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Abstract In this paper, we consider the Legendre spectral Galerkin and Legendre spectral
collocation methods to approximate the solution of Hammerstein integral equation. The
convergence of the approximate solutions to the actual solution is discussed and the rates
of convergence are obtained. We are able to obtain similar superconvergence rates for the
iterated Legendre Galerkin solution for Hammerstein integral equations with smooth kernel
as in the case of piecewise polynomial based Galerkin method.
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1 Introduction

In this section, we consider the following Hammerstein integral equation

x(t) −
∫ 1

−1
k(t, s)ψ(s, x(s))ds = f (t), −1 ≤ t ≤ 1, (1.1)
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where k, f andψ are known functions and x is the unknown solution to be found in a Banach
space X. Hammerstein integral equations (1.1) arises as a reformulation of boundary value
problems with certain nonlinear boundary conditions.

Several numerical methods are available in literature to solve nonlinear integral equations.
Various spectral methods for solving different type of integral equations are present in litera-
ture (see [3,4,15–19,21,22]). The Galerkin, collocation, Petrov–Galerkin, degenerate kernel
and Nyström methods are commonly used projection methods for finding numerical solu-
tions of the equation of type (1.1) (see [2,6–12,14]). In [12,13] Kumar and Sloan discussed
a new type of collocation method and established superconvergence results for the solution
of Hammerstein integral equations. Some recent results on the numerical solutions of the
Hammerstein equations can be found in [11].

In the case of piecewise polynomial based projection methods, we consider −1 = t0 <

t1 < · · · < tn = 1, a partition of [−1, 1] and let h = max{ti+1 − ti : 0 ≤ ti ≤ n − 1} denote
the norm of the partition. We assume that h → 0, as n → ∞. In this case the approximating
subspacesXn = Sν

r,n , the space of all piecewise polynomials of order r (i.e., of degree≤ r−1)
with break points at t1, t2, . . . , tn−1 andwith ν continuous derivatives,−1 ≤ ν ≤ r−2. LetPn

be either orthogonal or interpolatory bounded projections from X onto Xn . Then in Galerkin
or in collocation method, the Hammerstein integral equation (1.1) is approximated by

xn − PnKψ(xn) = Pn f, (1.2)

where Kψ(xn)(t) = ∫ 1
−1k(t, s)ψ(s, xn(s)) ds. The iterated solution is defined by x̃n = f +

Kψ(xn).Under some suitable conditions on the kernel k and the right hand side function f of
the Eq. (1.1), it is known that the orders of convergence for Galerkin and collocation solutions
are O(hr ) and for the iterated Galerkin and iterated collocation solutions are O(h2r ) (see
[9,10]). However, to get better accuracy in piecewise polynomial based projection methods,
the number of partition points should be increased. Hence in such cases, one has to solve a
large system of nonlinear equations, which is computationally very much expensive.

In this paper, we have applied Galerkin and collocation method to solve Eq. (1.1) using
global polynomial basis functions. Use of global polynomials will imply smaller nonlinear
systems, something which is highly desirable in practical computations. Hence we choose
to use global polynomials rather than piecewise polynomial basis functions in this paper.
In particular, we use Legendre polynomials, which can be generated recursively with ease
and possess nice property of orthogonality. Further, these Legendre polynomials are less
expensive computationally compared to piecewise polynomial basis functions. However, if
Pn denotes either orthogonal or interpolatory projection from X into a subspace of global
polynomials of degree≤ n, then ‖Pn‖∞ is unbounded. It is the purpose of this work to obtain
similar convergence results for the approximate solutions in both L2-norm and infinity norm
using Legendre polynomial bases as in the case of piecewise polynomial bases.

Weorganize this paper as follows. In Sect. 2,we discuss theLegendre spectralGalerkin and
Legendre spectral collocation methods to obtain convergence results. In Sect. 3, numerical
results are given to illustrate the theoretical results. Throughout this paper, we assume that c
is a generic constant.

2 Legendre Spectral Galerkin and Collocation Methods: Hammerstein
Integral Equations with Smooth Kernel

In this section, we describe the Galerkin and collocation methods for solving Hammerstein
integral equations using Legendre polynomial basis functions.
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Let X = C[−1, 1] and consider the following Hammerstein integral equation

x(t) −
∫ 1

−1
k(t, s)ψ(s, x(s)) ds = f (t), −1 ≤ t ≤ 1, (2.1)

where k, f and ψ are known functions and x is the unknown function to be determined. For
a fixed t ∈ [−1, 1], we denote kt (s) = k(t, s).

Throughout the paper, the following assumptions are made on f , k(., .) and ψ(., x(.)):

(i) f ∈ C[−1, 1].
(ii) lim

t→t ′
‖k(t, .) − k(t ′, .)‖∞ = 0, t, t ′ ∈ [−1, 1].

(iii) M = ‖k‖∞ = sup
t,s∈[−1,1]

|k(t, s)| < ∞.

(iv) The nonlinear function ψ(s, x) is bounded and continuous over [−1, 1] × R. ψ(s, x)
is Lipschitz continuous in x , i.e., for any x1, x2 ∈ R, ∃ c1 > 0 such that

|ψ(s, x1) − ψ(s, x2)| ≤ c1|x1 − x2|, ∀s ∈ [−1, 1].
(v) Thepartial derivativeψ(0,1)(s, x(s))ofψ w.r.t the secondvariable exists and isLipschitz

continuous in x , i.e., for any x1, x2 ∈ R, ∃ c2 > 0 such that
∣∣∣ψ(0,1)(s, x1) − ψ(0,1)(s, x2)| ≤ c2

∣∣∣ x1 − x2|, ∀s ∈ [−1, 1].

From this, we have ψ(0,1)(., .) ∈ C([−1, 1] × R).
(vi) We assume that M and c1 satisfy the condition that 2Mc1 < 1.

