

Fi [u] ≡ Fi
(
ui ,

ui − ui1
|xi − xi1 |

, . . . ,
ui − uid
|xi − xid |

)
, i = 1, . . . N , (2)
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where Fi (x, y1, . . . , yd) is a specified, usually nonlinear, function of its arguments. The list
of finite differences in the above expression can be regarded as the gradient of the function
on the graph. The notation

∇u(xi ) =
(

ui − ui1
|xi − xi1 |

, . . . ,
ui − uid
|xi − xid |

)

was used in [18], so that we can write

Fi [u] = Fi (ui ,∇u(xi )).

This notation emphasizes the fact that a finite difference operator is local: it depends only on
the value at the reference points, and the gradient of the function on the graph. (Second order
finite differences come from combinations of first order differences; higher order differences
are not needed). A solution is a grid function which satisfies F[u] = 0 (at all grid points). A
boundary point can be identified as a grid point with no neighbors, so that Dirichlet boundary
conditions can be imposed by setting Fi [u] = ui − g(xi ).

We now define degenerate elliptic operators.

Definition 1.2 The finite difference operator F is degenerate elliptic if each component
Fi (x, y1, . . . , yd) is nondecreasing in each variable.

We emphasize that the scheme is a nondecreasing function of ui and the differences ui − u j

for neighbors j of i .

Remark 1.3 We now explain the reason for using degenerate elliptic schemes in this context.
On a uniform grid, the standard discretization of the Laplacian operator is given, up to a
constant, by the difference between u(x) and an average of the neighbors of u(x). On a
non-uniform grid, the operator is given by a similar formula, except the average is replaced
by a weighted average (see the discretizations in Sect. 3). Each of these discretizations are
in the degenerate elliptic form. In addition, adding a constant term, which corresponds to the
inclusion of a term f (x) (which does not depend on u maintains this form. Furthermore, we
can take the maximum or minimum of two terms, and, since the max and min functions are
non-decreasing in their arguments, this type of nonlinearity is still degenerate elliptic.

For the most of the discretizations we present below, we can use a clever combination
of the Laplacian, and the maximum or minimum terms to produce a discretization which is
degenerate elliptic. This means that we can appeal to the convergence theory for numerical
schemes set out in the references above to ensure that the methods converge. The main new
step in the discretization which has not be used in the preceding reference is the use of the
irregular grids, which is explained in detail below.

1.3 Boundary Conditions and Far Field Boundary Conditions

Here we show how to include boundary conditions on more general (non-rectangular)
domains, as well as far field boundary conditions. These boundary conditions are combined
along with the elliptic PDE operator into a single (possibly discontinuous) elliptic operator,
which is combined with a refinement criteria to perform the grid adaptation.

Example 2 Consider the Poisson equation −�u = f , with f supported on the unit ball and
the far field boundary condition u → 0, as ‖x‖ → ∞. An adaptive grid allows us to capture
fine details for x near 0 while reducing computational effort in the far field. The artificial
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boundary condition,

∂r u + u

r
≈ 0, for r � 0,

approximates the solution with accuracy O
(

1
r3

)
[3].

Remark 1.4 (Characteristic functions on adaptive grids). Given a domain � ⊂ R
2, defined

the characteristic function of the set � by

χ�(x) =
{
1 if x ∈ �

0 otherwise.

The characteristic function on a uniform grid was used in [20] to give a very coarse repre-
sentation of a boundary (or free boundary). This representation leads to a piece-wise linear
approximation of the boundary of the domain, by connecting the boundary grid points. On the
adaptive grid, the we obtain a piece-wise linear approximation of the boundary, at difference
grid scales, corresponding the spacing of the local grid points.

Example 3 Consider the Dirichlet problem for the domain � ⊂ B = [0, 1]2 in R
2,

−�u(x) = f (x), for x ∈ �

along with boundary conditions

u = g, for x on ∂�

Define the operator,

Fbc[u] = χ�(x) (−�u(x) + f (x)) + χ�c (x)(u(x) − g(x)) (3)

where χS is the characteristic function of the set S. Note that since the characteristic functions
are non-negative, this equation is of the form (1), so the operator is degenerate elliptic. Note
also that the operator is discontinuous in x .

