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Abstract We consider semi-discrete discontinuous Galerkin approximations of both dis-
placement and displacement-stress formulations of the elastodynamics problem. We prove
the stability analysis in the natural energy norm and derive optimal a-priori error estimates.
For the displacement-stress formulation, schemes preserving the total energy of the system
are introduced and discussed.We verify our theoretical estimates on two and three dimensions
test problems.
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1 Introduction

The purpose of this paper is to design and analyze semi-discrete discontinuousGalerkin (DG)
methods for a general elastodynamics problem. The use of the elastodynamics equation to
model the seismic response of heterogeneous media with irregular topography and complex
physical layers is a subject of research that has been intensively investigated in recent years.
Thanks to the advances in computer facilities, the development of numericalmethods for seis-
mic wave propagation has found relevant applications and is currently a very active research
field. The most employed numerical strategies for seismic modelling include finite difference
(FD), pseudo-spectral (PS), and (continuous and discontinuous) spectral element (SE) meth-
ods, see, e.g. [12,27,38,51] and the references therein. In particular, for earthquakemodelling
a large number of FD schemes have been developed so far. Such schemes may considerably
differ form each other either in methodological and algorithmic aspects. In some special
configurations the most advanced FD schemes can be as competitive as PS and SE methods:
for the same level of accuracy, they can be even more computationally efficient. However,
whenever geometrically and rheologically complex realistic problems are considered, FD
methods are lacking in efficiency, see [38] for a comprehensive review. Fourier PS methods
have been originally introduced in [32], and combine the simplicity of the spatial discretiza-
tion on a structured grid with the optimal accuracy of global spectral differential operators. If
on one hand PS methods retain an unbeatable low spatial sampling ratio and computational
efficiency, on the other hand they face accuracy problems when modelling seismic wave
propagation in media with sharp velocity contrasts [37] and free-surface boundary condi-
tions [53]. Moreover, the expensive interprocessor communication required by the algorithm
undermine their parallel efficiency, although some remedies have been proposed in [27] to
alleviate the above mentioned shortcomings, making PS acceptable for complex earthquake
simulations. After more than twenty year since their first application in fluid dynamics [41],
continuous SE methods have become one of the most effective and powerful approaches
for solving three-dimensional seismic wave propagation problems in highly heterogeneous
media, the first applications in elastodynamics can be found in [19,30,48]. The geometrical
flexibility (inherited from finite element methods), the high order accuracy (acquired from
spectral methods) and the native orientation towards high performance parallel computing are
some of themost important properties featured by SE schemes. Relevant applications in com-
putational seismology are presented in [29,36,50]. However, the use of a uniform polynomial
order on the whole computational domain typical of continuous SE can lead to an unreason-
ably large computational effort, in particular whenever a fine mesh grid is already needed to
describe accurately the computational domain. The flexibility of high-order/SE Discontinu-
ous Galerkin methods [3,4,25] can further improve the capabilities of SE discretizations and
make them very well suited to deal with (i) the intrinsic multi-scale nature of seismic wave
propagation problems, involving a relative broad range of wavelengths; (ii) the complexity
of the geometric constraints while keeping the computational effort low, see e.g. [35].

So far, two main streams have been followed in the design and analysis of DG meth-
ods for elastodynamics: the displacement formulation and the velocity-stress formulation.
For the former, DG methods of Interior Penalty (IP) type, symmetric and non-symmetric,
have been proposed and analyzed in [45,47] for the approximation of acoustic and elastic
wave equations. These schemes have been extended to Spectral-DG methods in [4], to DG
approximations of viscoelasticity in [46] and to nonlinear elastodynamics in [39]. For the
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velocity-stress formulations, the design of DG methods follow the traditional guidelines of
DG schemes for hyperbolic conservation laws. In this regard, conservative methods based on
the use of central fluxes have been proposed in [17], while non-conservativemethods based on
upwinding fluxes are studied in [26]. TheDGmethod developed in [52] is based on a velocity-
strain formulation of the coupled elastic-acoustic wave equations; this allows the acoustic
and elastic wave equations to be expressed in conservative form within the same framework.

Here, we introduce a fairly general family of semidiscrete DG methods for both the dis-
placement and displacement-stress formulations of the elastodynamics problem with mixed
boundary conditions (those typically encountered in seismic applications) and the main goal
is to identify the key ingredients to ensure stability of the methods. For this reason, we
start with the displacement-stress formulations which gives further insight on the features
required by the methods. Finite Element methods for the displacement-stress formulation
were proposed and analyzed in the seminal work [33] (see also [34]). Here, some extra dif-
ficulties arise in the analysis due to the discontinuous nature of the spaces and the fact that
we consider the general problem with mixed boundary conditions. However, the flexibility
of DG framework allow us to construct in a simple way, displacement-stress DG methods
that are fully conservative (in the sense that the total discrete energy is preserved). For the
displacement formulation, we consider Interior Penalty (IP) schemes, focusing on symmet-
ric methods, similar to those considered for wave equation in [22], but different from the IP
schemes introduced in [45–47] for linear elastodynamics and those used in [39] for nonlinear
elastodynamics. The IP methods considered in those works contain an extra term that penal-
izes the time derivative of the displacement besides the displacement itself. This term was
required to allow for the stability analysis. However, as we shall demonstrate via numerical
experiments, the inclusion of such an extra term, seems to undermine the overall stability.
Here, we prove stability in the natural energy norm associated to the symmetric IP methods,
with no extra stabilization terms.

As a product of the stability analysis, we obtain optimal error estimates for all the consid-
ered DG schemes. Our semidiscrete analysis represents an intermediate but essential step to
derive the fully discrete stability analysis after discretization in space. The analysis of the fully
discrete schemes is out of the scope of the present paper and will be subject of future work.

The paper is organized as follows. In Sect. 2 we introduce the model problem and revise
some key results. The discrete notation is given in Sect. 3, while in Sect. 4 we introduce the
family of DG methods. The stability analysis is presented in Sect. 5, whereas in Sect. 6 we
state the a priori error estimates. Numerical experiments verifying the theory are presented in
Sect. 7. In Sect. 8we draw some conclusions. The paper is closedwith “Appendix” containing
some technical results.

Throughout the paper,we use standard notation for Sobolev spaces [1]. TheSobolev spaces
of vector-valued and symmetric tensor-valued functions are denoted byHm(D) = [Hm(D)]d
and Hm(D) = [Hm(D)]d×d

sym , respectively. We will use the symbol (· , ·)D to denote the

standard inner product in any of the spaces H0(D) = L2(D) or H0(D) = L2(D). C
denotes a generic positive constant that may take different values in different places, but is
always mesh independent. The notation x � y will represent the inequality x ≤ Cy for a
constant C as before.

2 Continuous Problem

Let Ω ⊂ R
d , d = 2, 3, be an open, bounded region with Lipschitz boundary ∂Ω and

outward normal unit vector n, and let ∂Ω be composed of two disjoint portions ΓD and
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ΓN , with meas(ΓD) > 0. Given a volume force f ∈ L2((0, T ];L2(Ω)), a boundary datum
g ∈ C1((0, T ];H1/2(ΓN )), and smooth enough initial conditions u0 ∈ H1

0,ΓD
(Ω) and u1 ∈

L2(Ω), we consider the mathematical model of linear elastodynamics:

ρ(x)ut t (x, t) − ∇ · σ (x, t) = f(x, t), in Ω × (0, T ], (1a)

Aσ (x, t) − ε(u(x, t)) = 0, in Ω × (0, T ], (1b)

u(x, t) = 0, on ΓD × (0, T ], (1c)

σ (x, t)n(x) = g(x, t), on ΓN × (0, T ], (1d)

ut (x, 0) = u1(x), in Ω × {0}, (1e)

u(x, 0) = u0(x), in Ω × {0}, (1f)

where σ : Ω × [0, T ] → S = R
d×d
sym is the Cauchy stress tensor and u : Ω × [0, T ] −→ R

d

is the displacement vector field. The mass density ρ ∈ L∞(Ω) is a strictly positive function,
i.e.,

0 < ρ∗ ≤ ρ(x) ≤ ρ∗ ∀x ∈ Ω. (2)

We denote by ε(u) : Ω −→ S the symmetric gradient defined by ε(u) = 1
2 (∇u+ ∇u
).

The compliance tensorA = A(x) : S −→ S is a bounded, symmetric and uniformly positive
definite operator, encoding the material properties, such that

Aσ = 1

2μ

(
σ − λ

3λ + 2μ
tr(σ )I

)
∀ σ ∈ S , (3)

where I ∈ R
d×d is the identity operator, tr(·) stands for the trace operator, and both the Lamé

parameters λ,μ ∈ L∞(Ω) are positive functions. Provided A is invertible, (3) is equivalent
to the Hooke’s law σ = A−1ε = Dε, with

D : S −→ S, Dτ = 2μτ + λtr(τ )I ∀ τ ∈ S . (4)

In this case, from the properties of A, it is directly inferred that D is symmetric, bounded
and positive definite, i.e., there exist D∗,D∗ > 0 such that

0 < D∗(τ , τ )Ω ≤ (Dτ , τ )Ω ≤ D∗(τ , τ )Ω ∀ τ ∈ R
d×d , τ �= 0. (5)

To simplify the notation, in the following we will write g0 = g(x, 0), σ 0 = σ (x, 0) =
Dε(u(x, 0)) = Dε(u0).

We next consider the variational formulation of (1a)–(1f): for all t ∈ (0, T ] find (u, σ ) ∈
H1

0,ΓD
(Ω) × L2(Ω) such that:

(ρut t , v)Ω + (σ , ε(v))Ω = (f, v)Ω + (g, v)ΓN ∀ v ∈ H1
0,ΓD

(Ω), (6a)

(Aσ , τ )Ω − (ε(u), τ )Ω = 0 ∀ τ ∈ L2(Ω). (6b)

Under the above regularity assumptions the saddle problem (6a)–(6b) has a unique solution
(u, σ ) ∈ H1

0,ΓD
(Ω) × L2(Ω), [18], and satisfies a priori stability estimate in the following

energy norm

‖(u(t), σ (t))‖2E = ∥∥ρ1/2ut (t)
∥∥2
0,Ω + ∥∥A1/2σ (t)

∥∥2
0,Ω , ∀ t ∈ [0, T ].

For further details we refer the reader to [18, Theorem 4.1] for the general existence result,
cf. also [2, Appendix A].
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Remark 1 Choosing τ = ε(v) in (6b) and substituting the result in (6a) we obtain the
following equivalent weak problem: for all t ∈ (0, T ] find u ∈ H1

0,ΓD
(Ω) such that:

(ρut t , v)Ω + (Dε(u), ε(v))Ω = (f, v)Ω + (g, v)ΓN ∀ v ∈ H1
0,ΓD

(Ω). (7)

This problem (7) iswell posed and that its unique solution satisfiesu ∈ C((0, T ];H1
0,ΓD

(Ω))∩
C1((0, T ];L2(Ω)), see [44, Theorem 8-3.1].

