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Abstract In this paper, we consider the Legendre spectral Galerkin and Legendre spectral
collocation methods to approximate the solution of Hammerstein integral equation. The
convergence of the approximate solutions to the actual solution is discussed and the rates
of convergence are obtained. We are able to obtain similar superconvergence rates for the
iterated Legendre Galerkin solution for Hammerstein integral equations with smooth kernel
as in the case of piecewise polynomial based Galerkin method.
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1 Introduction
In this section, we consider the following Hammerstein integral equation

1
x(1) —/ k(t, )Y (s, x(s))ds = f(t), —1<t<1, (1.1)
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where k, f and ¥ are known functions and x is the unknown solution to be found in a Banach
space X. Hammerstein integral equations (1.1) arises as a reformulation of boundary value
problems with certain nonlinear boundary conditions.

Several numerical methods are available in literature to solve nonlinear integral equations.
Various spectral methods for solving different type of integral equations are present in litera-
ture (see [3,4,15-19,21,22]). The Galerkin, collocation, Petrov—Galerkin, degenerate kernel
and Nystrom methods are commonly used projection methods for finding numerical solu-
tions of the equation of type (1.1) (see [2,6—12,14]). In [12,13] Kumar and Sloan discussed
a new type of collocation method and established superconvergence results for the solution
of Hammerstein integral equations. Some recent results on the numerical solutions of the
Hammerstein equations can be found in [11].

In the case of piecewise polynomial based projection methods, we consider —1 = 75 <
t) <--- <t, =1,apartition of [—1, 1] and let h = max{t;11 — ¢t : 0 <t; <n — 1} denote
the norm of the partition. We assume that 7 — 0, as n — oo. In this case the approximating
subspaces X, = S, the space of all piecewise polynomials of order r (i.e., of degree < r —1)
withbreak pointsat#y, r, . .., t,—1 and with v continuous derivatives, —1 < v <r—2.LetP,
be either orthogonal or interpolatory bounded projections from X onto X,,. Then in Galerkin
or in collocation method, the Hammerstein integral equation (1.1) is approximated by

Xp — PuKy (xp) = Pp f, (1.2)

where Iy (x,)(t) = f_llk(t, )Y (s, x,(s)) ds. The iterated solution is defined by X, = f +
K (x,). Under some suitable conditions on the kernel k and the right hand side function f of
the Eq. (1.1), it is known that the orders of convergence for Galerkin and collocation solutions
are O(h") and for the iterated Galerkin and iterated collocation solutions are O(h%") (see
[9,10]). However, to get better accuracy in piecewise polynomial based projection methods,
the number of partition points should be increased. Hence in such cases, one has to solve a
large system of nonlinear equations, which is computationally very much expensive.

In this paper, we have applied Galerkin and collocation method to solve Eq. (1.1) using
global polynomial basis functions. Use of global polynomials will imply smaller nonlinear
systems, something which is highly desirable in practical computations. Hence we choose
to use global polynomials rather than piecewise polynomial basis functions in this paper.
In particular, we use Legendre polynomials, which can be generated recursively with ease
and possess nice property of orthogonality. Further, these Legendre polynomials are less
expensive computationally compared to piecewise polynomial basis functions. However, if
P, denotes either orthogonal or interpolatory projection from X into a subspace of global
polynomials of degree < n, then || P, ||« is unbounded. It is the purpose of this work to obtain
similar convergence results for the approximate solutions in both L?-norm and infinity norm
using Legendre polynomial bases as in the case of piecewise polynomial bases.

We organize this paper as follows. In Sect. 2, we discuss the Legendre spectral Galerkin and
Legendre spectral collocation methods to obtain convergence results. In Sect. 3, numerical
results are given to illustrate the theoretical results. Throughout this paper, we assume that ¢
is a generic constant.

2 Legendre Spectral Galerkin and Collocation Methods: Hammerstein
Integral Equations with Smooth Kernel

In this section, we describe the Galerkin and collocation methods for solving Hammerstein
integral equations using Legendre polynomial basis functions.
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Let X = C[—1, 1] and consider the following Hammerstein integral equation

1
x(1) —/ k(t,)Y(s,x(s))ds = f(t), —1<t<1, 2.1)
-1

where k, f and v are known functions and x is the unknown function to be determined. For
afixed t € [—1, 1], we denote k;(s) = k(t, s).
Throughout the paper, the following assumptions are made on f, k(., .) and ¥ (., x(.)):