In Sect. 3, we present the discretization of the Laplace operator on the grid. In all cases,
the approximation has the property that

− �u(xi ) = w̄u(xi ) −
∑
j

w j u(x j ), where w̄ =
∑
j

w j and w j ≥ 0, (4)

where u(x j ) represents the neighbors of xi . (On a uniform grid, each w j would be equal to
1/h2, where h is the grid spacing.) This leads to a discretization of (3) in the form

c(x)

⎛
⎝w̄u(xi ) −

∑
j

w j u(x j ) + f (xi )

⎞
⎠ + d(x)(u(xi ) − g(xi ))

with c(x), d(x) ≥ 0. It is degenerate elliptic according to Definition 1.2.

We can impose other (for example Neumann or Robin boundary conditions), by replacing
the second term with

χ�c (x)H(Du(x), x) = 0,

where H(Du(x), x) is itself a first order degenerate elliptic operator.
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1.4 Including Free Boundaries in a Single Degenerate Elliptic Operator

The obstacle problem can be formulated as a variational inequality [14,17], which is naturally
discretized using finite element methods [4], and solved using a multigrid method [13].

Our approach of adaptive finite difference methods is natural for the obstacle problem,
using a formulation of the problem as a degenerate elliptic PDE, however there are far fewer
works which use this approach. Our framework leads to a simple, effective finite difference
method which achieves good results using adaptive grids.

We describe here how to write a free boundary problem as a single degenerate elliptic
operator.

Example 4 The obstacle problem, for a given obstacle function g(x), which requires that
u(x) ≥ g(x) and that

−�u(x) = 0, for x in {u(x) > g(x)}
can be written as a single elliptic equation

Fobs[u] = min(−�u, u − g) = 0 (5)

As in the preceding example, we can discretization the Laplacian in the form (4) and obtain
an equation of the form

min

⎛
⎝w̄u(xi ) −

∑
j

w j u(x j ), u(xi ) − g(xi )

⎞
⎠ = 0, (6)

which is degenerate elliptic according to Definition 1.2.

This example generalizes to double obstacle problems (using a maximum as well as
a minimum), as well as obstacle problems involving nonlinear PDEs which replace the
Laplacian [20].

Example 5 The evolution of the one-phase Stefan problem in two dimensions,
{
ut − �u = 0 in {u > 0}
ut − |Du|2 = 0 on ∂{u = 0}

can be represented by the degenerate elliptic operator,

ut + FSte f [u] = 0

with

FSte f [u] =
{

−�u, in {u > 0}
min(−�u,−|Du|2) in {u ≤ 0}.

More general one phase free boundary problems can be represented as a single operator on
the extended domain, as in [20]. Here we have extended from the free boundary to a larger
domain, and we solve for the extended operator in the whole domain.
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1.5 Comparison and Stability of Degenerate Elliptic Finite Differences Methods

Stability of degenerate elliptic equations is demonstrated in settings in the reference [20].
First, it is shown that there is an explicitly calculated time step so that the forward Euler
method is a contraction in the maximum norm. Second, it is shown that the equation satisfies
a nonlinear comparison principle. While the proof is detailed, some intuition for the results
can come from the fact that we can regard the elliptic finite difference equation as expressing
a nonlinear average, a point of view taken explicitly in [18]. We give a heuristic explana-
tion of these ideas in this remark and refer the reader to the two cited references for more
details.

First notice that it is too much to ask that our numerical schemes satisfy the maximum
principle. Even for the equation −�u = f in � with Dirichlet boundary conditions u = g
on ∂�, the maximum principle does not hold, unless we assume f ≤ 0. The comparison
principle takes the general form

Fbc[u1](x) ≤ Fbc[u2](x) for all x ⇒ u1 ≤ u2

where the notation h1 ≤ h2 means h1(x) ≤ h2(x) for all x (the domain of definition of
the functions is implicit). A more specific, and also more explicit form comes from writing
u1 = S( f1, g1) andu2 = S( f2, g2) for the solutions of the equationwith data f = f1, g = g1
or f2, g2, respectively. In this case, the comparison principle becomes

f1 ≤ f2 and g1 ≤ g2 ⇒ u1 ≤ u2,

where u1 = S( f1, g1), u2 = S( f2, g2).
The discrete comparison principle holds for the numerical scheme, provided that theLapla-

cian is discretized using an elliptic scheme. This principle can be proved using the degenerate
elliptic property for a general class of equations which satisfy mild analytical conditions on
the operator [20] or directly from specific classes of equations without assuming analytical
conditions [18]. Once the comparison principle is established, uniqueness of solutions of the
schemes follows, since if f1 = f2 and g1 = g2, then u1 ≤ u2 and also u1 ≥ u2.