Finally, we will often use the following integration by parts formula that holds for w, z ∈
C1((0, T )) ∫ t

0
(w, zτ )dτ = (w(t), z(t)) − (w(0), z(0)) −

∫ t

0
(wτ , z)dτ. (8)

3 Notation and Technical Tools for the Discrete Approximation

In this section we introduce some notation and revise some technical tools that will be used
in our analysis.

3.1 Mesh Partitions

We consider a family {Th, 0 < h ≤ 1} of shape-regular conforming partitions of Ω into
disjoint open elements K such that Ω = ∪K∈Th K , where each K ∈ Th is the affine image of
a fixed master element K̂ , i.e., K = FK (K̂ ), and K̂ is either the open unit d-simplex or the
open unit hypercube in R

d , d = 2, 3. For a given mesh Th , we define h = maxK∈Th hK with
hK = diam(K ). Notice that the mesh may contain hanging nodes. We collect all the interior
(boundary, respectively) faces in the set Fo

h (F∂
h , respectively) and set Fh = Fo

h ∪ F∂
h . In

particular F∂
h = FD

h ∪FN
h , where FD

h = F∂
h ∩ΓD and FN

h = F∂
h ∩ΓN contain respectively

all Dirichlet and Neumann boundary faces. Implicit in these definitions is the assumption
that Th respect the decomposition of ∂Ω in the sense that any F ∈ F∂

h belongs to the interior
of exactly one of FD

h or FN
h . An interior face (for d = 2, “face” means “edge”) of Th is

defined as the (non–empty) interior of ∂K
+ ∩ ∂K

−
, where K+ and K− are two adjacent

elements of Th . Similarly, a boundary face of Th is defined as the (non-empty) interior of
∂K ∩ Ω , where K is a boundary element of Th . We also assume that for all K ∈ Th and for
all F ∈ Fh , hK � hF , where hF is the diameter of F ∈ Fh . This last assumption implies
that the maximum number of hanging nodes on each face is uniformly bounded. Finally, we
assume that a bounded local variation property holds (see [21]): for any pair of elements K+
and K− sharing a (d − 1)–dimensional face hK− ≤ hK+ � hK− . For s ≥ 1, we define the
broken Sobolev spaces

Hs(Th) = {
v ∈ L2(Ω) such that v

∣∣
K ∈ Hs(K ) ∀ K ∈ Th

}
,

Hs(Th) = {
τ ∈ L2(Ω) such that τ

∣∣
K ∈ Hs(K ) ∀ K ∈ Th

}
.

We will also denote by (· , ·)Th and 〈· , ·〉Fh the L2(Th) and L2(Fh) inner products, respec-
tively, and use the convention that

(ϕ,ψ)Th =
∑
K∈Th

(ϕ,ψ)K 〈ϕ,ψ〉Fh =
∑
F∈Fh

(ϕ,ψ)F .

for any ϕ, ψ regular enough functions. The same notation will be used for the L2(Th) and
L2(Fh) inner products.
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3.2 Trace Operators

Let F ∈ Fo
h be an interior face shared by two elements K± of Th , and letn± denote the normal

unit vectors on F pointing outward K±, respectively. For v ∈ H1(Th) and τ ∈ L2(Th) we
denote by v± and τ± the traces of v and τ on F taken within the interior of K±, respectively.
On each F ∈ Fo

h , the weighted average and jump operators are defined as

{v}δ = δv+ + (1 − δ)v−, {τ }δ = δτ+ + (1 − δ)τ−, δ ∈ [0, 1],
[[v]] = v+ � n+ + v− � n−, [[τ ]] = τ+ n+ + τ− n−,

(9)

for all v ∈ L2(Th), τ ∈ L2(Th), cf. [7]. Here v � n = (vnT + nvT )/2. Notice that with the
above definitions [[v]] ∈ S. On F ∈ F∂

h , we set {v}δ = v, {τ }δ = τ , [[v]] = v � n. When
δ = 1/2, we drop the subindex and simply write {·}. For all τ ∈ L2(Th), v ∈ H1(Th), the
following identities hold∑

K∈Th

〈τ nK , v〉∂K =
∑
K∈Th

〈v ⊗ nK , τ 〉∂K = 〈{τ }, [[v]]〉Fh + 〈[[τ ]], {v}〉Fo
h
, (10)

〈
v±, {τ }δn±〉

Fh
= 〈{τ }δ, v± � n±〉

Fh
, (11)

where nK is the outward unit normal to ∂K . >From (11) and observing that

{τ }δn+ = {τ }n+ + (2δ − 1)

2
[[τ ]] ∀ δ ∈ [0, 1] ∀F ∈ Fo

h , (12)

it also easily follows

− 〈{v}(1−δ) − {v}, [[τ ]]〉Fo
h

= 〈{τ }δ − {τ }, [[v]]〉Fo
h
. (13)

We finally observe that, in [4,45] the following slightly different definition of the jump
operator is considered

[[[v]]] = v+ ⊗ n+ + v− ⊗ n− [[[v]]] = v ⊗ n ∀F ∈ F∂
h ,

from which it follows that [[[v]]] is still a tensor but it is not necessarily symmetric. Neverthe-
less, it is easy to prove that the following identity holds

〈[[[v]]] , {τ }〉Fo
h

= 〈[[v]], {τ }〉Fo
h

∀τ ∈ H1(Th).

3.3 Finite Element Spaces

For k ≥ 1 we define

V h =
{
u ∈ L2(Ω) : u ◦ FK ∈ [Mk(K̂ )]d ∀ K ∈ Th

}
,

Σh =
{
τ ∈ L2(Ω) : τ ◦ FK ∈ [Mk(K̂ )]d×d ∀ K ∈ Th

}
,

where Mk(K̂ ) is either the space P
k(K̂ ) of polynomials of degree at most k on K̂ , if K̂ is

the reference d-simplex, or the space Qk(K̂ ) of tensor–product polynomials on K̂ of degree
k in each coordinate direction, if K̂ is the unit reference hypercube in R

d .

3.4 Technical Tools

For any v ∈ H1(K ), Agmon’ inequality reads

‖v‖20,F � h−1
K ‖v‖20,K + hK |v|21,K ∀ F ∈ Fh, F ⊂ ∂K , (14)
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where the hidden constant is independent of the mesh size but depends on the polynomial
degree when applied to discrete functions. For discrete functions, we will also frequently use
the following inequality:

h‖v‖20,F � ‖v‖20,K ∀ F ∈ Fh, F ⊂ ∂K . (15)

The L p-version of the above inequality, which holds for discrete functions v ∈ W1,p(K ),
reads

h1/p‖v‖L p(F) � ‖v‖L p(K ) 1 ≤ p ≤ ∞ , (16)

cf. [14]. Let ω be either an element, an edge or a face of the decomposition Th , and let v be
a polynomial of degree k ≥ 1 defined on ω, then

‖v‖L p(ω) � meas(ω)

(
1
p − 1

q

)
‖v‖Lq (ω) 1 ≤ p, q ≤ ∞ . (17)

Finally, for any K ∈ Th the inverse inequality can be written as

|v|m,K � hs−m
K |v|s,K ∀ v ∈ V h, s ≤ m. (18)

The hidden constants in (15),(16),(17) and (18) are independent of the mesh size but depend
on the polynomial degree.

4 Discontinuous Galerkin Approximations

In this section, we introduce the family of semidiscrete DG approximations to (6a)–(6b) that
we consider in this work. The derivation of the methods follows closely [6], with a slight
difference though when introducing the schemes for the displacement formulation. We start
by considering a general variational formulation for DG methods: given (uh(0),uht (0)) two
suitable approximations to the initial data that will be defined later on, find (uh, σ h) ∈
C2((0, T ]; V h) × C0((0, T ];Σh) such that for all v ∈ V h , τ ∈ Σh

(
ρuhtt , v

)
Th

+
(
σ h, ε(v)

)
Th

− 〈{σ̂ }, [[v]]〉Fh − 〈[[σ̂ ]], {v}〉Fo
h

= (f, v)Th ,(
Aσ h, τ

)
Th

−
(
ε(uh), τ

)
Th

−
〈
{̂u − uh}, [[τ ]]

〉
Fo

h

−
〈
[[̂u − uh]], {τ }

〉
Fh

= 0,

where

(̂u, σ̂ ) =
(̂
u(uh, σ h), σ̂ (uh, σ h)

)
: (H1(Th) × H1(Th)

)2 −→ (
L2(Fh),L2(Fh)

)
,

are the numerical fluxes that will be properly chosen and identify the corresponding DG
method. On boundary faces F ∈ F∂

h we always define the numerical fluxes according to the
boundary conditions:

û = 0 on F ∈ FD
h , û = uh − c22(σ hn − g) on F ∈ FN

h ,

σ̂ n = σ hn − c11uh on F ∈ FD
h , σ̂ n = g on F ∈ FN

h .

Here, c11 and c22 are functions (possibly equal to zero) that we will choose later on. Then,
the DG formulation becomes: Find (uh, σ h) ∈ C2((0, T ]; V h) × C0((0, T ];Σh) such that
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for all v ∈ V h , τ ∈ Σh it holds
(
ρuhtt , v

)
Th

+
(
σ h, ε(v)

)
Th

− 〈{σ̂ }, [[v]]〉Fo
h

− 〈[[σ̂ ]], {v}〉Fo
h

+ 〈c11uh, v〉FD
h

− 〈σ hn, v〉FD
h

= (f, v)Th + 〈g, v〉FN
h

, (19a)(
Aσ h − ε(uh), τ

)
Th

− 〈{̂u − uh}, [[τ ]]〉Fo
h

− 〈[[̂u − uh]], {τ }〉Fo
h

+ 〈[[uh]], {τ }〉FD
h

+ 〈c22(σ hn − g), τ n〉FN
h

= 0. (19b)

We present now several methods for approximating the displacement-stress formulation,
by selecting different choices of the numerical fluxes in (19). We restrict our attention to
methods for which the numerical fluxes û and σ̂ are singled valued, and so [[̂u]] = 0 and
[[σ̂ ]] = 0 on internal faces.