Note that under the above assumptions on f , k and ψ , for a sufficiently small number
h > 0, we have

|x(t + h) − x(t)| =
∣∣∣∣ f (t + h) +

∫ 1

−1
k(t + h, s)ψ(s, x(s)) ds − f (t)

−
∫ 1

−1
k(t, s)ψ(s, x(s)) ds

∣∣∣∣
≤ | f (t + h) − f (t)| +

∣∣∣∣
∫ 1

−1
[k(t + h, s) − k(t, s)]ψ(s, x(s)) ds

∣∣∣∣
≤ | f (t + h) − f (t)| + sup

s∈[−1,1]
|k(t + h, s) − k(t, s)|

∫ 1

−1
|ψ(s, x(s))| ds

→ 0 as h → 0.

This implies x ∈ C[−1, 1].
Let Cr [−1, 1] denote the space of r -times continuously differentiable functions. For the

rest of the paper we assume that the kernel k(., .) ∈ Cr ([−1, 1] × [−1, 1]), the nonlinear
function ψ(., .) ∈ Cr ([−1, 1] × R) and f ∈ Cr [−1, 1]. Denote

(Di, j k)(t, s) = ∂ i+ j

∂t i∂s j
k(t, s), t, s ∈ [−1, 1],

and

‖k‖r,∞ = max
{∥∥D(i, j)k

∥∥∞ : 0 ≤ i ≤ r, 0 ≤ j ≤ r
}
.
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Now for j = 1, 2, . . . r , we have from estimate (2.1) that

x ( j)(t) = f ( j)(t) +
∫ 1

−1

{
∂ j

∂t j
k(t, s)

}
ψ(s, x(s))ds.

Hence by our assumptions on f , k and ψ , it follows that x ∈ Cr [−1, 1]. We write

‖x‖r,∞ = max
{∥∥x ( j)

∥∥∞ : 0 ≤ j ≤ r
}
,

where x ( j) denotes the j-th derivative of x .
Let

Ky(t) =
∫ 1

−1
k(t, s)y(s) ds, t ∈ [−1, 1], y ∈ X.

Note that, using Holder’s inequality we have for any y ∈ X,

∥∥Ky
∥∥∞ = sup

t∈[−1,1]
|Ky(t)| = sup

t∈[−1,1]

∣∣∣∣
∫ 1

−1
k(t, s)y(s)ds

∣∣∣∣ ≤ sup
t,s∈[−1,1]

|k(t, s)|
∫ 1

−1
|y(s)|ds

≤ √
2M‖y‖L2 , (2.2)

and ∥∥Ky
∥∥
L2 ≤ √

2
∥∥Ky

∥∥∞ ≤ 2M‖y‖L2 . (2.3)

This implies

‖K‖L2 ≤ 2M. (2.4)

We will use Kumar and Sloan [12] technique for finding the approximate solution of
the Eq. (2.1). The projection method will now be applied to an equivalent equation for the
function z defined by

z(t) := ψ(t, x(t)), t ∈ [−1, 1]. (2.5)

Note that, since ψ(., .) ∈ Cr ([−1, 1] × R) and x ∈ Cr [−1, 1], using chain rule for higher
derivatives it is easy to obtain that z ∈ Cr [−1, 1].

The desired exact solution x of (2.1) is obtained by the equation

x(t) = f (t) +
∫ 1

−1
k(t, s)z(s) ds, t ∈ [−1, 1]. (2.6)

For our convenience, we consider a nonlinear operator � : X → X defined by

�(x)(t) := ψ(t, x(t)). (2.7)

Then the Eq. (2.1) will take the form

x = Kz + f, (2.8)

and Eq. (2.5) becomes
z = �(Kz + f ). (2.9)

Let T (u) := �(Ku + f ), u ∈ X, then the Eq. (2.9) can be written as

z = T z. (2.10)
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Theorem 2.1 Let X = C[−1, 1], f ∈ X and k(., .) ∈ C([−1, 1] × [−1, 1]) with M =
sup

t,s∈[−1,1]
|k(t, s)| < ∞. Let ψ(s, y(s)) ∈ C([−1, 1] × R) satisfies the Lipschitz condition in

the second variable, i.e.,∣∣ψ(s, y1) − ψ(s, y2)
∣∣ ≤ c1

∣∣y1 − y2
∣∣, y1, y2 ∈ X,

with 2Mc1 < 1. Then the operator equation z = T z has a unique solution z0 ∈ X, i.e., we
have z0 = T z0.

Proof Let z1, z2 ∈ C[−1, 1]. Using Lipschitz’s continuity of ψ(., x(.)) and the estimate
(2.2), we have ∥∥T z1 − T z2

∥∥∞ = ∥∥�(Kz1 + f ) − �(Kz2 + f )
∥∥∞

≤ c1
∥∥K(z1 − z2)

∥∥∞
≤ c1M

√
2
∥∥z1 − z2

∥∥
L2

≤ 2Mc1
∥∥z1 − z2

∥∥∞. (2.11)

By assumption 2Mc1 < 1, hence T is a contraction mapping on X. Since X = C[−1, 1]
with ‖.‖∞ norm is a Banach space, T has a unique fixed point in X, by Banach contraction
theorem. We denote this unique solution as z0. Hence the proof follows. ��

Next we will apply Legendre Galerkin and Legendre collocation methods to the Eq. (2.9).
To do this, we let Xn = span{φ0, φ1, φ2, . . ., φn} be the sequence of Legendre polynomial
subspaces of X of degree ≤ n, where {φ0, φ1, φ2, . . ., φn} forms an orthonormal basis for
Xn . Here φi ’s are given by

φi (s) =
√
2i + 1

2
Li (s), i = 0, 1, . . . , n, (2.12)

where Li ’s are the Legendre polynomials of degree ≤ i . These Legendre polynomials can
be generated by the following three-term recurrence relation

L0(s) = 1, L1(s) = s, s ∈ [−1, 1], (2.13)

and for i = 1, 2, . . . , n − 1

(i + 1)Li+1(s) = (2i + 1)sLi (s) − i Li−1(s), s ∈ [−1, 1]. (2.14)

Orthogonal projection operator: Let X = C[−1, 1] and let the operator PG
n : X → Xn be

the orthogonal projection defined by

PG
n x =

n∑
j=0

〈x, φ j 〉φ j , x ∈ X, (2.15)

where 〈x, φ j 〉 = ∫ 1
−1 x(t)φ j (t)dt.