(i) fell-1,1].
(i) lim [[k(t,.) —k(*, )0 =0, #,1" € [-1,1].
t—t
(iii) M = |lkllooc = sup [|k(z,5)| < oo.
t,se[—1,1]
(iv) The nonlinear function v (s, x) is bounded and continuous over [—1, 1] x R. ¥ (s, x)

is Lipschitz continuous in x, i.e., for any x, x € R, 3 ¢; > 0 such that
[ (s, x1) — ¥ (s, x2)| < cilxr — x2|, Vs € [-1,1].
(v) The partial derivative ¥ O.D (s, x(s))of Y w.r.tthe second variable exists and is Lipschitz
continuous in x, i.e., for any xy, xo € R, 3 ¢2 > 0 such that
YOV, x) = OV 0l < o x1 —xal, Vs € [—1, 1],
From this, we have v O D (., ) € C([—1, 1] x R).
(vi) We assume that M and c; satisfy the condition that 2M ¢ < 1.

Note that under the above assumptions on f, k and v, for a sufficiently small number
h > 0, we have

1

[x(t+h)—x@)] = 'f(t—i—h)—i—/ k(t+h,s)¥U(s,x(s))ds — f(t)
-1

1
—/ k(t, )Y (s, x(s))ds
-1

1
< |f+h— fOI+ ‘/ [kt +h,s) —k(t, )P (s, x(s))ds
-1

1
= f@+h—fOl+ sup ]Ik(t-l-h,S)—k(t,S)I/lIw(s,x(S))IdS

se[—1,1
— 0ash — 0.

This implies x € C[—1, 1].

Let C"[—1, 1] denote the space of r-times continuously differentiable functions. For the
rest of the paper we assume that the kernel k(.,.) € C"([—1, 1] x [—1, 1]), the nonlinear
function ¥ (.,.) € C"([—1, 1] x R) and f € C"[—1, 1]. Denote

it+j

atias/

(D)2, 5) = k(t,s), t,s€[—1,1],

and

Kl oo = max{| DEVk|  :0 < i <0< j < rf.
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Now for j = 1,2, ...r, we have from estimate (2.1) that

J

1
. . 0
XDy = 90+ / ‘@ka, s)] (s, x(s))ds.
-1
Hence by our assumptions on f, k and v, it follows that x € C"[—1, 1]. We write

llx1lr,00 = max {||x(j)||OO 0<j< r},

where x) denotes the j-th derivative of x.
Let

1
Ky(t) :/ k(t,s)y(s)ds, te[-1,1], yeX.
-1

Note that, using Holder’s inequality we have for any y € X,

1 1
Iyl = sup IKy@) = sup / Kt 9)y@)ds| = sup k@ s)] / () lds
te[—1,1] te[—1,1] —1 t,se[—1,1] —1
< 2yl e, 2.2)
and
lKy],2 < vV2|Ky| <2MIyll2. 2.3)
This implies
1Kl 2 <2M. 2.4)

We will use Kumar and Sloan [12] technique for finding the approximate solution of
the Eq. (2.1). The projection method will now be applied to an equivalent equation for the
function z defined by

2(t) ==Y (t, x(t)), t e[-1,1]. (2.5)

Note that, since ¥ (., .) € C"([—1, 1] x R) and x € C"[—1, 1], using chain rule for higher
derivatives it is easy to obtain that z € C"[—1, 1].
The desired exact solution x of (2.1) is obtained by the equation

1

x(t)=f(t)+/ k(t, s)z(s)ds, t e[—1,1]. 2.6)
1

For our convenience, we consider a nonlinear operator ¥ : X — X defined by
W (x) (1) ==y (1, x(1)). 2.7
Then the Eq. (2.1) will take the form
x =Kz+ f, (2.8)

and Eq. (2.5) becomes
2= WKz + f). (2.9)

Let 7 (u) := ¥(Ku + f), u € X, then the Eq. (2.9) can be written as

z="Txz. (2.10)
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Theorem 2.1 Let X = C[—1,1], f € X and k(.,.) € C([—1,1] x [—1,1]) with M =
sup |k(z,s)| < oo. Let ¥ (s, y(s)) € C([—1, 1] x R) satisfies the Lipschitz condition in

t,se[—1,1]

the second variable, i.e.,

[V(s.yD) —w(s,y)| < iy —y2f, vy eX

with 2Mc) < 1. Then the operator equation z = T z has a unique solution zo € X, i.e., we
have zo = 7T zp.