Now, in analogy with the method introduced in [11] for second order elliptic problems,
the full DG (FDG) approximation is characterized by the choices

û = {uh}1−δ − c22[[σ h]], σ̂ = {σ h}δ − c11[[uh]], F ∈ Fo
h , (20)

where
c11 = c1h

−1
F k2{D} c22 = c2hFk

−2{D}−1 F ∈ Fo
h . (21)

Here c1, c2 ≥ 0 are constants (sometimes required to be strictly positive). On boundary faces,
c11 and c22 are defined accordingly. Substituting (20) into (19), we get: Find (uh, σ h) ∈
C2((0, T ]; V h) × C0((0, T ];Σh) such that for all v ∈ V h and τ ∈ Σh(

ρuhtt , v
)
Th

+
(
σ h, ε(v)

)
Th

− 〈{σ h}δ − c11[[uh]], [[v]]〉Fo
h

+〈c11uh, v〉FD
h

− 〈σ hn, v〉FD
h

= (f, v)Th + 〈g, v〉FN
h

,(
Aσ h − ε(uh), τ

)
Th

− 〈{uh}(1−δ) − {uh}, [[τ ]]〉Fo
h

+ 〈c22[[σ h]], [[τ ]]〉Fo
h

+〈[[uh]], {τ }〉Fo
h∪FD

h
+ 〈c22(σ hn − g), τ n〉FN

h
= 0. (22)

Special cases are the local discontinuous Galerkin (LDG) method and the alternating choice
of fluxes (ALT) methods. The former is characterized by setting c22 = 0, whereas the latter
by c22 = c11 = 0 and δ = 1 or δ = 0. For δ = 1 the numerical fluxes become

û = (uh)−, σ̂ = (σ h)+ . (23)

This choice has been frequently used to design DG approximation for time dependent prob-
lems with high order derivatives [13,54]. To our knowledge, the ALT method has never been
considered for the elastodynamics problem. In the next section, we will show that stability
for the ALTmethod can be guaranteed only in the case of Dirichlet-type boundary conditions
(or periodic boundary conditions, generally used in [13,54], but not realistic in the present
context).

We now consider DG methods in displacement formulation. To obtain the variational
formulation starting from (19), the numerical flux σ̂ is defined as a function of uh . More
precisely, for δ ∈ [0, 1], we specify σ̂ as follows

σ̂ =
{ {Dε(uh)}δ − SF [[uh]] F ∈ Fo

h ,

Dε(uh) − SFuhn F ∈ FD
h ,

(24)
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where
SF = c00h

−1
F k2{D} ∀ F ∈ Fo

h ∪ FD
h , (25)

and c00 is a strictly positive constant that has to be chosen sufficiently large, see below. To be
consistent, we have replaced the parameter c11 by SF , which plays the same role and scales
in the same way (see below for its precise definition), but, differently from c11, will undergo
to a technical restriction. The definition of the numerical fluxes on boundary faces has to be
modified taking into account that σ hn = Dε(uh)n on F∂

h (and c22 ≡ 0 now). Hence, we
have:

û = 0 on F ∈ FD
h , û = uh on F ∈ FN

h ,

σ̂ n = Dε(uh)n − SFuh on F ∈ FD
h , σ̂ n = g on F ∈ FN

h .

Assuming now that the finite element spaces (V h,Σh) are such that ε(V h) ⊆ Σh and
setting τ = Dε(v) ∈ Σh in (19b) we find for all v ∈ V h :(

Aσ h,Dε(v)
)
Th

=
(
ε(uh),Dε(v)

)
Th

+〈{̂u−uh}, [[Dε(v)]]〉Fo
h

+〈[[̂u − uh]], {Dε(v)}〉Fo
h ∪FD

h
.

Since A is symmetric and positive definite it holds
(
Aσ h,Dε(v)

)
Th

=
(
σ h,A
Dε(v)

)
Th

= (σ h, ε(v))Th ∀ v ∈ V h,

and so,

(σ h, ε(v))Th = (ε(uh),Dε(v))Th + 〈{̂u − uh}, [[Dε(v)]]〉Fo
h

+〈[[̂u − uh]], {Dε(v)}〉Fo
h ∪FD

h
.

Combining now the above equation together with (19a) and the definition of numerical flux
σ̂ given in (24), we finally get the following formulation: Find uh ∈ C2((0, T ]; V h) such
that for all v ∈ V h(
ρuhtt , v

)
Th

+
(
ε(uh),Dε(v)

)
Th

+ 〈{̂u − uh}, [[Dε(v)]]〉Fo
h

+ 〈[[̂u − uh]], {Dε(v)}〉Fo
h ∪FD

h

−〈{Dε(uh)}δ, [[v]]〉Fo
h ∪FD

h
+ 〈SF [[uh]], [[v]]〉Fo

h ∪FD
h

= (f, v)Th + 〈g, v〉FN
h

,

which corresponds to the family of classical Interior Penalty (IP) methods. Following [49],
to obtain the weighted Symmetric Interior Penalty method (SIP(δ)) we define

û = {uh}1−δ ∀δ ∈ [0, 1].
For δ = 1/2, û = {uh}, we get the classical Symmetric Interior Penalty (SIP) method [5].

The weak formulation reads: find uh ∈ C2([0, T ]; V h) such that(
ρuhtt , v

)
Th

+ a(uh, v) = (f, v)Th + 〈g, v〉FN
h

∀ v ∈ V h, (26)

where a(·, ·) : V h × V h −→ R is given by

a(w, v) = (ε(w),Dε(v))Th − 〈{Dε(w)}δ, [[v]]〉Fo
h ∪FD

h
− 〈[[w]], {Dε(v)}δ〉Fo

h ∪FD
h

+〈SF [[w]], [[v]]〉Fo
h ∪FD

h
. (27)
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5 Stability

We now prove stability in the natural energy norm induced by the DG methods described in
Sect. 4. For the DG methods in displacement-stress formulation (22) we define the energy
norm∥∥∥(uh(t), σ h(t))

∥∥∥2
E,MDG

=
∥∥∥ρ1/2uht (t)

∥∥∥2
0,Th

+
∥∥∥A1/2σ h(t)

∥∥∥2
0,Th

+
∥∥∥c1/211 [[uh(t)]]

∥∥∥2
0,Fo

h∪FD
h

+
∥∥∥c1/222 [[σ h(t)]]

∥∥∥2
0,Fo

h∪FN
h

(28)

for any (uh, σ h) ∈ C2([0, T ]; V h) × C0([0, T ];Σh) and any t ∈ [0, T ]. For the LDG and
ALT methods, one needs to set above c22 = 0 and c11 = c22 = 0, respectively. For the DG
methods in displacement formulation, the energy norm is defined for all uh ∈ C2([0, T ]; V h)

as follows∥∥∥uh(t)∥∥∥2
E,IP

= ‖ρ1/2uht ‖20,Th
+ ‖D1/2ε(uh(t))‖20,Th

+ ‖S1/2F [[uh(t)]]‖2
0,Fo

h∪FD
h

(29)

for all t ∈ [0, T ]. For further use, we also define the norm
∥∥∥uh(t)

∥∥∥2
a

= ‖D1/2ε(uh(t))‖20,Th
+
∥∥∥{D}1/2h−1/2

F [[uh(t)]]
∥∥∥2
0,Fo

h∪FD
h

. (30)

Moreover, with a small abuse of notation, for t = 0 we write
∥∥∥(uh0 , σ h

0)

∥∥∥2
E,MDG

=
∥∥∥ρ1/2uh1

∥∥∥2
0,Th

+
∥∥∥A1/2σ h

0

∥∥∥2
0,Th

+
∥∥∥c1/211 [[uh0 ]]

∥∥∥2
0,Fo

h∪FD
h

+
∥∥∥c1/222 [[σ h

0]]
∥∥∥2
0,Fo

h∪FN
h

,

∥∥∥uh0
∥∥∥2
E,IP

=
∥∥∥ρ1/2uh1

∥∥∥2
0,Th

+
∥∥∥D1/2ε(uh0)

∥∥∥2
0,Th

+
∥∥∥S1/2F [[uh0 ]]

∥∥∥2
0,Fo

h∪FD
h

,

∥∥∥uh0
∥∥∥2
a

=
∥∥∥D1/2ε(uh0)

∥∥∥2
0,Th

+
∥∥∥{D}1/2h−1/2

F [[uh0 ]]
∥∥∥2
0,Fo

h∪FD
h

,

where (uh0 ,u
h
1) and σ h

0 are some projections of (u0,u1) and σ (0, x) onto the finite element
spaces V h and Σh , respectively.

The main results of this section are contained in the following two propositions.

Proposition 1 Let (uh, σ h) ∈ C2((0, T ]; V h)×C0((0, T ];Σh) be the approximate solution
obtained with any of the DG methods for the displacement-stress formulation introduced in
Sect. 4.

(i) In the absence of external forces, i.e., f = g = 0, FDG, LDG and ALT methods are fully
conservative:∥∥∥(uh(t), σ h(t))

∥∥∥
E,MDG

=
∥∥∥(uh0 , σ h

0)

∥∥∥
E,MDG

, 0 < t ≤ T .

(ii) If f ∈ L2((0, T ];L2(Ω)) and ∂Ω = ΓD, the FDG, LDG and ALT methods satisfy the
following a priori discrete energy estimate:

∥∥∥(uh(t), σ h(t))
∥∥∥
E,MDG

�
∥∥∥(uh0 , σ h

0)

∥∥∥
E,MDG

+
∫ t

0
ρ

−1/2∗ ‖f(τ )‖0,Ωdτ 0 < t ≤ T .
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(iii) If f ∈ L2((0, T ];L2(Ω)) and g ∈ C1((0, T ];H1(ΓN )), the FDG and LDG methods
satisfy the following a priori discrete energy estimate: for all 0 < t ≤ T
∥∥∥(uh(t), σ h(t))

∥∥∥
E,MDG

�
√
GMDG +

∫ t

0

(
ρ

−1/2∗ ‖f(τ )‖0,Ω + D−1/2∗ ‖gτ (τ )‖1,ΓN

)
dτ,

where gτ denotes the time derivative of g and

GMDG =
∥∥∥(uh0 , σ h

0)

∥∥∥2
E,MDG

+ D−1∗

(
‖g0‖21,ΓN

+ sup
0<t≤T

‖g(t)‖21,ΓN

)

+
∫ t

0
D−1∗ ‖gτ‖1,ΓN

‖g‖1/2,ΓN dτ .

For the IP(δ) method, the stability result reads as follows.

Proposition 2 Let the penalty parameter c00 in (25) be large enough and let uh ∈
C2((0, T ]; V h) be the corresponding approximate solution obtained with the SIP(δ) method
introduced in Sect. 4 with such c00.

(i) In the absence of external forces, i.e., f = g = 0,∥∥∥uh(t)
∥∥∥
E,IP

�
∥∥∥uh0

∥∥∥
E,IP

, 0 < t ≤ T ;

(ii) If f ∈ L2((0, T ];L2(Ω)) and g ∈ C1((0, T ];H1(ΓN )), then
∥∥∥uh(t)

∥∥∥2
E,IP

�
√
GIP +

∫ t

0

(
ρ−1∗ ‖f(τ )‖0,Ω + ‖gτ (τ )‖1,ΓN

)
dτ 0 < t ≤ T,

where

GIP =
∥∥∥uh0

∥∥∥2
E,IP

+ D−1∗ sup
0<t≤T

‖g(t)‖21,ΓN
+ D−1∗ ‖g0‖21,ΓN

.