The actual proof of the comparison principle, as in the PDE setting, is a proof by contra-
diction. However, we include a plausibility argument which is gives an idea of the reason the
local condition can lead to comparison, because it is instructive. Fix g1 = g2. Starting from
(4) and solving for the reference variable, we obtain

u(xi ) =
∑
j

w j

w̄
u(x j ) + f (xi )

w̄
. (7)

where x j represents neighbors of xi , and
∑

j w j = w̄. This last equation expresses the fact
that u(xi ) is a weighted average of its neighbors, plus a constant proportional to f (xi ). From
this form of the equation, it is plausible that increasing f (xi ) does not decrease the value
u(xi ), which leads to the comparison principle.

The argument which leads to a comparison principle does not depend on the fact that the
equation is linear. So wemake a parallel argument for a nonlinear elliptic PDE, with a elliptic
finite difference discretization. Consider the example of the obstacle problem (5). Again the
general comparison principle takes the form

Fobs[u1] ≤ Fobs[u2] ⇒ u1 ≤ u2

which we write in the explicit form

g1 ≤ g2 ⇒ u1 ≤ u2
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where u1 = S(g1), u2 = S(g2).
The degenerate elliptic discretization was given in (6). Again, we will solve for the refer-

ence variable. Since we are looking for a solution, which corresponds to the right hand side
equal to zero, we can divide each side of the equation by w̄ = w̄i . Multiplying the second
equation by w̄ also does not change the solution. Then we can pull out the term u(xi ) from
the equation, and obtain the following equation

u(xi ) = max

⎛
⎝∑

j

w j u(x j ), g(xi )

⎞
⎠

Whereas in the linear case, (7), u(xi ) was an affine function of an average of the values of
u at the neighbors, and the data, now u(xi ) is the maximum of that same average and the
data. In both cases, comparison is suggested by the fact that increasing any of the values of
the neighbors or that data does not decrease u(xi ), and stability is suggested by the fact that
increasing the values of just one of the neighbors of xi can increase u(xi ) by at most that
amount (and no more).

2 Adaptive Grid

Our adaptive grid is implemented using a quadtree representation [8, Chapter 14: Quadtrees].
Conceptually, the domain is divided into rectangular regions such that the side length of each
neighboring rectangle is either twice, half, or the same as its neighbor. The collection of all
vertices are the grid nodes for computing the unknown function. Internally the quadtree is
represented as a sparse matrix where the indices of non-zero entries represent coordinates on
a fixed ultra-fine grid.

Our implementationwith sparsematrices inMATLAB. The tool is modular, and the inputs
are simple: the discretization of the operator, F , and an additional operator, G, used as the
refinement criteria, which can be intrinsic (simply setting G = F), or defined by the user. In
addition, if Newton’s method is to be used as a solver, the formal Jacobian of the operator is
needed, DF .

2.1 Quadtree Construction

A quadtree is uniquely determined by a list of coordinates and corresponding maximum
length scales. Either there is a node at each coordinate with all neighbors within the specified
distance, or the coordinate must lie within a rectangle no larger than indicated.

To discretize the Laplacian, we impose an additional ‘scale-padding’ constraints depend-
ing on the aspect ratio of the physical domain. Dangling nodes, vertices with three neighbors,
occurmidway along the shared edge of two equal-sized rectangles one ofwhich is subdivided.
The scale-padding constraint in x specifies the minimum number of equal-sized rectangles
that must exist to both the left and right of a dangling node. Figure 1 illustrates a pair of
quadtrees, the latter refined to observe the scale-padding constraints 2 in x and 1 in y.

To built a quadtree over a virtual ultra-fine grid of 2N + 1 by 2N + 1, we build a list of
squares the quadtree must contain.

(1) List all requested or required squares size 2k + 1 by 2k + 1.
(2) Add siblings to the list. Fill to the edge, if needed to prevent a dangling node too close

to the boundary.
(3) List all parents. Expand list to satisfy scale-padding constraints.

123



J Sci Comput (2016) 68:231–251 239

(a) (b)

Fig. 1 a Sample quadtree, consistent with scale-padding constraints padx = 1 and pady = 1. b Refinement
of (a) to be consistent with padx = 2

(4) Use grandparents to ensure the expanded list of parents includes all of their siblings.
This is the list of all required squares size 2k+1 + 1 by 2k+1 + 1.