Proof Let 71,22 € C[—1, 1]. Using Lipschitz’s continuity of (., x(.)) and the estimate
(2.2), we have

[T21 =Tz = WKzt + /) = WKz + )|

<c|k@ -2,
< aMvV2|z — 2|,
< 2Meci|z1 — 22 - @2.11)

By assumption 2Mc¢; < 1, hence 7 is a contraction mapping on X. Since X = C[—1, 1]
with ||.|lco norm is a Banach space, 7 has a unique fixed point in X, by Banach contraction
theorem. We denote this unique solution as zp. Hence the proof follows. O

Next we will apply Legendre Galerkin and Legendre collocation methods to the Eq. (2.9).
To do this, we let X,, = span{¢o, ¢1, ¢2, ..., ¢, } be the sequence of Legendre polynomial
subspaces of X of degree < n, where {¢g, @1, ¢2, ..., ¢, } forms an orthonormal basis for
X,,. Here ¢;’s are given by

i (s) =,/?Li(s), i=01,....n, 2.12)

where L;’s are the Legendre polynomials of degree < i. These Legendre polynomials can
be generated by the following three-term recurrence relation

Lo(s)=1,Li(s)=s, se[—1,1], (2.13)
andfori =1,2,...,n—1
i+ 1DLiy1(s) = Qi+ DsLi(s) —iLi—1(s), se[—1,1]. (2.14)

Orthogonal projection operator: Let X = C[—1, 1] and let the operator 73,? X — X, be
the orthogonal projection defined by

n

Pox = (x, ¢;)¢j. x€X, (2.15)

Jj=0

where (x, ¢;) = 1, x()¢; (t)dr.
We quote the following proposition and lemma which follows from (Canuto et al. [5], pp
283-287).

Proposition 2.1 Let P,,G : X — X, denote the orthogonal projection defined by (2.15). Then
the projection ”PnG satisfies the following properties.

@) ||73nGu||Lz < p1lltlleo, where py is a constant independent of n.
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(ii) There exists a constant ¢ > 0 such that for anyn € Nand u € X,

|PEu—ul,, < Cq%g lu—ll;2— 0, asn — oo. (2.16)

Lemma 2.1 Let P,,G be the orthogonal projection defined by (2.15). Then for any u €
C"[—1, 1], there hold

Ju =Pl = en w1, 2.17)
lu — PnG“”oo < cnir |u® I12- (2.18)
where c is a constant independent of n.
Interpoaltory projection operator: Let {79, 71, ..., 7,} be the zeros of the Legendre poly-

nomial of degree n + 1 and define interpolatory projection ’Pnc : X — X, by
PCueX,, Pu(m)=u(r), i=0,1,...,n, ueX. (2.19)
According to the analysis of (Canuto et al. [5]), P,ZC satisfies the following lemmas.

Lemma 2.2 Let 79”C : X — X, be the interpolatory projection defined by (2.19). Then there
hold

(i) ||’Pfu ||L2 <p ||u ||oo, where pj is a constant independent of n.
(ii) There exists a constant ¢ > 0 such that for anyn € Nand u € X,

[PEu—ul,, < ¢ inf |lu—a],.— 0, asn— oo. (2.20)

Lemma 2.3 Let Pf 1 X — X, be the interpolatory projection defined by (2.19). Then for
any u € C"[—1, 1], there exists a constant c independent of n such that

cn™" Hu(r)|

cen? " |u®] . (2.22)

= Prull,-

Ju=Prul

IA

|2 (2.21)

IA

Throughout this paper, we assume that the projection operator P, : X — X, is either
orthogonal projection PnG or interpolatory projection operator PHC defined as above. From

the above discussed properties of P& and P, we have

||P11MHL2 E p”u”oo’ ue X’ (223)

where p is a constant independent of n. Also estimates (2.16) and (2.20) imply that

|Pae —u,» - 0, asn — oo, Yu € C[-1, 1]. (2.24)

Further we have from Lemmas 2.1 and 2.3 that
||u — Pau ||L2 <cn " ||u(r) ||L2, (2.25)
lu—Pau|, < enf"|u”],,. 0<p <1, andr=0,1,2,- (2.26)

where ¢ is a constant independent of n, 8 = 3 for orthogonal projection operators and g = %
for interpolatory projections. Note that ||Pnu —u ||Oo -+ 0,asn — oo foranyu € C[—1, 1].
The projection method for Eq. (2.9) is seeking an approximate solution z,, € X, such that

Zn = PV (Kzn + f). 2.27)
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If P, is chosen to be 73,? , the above scheme (2.27) leads to the Legendre Galerkin method,
whereas if P, is replaced by PS¢ we get the Legendre collocation method.
Let 7, be the operator defined by

Ta(u) =P WKu+ f), ueX. (2.28)
Then the Eq. (2.27) can be written as
zn = Tnzn. (2.29)
Corresponding approximate solution x, of x is given by
Xn = Kzn + f. (2.30)

In order to obtain more accurate approximation solution, we further consider the iterated
projection method for (2.9). To this end, we define the iterated solution as

i =V(Kzp + f). (2.31)
Applying P, on both sides of the Eq. (2.31), we obtain
Pnzn = Pn“IJ(K:Zn + f) (232)

From Egs. (2.27) and (2.32), it follows that P,z, = z,. Using this, we see that the iterated
solution Z,, satisfies the following equation

Zn = YW(IKPuzn + ). (2.33)

Letting To(u) = W(KPau + f), u € X, the Eq. (2.33) can be written as 7, = Tnin.
Corresponding approximate solution X, of x is given by

o =Ki, 4+ f. (2.34)

We quote the following theorem from [20] which gives us the condition under which the
solvability of one equation leads to the solvability of other equation.

