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Abstract The popular total variation (TV) model for image restoration (Rudin et al. in Phys
D 60(1–4):259-268, 1992) can be formulated as a Maximum A Posteriori estimator which
uses a half-Laplacian image-independent prior favoring sparse image gradients. We propose
a generalization of the TV prior, referred to as TVp , based on a half-generalized Gaussian
distribution with shape parameter p. An automatic estimation of p is introduced so that
the prior better fits the real images’ gradient distribution; we will show that, in general,
the estimated p value does not necessarily require to be close to zero. The restored image is
computed by using an alternating directionsmethods ofmultipliers procedure. In this context,
a novel result in multivariate proximal calculus is presented which allows for the efficient
solution of the proposed model. Numerical examples show that the proposed approach is
particularly efficient and well suited for images characterized by a wide range of gradient
distributions.

Keywords Non-blind deconvolution · Total variation regularization · Generalized
Gaussian distribution · Multivariate proximal calculus

1 Introduction

Image restoration refers to the recovery of a clean sharp image from a noisy, and potentially
blurred, observation. In this paper, we consider the problem of restoring images corrupted
by known blur and additive white Gaussian noise. Without loss of generality, we consider
grayscale images with a square d × d domain. Let u ∈ R

d2 be the unknown clean image
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concatenated into a column vector, K ∈ R
d2×d2 be a known linear blurring operator and

n ∈ R
d2 be an unknown realization of the random noise process, which we assume additive

white Gaussian with zero mean. The discrete model of the image degradation process which
relates the observed corrupted image g ∈ R

d2 to the clean imageu canbe expressed as follows:

g = Ku + n. (1)

Given K and g, our goal is to solve the inverse problem of recovering an as accurate as
possible estimate u∗ of the clean image u, which is known as non-blind deconvolution or
deblurring. Since the blurring operator is typically very ill-conditioned or even singular, some
sort of regularization is required in order to get meaningful estimates.

The following regularization approach, representing the well known TV-�2 or ROFmodel
[23], is largely used:

u∗ ← arg min
u∈Rd2

{
TV(u) + μ

2
‖Ku − g‖22

}
, (2)

where TV(u) denotes the discrete TV semi-norm of image u defined as

TV(u) :=
d2∑
i=1

‖(∇u)i‖2 , (3)

and (∇u)i := (Dx,i u, Dy,i u) denotes the discrete gradient of u at pixel i and Dx,i , Dy,i

represent the i th rows of the x- and y-directional finite difference operators Dx , Dy ∈
R
d2×d2 .
Model (2–3) has been recognized as a successful image restoration model, especially for

sparse gradient images, that is it reconstructs very well piecewise-constant images.
The TV seminorm is the �1 norm of the image gradient magnitude, and the minimization

of the �1 norm is known to promote sparsity in its argument. Recently, there has been interest
in employing nonconvex �p quasinorms with 0 < p < 1 for sparsity exploiting image recon-
struction, which is potentially more effective than �1, but it results in nonconvex optimization
problems, see [26].

In this paper we will consider the more general formulation

u∗ ← arg min
u∈Rd2

{
TVp(u) + μ

2
‖Ku − g‖22

}
, (4)

where the TVp regularization term is given by:

TVp(u) :=
d2∑
i=1

‖(∇u)i‖p
2 , (5)

with p > 0.
Under the discrepancy principle [8], the unconstrained model in (4–5) can be formulated

as the following constrained optimization problem:

u∗ ← argmin
u∈S TVp(u), (6)

with the feasible set defined as

S =
{
u ∈ R

d2 : ‖Ku − g‖2 ≤ τσd
}

, (7)

where τ > 0 is a pre-determined scalar parameter controlling the standard deviation of the
residue image Ku−g. In the following we will refer to (5–7) as the proposed TVp-�2 model.
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The benefit of the constrained form (6–7) with respect to the unconstrained form (4) is
twofold: first, the parameter σ in (7), representing the standard deviation of noise corrupting
the observed image g, can be more naturally estimated than the regularization parameter
μ in (4), see [32]; second, this form is more convenient for assessing p-dependence of the
reconstructed images independently on μ, see [26]. Actually, as we will discuss later, in our
proposal the parameter p is automatically estimated from the observed image.