We quote the following proposition and lemma which follows from (Canuto et al. [5], pp
283-287).

Proposition 2.1 LetPG
n : X → Xn denote the orthogonal projection defined by (2.15). Then

the projection PG
n satisfies the following properties.

(i) ‖PG
n u‖L2 ≤ p1‖u‖∞, where p1 is a constant independent of n.
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(ii) There exists a constant c > 0 such that for any n ∈ N and u ∈ X,∥∥PG
n u − u

∥∥
L2 ≤ c inf

φ∈Xn
‖u − φ‖L2 → 0, as n → ∞. (2.16)

Lemma 2.1 Let PG
n be the orthogonal projection defined by (2.15). Then for any u ∈

Cr [−1, 1], there hold ∥∥u − PG
n u

∥∥
L2 ≤ cn−r

∥∥u(r)
∥∥
L2 , (2.17)∥∥u − PG

n u
∥∥∞ ≤ cn

3
4−r

∥∥u(r)
∥∥
L2 , (2.18)

where c is a constant independent of n.

Interpoaltory projection operator: Let {τ0, τ1, . . . , τn} be the zeros of the Legendre poly-
nomial of degree n + 1 and define interpolatory projection PC

n : X → Xn by

PC
n u ∈ Xn, PC

n u(τi ) = u(τi ), i = 0, 1, . . . , n, u ∈ X. (2.19)

According to the analysis of (Canuto et al. [5]), PC
n satisfies the following lemmas.

Lemma 2.2 Let PC
n : X → Xn be the interpolatory projection defined by (2.19). Then there

hold

(i)
∥∥PC

n u
∥∥
L2 ≤ p2

∥∥u∥∥∞, where p2 is a constant independent of n.
(ii) There exists a constant c > 0 such that for any n ∈ N and u ∈ X,∥∥PC

n u − u
∥∥
L2 ≤ c inf

φ∈Xn

∥∥u − φ
∥∥
L2 → 0, as n → ∞. (2.20)

Lemma 2.3 Let PC
n : X → Xn be the interpolatory projection defined by (2.19). Then for

any u ∈ Cr [−1, 1], there exists a constant c independent of n such that∥∥u − PC
n u

∥∥
L2 ≤ cn−r

∥∥u(r)
∥∥
L2 , (2.21)∥∥u − PC

n u
∥∥∞ ≤ cn

1
2−r

∥∥u(r)
∥∥
L2 . (2.22)

Throughout this paper, we assume that the projection operator Pn : X → Xn is either
orthogonal projection PG

n or interpolatory projection operator PC
n defined as above. From

the above discussed properties of PG
n and PC

n , we have∥∥Pnu
∥∥
L2 ≤ p

∥∥u∥∥∞, u ∈ X, (2.23)

where p is a constant independent of n. Also estimates (2.16) and (2.20) imply that∥∥Pnu − u
∥∥
L2 → 0, as n → ∞, ∀u ∈ C[−1, 1]. (2.24)

Further we have from Lemmas 2.1 and 2.3 that∥∥u − Pnu
∥∥
L2 ≤ cn−r

∥∥u(r)
∥∥
L2 , (2.25)∥∥u − Pnu

∥∥∞ ≤ cnβ−r
∥∥u(r)

∥∥
L2 , 0 < β < 1, and r = 0, 1, 2, · · · (2.26)

where c is a constant independent of n, β = 3
4 for orthogonal projection operators and β = 1

2
for interpolatory projections. Note that

∥∥Pnu − u
∥∥∞ � 0, as n → ∞ for any u ∈ C[−1, 1].

The projection method for Eq. (2.9) is seeking an approximate solution zn ∈ Xn such that

zn = Pn�(Kzn + f ). (2.27)
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If Pn is chosen to be PG
n , the above scheme (2.27) leads to the Legendre Galerkin method,

whereas if Pn is replaced by PC
n we get the Legendre collocation method.

Let Tn be the operator defined by

Tn(u) := Pn�(Ku + f ), u ∈ X. (2.28)

Then the Eq. (2.27) can be written as

zn = Tnzn . (2.29)

Corresponding approximate solution xn of x is given by

xn = Kzn + f. (2.30)

In order to obtain more accurate approximation solution, we further consider the iterated
projection method for (2.9). To this end, we define the iterated solution as

z̃n = �(Kzn + f ). (2.31)

Applying Pn on both sides of the Eq. (2.31), we obtain

Pn z̃n = Pn�(Kzn + f ). (2.32)

From Eqs. (2.27) and (2.32), it follows that Pn z̃n = zn . Using this, we see that the iterated
solution z̃n satisfies the following equation

z̃n = �(KPn z̃n + f ). (2.33)

Letting T̃n(u) := �(KPnu + f ), u ∈ X, the Eq. (2.33) can be written as z̃n = T̃n z̃n .
Corresponding approximate solution x̃n of x is given by

x̃n = Kz̃n + f. (2.34)

We quote the following theorem from [20] which gives us the condition under which the
solvability of one equation leads to the solvability of other equation.

Theorem 2.2 (Vainikko [20]) Let F̂ and F̃ be continuous operators over an open set 	 in
a Banach space X. Let the equation x = F̃x has an isolated solution x̃0 ∈ 	 and let the
following conditions be satisfied.

(a) The operator F̂ is Frechet differentiable in some neighborhood of the point x̃0, while the
linear operator I − F̂ ′(x̃0) is continuously invertible.

(b) Suppose that for some δ > 0 and 0 < q < 1, the following inequalities are valid (the
number δ is assumed to be so small that the sphere

∥∥x − x̃0
∥∥ ≤ δ is contained within

	).

sup∥∥x−x̃0
∥∥≤δ

∥∥(I − F̂ ′(x̃0))−1
(F̂ ′(x) − F̂ ′(x̃0))

∥∥ ≤ q, (2.35)

α = ∥∥(I − F̂ ′(x̃0))−1
(F̂(x̃0) − F̃(x̃0))

∥∥ ≤ δ(1 − q). (2.36)

Then the equation x = F̂x has a unique solution x̂0 in the sphere
∥∥x − x̃0

∥∥ ≤ δ. Moreover,
the inequality

α

1 + q
≤ ∥∥x̂0 − x̃0

∥∥ ≤ α

1 − q
(2.37)

is valid.
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Next we discuss the existence of approximate and iterated approximate solutions and their
error bounds. To do this, we first recall the following definition of ν-convergence and a lemma
from [1].