Theorem 2.2 (Vainikko [20]) Let Fand }Ai be continuous operators over an open set Q in
a Banach space X. Let the equation x = Fx has an isolated solution xo € Q2 and let the
following conditions be satisfied.

(a) The operator F is Frechet differentiable in some neighborhood of the point Xo, while the
linear operator T — F (Xo) is continuously invertible.

(b) Suppose that for some § > 0 and 0 < q < 1, the following inequalities are valid (the
number § is assumed to be so small that the sphere Hx — X0 ” < § is contained within

Q).

sup (@ —FGo))  (Fx)—F G| <q (2.35)

x5 <5
a =T - F G (F) - FGo)| <81 —q). (2.36)

Then the equation x = Fx has a unique solution X in the sphere Hx — Xo H < 8. Moreover,

the inequality
o

14+g¢

o

< %0 — & < 2.37)

=124

is valid.
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Next we discuss the existence of approximate and iterated approximate solutions and their
error bounds. To do this, we first recall the following definition of v-convergence and alemma
from [1].

Definition 2.1 Let X be Banach space and BLL(X) be space of bounded linear operators from
Xinto X. Let ,;, K € BL(X). We say K, is v-convergent to /C if

[l < ¢ < o0 |

(Kn —IOK| = 0,

(K —/C)/CnH — 0, as n — oo.

Lemma 2.4 (Ahues et al. [1]) Let X be a Banach space and K, K, be bounded linear
operators on X. If H KCn — IC|| — 0, as n — oo or KCy, is v-convergent to K and (T — IC)’1
exists, then (I — K,,) ™" exists and uniformly bounded on X, for sufficiently large n.

Lemma 2.5 Let zg € C"'[—1, 1], then the following hold

1K@ = Pz, = f“?u' < k(). (T —Pw)zo > | < MV2|[(Z — Pw)zo| -
tel—1,

In particular we have ”IC(I — Pn)zo ||oo — 0, asn — oc.

Proof Using Cauchy-Schwarz inequality and the estimate (2.25), we have

K@~ Pozol, = sup 1K@ — Pzl
te[—1,1]

= sup
re[—1,1]

= sup | <ki(),(Z—"Pnzo>|
tel-1,1]

1
/ k(t,s)(Z — Pp)zo(s)ds (2.38)
-1

= s [ O 2@ = Pazo| 12

< V2M|(T — P20l > (2.39)

< oV2Mn 7" |27 2 = 0, asn — oco. (2.40)
Hence the proof follows. O

Lemma 2.6 Let 7' (z0) and ’]7(20) be the Frechet derivatives of T (z) and T, (z), respectively
at zo. Then

|(Z = P)T,z0)|| > = 0, as n — oo,
H(I— 73,1)’2“/(zg)||L2 — 0, asn — oo.
Proof We have 7,/(z0) = W' (KPyzo + f)KP,.

Now using the Lipschitz’s continuity of w((“)(., x(.)), Lemma 2.5 and boundedness of
W' (Kzo + f)] . we have

W' (KPazo + 1] o,

IA

[V (KPuzo + £) — W' (Kzo + £) o + | V' (K20 + )],
e |K(Py — Dzo o, + |V (Kzo + )], < B <00, (241)

A

where B is a constant independent of 7.
This implies

W' (KPuzo + )| 2 < V2| W' (KPuzo + £)|| , < V2B < o0. (2.42)
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Next, Let B := {x € X : HxHLz < 1} be the closed unit ball in X. We have ’f;/(z()) =
W' (KPnzo + f)KP,. Since {KP,} is a sequence of compact operators and W' (P, zo + f)
is uniformly bounded, 77(2()) are compact operators. Thus § = {’Z~;,’(z())x :x € B,n € N}
is relatively compact set. Using estimate (2.24), we can conclude

|@ = PTiGo)| 2 = sup {| @ = P T, zo)x |2 : x € B}
=sup{[(Z —P)y|,2:y€ S} >0, n—>o00.  (243)

Similarly, since W'(Kzo + f) is bounded and K is compact, 7'(z9) = ¥/ (Kzo + f)K is
also compact and we have

||(I— Pn)T’(z())”Lz — 0, asn — oo.