In the case of boundary conditions of mixed type, Propositions 1 and 2 would require the
traction boundary data g to be more regular that what is required by the continuous problem.
Whether this is a technical restriction due to an artifact of our proof or it is really necessary
to ensure stability of the methods is an open issue. This restriction comes into play from the
proof of Lemma 1.

We next state two auxiliary results. Their proofs are given in “Appendix”.

Lemma 1 Let f ∈ L2((0, T ];L2(Ω)) and g ∈ C1((0, T ];H1/2(ΓN )). Let (uh, σ h) ∈
C2((0, T ]; V h)×C0((0, T ];Σh) be the DG approximation to the solution (u, σ ) of problem
(6a)–(6b) obtained with any of the DG methods introduced in Sect. 4. Then, the following
bounds hold:∣∣∣∣

∫ t

0
(f(τ ),uhτ (τ ))Th dτ

∣∣∣∣ ≤
∫ t

0
ρ

−1/2∗ ‖f(τ )‖0,Ω‖ρ1/2uhτ (τ )‖0,Th dτ , (31)

∣∣∣∣
∫ t

0
〈c22gτ (τ ), σ h(τ )n〉FN

h
dτ

∣∣∣∣ �
∫ t

0
D−1/2∗ ‖gτ (τ )‖1/2,ΓN ‖c1/222 σ h(τ )n‖0,FN

h
dτ, (32)

where c22 is defined as in (21) andD∗, ρ∗ are given in (5) and (2), respectively. Furthermore,
if g ∈ C1((0, T ];H1(ΓN )), then for any ε > 0, it holds∣∣∣∣

∫ t

0
〈g(τ ),uhτ (τ )〉0,FN

h
dτ

∣∣∣∣ � ε

∥∥∥uh(t)∥∥∥2
a

+ D−1/2∗
∥∥∥uh0

∥∥∥
a
‖g0‖1,ΓN

+ D−1∗
ε

‖g(t)‖21,ΓN

+
∫ t

0
D−1/2∗ ‖gτ (τ )‖1,ΓN

∥∥∥uh(τ )

∥∥∥
a
dτ. (33)
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The following result provides a bound of the norm of the symmetric discrete gradient in
terms of the discrete stress tensor, and will be required in the proof of Proposition 1.

Lemma 2 Let f ∈ L2((0, T ];L2(Ω)) and g ∈ C1((0, T ];H1/2(ΓN )). Let (uh, σ h) ∈
C2((0, T ]; V h) × C0((0, T ];Σh) be the approximate solution to (6a)–(6b) obtained with
any of the DG methods for displacement-stress formulation introduced in Sect. 4. Then, the
following bound holds:

‖D1/2ε(uh)‖0,Th � ‖A1/2σ h‖0,Th + ‖c1/211 [[uh]]‖0,Fo
h

+ ‖c1/222 [[σ h]]‖0,FN
h

+D−1∗ ‖g‖21/2,ΓN
, (34)

where D∗ is given in (5). For the LDG method the last two terms on the right hand side are
not present in the bound.

Proof (Proof of Proposition 1) To simplify the notation we drop the explicit dependence on
t .
Step 1.We take v = uht ∈ V h as test function in the first equation of (19a) and use [[σ̂ ]] = 0
to obtain(

ρuhtt ,u
h
t

)
Th

+
(
σ h, ε(uht )

)
Th

− 〈{σ̂ }, [[uht ]]〉Fo
h ∪FD

h
= (f,uht )Th + 〈g,uht 〉FN

h
. (35)

Step 2. We consider the DG approximation of equation (6b) differentiated with respect to
time (

Aσ h
t − ε(uht ), τ

)
Th

+ 〈{̂ut − uht }, [[τ ]]〉Fo
h

+
〈
[[̂ut − uht ]], {τ }

〉
Fo

h ∪FD
h

+
〈
c22(σ h

t n − gt ), τ n
〉
FN

h

= 0

for all τ ∈ Σh , where the numerical flux ût is defined according to the definition of û. In
particular on boundary faces we have ût = 0 onΓD . By setting τ = σ h in the above equation,
and using that [[̂ut ]] = 0 we get,(

Aσ h
t − ε(uht ), σ

h
)
Th

− 〈{̂ut − uht }, [[σ h ]]〉Fo
h

+
〈
[[uht ]], {σ h}

〉
Fo

h ∪FD
h

+
〈
c22σ h

t , σ
h n
〉
FN

h

= 〈c22gt , σ h n〉FN
h

.

Step 3. Summing up the above equation and (35) we have(
ρuhtt ,u

h
t

)
Th

+
(
Aσ h

t , σ
h
)
Th

+ Q =
(
f,uht

)
Th

+
〈
g,uht

〉
FN

h

+ 〈c22gt , σ h n〉FN
h

, (36)

where Q is defined by

Q = −〈{σ̂ }, [[uht ]]〉Fo
h ∪FD

h
+
〈
[[uht ]], {σ h}

〉
Fo

h ∪FD
h

−〈{̂ut − uht }, [[σ h ]]〉Fo
h

+
〈
c22σ h

t , σ
h
〉
FN

h

. (37)

Equation (36) is then equivalent to

1

2

d

dt

(
‖ρ1/2uht ‖20,Th

+ ‖A1/2σ h‖20,Th

)
+ Q = (f,uht )Th

+〈g,uht 〉FN
h

+ 〈c22gt , σ h n〉FN
h

. (38)
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We first study the case (i), i.e., f = g = 0. Then to guarantee stability of the method it is
enough to show that Q is either non-negative or it can be rewritten as the time derivative
of a non-negative quantity. Substituting in (37) the definition of the fluxes (20) for the FDG
methods, Q becomes

QFDG = −
〈
{σ h}δ − {σ h}, [[uht ]]

〉
Fo

h ∪FD
h

+
〈
c11[[uh]], [[uht ]]

〉
Fo

h∪FD
h

+
〈
{uht } − {uht }1−δ, [[σ h ]]

〉
Fo

h

+
〈
c22[[σ h

t ]], [[σ h ]]
〉
Fo

h

+
〈
c22σ h

t , σ
h
〉
FN

h

.

Thanks to the definition of the average operator on boundary edges/faces and the identity
(13) with τ = σ h and v = uht , we have

〈{σ h}δ − {σ h}, [[uht ]]〉Fo
h ∪FD

h
= 〈{uht } − {uht }1−δ, [[σ h]]〉Fo

h
, (39)

and therefore

QFDG = 1

2

d

dt

(
‖c1/211 [[uh]]‖2

0,Fo
h∪FD

h
+ ‖c1/222 [[σ h]]‖2

0,Fo
h∪FN

h

)
. (40)

For the LDG (c22 = 0) and the ALT (c11 = c22 = 0) methods the above expression reduces
to

QLDG = 1

2

d

dt

∥∥∥c1/211 [[uh]]
∥∥∥2
0,Fo

h∪FD
h

, QALT = 0.

Therefore, for all the considered methods, the corresponding discrete energy defined in (28)
is preserved in time.

Next we deal with the case (ii). By using estimate (31) from Lemma 1, we find

∥∥∥(uh, σ h)

∥∥∥2
E,MDG

�
∥∥∥(uh0 , σ h

0)

∥∥∥2
E,MDG

+ 2
∫ t

0
ρ

−1/2∗ ‖f‖0,Ω‖ρ1/2uhτ ‖0,Th dτ,

which together with the definition (28) and Gronwall’s lemma [42, p 28] gives the result and
proves part (ii). We finally show part (iii).

We consider the FDGformulation; the corresponding estimate for theLDGcanbe obtained
by setting c22 = 0. Substituting (40) into (38) gives

1

2

d

dt

(
‖ρ1/2uht ‖20,Th

+ ‖A1/2σ h‖20,Th
+ ‖c1/211 [[uh]]‖2

0,Fo
h∪FD

h
+ ‖c1/222 [[σ h]]‖2

0,Fo
h∪FN

h

)

= (f,uht )Th + 〈g,uht 〉FN
h

+ 〈c22gt , σ h n〉FN
h

. (41)

Recalling now the definition of the ‖·‖E,MDG norm (28), and integrating in time we get

1

2

∥∥∥(uh, σ h)(t)
∥∥∥2
E,MDG

≤ 1

2

∥∥∥(uh0 , σ h
0)

∥∥∥2
E,MDG

+
∣∣∣∣
∫ t

0
(f,uhτ )Th dτ

∣∣∣∣︸ ︷︷ ︸
I

+
∣∣∣∣
∫ t

0
〈g,uhτ 〉FN

h
dτ

∣∣∣∣︸ ︷︷ ︸
II

+
∣∣∣∣
∫ t

0
〈c22gτ , σ

h n〉FN
h
dτ

∣∣∣∣︸ ︷︷ ︸
III

.
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The terms I and III are readily estimated by using Lemma 1

I ≤
∫ t

0
ρ

−1/2∗ ‖f‖0,Ω‖ρ1/2uhτ ‖0,Th dτ,

III �
∫ t

0
D−1/2∗ ‖gτ‖1/2,ΓN ‖c1/222 σ hn‖0,FN

h
dτ .

To estimate the term II, from Lemma 1 we first have for any ε > 0 (to be specified later)

II � ε

∥∥∥uh∥∥∥2
a

+
∥∥∥uh0

∥∥∥
a
‖g0‖1,ΓN

+ D−1∗
ε

‖g‖21,ΓN
+
∫ t

0
D−1/2∗ ‖gτ‖1,ΓN

∥∥∥uh
∥∥∥
a
dτ.

Now, to bound
∥∥uh∥∥a in terms of the

∥∥(uh, σ h)
∥∥
E,MDG norm, we use estimate (34) from

Lemma 2, to get
∥∥∥uh∥∥∥2

a
≤ CII

(∥∥∥(uh, σ h)

∥∥∥2
E,MDG

+ D−1∗ ‖g‖21/2,ΓN

)
,

and so the estimate for the term II becomes,

II � εCII

∥∥∥(uh, σ h)

∥∥∥2
E,MDG

+
∥∥∥uh0

∥∥∥
a
‖g0‖1,ΓN

+ D−1∗
ε

‖g‖21,ΓN
+ εCIID

−1∗ ‖g‖21/2,ΓN

+
∫ t

0
D−1/2∗ ‖gτ‖1,ΓN

∥∥∥(uh, σ h)

∥∥∥
E,MDG

dτ +
∫ t

0
D−1∗ ‖gτ‖1,ΓN

‖g‖1/2,ΓN dτ

Substituting all the above estimates, recalling the definition of the ‖·‖E,MDG norm, using
standard Sobolev embeddings and taking ε so that 1/2 − CIIε is positive, gives∥∥∥(uh, σ h)

∥∥∥2
E,MDG

�
∥∥∥(uh0 , σ h

0)

∥∥∥2
E,MDG

+ D−1/2∗
∥∥∥uh0

∥∥∥
a
‖g0‖1,ΓN

+D−1∗ ‖g‖21,ΓN
+
∫ t

0
D−1∗ ‖gτ‖1,ΓN

‖g‖1/2,ΓN dτ

+
∫ t

0

(
ρ

−1/2∗ ‖f‖0,Ω + D−1/2∗ ‖gτ‖1,ΓN

) ∥∥∥(uh, σ h)

∥∥∥
E,MDG

dτ.