Definition 2.1 Let X be Banach space and BL(X) be space of bounded linear operators from
X into X. Let Kn, K ∈ BL(X). We say Kn is ν-convergent to K if∥∥Kn

∥∥ ≤ c < ∞,
∥∥(Kn − K)K

∥∥ → 0,
∥∥(Kn − K)Kn

∥∥ → 0, as n → ∞.

Lemma 2.4 (Ahues et al. [1]) Let X be a Banach space and K, Kn be bounded linear
operators on X. If

∥∥Kn − K
∥∥ → 0, as n → ∞ or Kn is ν-convergent to K and (I − K)−1

exists, then (I − Kn)
−1 exists and uniformly bounded on X, for sufficiently large n.

Lemma 2.5 Let z0 ∈ Cr [−1, 1], then the following hold∥∥K(I − Pn)z0
∥∥∞ = sup

t∈[−1,1]
| < kt (.), (I − Pn)z0 > | ≤ M

√
2
∥∥(I − Pn)z0

∥∥
L2 .

In particular we have
∥∥K(I − Pn)z0

∥∥∞ → 0, as n → ∞.

Proof Using Cauchy-Schwarz inequality and the estimate (2.25), we have∥∥K(I − Pn)z0
∥∥∞ = sup

t∈[−1,1]
|K(I − Pn)z0(t)|

= sup
t∈[−1,1]

∣∣∣∣
∫ 1

−1
k(t, s)(I − Pn)z0(s)ds

∣∣∣∣ (2.38)

= sup
t∈[−1,1]

| < kt (.), (I − Pn)z0 > |

≤ sup
t∈[−1,1]

∥∥kt (.)∥∥L2

∥∥(I − Pn)z0
∥∥
L2

≤ √
2M

∥∥(I − Pn)z0
∥∥
L2 (2.39)

≤ c
√
2Mn−r

∥∥z(r)0

∥∥
L2 → 0, as n → ∞. (2.40)

Hence the proof follows. ��
Lemma 2.6 Let T ′(z0) and T̃ ′

n (z0) be the Frechet derivatives of T (z) and T̃n(z), respectively
at z0. Then ∥∥(I − Pn)T̃ ′

n (z0)
∥∥
L2 → 0, as n → ∞,∥∥(I − Pn)T ′(z0)

∥∥
L2 → 0, as n → ∞.

Proof We have T̃ ′
n (z0) = � ′(KPnz0 + f )KPn .

Now using the Lipschitz’s continuity of ψ(0,1)(., x(.)), Lemma 2.5 and boundedness of∥∥� ′(Kz0 + f )
∥∥∞, we have

∥∥� ′(KPnz0 + f )
∥∥∞ ≤ ∥∥� ′(KPnz0 + f ) − � ′(Kz0 + f )

∥∥∞ + ∥∥� ′(Kz0 + f )
∥∥∞

≤ c2
∥∥K(Pn − I)z0

∥∥∞ + ∥∥� ′(Kz0 + f )
∥∥∞ ≤ B < ∞, (2.41)

where B is a constant independent of n.
This implies∥∥� ′(KPnz0 + f )

∥∥
L2 ≤ √

2
∥∥� ′(KPnz0 + f )

∥∥∞ ≤ √
2B < ∞. (2.42)
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Next, Let B̄ := {x ∈ X : ∥∥x∥∥L2 ≤ 1} be the closed unit ball in X. We have T̃ ′
n (z0) =

� ′(KPnz0 + f )KPn . Since {KPn} is a sequence of compact operators and � ′(KPnz0 + f )
is uniformly bounded, T̃ ′

n (z0) are compact operators. Thus S = {T̃ ′
n (z0)x : x ∈ B̄, n ∈ N }

is relatively compact set. Using estimate (2.24), we can conclude
∥∥(I − Pn)T̃ ′

n (z0)
∥∥
L2 = sup

{∥∥(I − Pn)T̃ ′
n (z0)x

∥∥
L2 : x ∈ B̄

}
= sup{∥∥(I − Pn)y

∥∥
L2 : y ∈ S} → 0, n → ∞. (2.43)

Similarly, since � ′(Kz0 + f ) is bounded and K is compact, T ′(z0) = � ′(Kz0 + f )K is
also compact and we have

∥∥(I − Pn)T ′(z0)
∥∥
L2 → 0, as n → ∞.

This completes the proof. ��
Theorem 2.3 Let z0 ∈ Cr [−1, 1] be an isolated solution of the Eq. (2.9). Assume that 1
is not an eigenvalue of the linear operator � ′(Kz0 + f )K, where � ′(Kz0 + f )K denotes
the Frechet derivative of �(Kz + f ) at z0. Let Pn : X → Xn be either orthogonal or
interpolatory projection operator defined by (2.15) and (2.19) respectively. Then the Eq.
(2.27) has a unique solution zn ∈ B(z0, δ) = {z : ∥∥z − z0

∥∥
L2 < δ} for some δ > 0 and for

sufficiently large n. Moreover, there exists a constant 0 < q < 1, independent of n such that

αn

1 + q
≤ ∥∥zn − z0

∥∥
L2 ≤ αn

1 − q
,

where αn = ∥∥(I − Tn ′(z0))−1(Tn(z0) − T (z0))
∥∥
L2 . Further, we obtain∥∥zn − z0

∥∥
L2 ≤ c

∥∥(Pn − I)z0
∥∥
L2 = O(n−r ),

where c is a constant independent of n.

Proof Using Lemma 2.6, we have
∥∥Tn ′(z0) − T ′(z0)

∥∥
L2 = ∥∥Pn�

′(Kz0 + f )K − � ′(Kz0 + f )K
∥∥
L2

= ∥∥(Pn − I)� ′(Kz0 + f )K
∥∥
L2

= ∥∥(Pn − I)T ′(z0)
∥∥
L2 → 0, as n → ∞.