This completes the proof. O

Theorem 2.3 Let zg € C'[—1, 1] be an isolated solution of the Eq. (2.9). Assume that 1
is not an eigenvalue of the linear operator V' (Kzo + f)K, where V' (Kzo + f)K denotes
the Frechet derivative of V(Kz + f) at zo. Let P, : X — X, be either orthogonal or
interpolatory projection operator defined by (2.15) and (2.19) respectively. Then the Eq.
(2.27) has a unique solution z,, € B(z0,8) = {z : Hz — ZOHL2 < &} for some § > 0 and for
sufficiently large n. Moreover, there exists a constant 0 < g < 1, independent of n such that

273 Qp

g = lzn = zo0l,2 < e

where o, = || T — T/ (z0) N (Tn(z0) — T (z0)) HLZ' Further, we obtain
lzn = 20| ;2 < ¢|(Pa — Dzo| ;. = O™,

where c is a constant independent of n.

Proof Using Lemma 2.6, we have

172 zo) = T'@0) || 12 = | Pa¥ (K20 + K — W' (Kzo + K] 2
= | (P, — DV (K20 + K] 5
= ||(Pn —I)’T’(zg)”L2 — 0, as n — oo.
Since we assume that 1 is not an eigen value of 77(z¢), (Z — 7" (zo)) is invertible. Hence by
applying Lemma 2.4, we have (Z — T,{(Z()))_1 exists and uniformly bounded on X, for some
sufficiently large n, i.e., there exists some A; > 0 such that || T — Tn’(z()))_1 ||L2 < A| < o0.
Now from estimates (2.2) and (2.23), we have for any z € B(zo, ),
17 (z0) = T’ @I 2 = [|[[Pa¥'(Kzo + K — PuV (Kz + f)KIv| 2
PV (Kzo + f) — W'(Kz + HIK|
plw o+ 1) — ez + Pl ool
V2pM||W (Kzo + f) = WKz + O |v] 2 @244

IN A

IA

Taking use of the Lipschtiz’s continuity of (@1 (., x(.)) and estimate (2.2), we have

W' (20 + ) = W' Kz + )], < 2] Ko =2
< V20,M |20 — z|| ;2 < V2Me2s.  (2.45)
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Using the estimate (2.45) in (2.44), we obtain
17 z0) — T’ @] 2 < 2pM3c28]v] -
Thus we have
sup (T - T/ @) (T (20) — T (@) > < 241 pM3e28 < g (say).
a0l =0

Here we choose 4 in such a way that, 0 < ¢ < 1. This proves the Eq. (2.35) of Theorem 2.2.
Taking use of (2.25), we have

an = (T — T/ (20) " (Tn(z0) — T (o)) | 2
< A Th(z0) — T(20)| ;2
= A1 [PV (Kzo + f) — W(Kzo0 + )] 12
= APy = DV (Kzo + )] 2
= A H(Pn —I)z()”L2 — 0, as n — oo.

By choosing n large enough such that o, < §(1 — ¢q), the Eq. (2.36) of Theorem 2.2 is
satisfied. Hence by applying Theorem 2.2, we obtain
O‘n
I+g¢

On

=< ”Zn_ZO||L2 = 1—q

and

”Zn _Z0||L2 = 10(7” =< C”(,Pn _1310”142-

Hence from estimate (2.25), we have
“Zn — 20 ”Lz =0@m™").
This completes the proof. O

Next we discuss the existence and convergence of the iterated approximate solution z,, to
20-

Theorem 2.4 ’Z~;l’(z()) is v-convergent to T'(zg) in both infinity norm and L?-norm.

Proof Consider

T10)2(0)] = W/ 0Pazo + HKPuz0)
< |W(CPz0 + 1) = W (Kzo + DIKPaz(0)|
+ @'z + PIIKCP2()|. (2.46)
Now using the Lipschtiz’s continuity of 1//(0’])(., x(.)) and Lemma 2.5, we have

[P0+ 1) =Wk + )| < el@-Pol.,
— 0, asn — oo. (2.47)
Using estimate (2.2) and (2.23), we have
[KPazl o = V2M|Paz| 12 = V2MP|2] (2.48)
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which implies
|KPull ., < V2Mp. (2.49)
Now combining the estimates (2.46), (2.47) and (2.49), we obtain
|7/ @) = V2Mp(e2|[ K@ = Pz, + [V (K20 + 1) ) < 0.