By a standard application of Gronwall’s lemma [42, p. 28] the proof now follows. ��
Before proving Proposition 2 we first observe that, for any F ∈ Fo

h ∪ FD
h , and any

w, v ∈ V h , the Cauchy–Schwarz, Agmon inequality (14) and inverse inequality (18) give

|〈{Dε(w)}δ, [[v]]〉F | �
1

c00
‖D1/2ε(w)‖0,K ‖S1/2F [[v]]‖20,F ≤ 1

c00
‖w‖E,IP ‖v‖E,IP (42)

where c00 is the positive parameter appearing in the definition of the penalty function (25).

Proof (Proof of Proposition 2) The proof is obtained as follows.
Step 1.We set v = uht ∈ V h in (26) to get

1

2

d

dt

( ∥∥∥uh∥∥∥2
E,IP

−2〈{Dε(uh)}δ, [[uh]]〉Fo
h ∪FD

h

)
= (f,uht )Th + 〈g,uht 〉FN

h
. (43)

Step 2. Integrating in time the above equation we obtain∥∥∥uh
∥∥∥2
E,IP

− 2〈{Dε(uh)}δ, [[uh]]〉Fo
h ∪FD

h
=
∥∥∥uh0

∥∥∥2
E,IP

− 2〈{Dε(uh0)}δ, [[uh0 ]]〉Fo
h ∪FD

h

+ 2
∫ t

0
(f,uhτ )Th dτ + 2

∫ t

0
〈g,uhτ 〉FN

h
dτ. (44)
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Using (42), the arithmetic-geometric inequality and choosing the penalty parameter c00 suf-
ficiently large, we obtain

∥∥∥uh∥∥∥2
E,IP

− 2〈{Dε(uh)}δ, [[uh]]〉Fo
h ∪FD

h
�
∥∥∥uh

∥∥∥2
E,IP

,

∥∥∥uh0
∥∥∥2
E,IP

− 2〈{Dε(uh0)}δ, [[uh(0)]]〉Fo
h ∪FD

h
�
∥∥∥uh0

∥∥∥2
E,IP

.

Substituting now these two estimates into (44), gives

∥∥∥uh
∥∥∥2
E,IP

�
∥∥∥uh0

∥∥∥2
E,IP

+
∫ t

0
(f,uhτ )Th dτ +

∫ t

0
〈g,uhτ 〉FN

h
dτ.

If f = g = 0, part (i) of the thesis follows. As regards part (ii), Lemma 1 and the inequality∥∥uh∥∥a ≤ ∥∥uh∥∥E,IP, give for ε > 0

∥∥∥uh
∥∥∥2
E,IP

� ε

∥∥∥uh∥∥∥2
E,IP

+
∥∥∥uh0

∥∥∥2
E,IP

+
∥∥∥uh0

∥∥∥
a
‖g0‖1,ΓN

+D−1∗
ε

‖g‖21,ΓN
+
∫ t

0

(
ρ−1∗ ‖f‖0,Ω + D−1/2∗ ‖gτ‖1,ΓN

) ∥∥∥uh
∥∥∥
E,IP

dτ.

Choosing ε small enough we obtain
∥∥∥uh

∥∥∥2
E,IP

�
∥∥∥uh0

∥∥∥2
E,IP

+
∥∥∥uh0

∥∥∥
a
‖g0‖1,ΓN

+ D−1∗ ‖g‖21,ΓN

+
∫ t

0

(
ρ−1∗ ‖f‖0,Ω + D−1/2∗ ‖gτ‖1,ΓN

) ∥∥∥uh∥∥∥
E,IP

dτ,

and (ii) follows by a standard application of Gronwall’s lemma [42, p. 28]. ��

6 Error Analysis

In this section we state the a priori error estimates for the DG methods introduced in Sect. 4.
The proof follows from the stability results by using standard arguments (see [2] for detailed
proofs). For (v, σ ) ∈ C2((0, T ];H1(Th) ∩H2(Th)) ×C0((0, T ];H1(Th)) we introduce the
following augmented norms

‖|(v, σ )‖|2E,MDG = ‖(v, σ )‖2E,MDG +
∥∥∥c1/222 {σ }δ

∥∥∥2
0,Fo

h∪FD
h

,

‖|v‖|2E,IP = ‖v‖2E,IP +
∥∥∥h1/2F {Dε(v)}δ

∥∥∥2
0,Fo

h∪FD
h

,

where ‖(·, ·)‖E,MDG and ‖·‖E,IP are defined in (28) and (29), respectively.

Theorem 1 Let (u, σ ) be the solution of (6a)–(6b) and let (uh, σ h) ∈ C2((0, T ]; V h) ×
C0((0, T ];Σh) be the solution of any of the DG method in displacement-stress formulations
defined in Sect. 4. Then,

sup
0<t≤T

∥∥∥|(u(t) − uh(t), σ (t) − σ h(t))
∥∥∥|E,MDG

� hk sup
0<t≤T

(|u(t)|2k+1,Ω + h2|σ (t)|2k+1,Ω + h2|uτ (t)|k+1,Ω
)1/2
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+ hk
∫ T

0

(|u(τ )|2k+1,Ω + h2|σ (τ )|2k+1,Ω + h2|uτ (τ )|k+1,Ω
)1/2

dτ

+ hk
∫ T

0

(|uτ (τ )|2k+1,Ω + h2|σ τ (τ )|2k+1,Ω + h2|uττ (τ )|k+1,Ω
)1/2

dτ, (45)

where the hidden constant depends on D∗, D∗, ρ∗, k, and the shape regularity constant of
Th.

For displacement formulations we proceed similarly and obtain the following a-priori
estimate.

Theorem 2 Let u be the solution of (7), and let uh ∈ C2((0, T ]; V h) be the approximated
solution obtainedwith the SIP(δ)method defined in Sect. 5. Assume that the penalty parameter
c00 appearing in (25) is large enough. Then,

sup
0<t≤T

∥∥∥|u(t) − uh(t)
∥∥∥|E,IP � hk sup

0<t≤T

(|u(t)|2k+1,Ω + h2|uτ (t)|2k+1,Ω

)1/2

+ hk
∫ T

0

(|uτ (τ )|2k+1,Ω + h2|uττ (τ )|2k+1,Ω

)1/2
dτ, (46)

where the hidden constant depends on k, D∗, ρ∗, and the shape regularity constant of the
mesh Th.

7 Numerical Results

To conclude our analysis we present some numerical results. The fully discrete solution is
recovered by combining our semidiscrete formulation with the second order accurate explicit
leap-frog time integration scheme, where the integration time-step has be chosen sufficiently
small in order to guarantee that the temporal component of the error does not affect the spatial
one.

7.1 Two Dimensional Test Case

We set Ω = (0, 1)2, ΓD = ∂Ω , λ = μ = ρ = 1 and choose f so that the analytical solution
for the problem (6a)–(6b) is given by

u(x, t) = sin(
√
2π t)

[
sin(πx)2 sin(2πy)

− sin(2πx) sin(πy)2

]
.

The Dirichlet boundary conditions on the whole ∂Ω , the initial displacement u0, and
initial velocity u1 have been set accordingly. The computations reported in this section
have been obtained using the finite element software FreeFem++, cf. [23]. We test our
DG schemes on a sequence of successively refined triangular meshes with mesh size
h = 0.25, 0.125, 0.0625, 0.03125 and consider a polynomial approximation degree k = 1, 2.

We start comparing the approximation properties of the LDG (c11 = 10) and the SIP
(c00 = 10) methods, cf. Sect. 4. We have ran the same set of experiments with the ALT
method, cf. Sect. 4, and a completely analogous behavior has been observed; for brevity
such results have been omitted. For the sake of comparison, we have also ran the same set of
experiments employing the extra-stabilized Non-symmetric Interior Penalty (sNIP) method
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Table 1 Computed errors
measured in the corresponding
energy norm as a function of the
mesh size h for linear (k = 1) and
quadratic (k = 2) finite element,
and corresponding computed
convergence rates (last line)

ESIP ELDG EsNIP [47]

h k =1 k=2 k=1 k=2 k=1 k=2

0.25000 2.7950 0.8767 3.3471 0.9212 2.7968 0.8772

0.12500 1.6364 0.2528 1.8803 0.2650 1.6366 0.2529

0.06250 0.8575 0.0669 0.9405 0.0704 0.8575 0.0669

0.03125 0.4338 0.0174 0.4639 0.0180 0.4337 0.0171

Rate 0.9832 1.9398 1.0197 1.9701 0.9833 1.9650

described in [45] (cf. also in [39,46,47]) that reads as: find uh ∈ V h such that for all v ∈ V h

it holds (
ρuhtt , v

)
Th

+ (ε(uh),Dε(v))Th − 〈{Dε(uh)}δ, [[v]]〉Fo
h ∪FD

h

+〈[[uh]], {Dε(v)}δ〉Fo
h ∪FD

h
+ 〈SF [[uh]], [[v]]〉Fo

h ∪FD
h

+〈SF [[uht ]], [[v]]〉Fo
h ∪FD

h
= (f, v)Th + 〈g, v〉FN

h
, (47)

where the extra stabilization term is required for ensuring (at the theoretical level) the stability
of the method. For the sNIP scheme we measured the error in the following norm:

∥∥∥uh(t)
∥∥∥2
E,sNIP

=
∥∥∥uh(t)

∥∥∥2
E,IP

+
∥∥∥S1/2F [[uht (t)]]

∥∥∥2
0,Fo

h∪FD
h

.