Since we assume that 1 is not an eigen value of T ′(z0), (I − T ′(z0)) is invertible. Hence by
applying Lemma 2.4, we have (I − T ′

n (z0))
−1 exists and uniformly bounded on X, for some

sufficiently large n, i.e., there exists some A1 > 0 such that
∥∥(I − T ′

n (z0))
−1∥∥

L2 ≤ A1 < ∞.

Now from estimates (2.2) and (2.23), we have for any z ∈ B(z0, δ),∥∥[Tn ′(z0) − Tn ′(z)]v∥∥
L2 = ∥∥[Pn�

′(Kz0 + f )K − Pn�
′(Kz + f )K]v∥∥

L2

≤ p
∥∥[� ′(Kz0 + f ) − � ′(Kz + f )]Kv

∥∥∞
≤ p

∥∥� ′(Kz0 + f ) − � ′(Kz + f )
∥∥∞

∥∥Kv
∥∥∞

≤ √
2pM

∥∥� ′(Kz0 + f ) − � ′(Kz + f )
∥∥∞

∥∥v
∥∥
L2 . (2.44)

Taking use of the Lipschtiz’s continuity of ψ(0,1)(., x(.)) and estimate (2.2), we have
∥∥� ′(Kz0 + f ) − � ′(Kz + f )

∥∥∞ ≤ c2
∥∥K(z0 − z)

∥∥∞
≤ √

2c2M
∥∥z0 − z

∥∥
L2 ≤ √

2Mc2δ. (2.45)
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Using the estimate (2.45) in (2.44), we obtain∥∥[Tn ′(z0) − Tn ′(z)]v∥∥
L2 ≤ 2pM2c2δ

∥∥v
∥∥
L2 .

Thus we have

sup∥∥z−z0
∥∥
L2

≤δ

∥∥(I − Tn ′(z0))−1
(Tn ′(z0) − Tn ′(z))

∥∥
L2 ≤ 2A1 pM

2c2δ ≤ q (say).

Here we choose δ in such a way that, 0 < q < 1. This proves the Eq. (2.35) of Theorem 2.2.
Taking use of (2.25), we have

αn = ∥∥(I − Tn ′(z0))−1(Tn(z0) − T (z0))
∥∥
L2

≤ A1
∥∥Tn(z0) − T (z0)

∥∥
L2

= A1
∥∥Pn�(Kz0 + f ) − �(Kz0 + f )

∥∥
L2

= A1
∥∥(Pn − I)�(Kz0 + f )

∥∥
L2

= A1
∥∥(Pn − I)z0

∥∥
L2 → 0, as n → ∞.

By choosing n large enough such that αn ≤ δ(1 − q), the Eq. (2.36) of Theorem 2.2 is
satisfied. Hence by applying Theorem 2.2, we obtain

αn

1 + q
≤ ∥∥zn − z0

∥∥
L2 ≤ αn

1 − q
,

and ∥∥zn − z0
∥∥
L2 ≤ αn

1 − q
≤ c

∥∥(Pn − I)z0
∥∥
L2 .

Hence from estimate (2.25), we have∥∥zn − z0
∥∥
L2 = O(n−r ).

This completes the proof. ��
Next we discuss the existence and convergence of the iterated approximate solution z̃n to

z0.

Theorem 2.4 T̃ ′
n (z0) is ν-convergent to T ′(z0) in both infinity norm and L2-norm.

Proof Consider∣∣∣T̃ ′
n (z0)z(t)

∣∣∣ =
∣∣∣� ′(KPnz0 + f )KPnz(t)

∣∣∣
≤

∣∣∣� ′(KPnz0 + f ) − � ′(Kz0 + f )||KPnz(t)
∣∣∣

+
∣∣∣� ′(Kz0 + f )||KPnz(t)

∣∣∣. (2.46)

Now using the Lipschtiz’s continuity of ψ(0,1)(., x(.)) and Lemma 2.5, we have∥∥∥� ′(KPnz0 + f ) − � ′(Kz0 + f )
∥∥∥∞ ≤ c2

∥∥K(I − Pn)z0
∥∥∞

→ 0, as n → ∞. (2.47)

Using estimate (2.2) and (2.23), we have∥∥KPnz
∥∥∞ ≤ √

2M
∥∥Pnz

∥∥
L2 ≤ √

2Mp
∥∥z∥∥∞, (2.48)
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which implies
∥∥KPn

∥∥∞ ≤ √
2Mp. (2.49)

Now combining the estimates (2.46), (2.47) and (2.49), we obtain
∥∥T̃ ′

n (z0)
∥∥∞ ≤ √

2Mp(c2
∥∥K(I − Pn)z0

∥∥∞ + ∥∥� ′(Kz0 + f )
∥∥∞) < ∞.

This shows that
∥∥T̃ ′

n (z0)
∥∥∞ is uniformly bounded.

Next Consider

|(T̃ ′
n (z0) − T ′(z0))T̃ ′

n (z0)z(t)| =
∣∣∣{� ′(KPnz0 + f )KPn − � ′(Kz0 + f )K}T̃ ′

n (z0)z(t)
∣∣∣

≤
∣∣∣� ′(KPnz0 + f )(KPn − K)T̃ ′

n (z0)z(t)
∣∣∣

+
∣∣∣{� ′(KPnz0 + f ) − � ′(Kz0 + f )}KT̃ ′

n (z0)z(t)
∣∣∣.