Given M requested coordinate-length scale pairs, this procedure is O (NM logM).

2.2 Adaptivity

Any refinement schemebased onposition and the local value of the function and its derivatives
may be specified. A “refinement criteria” operator is computed at all current grid points and
compared with a “refinement threshold”. The new grid must be refined to the finest available
spacing at all nodes where the criteria exceeds the threshold.

For better control, the user may supply a non-decreasing array of refinement threshold
values. Where the criteria exceeds the kth threshold the new grid is refined to at least the
kth-finest scale.

The user may also supply a padding parameter, above that required for discretization of
the Laplacian at dangling nodes. It is often convenient to give a simple refinement criteria
and a large padding parameter.

All adaptive grids must include the fixed initial quadtree, which is determined by the
placement of the initial data. The initial data is treated as scattered and linearly interpolated
onto the smallest quadtree for which every supplied data-point appears as a node. We assume
the placement of initial data implies the minimally acceptable spatial resolution.

3 Discretization on the Adaptive Grid

As mentioned above, degenerate elliptic schemes are easily built from the upwind schemes
for derivatives and Laplacian. Our solvers expect the user to specify their operators in terms
of these building blocks. For convenience, the discretization discussed here is kept in a black
box.

Wewill consider regular nodes, dangling nodes, and boundary nodes separately. Dangling
nodes are those with only three neighbors and occur midway along the edge of a rectangle
that adjoins two half-size rectangles.
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(a) (b)

Fig. 2 One of six possible configurations at a regular node. a The stencil for the discretization of first-
derivatives. b The stencil for the Laplacian discretization

A regular node is the shared vertex of four rectangles. Consider the nearest neighbors
uE , uW , uN and uS at distances�E ,�W ,�N and�S respectively, as in Fig. 2. The standard
upwind discretizations are:

∂xu ≈ u − uW
�W

and −∂xu ≈ u − uE

�E
, (8)

both accurate to first order. For the Laplacian operator we identify the nearest pairs of equidis-
tant opposing nodes, uE ′ and uW ′ , and uN ′ and uS′ , as in Fig. 2. The standard discretization
for ∂2x u,

− ∂2x u ≈ 2u − uE ′ − uW ′

2(�x )2
, (9)

is accurate to second order. Discretization using only nearest-neighbors is only accurate to
first order.

For a dangling node, as in Fig. 3, we use the farther vertices of the larger square to
interpolate a value for the unknown function directly opposite, then discretize as at a regular
node. In the illustrated situation we would use,

∂xu ≈ u − uNE+uSE
2

�x
. (10)

This is a monotone discretization, accurate to first order since uN and uS are equidistant.
Second derivatives are more difficult. There is no general upwind discretization for ∂2x u for
the dangling node illustrated in Fig. 3.

At dangling nodes, we choose to discretize the laplacian using an I-shaped stencil as in
Fig. 3. The following expansions are accurate to second-order:

2u − uNW + uSW + uNE + uSE
2

= − (�y)2 ∂2y u − (�x)2 ∂2x u + O(�x4 + �y4)

2u − (uN + uS) = − (�y)2 ∂2y u + O(�y4)
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(a) (b)

Fig. 3 aA dangling node in the x variable, showing the stencil for first-derivative discretization. b The stencil
for the Laplacian discretization at a dangling node, provided �y ≤ �x

Fig. 4 The extended stencil for laplacian discretization at a dangling node, when �y � �x

Our discretized Laplacian is then:

−∂2y u − ∂2x u ≈ 1

(�x)2

(
2u − uNW + uSW + uNE + uSE

2

)

+
(

1

(�y)2
− 1

(�x)2

)
(2u − (uN + uS)) .

(11)

This is a monotone discretization provided �y ≤ �x . Should �y > �x we take a wider
I-shaped stencil, as in Fig. 4. To ensure �y ≤ padx�x , (or, �x ≤ pady�y, for the other
type of dangling node,) we choose,

padx =
⌈

Ly

2Lx

⌉
. and pady =

⌈
Lx

2Ly

⌉
.

These values reflect the aspect ratio of the domain in physical variables. The ‘scale-padding’
constraints when building the quadtree guarantee this wider stencil is available at all dangling
nodes.

3.1 Boundary Nodes

At boundary nodes where Dirichlet boundary conditions are not provided, we implement
generic Robin boundary conditions:

A(x)u′(x) + B(x)u(x) = C(x)

The functions A, B,C should be provided for each edge of the domain.User-friendly shortcuts
for Neumann or Dirichlet conditions are provided.