The simulations have been performed setting T = 10, and a time step �t = 1 · 10−4. The
corresponding energy norms have been evaluated at each discrete time tn = t0 + n�t , for
n = 1, . . . , 105, and we measured the quantities

ELDG = max
0<tn≤T

∥∥∥(u(tn) − uh(th), σ (th) − σ h(th))
∥∥∥
E,LDG

,

EIP = max
0<tn≤T

‖u(tn) − uh(tn)‖E,IP,

EsNIP = max
0<tn≤T

‖u(tn) − uh(tn)‖E,sNIP,

(48)

which represent good approximation of the quantities estimated in Theorem1 andTheorem2,
respectively, at least when the time discretization error is small compared to the spatial one.
In Table 1 we report the computed errors measured in the corresponding energy norm as a
function the mesh size h for linear (k = 1) and quadratic (k = 2) finite elements; in the
last row of Table 1 the estimated convergence rate is also reported. The results confirm the
expected convergence rate proved in Theorem1 andTheorem2 for the LDGandSIPmethods,
respectively, i.e., the error decreases linearly (resp. quadratically) as a function of the mesh
size when linear (resp. quadratic) polynomials are employed. We also observe that the sNIP
scheme exhibits the same order of accuracy of the SIP and LDGmethods, in agreement with
[47, Theorem 3.1], and that the errors are of the same magnitude than the ones computed
with the other DG schemes.

Next, we compare the accuracy of the SIP and LDG as a function of the total number of
degrees of freedom. More precisely, in Fig. 1 we report the computed errors as a function
of the total number of degrees of freedom (semilog scale) for the SIP and LDG methods
and for k = 1, 2. From the results shown in Fig. 1, it is clear that the SIP scheme achieves
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Fig. 1 Computed errors measured in the corresponding energy norm as a function of the total number of
degrees of freedom for linear (k = 1) and quadratic (k = 2) finite elements (semilog scale)

the same accuracy of the LDG methods using less than a half degrees of freedom. From a
computational point of view this is the main drawback of displacement-stress based methods
with respect to the displacement based ones. This shortcoming becomes crucial in three
dimensions where the number unknowns should be kept as low as possible in order to keep
the computational cost under control.

7.2 Three Dimensional Test Case

We solve a wave propagation problem in Ω = (0, 1)3, set the Lamé parameters λ,μ and the
mass density ρ equal to 1, and choose f such that problem (7) features the exact solution

u(x, t) = sin(3π t)

⎡
⎢⎣

− sin2(πx) sin(2πy) sin(2π z)

sin(2πx) sin2(πy) sin(2π z)

sin(2πx) sin(2πy) sin2(π z)

⎤
⎥⎦ .

The Dirichlet boundary conditions on the whole ∂Ω , the initial displacement u0, and initial
velocity u1 have been set accordingly. The numerical computation reported in this section
have been obtained using the DG spectral element code SPEED (http://speed.mox.polimi.
it), cf. [35]. For brevity, in this section we focus only on DG methods for the displacement
formulation (choosing c00 = 10), cf. Sect. 4, since as shown by the numerical results reported
in the previous section, it seems that this class of methods is computationally less expensive
than displacement-stress formulations.

We consider a Cartesian decomposition of the domain Ω and define four levels of refine-
ments with mesh size h = 0.5, 0.25, 0.125, 0.0625 (resp. h = 0.25, 0.125, 0.0625, 0.03125)
for a polynomial approximation degree k = 2, 3, 4 (resp. k = 1). Since high order spatial
approximation of elastodynamics problems have been previously addressed in the context of
spectral and spectral element methods, cf. [15,19,20,31,43], we also compared the numeri-
cal results obtained with the SIP method with the analogous ones obtained with the spectral
element method (SEM). For the spectral element approximation the spatial error has been
measured using the energy norm defined in (29), obviously neglecting the last term, since
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Fig. 2 Computed errors measured in the energy norm versus the mesh size h, for different polynomial
approximation degrees k = 1, 2, 3, 4 (loglog scale)

Table 2 Computed convergence
rates for different approximation
degrees k = 1, 2, 3, 4

k = 1 k = 2 k = 3 k = 4

SIP 1.1212 2.1157 2.8478 3.7973

SEM 0.9492 2.0622 3.0135 3.7973

the discrete and continuous solutions are continuous across interelement boundaries. The
simulations have been carried out setting T = 10 and using a time step �t = 1 · 10−5. As
before, we have computed the maximum of the energy errors evaluated at the discrete times
tn = t0+n�t , for n = 1, . . . , 106. The results of this set of experiments are reported in Fig. 2
where the maximum of the computed errors is plotted versus the mesh size h for different
polynomial approximation degrees k = 1, 2, 3, 4. The corresponding computed convergence
rates are reported in Table 2. The numerical results confirm the theoretical results proved in
Theorem 2 and demonstrate once again the h−optimality of DG discretizations.

We next investigate the stability of the SIP method and compare it with that of the
sNIP method (47) and of the NIP scheme [4] obtained from (47) neglecting the term
〈SF [[uht ]], [[v]]〉Fo

h ∪FD
h
. To provide a consistent comparison, for all the methods the stabiliza-

tion parameter has been chosen as c00 = 10; notice however that sNIP and NIP formulations
are stable for any c00 > 0. As before, for different �t , we measured the quantities and ESIP

and EsNIP, cf. (48), as well as

ENIP = max
0<tn≤T

‖u(tn) − uh(tn)‖E,IP,

where uh is the solution computed with the NIP method. In Fig. 3 we show ESIP, EsNIP

and ENIP as a function of the time step �t for different polynomial approximation degrees
k = 1, 2, 3. The results in Fig. 3 have been obtained with a mesh size h = 0.125. Analogous
results were obtained for different choices of the mesh size; for brevity these results have
been omitted. Clearly, the presence of the additional stabilization term imposes amuch severe
restriction on the time step size required to guarantee stability, and indeed the SIP and NIP
methods seem to have a less restrictive condition than that required by the sNIP scheme, at
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Fig. 3 ESIP (continuous line with dots), ENIP (dash line) and EsNIP (dash-dot line) versus the time step �t
for different polynomial approximation degrees k = 1, 2, 3 (loglog scale)

Table 3 Coefficients for the heterogeneous anisotropic model given in [107 N m−2] for the anisotropic and
isotropic materials

ρ D11 D12 D22 D33

Isotropic 2000 5.9858 1.9858 5.9858 2

Anisotropic 2000 5.9858 0.6017 2.2492 2

The material density ρ is given in [kg m−3]

least when the leap-frog time integration scheme is employed. The simulation uses 2000 time
steps of 50 μs. Therefore, despite the fact that the extra term is helpful for the theoretical
analysis, it needs to be handled extremely carefully in the numerical simulations, in order to
guarantee stability in practice.

7.3 Elastic Wave Propagation in an Anisotropic (Transverly Isotropic) Medium

To further validate the method, we study the elastic wave propagation in a heterogeneous
medium. The computational domain Ω = (−800, 800) m × (−400, 400) m contains two
materials separated by a straight line at x = 0. On the right hand side side (x > 0) we have an
anisotropic (transversely isotropic) body with the symmetry axis in the y-direction, whereas
on the left hand side (x < 0) we use an isotropic material. Analogous test cases regarding
wave propagation in anisotropic media can be found for instance in [10,16,28]. In this case,
the stiffness tensor D has 4 independent components. Using the reduced Voigt notation (see
e.g., [24]), Hooke’s law (4) becomes⎛

⎝σ11
σ22
σ12

⎞
⎠ =

⎛
⎝D11 D12 0
D12 D22 0
0 0 D33

⎞
⎠
⎛
⎝ ε11

ε22
2ε12

⎞
⎠ .

Then, the isotropic case can be easily obtained by letting D11 = D22 = λ + 2μ, D12 = λ

andD33 = μ. In Table 3we summarize themechanical properties considered in this example.
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Fig. 4 (Top) Displacement field u and computational mesh at time t = 3 s. The source location is indicated
by a black circle, the four receiver locations are indicated by white circles. (Bottom) Zoom of the displacement
field at t = 3 s

The source is represented by a vertical point force located at the point xs = (−25, 0)m, that is
25m from the material interface inside the isotropic material and is acting in the y-direction.
The source time function is given by a Ricker wavelet with dominant frequency f0 = 2 Hz
and delay t0 = 1 s and amplitude A = 107 m, that is

f(x, t) =
(
0, δ(x − xs)A(1 − 2π2 f 20 (t − t0)

2)e−π2 f 20 (t−t0)2
)T

, (49)

where δ(·) is a delta function. Absorbing boundary conditions [4] are used on the four edges
of the grid in order to simulate two half-spaces in contact. The displacement field is calculated
at four different locations ri = (xi , yi ), i = 1, . . . , 4, with x1 = −300m, x2 = −75m,
x3 = 75m, x4 = 300m and yi = −300m for all i = 1, . . . , 4. For the spatial discretization
we employ the SIP method with sixth order polynomial (with c00 = 10) on a Cartesian
grid with mesh size 25m. The time integration is carried out by using the leap-frog scheme
and fixing the time step �t = 1 · 10−3 s for a total observation time T = 10 s. For a
quantitative comparison, we perform a SE calculation that is used as a reference with sixth
order polynomials and a finer Cartesian grid (size 12.5 m). For a qualitative comparison a
snapshot of the displacement field is reported in Fig. 4. The vertical displacement calculated
with the SIP scheme at the four receiver locations ri , i = 1, . . . , 4, are plotted in Fig. 5
(dashed line). The results obtained by the SE approach with polynomial degree 6 are also
reported (solid line). The agreement is very good for all phases.
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Fig. 5 Vertical displacements for the SIP (dashed) and SEM (solid) computations

Fig. 6 Unstructured grid for the test case addressed in Sect. 7.4. The mesh spacing varies from h ≈ 150m
for material 1 to h ≈ 1000m for material 5. The source location xs = (19.4,−2.7) km is indicated by a white
circle

7.4 An Application of Geophysical Intererst

Since our previous study consists of a rather simple geometry with only one interface, here
we construct a more complex situation representing a more realistic application. We consider
the computational domain Ω = (0, 35) × (0,−15) km shown in Fig. 6, that is a simplified
cross-section of the model presented in [40]. The bottom and the lateral boundaries are
set far enough from the point source (white dot in Fig. 6) so to avoid any interference of
possible reflections from non-perfectly absorbing boundaries with the waves of interest.
At the top of the model a free-surface boundary condition is imposed, i.e., σn = 0. We
simulate a point source load of the form (49) applied to the point xs = (19.4,−2.7) km
with unitary amplitude. The computational domain is discretized using an unstructured grid
made by 2658 quadrilateral elements, with a mesh size varying from h ≈ 150 m for material
1 to h ≈ 1000 m for material 5. The grid spacing is chosen small enough not only to
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Table 4 Material properties used
for the computational domain in
Fig. 6

ρ[kg/m3] λ [Nm−2] μ [Nm−2]

Material 1 1800 3.726 ×109 0.162 ×109

Material 2 2000 4.685 ×109 0.720 ×109

Material 3 2100 5.712 ×109 1.344 ×109

Material 4 2200 5.302 ×109 3.168 ×109

Material 5 2300 7.889 ×109 10.14 ×109

Fig. 7 Snapshots of the computed displacement field u at different time t = 2.4, 4.2, 5.7, 8 s. Due to the
material heterogeneities, high oscillations and perturbations of the wave front can be observed. Rayleighwaves
moving leftwards and rightwards are clearly visible on the top surface

describe with sufficient precision the physical profile of the submerged topography but also
to guarantee in the whole domain at least 5 points per wavelength with polynomial degree
equal to 4 and avoid dispersion and dissipation errors, see [4]. We assign constant material
properties within each region as described in Table 4. In Fig. 7 we report two snapshots of
the solution computed with the SIP method (with c00 = 10 and polynomial degree equal
to 4) coupled with the leap-frog scheme, fixing the final observation time T = 10 s and
time step �t = 1 · 10−4 s. The discontinuities between the mechanical properties of the
materials produce high oscillations and perturbations on the wave front. In particular, due to
the stratigraphy of the model two trains of Rayleigh waves are generated on the surface of the
model, one moving rightwards and the other traveling leftwards with respect to projection
on the top boundary of the source location. All these complex and relevant phenomena are
well captured by the proposed method, see Fig. 7. See also [40] for a further discussion.