This shows that Hf}l’ (zo) ||oo is uniformly bounded.
Next Consider

(7, (z0) — T'(20)) T, (z0)2(1)| = \{\v’ucmo + KPP, — W' (Kzo + f)/cﬁ,;(zo)z(o\
= |V KPzo+ NPy = )T 20)20)|

(W UCPazo + 1) = W (K20 + HIKT 0020
(2.50)

Now for the first term in the above estimate (2.50), using Lemma 2.5 we have

|k - P)T,)(zo)z|| ., = sup
te[—1,1]

= V2M|@ = P07 2 2] - @51)

1
/ k(t,s)(Z — Pn)7~;[(10)z(s)ds
-1

For the second term of the estimate (2.50) using estimates (2.2), (2.47), we have

¥ (KPuzo + f) — V' (Kzo + KT, (z0)z]

W' (KPuzo + ) — W' (Kzo + )| | KT, o)z | o,

| KT = Pu)zo|| o |KT o)z

2V260M?(( ~ Pu)zo]| 2] 7 @) | o 2] - (2.52)

IANIA

IA

Now combining estimates (2.41), (2.50), (2.51) and (2.52), we see that
|7, o) = T' 20D T, o)z o,
< {szB | = PTL(20)| 12 + 28262 M| = P20 2| T 20) IIOO} lz]-

Hence using Lemma 2.6, estimate (2.25) and the uniform boundedness of H’f}[ (z0) H o WE
obtain

(7, (z0) = T'(z0)) T, (z0) || ., — 0. as n — oo.
Following the similar steps we can prove that
(7 (z0) = T'(zo)T" (z0)|| ., — 0. asn — oo.

This shows that ’]7 (zo) is v-convergent to 7’ (z¢) in infinity norm.
On similar lines, we can show that 7, (zo) is v-convergent to 7”(z¢) in L2- norm. This
completes the proof. O

Hence by applying the Lemma 2.4 and Theorem 2.4, we obtain the following theorem.
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Theorem 2.5 Let zg € C"'[—1, 1] be an isolated solution of the Eq. (2.9). Assume that 1 is
not an eigenvalue of V' (Kzo + f)K. Then for sufficiently large n, the operator T — ’f;’(Zo)
is invertible on C[—1, 1] and there exist constants L, L1 > 0 independent of n such that
1 =T/ o» ™Y, < Land||(Z—T]Gzo)"| > <Li.
Theorem 2.6 Let zo € C"'[—1, 1] be an isolated solution of the Eq. (2.9). Let P, : X —
X, be either orthogonal or interpolatory projection operator defined by (2.15) and (2.19)
respectively. Assume that 1 is not an eigenvalue of V' (Kzo + f)K, then for sufficiently large
n, the iterated solution 7, defined by (2.33) is the unique solution in the sphere B(zg, §) =
{z : Hz - z()”OO < 8}. Moreover, there exists a constant 0 < q < 1, independent of n such
that

Bn
14+g¢

. B
=< Hzn —z0||Oo = 1_"4

)

where
B =@ = T (20) ™ (Tu(20) = T(20)) | -

Proof Iirom Theorem 2.5, we can say, there exists a constant L > 0 such that
|| (s 7;,’(10))_] ||OO < L, for sufficiently large value of n.
Consider for any z € B(zp, §),

17/@ — T/, = [H¥ (CPuz + ) — W' (KPuzo + PP
< | W(KPaz + ) = W (KPazo + £ L |KPuv] - 253)

Using Cauchy-Schawrz inequality and estimate (2.48), we have

|V (KPaz + f) = W' (KPazo + )| o, < 2| KPulzo —2)| o,
= «/EMcszz - Zo”OO
< V2Meaps. (2.54)

Combining estimates (2.48), (2.53), (2.54), we obtain
17/ @) — T, ol o, < 2M*c2p?8|v] . (2.55)
This implies

sup (T -T2 (@) — T zo)) |, < 2LMPe2p?5 < g (say).

=0l =0

We choose 6 in such a way that 0 < ¢ < 1. Hence this proves the Eq. (2.35) of Theorem 2.2.
Now using the Lipschtiz’s continuity of 1/ (., x(.)) and Lemma 2.5, we have

|70 (z0) = Tz0)| o, = [W(KPuzo + ) = W (K20 + )],
< a|K@ - Pz, — 0. asn — oco. (2.56)

Hence

Bo = (@ = T(z0) " (T (z0) = T(zo))| ,
< Lc HIC(Z — 7’;;)20”0O — 0, asn — oo.
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Choose n large enough such that 8, < (1 — ¢). Then the Eq. (2.36) of Theorem 2.2 is
satisfied. Thus by applying Theorem 2.2, we obtain

B - B
l—lilq < |z — 20|, < 1_"q
where
Br =@~ T}zo) ™ (Tn(z0) — T0)) .-
This completes the proof. O