Where A(x) = 0, u(x) is specified. The node is considered inactive and is not updated
by means of a logical mask. Where A(x) �= 0, we use the boundary conditions to determine
the outward derivative and the regular discretization for the inward derivative. We discretize
the second derivative by weighting the outward and inward derivatives equally, as in (9).
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4 Numerical Solvers

In this section we discuss the approach to solve the nonlinear finite dimensional equations
obtained by discretization of the elliptic or parabolic PDE on the adaptive grid.

In the case of a nonlinear parabolic (time-dependent) problem, ut = F[u], it is natural to
discretize using the Forward Euler method, which leads to

un+1 − un

dt
= F[un].

This discretization leads to the explicit iteration

un+1 = un + dt F[un].
For stability, there is a restriction on the time step dt , which is often proportional to dx2

for parabolic problems, where dx is the grid discretization parameter (for uniform grids).
The theory developed in [20, Theorem 6] allows us to obtain an explicit value for the time
step restriction which ensures stability in the maximum norm. In addition, we can use local
values of this time step, which allows different time steps at different grid resolutions. In this
manner, a global time step can be taken which corresponds to multiple iterations at small
scales, and a single iteration at the largest scale.

When the Laplacian is discretized according to (4), where the weights wi depend on the
local grid, and are equal to (�x )

2 or (�y)
2 in the case of (9) and in the case of dangling

nodes can be obtained from (11). In this case, the restriction on the time step at xi is given
by

dt ≤ w̄i

The local dependence of the time step is encoded directly in the weight w̄i . For nonlinear
discretizations involving the Laplacian, such as the obstacle problem, given by (5), the local
time step restriction is the same. In general, the local time step restriction is given by the local
Lipschitz constant of the scheme, regarded as a function. So simply differentiating the scheme
and taking an upper bound can given an acceptable time step. In some cases, this constant
may depend on the initial data, as in the case of ut = |u2x | where dt ≤ dx2/max j u0j+1 − u0j
from [20, Section 4].

4.1 Details on the Time-Dependent Solver

Before time evolution, we apply the refinement scheme to the linear interpolation of the
initial data and iterate to ensure infill of any coarse regions of the initial quadtree that are
nevertheless of interest.

Nodes are separated according to the distance to their nearest neighbor. A nonlinear CFL
condition is required to determine a characteristic time-scale for each group. The time-scales
differ by powers of two.We list each group according to the inverse ratio of their characteristic
time-scales and the coarsest time-scale. The result is randomly permuted before each time-
step to produce a visitation schedule. To evolve by one time-step, all nodes in each group are
simultaneously updated according to the visitation schedule.

This scheme is optimal in the sense that each group-update operation is of the order of the
number of nodes in the group, and that no more updates occur than required by the nonlinear
CFL condition.
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4.2 Static Solver

In the case of elliptic equations, it is possible to find the solution by iterating the time
dependent problem. This follows from the fact that the forward Euler method, with the
restricted time step is a contraction, [20, Theorem 7]. However, this method is slow, since
the time step can scale quadratically with the smallest spatial scale, dt = O(dx2), so the
number of iterations to solve to a fixed time grows as the grid grows.

An effective alternative is to implement Newton’s method. We build the exact Jacobian
of the discrete scheme, meaning the gradient of the scheme regarded as a function, which
requires writing additional code to represent the Jacobian. In addition, since we are working
in two dimensions, and the Jacobian is a sparse matrix, we can use direct solvers effectively.
The Jacobian is sparse with the number of nonzero elements on the order of the number
of nodes. We expect Gaussian elimination in O (M logM) time, where M is the number of
nodes. This results in a fast direct solver.

For further efficiency, we seek a solution at coarse scales before allowing refinement to
finer scales. This corresponds to the first step in a V-cycle for a multigrid method. Starting
with the initial quadtree we iterate Newton’s method until a stopping condition is reached.
We then allow refinement up to the second-coarsest scale present in the initial quadtree as
called for by the refinement criteria and threshold. We then seek another solution and repeat
the process until all scales are allowed.

Facility for stopping criteria and thresholds are similar to those for refinement. When
allowing refinement to the kth-finest scale, iteration of Newton’s method continues until the
stopping criteria is less than the kth stopping threshold at all nodes. The default stopping
criteria is the L∞ norm of the elliptic operator.