8 Conclusions

We have introduced a family of semidiscrete (continuous in time) discontinuous Galerkin
approximations for a linear elastodynamics problem with mixed boundary conditions. Our
presentation and analysis is made in a general setting, considering both displacement-stress
and displacement DG formulations. We have provided a rigorous stability analysis high-
lighting that (i) in presence of external forces all the DG schemes satisfy optimal a priori
discrete energy estimates; (ii) in absence of external forces displacement-stress formulations
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are fully conservative whereas displacement formulations dissipate the total discrete energy.
The stability estimates are then used to derive optimal a priori error estimates in suitable
(mesh-dependent) energy norms. The main conclusions of the numerical comparison carried
out can be summarized as follows:

(i) all the methods exhibit approximation errors that are of the same order of magnitude;
(ii) displacement methods achieve the same accuracy of displacement-stress schemes
using much (substantially) fewer degrees of freedom.
(iii) the main advantage of using displacement-stress methods with respect to displace-
ment schemes is that they guarantee the same level of accuracy in both primal and dual
variables. In fact, for the latter methods the stress tensor can be recovered only through
a post-processing phase resulting in a loss of accuracy in the approximation.
(iv) IP formulations with no extra velocity stabilization exhibit a less sever stability con-
straint than the schemes proposed in [45,47], at least when the leap-frog time integration
scheme is employed.
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Appendix: Proof of Lemma 1 and Lemma 2

In this appendix we collect the proofs of the auxiliary Lemmas 1 and 2, used in the stability
analysis.

Proof (Proof of Lemma 1) The proof goes along the same lines as in the continuous case
with subtle modifications to obtain bounds independent of h. Estimate (31) follows from the
Cauchy–Schwarz inequality together with the lower bound of the mass density (2). To show
estimate (32), we proceed similarly to get∣∣∣∣

∫ t

0
〈c22gτ , σ

h n〉FN
h
dτ

∣∣∣∣ ≤ D−1/2∗
∫ t

0
‖gτ‖1/2,ΓN ‖c1/222 σ hn‖0,FN

h
dτ . (50)

Next, we notice that for each t ∈ [0, T ], the map g(t) belongs to H1/2(ΓN ). The inverse
trace theorem [1] guarantees that the trace operator has a continuous right inverse operator,
say T : H1/2(ΓN ) −→ H1(Ω). Hence, taking into account the scaling of the parameter c22
and using the trace inequality (15) we have∥∥∥c1/222 g

∥∥∥2
0,F

= c2hFk
−2{D}−1‖g‖20,F � c2k

−2D−1∗ ‖g‖21,K ∀ F ∈ FN
h , F ⊂ ∂K ,

where, with an abuse of notation, we have denoted by g = Tg the extension of g. Summing
over all F ∈ FN

h and using the continuity of the operator T we get
∥∥∥c1/222 gτ

∥∥∥2
0,FN

h

�
∑
K∈Th

D−1∗ ‖gτ‖21,K = D−1∗ ‖gτ‖21,Ω � D−1∗ ‖gτ‖21/2,ΓN
. (51)
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Substitution of the above estimate in (50) gives (32). To prove (33), we use integration by
parts formula (8) with w = g and z = uh , together with triangle and Jensen’ inequality to
get ∣∣∣∣

∫ t

0
〈g,uhτ 〉FN

h
dτ

∣∣∣∣ ≤
∣∣∣〈g0,uh0〉FN

h

∣∣∣+
∣∣∣〈g,uh〉FN

h

∣∣∣+
∫ t

0

∣∣∣〈gτ ,uh〉FN
h

∣∣∣ dτ. (52)

Therefore, we only need to estimate the inner product |〈g,uh〉FN
h

|, where the first argument
could be either g0, g or gτ . Applying Hölder’s inequality, the trace inequality (16) and
inequality (17) with ω = F ∈ FN

h gives
∣∣∣∣
∫
F
guhds

∣∣∣∣ ≤ ‖g‖Lq (F)‖uh‖L p(F) � ‖g‖Lq (F)h
−1/p‖uh‖W1,p(K )

� ‖g‖Lq (F)h
−1/phd( 1

p − 1
2 )‖uh‖1,K = ‖g‖Lq (F)h

2d−2−dp
2p ‖uh‖1,K ,

where, for any F ∈ FN
h , K is the only element in Th such that F ⊂ ∂K . Setting now

p = (2d − 2)/d (whose conjugate is q = (2d−2)
(d−2) ) the above inequality becomes

∣∣∣∣
∫
F
guhds

∣∣∣∣ � ‖g‖Lq (F)‖uh‖1,K . (53)

Notice that q = ∞ for d = 2 and q = 4 for d = 3. Using that F is a (d − 1) dimensional
object and using the continuity of the Sobolev embedding H1(F) −→ Lq(F), [1], we have

‖g‖Lq (F) � ‖g‖1,F ∀ g ∈ H1(F), q = (2d − 2)

(d − 2)
.

Substituting the above bound in (53) and summing over all faces F ∈ FN
h , gives

∣∣∣〈g,uh〉FN
h

∣∣∣ �‖g‖1,ΓN

(
‖uh‖20,Th

+
∣∣∣uh∣∣∣2

1,Th

)1/2

. (54)

Applying the discrete Poincaré and Korn inequalities [8,9], and the bound in (5), we have

‖uh‖20,Th
+ |uh |21,Th

� ‖ε(uh)‖20,Th
+

∑
F∈Fo

h∪FD
h

∥∥∥h−1/2
F [[uh]]

∥∥∥2
0,F

� D−1∗
∥∥∥uh∥∥∥2

a
.

Finally, substituting the above estimate in (54) yields∣∣∣〈g,uh〉FN
h

∣∣∣ �‖g‖1,ΓND
−1∗
∥∥∥uh∥∥∥

a
.

Applying now the above estimate to each term in (52), we finally get∣∣∣〈g0,uh0〉FN
h

∣∣∣ � D−1∗ ‖g0‖1,ΓN

∥∥∥uh0
∥∥∥
a
,

∫ t

0

∣∣∣〈gτ ,uh〉FN
h

∣∣∣ dτ �
∫ t

0
D−1/2∗ ‖gτ‖1,ΓN

∥∥∥uh∥∥∥
a
dτ.

∣∣∣〈g(t),uh(t)〉FN
h

∣∣∣ �
D−1∗
ε

‖g(t)‖21,ΓN
+ ε

∥∥∥uh(t)∥∥∥2
a
,

where for the last term we have also used the arithmetic geometric inequality with ε > 0.
Substitution of the above estimates into (52) completes the proof. ��
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Proof (Proof of Lemma 2) We start rewriting the second equation in (22) with τ = Dε(uh)

‖D1/2ε(uh)‖20,Th
= (ε(uh),Dε(uh))Th = (Aσ h,Dε(uh))Th

+〈c22[[σ h]], [[Dε(uh)]]〉Fo
h

+ 〈c22(σ hn − g),Dε(uh)n〉FN
h

+〈[[uh]], {Dε(uh)}〉Fo
h∪FD

h
− 〈{uh}(1−δ) − {uh}, [[Dε(uh)]]〉Fo

h
, (55)

Prior to estimate all terms on the right-hand side above, we note that Agmon’s (14) and
inverse inequalities (18), and the definition of c22 give∥∥∥c1/222 [[Dε(uh)]]

∥∥∥
0,F

� ‖D1/2ε(uh)‖0,K ,

∥∥∥c1/222 {Dε(uh)}δ
∥∥∥
0,F

� ‖D1/2ε(uh)‖0,K .

(56)
Using Cauchy–Schwarz inequality and the first estimate above, the first three terms in (55)
can be bounded by∣∣∣(Aσ h,Dε(uh))Th

∣∣∣ ≤ ‖A1/2σ h‖0,Th‖D1/2ε(uh)‖0,Th ,∣∣∣〈c22[[σ h]], [[Dε(uh)]]〉Fo
h

∣∣∣ �
∥∥∥c1/222 [[σ h]]

∥∥∥
0,Fo

h

‖D1/2ε(uh)‖0,K
∣∣∣〈c22(σ hn − g),Dε(uh)n〉FN

h

∣∣∣ �
(
‖c1/222 [[σ h]]‖0,FN

h
+ ‖c1/222 g‖0,FN

h

)
‖D1/2ε(uh)‖0,K .

To estimate the last two terms in (55), notice that c11c22 = O(1) since,

c−1
11 =

(
c1h

−1
F k2{D}

)−1 = (c1c2)
−1c2hFk

−2{D}−1 = (c1c2)
−1c22.

Then, the Cauchy Schwarz inequality and (56) give for the fourth term∣∣∣〈[[uh]], {Dε(uh)}〉Fo
h∪FD

h

∣∣∣ �
∥∥∥c1/211 [[uh]]

∥∥∥
0,Fo

h∪FD
h

‖c1/222 {Dε(uh)}‖0,Fo
h∪FD

h

�
∥∥∥c1/211 [[uh]]

∥∥∥
0,Fo

h∪FD
h

‖D1/2ε(uh)‖0,Ω .

Analogously, the last term can be estimated using identity (13) and (56)∣∣∣−〈{uh}(1−δ) − {uh}, [[Dε(uh)]]〉Fo
h

∣∣∣ �
∥∥∥c1/211 [[uh]]

∥∥∥
0,Fo

h

‖D1/2ε(uh)‖0,Ω .