Theorem 2.7 Let zo € C"[—1, 1] be an isolated solution of the Eq. (2.9). Let P, : X —
Xy, be either orthogonal or interpolatory projection operator defined by (2.15) and (2.19)
respectively. Assume that 1 is not an eigenvalue of V' (Kzo + f)K, then for sufficiently large
n, the iterated solution z,, defined by (2.33) is the unique solution in the sphere B(zg, 8) =
{z : ”z — z()HL2 < &}. Moreover; there exists a constant 0 < q < 1, independent of n such
that

Bn
l—q’

=< |z —2ol,2 =

where
Bn =@ - T(z0) ™ (Tu(z0) — T(z0)) | -

Proof Using the similar steps as in the proof of Theorem 2.6, the proof of the above theorem
can be easily done. O

Theorem 2.8 Let zg € C[—1, 1] be an isolated solution of the Eq. (2.9). Let Z,, defined by
the iterated scheme (2.33). Then the following hold

|z — 20 <¢ sup | <k (T~ Puzo> I, 2.57)
te[—1,1]

and

|20 —20] 2 ¢ sup | <k (T —Pu)zo > |. (2.58)
te[—1,1]

where c is a constant independent of n.

Proof 1t follows from Theorem 2.6 that

Bn
14+g¢

- B
= Hzn —zo”oo = 1_"q

)

where

Bn = (T — T, z0) ™ (Tn(z0) — T(z0))| -
Hence from Theorem 2.5, estimates (2.39), (2.56), we have

|Zn — 20, < ﬂ—”q <@ -7} @o) ™ (Tu(z0) — T(o)) |,

oo 1 —
< cL|W(KPuzo + ) — W (Kzo + )]
< cLet|[K(Py — Do
<c sup | <k(),(Z—Pzo> |
te[—1,1]
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This proves the estimate (2.57).
Similarly for L?- norm we can show that

|20 = z0]l 2 < V2|20 — 20|, <€ ?”?u' <k, (T—Puw)zo > |,
te|l—1,

where c is a constant independent of 7.
This completes the proof. O

Theorem 2.9 Let xg € C'[—1, 1] be an isolated solution of the Eq. (2.1) and x, be the
Legendre Galerkin or Legendre collocation approximations of xo. Then there hold

|x0 = x| ;. = O™,
Jvo — ], = 067,
Proof Using estimates (2.2), (2.8), (2.30) and Theorem 2.3, we have
[0 = . = K0 — )], < V2M 20 = 2a] 12 = O,
and
o = xal 2 = V20 5], = O,

Hence the proof follows. O

Now we discuss the convergence rates for the iterated approximate solutions. To dis-
tinguish between the iterated Legendre Galerkin method and iterated Legendre collocation
method, we set the following notations. In case of iterated Legendre Galerkin method we
denote z,, = Z"G andx, = )Z,? , and for iterated Legendre collocation method we write z,, = ch
and i, = ¢

P

Theorem 2.10 Let xg € C'[—1, 1] be an isolated solution of the Eq. (2.1) and 55,? be the
iterated Legendre Galerkin approximation of xo. Then the following superconvergence rates
hold

o = 7] 2 = 0™,

Jxo — £, = 0.
Proof From Theorem 2.8, we have

|29 —20] o ¢ sup | <k(), (T =PO)z0() > |. (2.59)
re[—1,1]
Using the orthogonality of the projection operators P, Cauchy-Schwarz inequality and
estimate (2.17) of Lemma 2.1, we obtain
| < k(). @ —=PHz20() > | = | < @ = Pk(), (T —P)zo() > |

| @ =Pk 2120 = P 20|

IA

Sy Y (IO P
< en ™ | 3K 2.60)
Hence from (2.59) and (2.60), we have
|27 =20l < en 28| 12 ]k], o = O, (2.61)
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and
126 = 20,2 < V2|28 - 20|, = O ™). (2.62)

Using estimates (2.2), (2.8), (2.34) and (2.62), we have
lx0 = 10 = [0~ 2|, < V2M|ZS — 2012 = O,
and
w0 =29 2 = V2[x0 — 28], = O,
Hence the proof follows. O

Theorem 2.11 Let xg € C"'[—1, 1] be an isolated solution of the Eq. (2.1) and )Enc be the
iterated Legendre collocation approximation of xo. Then the following hold

)
0~ 5 ], = 0.