Note that when seeking a solution over a fixedmulti-scale grid it is more efficient to define
the multiscale grid through the refinement criteria and provide initial data only on the coarse
grid.

5 Computational Examples

In this section we present numerical results, which show the validity and performance of the
method, and allow for us to demonstrate the effectiveness of different refinement strategies.

5.1 Artificial Boundary Conditions

We are in the setting of Example 2: the Poisson equation −�u = f , with f supported on
the unit ball and u → 0, as ‖x‖ → ∞. Set

f (r, θ) = r(1 − r)+ sin(5πr) cos(3θ),

where (1− r)+ = max(1− r, 0), and impose the artificial boundary condition, ∂r u + u
r = 0

at the boundary of the computational domain. Set the domain to be a square domain with
side length 2 × 103. The refinement criteria: the grid should be finest for r < 1.

A detailed view of the solution in the near field can be see in Fig. 5a. The layout of the grid
at large scale can be seen in Fig. 5b. Table 1 outlines the allocation of computing resources
and nodes by region. Broadly speaking, the adaptive grid allows us to compute on a very large
domain, with a computational cost on the order of (within a couple multiples of) restricting
to the unit square.
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Fig. 5 a Detail of the solution of the Poisson equation with f (x) supported on for r ≤ 1 (indicated by the
red dashed circle). b The corresponding adapted grid. Artificial boundary conditions are applied for r > 103

(indicated by the blue dashed circle) (Color figure online)

Table 1 Resource use compared
to detail achieved, by domain
region, for the example solution
of the Poisson equation with
artificial boundary conditions

Artificial boundary conditions
were applied for r > 103

Region Relative area (%) Time spent
(%)

Nodes on final grid
(%)

r < 1 �0.001 38.5 78.3

1 < r < 10 0.002 13.3 15.0

10 < r < 103 19.6 26.6 5.2

103 < r 80.4 21.6 1.5

5.2 Irregular Domains

Consider a problem of the type Example 3, where the Dirichlet problem is posed on an irreg-
ular domain �, contained in a rectangle. For the Poisson equation with Dirichlet Boundary
conditions we use the operator Fbc.

The refinement criterion used was based on the combination of residual of the operator
and the proximity to the boundary. An example of what can be accomplished is shown in
Fig. 6. Notice that this leads to a maximal refinement in two blobs near the boundary, near
local extreme points of the solution (red, where the solution value is near 60 and blue, where
the solution value is near−100), while other areas near the boundary have a relatively coarse
grid (yellow, where the solution is near 0).

To impose Neumann or Robin Boundary conditions, we apply the boundary conditions for
grid points near the boundary, and further away, simply impose u = 0. As an example, Fig.
7 presents results for the Laplace equation with homogeneous Dirichlet boundary conditions
on the boundary of the unit square, combined with inhomogeneous Neumann boundary
conditions

123



J Sci Comput (2016) 68:231–251 245

Fig. 6 Solution of a Poisson equation on a curved domain with Dirichlet boundary conditions

Fig. 7 Solution of Laplace
equation on a punctured domain,
with inhomogeneous Neumann
boundary conditions on the red
circle (Color figure online)

du

dn
= 1, for x on the boundary of a punctured circle inside the domain.

The adaptive grid was determined by the slope of the solution combined with proximity to
the interior boundary.
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Fig. 8 (left) Obstacle. (right) solution of the obstacle problem (with contact contour in black)

5.3 Obstacle Problems

We are in the setting of the obstacle problem, Example 4, represented by the operator Fobs .
The obstacle g(r, θ) = r2 cos2(θ), multiplied by a factor of 2 sin2(πy) for x < 0, and by

exp(−r) for r > 1
4 . The obstacle and solution are shown in Fig. 8.

The problemwas solved using different refinement criteria, defined as follows. The contact
contour determined in all three cases was virtually indistinguishable.

– As a baseline method, we used a simple predetermined (non-adaptive) grid criteria. The
finest grid resolution is specified by the distance to the local maxima x1, x2, x3 of the
obstacle (since the contact set is unknown).

G(x) determined by (dist(x, {x1, x2, x3}))
In this case, the solution was found using nonlinear multigrid, allowing a progressively
finer grid each time the residual drops below a threshold.

– The free boundary-determined grid criteria specifies the finest grid resolution at nodes
where both terms F[u] and u − g are close to zero.