(2.50)

Now for the first term in the above estimate (2.50), using Lemma 2.5 we have

∥∥K(I − Pn)T̃ ′
n (z0)z

∥∥∞ = sup
t∈[−1,1]

∣∣∣∣
∫ 1

−1
k(t, s)(I − Pn)T̃ ′

n (z0)z(s)ds

∣∣∣∣
≤ √

2M
∥∥(I − Pn)T̃ ′

n (z0)
∥∥
L2

∥∥z∥∥∞. (2.51)

For the second term of the estimate (2.50) using estimates (2.2), (2.47), we have
∥∥{� ′(KPnz0 + f ) − � ′(Kz0 + f )}KT̃ ′

n (z0)z
∥∥∞

≤ ∥∥� ′(KPnz0 + f ) − � ′(Kz0 + f )
∥∥∞

∥∥KT̃ ′
n (z0)z

∥∥∞
≤ c2

∥∥K(I − Pn)z0
∥∥∞

∥∥KT̃ ′
n (z0)z

∥∥∞
≤ 2

√
2c2M

2
∥∥(I − Pn)z0

∥∥
L2

∥∥T̃ ′
n (z0)

∥∥∞
∥∥z∥∥∞. (2.52)

Now combining estimates (2.41), (2.50), (2.51) and (2.52), we see that
∥∥(T̃ ′

n (z0) − T ′(z0))T̃ ′
n (z0)z

∥∥∞
≤

{√
2MB

∥∥(I − Pn)T̃ ′
n (z0)

∥∥
L2 + 2

√
2c2M

2
∥∥(I − Pn)z0

∥∥
L2

∥∥T̃ ′
n (z0)

∥∥∞
} ∥∥z∥∥∞.

Hence using Lemma 2.6, estimate (2.25) and the uniform boundedness of
∥∥T̃ ′

n (z0)
∥∥∞, we

obtain
∥∥(T̃ ′

n (z0) − T ′(z0))T̃ ′
n (z0)

∥∥∞ → 0, as n → ∞.

Following the similar steps we can prove that
∥∥(T̃ ′

n (z0) − T ′(z0))T ′(z0)
∥∥∞ → 0, as n → ∞.

This shows that T̃ ′
n (z0) is ν-convergent to T ′(z0) in infinity norm.

On similar lines, we can show that T̃ ′
n (z0) is ν-convergent to T ′(z0) in L2- norm. This

completes the proof. ��

Hence by applying the Lemma 2.4 and Theorem 2.4, we obtain the following theorem.
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Theorem 2.5 Let z0 ∈ Cr [−1, 1] be an isolated solution of the Eq. (2.9). Assume that 1 is
not an eigenvalue of � ′(Kz0 + f )K. Then for sufficiently large n, the operator I − T̃ ′

n (z0)
is invertible on C[−1, 1] and there exist constants L , L1 > 0 independent of n such that∥∥(I − T̃ ′

n (z0))
−1

∥∥∞ ≤ L and
∥∥(I − T̃ ′

n (z0))
−1

∥∥
L2 ≤ L1.

Theorem 2.6 Let z0 ∈ Cr [−1, 1] be an isolated solution of the Eq. (2.9). Let Pn : X →
Xn be either orthogonal or interpolatory projection operator defined by (2.15) and (2.19)
respectively. Assume that 1 is not an eigenvalue of � ′(Kz0 + f )K, then for sufficiently large
n, the iterated solution z̃n defined by (2.33) is the unique solution in the sphere B(z0, δ) =
{z : ∥∥z − z0

∥∥∞ < δ}. Moreover, there exists a constant 0 < q < 1, independent of n such
that

βn

1 + q
≤ ∥∥z̃n − z0

∥∥∞ ≤ βn

1 − q
,

where

βn = ∥∥(I − T̃ ′
n (z0))

−1(T̃n(z0) − T (z0))
∥∥∞.

Proof From Theorem 2.5, we can say, there exists a constant L > 0 such that∥∥(I − T̃ ′
n (z0))

−1
∥∥∞ ≤ L , for sufficiently large value of n.

Consider for any z ∈ B(z0, δ),∥∥[T̃ ′
n (z) − T̃ ′

n (z0)]v
∥∥∞ = ∥∥[{� ′(KPnz + f ) − � ′(KPnz0 + f )}KPn]v

∥∥∞
≤ ∥∥� ′(KPnz + f ) − � ′(KPnz0 + f )

∥∥∞
∥∥KPnv

∥∥∞. (2.53)

Using Cauchy-Schawrz inequality and estimate (2.48), we have
∥∥� ′(KPnz + f ) − � ′(KPnz0 + f )

∥∥∞ ≤ c2
∥∥KPn(z0 − z)

∥∥∞
≤ √

2Mc2 p
∥∥z − z0

∥∥∞
≤ √

2Mc2 pδ. (2.54)

Combining estimates (2.48), (2.53), (2.54), we obtain
∥∥[T̃ ′

n (z) − T̃ ′
n (z0)]v

∥∥∞ ≤ 2M2c2 p
2δ

∥∥v
∥∥∞. (2.55)

This implies

sup∥∥z−z0
∥∥

∞≤δ

∥∥(I − T̃ ′
n (z0))

−1
(T̃ ′

n (z) − T̃ ′
n (z0))

∥∥∞ ≤ 2LM2c2 p
2δ ≤ q (say).

We choose δ in such a way that 0 < q < 1. Hence this proves the Eq. (2.35) of Theorem 2.2.
Now using the Lipschtiz’s continuity of ψ(., x(.)) and Lemma 2.5, we have

∥∥T̃n(z0) − T (z0)
∥∥∞ ≤ ∥∥�(KPnz0 + f ) − �(Kz0 + f )

∥∥∞
≤ c1

∥∥K(I − Pn)z0
∥∥∞ → 0, as n → ∞. (2.56)

Hence

βn = ∥∥(I − T̃ ′
n (z0))

−1(T̃n(z0) − T (z0))
∥∥∞

≤ Lc1
∥∥K(I − Pn)z0

∥∥∞ → 0, as n → ∞.
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Choose n large enough such that βn ≤ δ(1 − q). Then the Eq. (2.36) of Theorem 2.2 is
satisfied. Thus by applying Theorem 2.2, we obtain

βn

1 + q
≤ ∥∥z̃n − z0

∥∥∞ ≤ βn

1 − q

where

βn = ∥∥(I − T̃ ′
n (z0))

−1
(T̃n(z0) − T (z0))

∥∥∞.