Finally, substituting all the estimates into (55) we obtain

‖D1/2ε(uh)‖0,Th � ‖A1/2σ h‖0,Th +
∥∥∥c1/211 [[uh]]

∥∥∥
0,Fo

h

+
∥∥∥c1/222 [[σ h]]

∥∥∥
0,FN

h

+
∥∥∥c1/222 g

∥∥∥
0,FN

h

,

The proof is then concluded by arguing as in the proof of (32) in Lemma 1 (using estimate
(51)) ∥∥∥c1/222 g

∥∥∥2
0,FN

h

� D−1∗ ‖g‖21/2,ΓN
.

��

References

1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Volume 140 of Pure and Applied Mathematics, 2nd edn.
Elsevier, Amsterdam (2003)

123



J Sci Comput (2016) 68:143–170 169

2. Antonietti, P.F., Ayuso de Dios, B., Mazzieri, I., Quarteroni, A.: Stability analysis for discontinuous
Galerkin approximations of the elastodynamics problem. Technical Report MOXReport 56/2013, (2013)

3. Antonietti, P.F., Marcati, C., Mazzieri, I., Quarteroni, A.: High order discontinuous Galerkin meth-
ods on simplicial elements for the elastodynamics equation. Numer. Algorithms (2015). doi:10.1007/
s11075-015-0021-7

4. Antonietti, P.F., Mazzieri, I., Quarteroni, A., Rapetti, F.: Non-conforming high order approximations of
the elastodynamics equation. Comput. Methods Appl. Mech. Eng. 209(212), 212–238 (2012)

5. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer.
Anal. 19(4), 742–760 (1982)

6. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods
for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2001/02

7. Arnold, D.N., Brezzi, F., Falk, R.S., Marini, L.D.: Locking-free Reissner–Mindlin elements without
reduced integration. Comput. Methods Appl. Mech. Eng. 196(37–40), 3660–3671 (2007)

8. Brenner, S.: Korn’s inequalities for piecewise H1 vector fields. Math. Comp, pp 1067–1087, (2004)
9. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41(1),

306–324 (2003)
10. Carcione, J.M., Kosloff, D., Kosloff, R.: Wave-propagation simulation in an elastic anisotropic (trans-

versely isotropic) solid. Q. J. Mech. Appl. Math. 41(3), 319–346 (1988)
11. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous

Galerkin method for elliptic problems. SIAM J. Numer. Anal 38(5), 1676–1706 (2000). (electronic)
12. Chaljub, E., Komatitsch, D., Vilotte, J., Capdeville, Y., Valette, B., Festa, G.: Spectral element analysis

in seismology. In: Wu, R.-S., Maupin, V. (eds.) Advances in Wave Propagation in Heterogeneous Media,
Volume 48 of Advances in Geophysics, pp. 365–419. Elsevier - Academic Press, London, UK (2007)

13. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial dif-
ferential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

14. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
15. Cividini, A., Quarteroni, A., Zampieri, E.: Numerical solution of linear elastic problems by spectral

collocation methods. Comput. Methods Appl. Mech. Eng. 104(1), 49–76 (1993)
16. de la Puente, J., Käser, M., Dumbser, M., Igel, H.: An arbitrary high-order discontinuous Galerkin method

for elastic waves on unstructured meshes—iv. Anisotropy. Geophys. J. Int. 169(3), 1210–1228 (2007)
17. Delcourte, S., Fezoui, L., Glinsky-Olivier, N.: A high-order discontinuousGalerkinmethod for the seismic

wave propagation. In: CANUM 2008, volume 27 of ESAIM Proceedings, pp 70–89. EDP Science, Les
Ulis, (2009)

18. Duvaut, G., Lions, J.-L.: Inequalities in mechanics and physics. In: Grundlehren der Mathematischen
Wissenschaften. (trans: French by C. W. John), p 219, Springer, Berlin (1976)

19. Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A.: 2d and 3d elastic wave propagation by a pseudo-
spectral domain decomposition method. J. Seismol. 1(3), 237–251 (1997)

20. Faccioli, E., Maggio, F., Quarteroni, A., Tagliani, A.: Spectral-domain decomposition methods for the
solution of acoustic and elastic wave equations. Geophysics 61(4), 1160–1174 (1996)

21. Georgoulis, E.H., Hall, E., Houston, P.: Discontinuous Galerkin methods for advection-diffusion-reaction
problems on anisotropically refined meshes. SIAM J. Sci. Comput., 30(1):246–271, 2007/08

22. Grote, M., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave
equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

23. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)
24. Helbig, K.: Handbook of geophysical exploration. In: Helbig, K. (ed.) Foundations of Anisotropy for

Exploration Seismics, volume 22 of Handbook of Geophysical Exploration: Seismic Exploration. Perg-
amon, Oxford (1994)

25. Käser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on
unstructured meshes—I. The two-dimensional isotropic case with external source terms. Geophys. J. Int.
166(2), 855–877 (2006)

26. Käser,M.,Dumbser,M.:Ahighly accurate discontinuousGalerkinmethod for complex interfaces between
solids and moving fluids. Geophysics 73(3), T23–T35 (2008)

27. Klin, P., Priolo, E., Seriani, G.: Numerical simulation of seismic wave propagation in realistic 3-D geo-
models with a fourier pseudo-spectral method. Geophys. J. Int. 183(2), 905–922 (2010)

28. Komatitsch, D., Barnes, C., Tromp, J.: Simulation of anisotropic wave propagation based upon a spectral
element method. Geophysics 65(4), 1251–1260 (2000)

29. Komatitsch, D., Ritsema, J., Tromp, J.: The spectral-element method, Beowulf computing, and global
seismology. Science 298(5599), 1737–1742 (2002)

30. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D seismic wave propagation.
Geophys. J. Int. 139(3), 806–822 (1999)

123

http://dx.doi.org/10.1007/s11075-015-0021-7
http://dx.doi.org/10.1007/s11075-015-0021-7


170 J Sci Comput (2016) 68:143–170

31. Komatitsch, D., Vilotte, J.: The spectral-element method: an efficient tool to simulate the seismic response
of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)

32. Kreiss, H.-O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations.
Tellus 24(3), 199–215 (1972)

33. Makridakis, C.G.: On mixed finite element methods for linear elastodynamics. Numer. Math. 61(2),
235–260 (1992)

34. Makridakis, C.G.: Finite element approximations of nonlinear elastic waves. Math. Comput. 61(204),
569–594 (1993)

35. Mazzieri, I., Stupazzini, M., Guidotti, R., Smerzini, C.: Speed: spectral elements in elastodynamics with
discontinuous galerkin: a non-conforming approach for 3D multi-scale problems. Int. J. Numer. Meth.
Eng. 95(12), 991–1010 (2013)

36. Mercerat, E., Vilotte, J., Sánchez-Sesma, F.: Triangular spectral-element simulation of two-dimensional
elastic wave propagation using unstructured triangular grids. Geophys. J. Int. 166(2), 679–698 (2006)

37. Mizutani, H., Geller, R.J., Takeuchi, N.: Comparison of accuracy and efficiency of time-domain schemes
for calculating synthetic seismograms. Phys. Earth Planet. Inter. 119(1–2), 75–97 (2000)

38. Moczo, P., Kristek, J., Gális, M., Lis, M.: The Finite-DifferenceModelling of EarthquakeMotions:Waves
and Ruptures. Cambridge University Press, Cambridge (2014)

39. Ortner, C., Süli, E.: Discontinuous Galerkin finite element approximation of nonlinear second-order
elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45(4), 1370–1397 (2007)

40. Paolucci, R., Mazzieri, I., Smerzini, C.: Anatomy of strong groundmotion: near-source records and three-
dimensional physics-based numerical simulations of the Mw 6.0 2012 May 29 Po Plain earthquake, Italy.
Geophys. J. Int. 203(3), 2001–2020 (2015)

41. Patera, A.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comp.
Phys. 54, 468–488 (1984)

42. Quarteroni, A.: Numerical Models for Differential Problems, volume 8 of MS&A. Modeling, Simulation
and Applications. Springer-Verlag Italia, Milan (2014)

43. Quarteroni, A., Zampieri, E.: Finite element preconditioning for Legendre spectral collocation approxi-
mations to elliptic equations and systems. SIAM J. Numer. Anal. 29(4), 917–936 (1992)

44. Raviart, P.-A., Thomas, J.-M.: Introduction à l’analyse numérique des équations aux dérivées partielles.
Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the
Master’s Degree]. Masson, Paris (1983)

45. Rivière, B., Shaw, S., Wheeler, M.F., Whiteman, J.R.: Discontinuous Galerkin finite element methods for
linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95(2), 347–376 (2003)

46. Rivière, B., Shaw, S., Whiteman, J.R.: Discontinuous Galerkin finite element methods for dynamic linear
solid viscoelasticity problems. Numer. Methods Partial Diff. Equ. 23(5), 1149–1166 (2007)

47. Rivière, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems.
In: Current trends in scientific computing (Xi’an, 2002), volume 329 of Contemp. Math., pp 271–282.
Amer. Math. Soc., Providence, RI, (2003)

48. Seriani, G., Priolo, E., Pregarz, A.: Modelling waves in anisotropic media by a spectral element method.
In: Cohen, G. (ed.) Proceedings of the Third International Conference on Mathematical and Numerical
Aspects of Wave Propagation, pp. 289–298. SIAM, Philadephia, PA (1995)

49. Stenberg, R.:Mortaring by amethod of J. A. Nitsche. In: Computational mechanics (Buenos Aires, 1998).
Centro Internac. Métodos Numér. Ing., Barcelona, (1998)

50. Stupazzini, M., Paolucci, R., Igel, H.: Near-fault earthquake ground-motion simulation in the Grenoble
valley by a high-performance spectral element code. Bull. Seismol. Soc. Am. 99(1), 286–301 (2009)

51. Virieux, J., Calandra, H., Plessix, R.-E.: A review of the spectral, pseudo-spectral, finite-difference and
finite-element modelling techniques for geophysical imaging. Geophys. Prospect. 59(5), 794–813 (2011)

52. Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for
wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229(24), 9373–9396 (2010)

53. Xu, H., Day, S.M., Minster, J.-B.H.: Two-dimensional linear and nonlinear wave propagation in a half-
space. Bull. Seismol. Soc. Am. 89(4), 903–917 (1999)

54. Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for
high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)

123


	Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
	Abstract
	1 Introduction
	2 Continuous Problem
	3 Notation and Technical Tools for the Discrete Approximation
	3.1 Mesh Partitions
	3.2 Trace Operators
	3.3 Finite Element Spaces
	3.4 Technical Tools

	4 Discontinuous Galerkin Approximations
	5 Stability
	6 Error Analysis
	7 Numerical Results
	7.1 Two Dimensional Test Case
	7.2 Three Dimensional Test Case
	7.3 Elastic Wave Propagation in an Anisotropic (Transverly Isotropic) Medium
	7.4 An Application of Geophysical Intererst

	8 Conclusions
	Acknowledgments
	Appendix: Proof of Lemma 1 and Lemma 2
	References