Proof Using Theorem 2.8, estimate (2.21) of Lemma 2.3 and Cauchy-Schwarz inequality,
we have for the interpolatory projection operator P,lc

”Zf - ZoHoo <c sup | <ko(), (- PnC)zo(.) > |
te[—1,1]
sc sup kO] 220 = Przo] 2
re[—1,1]

< C\/EM”ZQ ) ”L2
< V2Men™ |20, = 0™, (2.63)

and
12§ = 20> = V2|2 = 20, = O 7"). (2.64)

Using estimates (2.2), (2.8), (2.34) and (2.64), we have
[0 — 5 = K0 — )], = VAM|ES — 2] 12 = O,
and
o~ 1,2 = V20 — €], = O,
Hence the proof follows. o

Remark From Theorems 2.9, 2.10, and 2.11 we observe that the Legendre Galerkin and
Legendre collocation solutions have same order of convergence, O (n~") both in L2-norm and
infinity norm. The iterated Legendre Galerkin solution converges with the order O (n=%") in
both L?-norm and infinity norm whereas the iterated Legendre collocation solution converges
with the order O (n~") in both L2-norm and in infinity norm.

3 Numerical Example

In this section we present the numerical results. For that we take the Legendre polynomials
as the basis functions of X, from the three-term recurrence relation

$o(s) =1,¢1(s) =5, se[-11],
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and
4+ Div1(s) = Qi + Dsoi(s) —igi—1(s), se[-1,1], i=1,2,....,.n—1. (3.1)

We present the errors of the approximation solutions and the iterated approximation solutions
under the Legendre Galerkin and Legendre collocation methods in both Z2-norm and infinity
norm in Tables 1-4. We use n to represent the highest degree of the Legendre polynomials
employed in the computation. The numerical algorithm was run on a PC with Intel Pentium
1.83 GHz CPU, 512MB RAM, and the programs were compiled by using Matlab.

Example 3.1 We consider the following Hammerstein integral equation
1
x(t) —/ k(t, )y (s, x(s)ds = f(t), —1<t<1, (3.2)
—1

with the kernel function k (¢, s) = (%) cos ("lST_”), (s, x(s)) =[x (5))? and the function
f @) = (F) cos (%) where the exact solution is given by x(#) = cos (Z}).

Example 3.2 We consider the following Hammerstein integral equation

1
x(1) —/ k(t, )y (s, x(s)ds = f(1), -1 =1 <1 (3.3)
-1

Table 1 Legendre Galerkin method

n Jx = x7],2 I =57 oo = %71, I = %7 o

2 0.16612096e—02 0.34084469e—02 0.27140926e—04 0.21215376e—04
4 0.20439952e—02 0.22166056e—02 0.44270028e—04 0.35440976e—04
5 0.86759925e—05 0.21021360e—04 0.31719179e—08 0.24794071e—08
7 0.24104371e—07 0.64562011e—07 0.99307177e—13 0.78714812e—13
8 0.41715829e—10 0.11321033e—09 0.2167523%¢—14 0.31086244e—14

Table 2 Legendre collocation method

n

”X - xnc ||L2

v = oo

R

™

[N B L

0.23728226e—02
0.20524588e—02
0.86760263e—05
0.24104407e—07
0.58748349e—10

0.63183241e—02
0.22438193e—02
0.20971481e—04
0.64465292e—07
0.22963709e—09

0.50686226e—03
0.44452727e—04
0.36041468e—08
0.11634294e—12
0.13749494e—14

0.39620083e—03
0.35587527e—04
0.28172709e—08
0.91926466e—13
0.27755576e—14

Table 3 Legendre Galerkin method

n

v =72

R

v - %712

N N RN

0.89991060e—01
0.58544673e—02
0.19729463e—03
0.82051733e—04
0.29426261e—05

0.102514167204
0.23433077e—03
0.78969100e—04
0.33521203e—05
0.32842007e—05

0.80983908e—02
0.20570498e—03
0.69322253e—05
0.83117109e—07
0.86590496e—09

0.47581867e—02
0.23405378e—03
0.78875757e—05
0.32803189e—07
0.33481582e—10
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Table 4 Legendre collocation method
C C =C =C

n | = |12 I =27 oo | = %7 12 I =27 | oo

2 0.65655572e—01 0.60995024e—01 0.53667135e—02 0.61135425e—02
4 0.30616615e—02 0.28443301e—03 0.62491114e—04 0.29159128e—03
5 0.22815333e—03 0.30485943e—04 0.71788910e—05 0.98738609e¢—05
6 0.34864807¢—04 0.33492602e—05 0.81036081e—06 0.10174882e—07
7 0.36051726e—05 0.32389936e—05 0.86647503e—09 0.80064485e—09

with the kernel function k (¢, s) = e~ sin(r), ¥ (s, x(s)) = [x(s)]* and the function f(¢) =
t> where the exact solution is given by x(r) = > 4 1.95778sin(t).
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