This completes the proof. ��
Theorem 2.7 Let z0 ∈ Cr [−1, 1] be an isolated solution of the Eq. (2.9). Let Pn : X →
Xn be either orthogonal or interpolatory projection operator defined by (2.15) and (2.19)
respectively. Assume that 1 is not an eigenvalue of � ′(Kz0 + f )K, then for sufficiently large
n, the iterated solution z̃n defined by (2.33) is the unique solution in the sphere B(z0, δ) =
{z : ∥∥z − z0

∥∥
L2 < δ}. Moreover, there exists a constant 0 < q < 1, independent of n such

that

βn

1 + q
≤ ∥∥z̃n − z0

∥∥
L2 ≤ βn

1 − q
,

where

βn = ∥∥(I − T̃ ′
n (z0))

−1(T̃n(z0) − T (z0))
∥∥
L2 .

Proof Using the similar steps as in the proof of Theorem 2.6, the proof of the above theorem
can be easily done. ��
Theorem 2.8 Let z0 ∈ C[−1, 1] be an isolated solution of the Eq. (2.9). Let z̃n defined by
the iterated scheme (2.33). Then the following hold∥∥z̃n − z0

∥∥∞ ≤ c sup
t∈[−1,1]

| < kt , (I − Pn)z0 > |, (2.57)

and ∥∥z̃n − z0
∥∥
L2 ≤ c sup

t∈[−1,1]
| < kt , (I − Pn)z0 > |, (2.58)

where c is a constant independent of n.

Proof It follows from Theorem 2.6 that

βn

1 + q
≤ ∥∥z̃n − z0

∥∥∞ ≤ βn

1 − q
,

where

βn = ∥∥(I − T̃ ′
n (z0))

−1(T̃n(z0) − T (z0))
∥∥∞.

Hence from Theorem 2.5, estimates (2.39), (2.56), we have

∥∥z̃n − z0
∥∥∞ ≤ βn

1 − q
≤ c

∥∥(I − T̃ ′
n (z0))

−1(T̃n(z0) − T (z0))
∥∥∞

≤ cL
∥∥�(KPnz0 + f ) − �(Kz0 + f )

∥∥∞
≤ cLc1

∥∥K(Pn − I)z0
∥∥∞

≤ c sup
t∈[−1,1]

| < kt (.), (I − Pn)z0 > |.
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This proves the estimate (2.57).
Similarly for L2- norm we can show that∥∥z̃n − z0

∥∥
L2 ≤ √

2
∥∥z̃n − z0

∥∥∞ ≤ c sup
t∈[−1,1]

| < kt , (I − Pn)z0 > |,

where c is a constant independent of n.
This completes the proof. ��
Theorem 2.9 Let x0 ∈ Cr [−1, 1] be an isolated solution of the Eq. (2.1) and xn be the
Legendre Galerkin or Legendre collocation approximations of x0. Then there hold∥∥x0 − xn

∥∥
L2 = O(n−r ),∥∥x0 − xn

∥∥∞ = O(n−r ).

Proof Using estimates (2.2), (2.8), (2.30) and Theorem 2.3, we have∥∥x0 − xn
∥∥∞ = ∥∥K(z0 − zn)

∥∥∞ ≤ √
2M

∥∥z0 − zn
∥∥
L2 = O(n−r ),

and ∥∥x0 − xn
∥∥
L2 ≤ √

2
∥∥x0 − xn

∥∥∞ = O(n−r ).

Hence the proof follows. ��
Now we discuss the convergence rates for the iterated approximate solutions. To dis-

tinguish between the iterated Legendre Galerkin method and iterated Legendre collocation
method, we set the following notations. In case of iterated Legendre Galerkin method we
denote z̃n = z̃Gn and x̃n = x̃Gn , and for iterated Legendre collocationmethodwewrite z̃n = z̃Cn
and x̃n = x̃Cn .

Theorem 2.10 Let x0 ∈ Cr [−1, 1] be an isolated solution of the Eq. (2.1) and x̃Gn be the
iterated Legendre Galerkin approximation of x0. Then the following superconvergence rates
hold ∥∥x0 − x̃Gn

∥∥
L2 = O(n−2r ),∥∥x0 − x̃Gn

∥∥∞ = O(n−2r ).

Proof From Theorem 2.8, we have∥∥z̃Gn − z0
∥∥∞ ≤ c sup

t∈[−1,1]
∣∣ < kt (.), (I − PG

n )z0(.) >
∣∣. (2.59)

Using the orthogonality of the projection operators PG
n , Cauchy-Schwarz inequality and

estimate (2.17) of Lemma 2.1, we obtain∣∣ < kt (.), (I − PG
n )z0(.) >

∣∣ = | < (I − PG
n )kt (.), (I − PG

n )z0(.) > |
≤ ∥∥(I − PG

n )kt (.)
∥∥
L2

∥∥z0 − PG
n z0

∥∥
L2

≤ cn−2r
∥∥z(r)0

∥∥
L2

∥∥(kt (.))
(r)

∥∥
L2

≤ cn−2r
∥∥z(r)0

∥∥
L2

∥∥k∥∥r,∞. (2.60)

Hence from (2.59) and (2.60), we have∥∥z̃Gn − z0
∥∥∞ ≤ cn−2r

∥∥z(r)0

∥∥
L2

∥∥k∥∥r,∞ = O(n−2r ), (2.61)
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and ∥∥z̃Gn − z0
∥∥
L2 ≤ √

2
∥∥z̃Gn − z0

∥∥∞ = O(n−2r ). (2.62)

Using estimates (2.2), (2.8), (2.34) and (2.62), we have∥∥x0 − x̃Gn
∥∥∞ = ∥∥K(z0 − z̃Gn )

∥∥∞ ≤ √
2M

∥∥z̃Gn − z0
∥∥
L2 = O(n−2r ),

and ∥∥x0 − x̃Gn
∥∥
L2 ≤ √

2
∥∥x0 − x̃Gn

∥∥∞ = O(n−2r ).

Hence the proof follows. ��
Theorem 2.11 Let x0 ∈ Cr [−1, 1] be an isolated solution of the Eq. (2.1) and x̃Cn be the
iterated Legendre collocation approximation of x0. Then the following hold∥∥x0 − x̃Cn

∥∥
L2 = O(n−r ),∥∥x0 − x̃Cn

∥∥∞ = O(n−r ).