GT [u] determined by min(|�u|, |u − g|)
The resulting grid provides the most refinement near the boundary of the contact set, as
seen in Fig. 9.

– We also chose to refine the grid at nodes where the absolute value of operator Fobs[u] =
min(−�[u], u − g(x)) exceeds a threshold,

GF [u] determined by |Fobs[u]|.
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Fig. 9 (top) Detail of predetermined grid (left) and boundary-determined grid (right), with contact contour.
(bottom) Zoomed in detail of boundary-determined grid (left) and operator-determined grid (right), with
contact contour
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Table 2 Comparison of adaptive grids for the obstacle problem

Grid type Final nodes Runtime (s) Number of Newton solves

Solves with <5000 nodes Total solves

Predetermined 22,148 6.00 21 59

Boundary 15,156 5.70 25 67

Operator 15,967 5.54 33 71
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Fig. 10 Performance of the uniform-coarse grid (red), boundary-adaptive grid (green), operator-adaptive grid
(blue) & uniform-fine grid (light blue) when solving the sample Stefan equation (Color figure online)

Notice in this case that the scaling of the two terms are different: the Laplacian scales
like 1/h2 while the obstacle term has no scaling in h. The resulting grid is very similar
to the previous one, but with more refinement inside the contact set (which corresponds
to capturing details of g(x)), see Fig. 9. More Newton iterates were performed for the
operator-determined grid, however these are often performed when the grid is still coarse
resulting in overall slightly better performance.

The relative performance of the different refinement methods is given in Table 2.

5.4 Stefan Free Boundary Problems

We are now in the context of Example 5, where the Stefan problem is represented by the
single operator FSte f .
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Fig. 11 Detail of the term-adapted (left) and operator-adapted (right) grids with the boundary contour of the
uniform-fine grid solution of the sample Stefan equation at t = 0.005

We take initial data corresponding to a function with three local maxima. To test the
effectiveness of different grid adaptation strategies we solve the equation using:

– a uniform coarse grid,
– a uniform fine grid,
– adapting the grid according to the size of the operator, GF [u] = |FSte f [u]|,
– adapting the grid according to the size of both terms in the operator GT [u] =

min(|�u|, |∇u|2).
The reason for choosing the term adapted refinement GT comes from assuming that most

of the accuracy of the solution comes from the accuracy of the free boundary: the term GT

refines near the free boundary. The operator-adapted refinement is intrinsic, it also scales
correctly in terms of the grid, since both terms are order 1/h2.

Figure 10 shows the observed computational complexity and outlines the L∞ proximity of
the three methods to the fine-grid solution. By this metric, using GF , the operator-adaptive
grid, is superior to using GT , the both terms adapted grid. On closer inspection, Fig. 11
shows the GT grid is finest near ∂{u = 0}, as desired, but that the solution is evolving slowly
in this region. The operator FSte f is relatively small near the boundary. By comparing the
implied boundary-curves, Fig. 12 demonstrates clearly that the operator-adapted grid is a
better strategy, because the accuracy of the location of the free boundary is significantly
better in this case.
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Fig. 12 Curves ∂{u = 0}of the sample Stefan problemat t = 0.005 (left) and t = 0.025 (right), due to solution
with a uniform-coarse grid (red), term-adapted grid (green), operator-adapted grid (blue) & uniform-fine grid
(light blue) (Color figure online)

6 Conclusions

We introduced a general framework for bringing adaptive grid and solvers to bear on a
class of degenerate elliptic and parabolic Partial Differential Equations, which allows for
the incorporation of free boundary problems, irregular and unbounded domains, along with
adaptive grid refinement. We have demonstrated the significant improvement of solution
accuracy and solution time, as compared to methods on regular grids.

The adaptive grid overcomes the low accuracy of the finite difference method where
curved boundaries are involved. This includes the free boundaries which arise in the obsta-
cle problem, or the Stefan problem. By incorporating the boundary conditions etc into the
operator, we can define a global residual, which included errors from the geometry as well
as form the error. Using this criteria we developed a grid refinement criteria which resulted
in improvements over the other methods.

Other applications of the framework which are easily implemented include:

• First order equations, such as the eikonal equation in either bounded or unbounded
domains.

• Visibility problems, with refinement near essential small features of the obstructions
• Optimal or stochastic control problems with refinement at switching regions, so long as

the second order operator can be discretized on the grid.
• One phase free boundary problems, such as Hele-Shaw.
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