Proof Using Theorem 2.8, estimate (2.21) of Lemma 2.3 and Cauchy-Schwarz inequality,
we have for the interpolatory projection operator PC

n∥∥z̃Cn − z0
∥∥∞ ≤ c sup

t∈[−1,1]
| < kt (.), (I − PC

n )z0(.) > |

≤ c sup
t∈[−1,1]

∥∥kt (.)∥∥L2

∥∥z0 − PC
n z0

∥∥
L2

≤ c
√
2M

∥∥z0 − PC
n z0

∥∥
L2

≤ √
2Mcn−r

∥∥z(r)0

∥∥
L2 = O(n−r ), (2.63)

and ∥∥z̃Cn − z0
∥∥
L2 ≤ √

2
∥∥z̃Cn − z0

∥∥∞ = O(n−r ). (2.64)

Using estimates (2.2), (2.8), (2.34) and (2.64), we have∥∥x0 − x̃Cn
∥∥∞ = ∥∥K(z0 − z̃Cn )

∥∥∞ ≤ √
2M

∥∥z̃Cn − z0
∥∥
L2 = O(n−r ),

and ∥∥x0 − x̃Cn
∥∥
L2 ≤ √

2
∥∥x0 − x̃Cn

∥∥∞ = O(n−r ).

Hence the proof follows. ��
Remark From Theorems 2.9, 2.10, and 2.11 we observe that the Legendre Galerkin and
Legendre collocation solutions have same order of convergence, O(n−r ) both in L2-norm and
infinity norm. The iterated Legendre Galerkin solution converges with the order O(n−2r ) in
both L2-norm and infinity normwhereas the iterated Legendre collocation solution converges
with the order O(n−r ) in both L2-norm and in infinity norm.

3 Numerical Example

In this section we present the numerical results. For that we take the Legendre polynomials
as the basis functions of Xn from the three-term recurrence relation

φ0(s) = 1, φ1(s) = s, s ∈ [−1, 1],
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and

(i + 1)φi+1(s) = (2i + 1)sφi (s) − iφi−1(s), s ∈ [−1, 1], i = 1, 2, . . . , n − 1. (3.1)

We present the errors of the approximation solutions and the iterated approximation solutions
under the Legendre Galerkin and Legendre collocation methods in both L2-norm and infinity
norm in Tables 1–4. We use n to represent the highest degree of the Legendre polynomials
employed in the computation. The numerical algorithm was run on a PC with Intel Pentium
1.83GHz CPU, 512MB RAM, and the programs were compiled by using Matlab.

Example 3.1 We consider the following Hammerstein integral equation

x(t) −
∫ 1

−1
k(t, s)ψ(s, x(s))ds = f (t), − 1 ≤ t ≤ 1, (3.2)

with the kernel function k(t, s) = ( 3√2π
16

)
cos

(
π |s−t |

4

)
,ψ(s, x(s)) = [x(s)]2 and the function

f (t) = (−1
4

)
cos

(
π t
4

)
where the exact solution is given by x(t) = cos

(
π t
4

)
.

Example 3.2 We consider the following Hammerstein integral equation

x(t) −
∫ 1

−1
k(t, s)ψ(s, x(s))ds = f (t),−1 ≤ t ≤ 1 (3.3)

Table 1 Legendre Galerkin method

n
∥∥x − xGn

∥∥
L2

∥∥x − xGn
∥∥∞

∥∥x − x̃Gn
∥∥
L2

∥∥x − x̃Gn
∥∥∞

2 0.16612096e−02 0.34084469e−02 0.27140926e−04 0.21215376e−04

4 0.20439952e−02 0.22166056e−02 0.44270028e−04 0.35440976e−04

5 0.86759925e−05 0.21021360e−04 0.31719179e−08 0.24794071e−08

7 0.24104371e−07 0.64562011e−07 0.99307177e−13 0.78714812e−13

8 0.41715829e−10 0.11321033e−09 0.21675239e−14 0.31086244e−14

Table 2 Legendre collocation method

n
∥∥x − xCn

∥∥
L2

∥∥x − xCn
∥∥∞

∥∥x − x̃Cn
∥∥
L2

∥∥x − x̃Cn
∥∥∞

2 0.23728226e−02 0.63183241e−02 0.50686226e−03 0.39620083e−03

4 0.20524588e−02 0.22438193e−02 0.44452727e−04 0.35587527e−04

5 0.86760263e−05 0.20971481e−04 0.36041468e−08 0.28172709e−08

7 0.24104407e−07 0.64465292e−07 0.11634294e−12 0.91926466e−13

8 0.58748349e−10 0.22963709e−09 0.13749494e−14 0.27755576e−14

Table 3 Legendre Galerkin method

n
∥∥x − xGn

∥∥
L2

∥∥x − xGn
∥∥∞

∥∥x − x̃Gn
∥∥
L2

∥∥x − x̃Gn
∥∥∞

2 0.89991060e−01 0.102514167204 0.80983908e−02 0.47581867e−02

4 0.58544673e−02 0.23433077e−03 0.20570498e−03 0.23405378e−03

5 0.19729463e−03 0.78969100e−04 0.69322253e−05 0.78875757e−05

6 0.82051733e−04 0.33521203e−05 0.83117109e−07 0.32803189e−07

7 0.29426261e−05 0.32842007e−05 0.86590496e−09 0.33481582e−10
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Table 4 Legendre collocation method

n
∥∥x − xCn

∥∥
L2

∥∥x − xCn
∥∥∞

∥∥x − x̃Cn
∥∥
L2

∥∥x − x̃Cn
∥∥∞

2 0.65655572e−01 0.60995024e−01 0.53667135e−02 0.61135425e−02

4 0.30616615e−02 0.28443301e−03 0.62491114e−04 0.29159128e−03

5 0.22815333e−03 0.30485943e−04 0.71788910e−05 0.98738609e−05

6 0.34864807e−04 0.33492602e−05 0.81036081e−06 0.10174882e−07

7 0.36051726e−05 0.32389936e−05 0.86647503e−09 0.80064485e−09

with the kernel function k(t, s) = e−2s sin(t), ψ(s, x(s)) = [x(s)]2 and the function f (t) =
t2 where the exact solution is given by x(t) = t2 + 1.95778sin(t).
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