We notice that the TVp regularizer in (5) differs from the proposals in [17,33], and [15]
for which the regularization term is not a function of the �2-norm of the gradient, but of
the absolute value of first/second-order differences. The latter approach gives raise to an
anisotropic regularization. As observed in [19], even though rotational invariance is not well
defined in the discrete setting, the former choice yields image restorations of better quality
than the latter. In [15], for example, the restoration models incorporate �pnormbased analysis
priors, applying linear operators to u, and p = 0.5 is used only in the numerical experiments.

In [19,21] and [26] the TVp regularizer is instead considered in the context of image
reconstruction and restoration. In [19] an interesting investigation on the properties of min-
imizers of generic nonconvex nonsmooth functionals is carried out, and two minimization
methods are presented which, however, differ significantly from our proposal. The popular
iteratively reweighted norm (IRN) method is proposed in [21] for minimizing the so called
generalized total variation (TV) functional, which can include the TVp regularizer. Both [19]
and [21] minimize unconstrained functionals in the form (4). In [26] the regularizer (5) is
called TpV and applied in the context of image reconstruction.

However, the three mentioned proposals essentially rely on a fixed p value with 0 <

p < 1 for exploiting gradient sparsity. On the contrary, we will propose not only an efficient
algorithm for the constrained minimization problem involving the regularizer in (5), but,
supported by the MAP formulation presented, we are also able to provide a probabilistically
founded procedure for the automatic estimate of the parameter p.

In order to solve the TVp-�2 model we propose an efficient minimization method based
on the ADMM strategy. The ADMM is stable, efficient and in particular faster than most of
the state-of-the-art algorithms for solving optimization problems [3,29].

In [16] an ADMM-based iteratively reweighted algorithm is proposed for the solution of
a hybrid variational deblurring model, which considers the hyper-Laplacian distributions of
the first and second order derivatives. With respect to our proposal in [16] the case p > 1 is
not considered, p is empirically chosen, the algorithm is substantially different, and above
all, the regularization term corresponds to the anisotropic TV as defined in [26], instead of
the isotropic TV as considered in our model.

The rest of the paper is organized as follows. In Sect. 2 we motivate the choice of the
TVp regularizer and corresponding estimate of the p shape parameter via MAP approach.
In Sect. 3 we illustrate the overall ADMM-based algorithm used to solve the proposed
constrained TVp-�2 model. In Sect. 4 we present a novel result in proximal calculus used
for the solution of the critical ADMM optimization subproblem associated with the auxiliary
variable representing the image gradient. In Sect. 5 we report experimental results evaluating
the performance of the proposed model. In Sect. 6 we draw conclusions.

2 Motivations Via MAP Estimator

A commonly used paradigm for image restoration is the probabilistic MAP approach [13]:
the restored image is obtained by maximizing the posterior probability of the unknown clean
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image u given the observed image g and the blurring operator K , considered as a deterministic
parameter. In formulas:

u∗ ← arg max
u∈Rd2

Pr(u|g; K )

← arg min
u∈Rd2

{− log Pr(g|u; K ) − log Pr(u)} , (8)

where (8) follows by applying the Bayes’ rule, by dropping the evidence term Pr(g) since it
does not depend on u, and by reformulating the maximization as a minimization of the nega-
tive logarithm of the posterior. The two terms Pr(g|u; K ) and Pr(u) represent the likelihood
and the prior, respectively [10]. The likelihood term encodes information on the noise model
and forces closeness of the estimate u∗ to the observation g according to such model. The
prior term embodies prior knowledge on the unknown clean image u, typically in the form
of smoothness constraints.

In case of additive, zero-mean, independent identically distributed (or white) Gaussian
noise, the likelihood term takes the following form:

Pr(g|u; K ) =
d2∏
i=1

1√
2πσ

exp

(
− (Ku − g)2i

2σ 2

)
= 1

W
exp

(
−‖Ku − g‖22

2σ 2

)
, (9)

where σ is the noise standard deviation, xi and ‖x‖2 denote the ith component and the
�2-norm of vector x , respectively, and W is a constant term depending on σ but not on u.

For what concerns the prior, a common choice is to model the unknown image u as a
Markov random field (MRF) [9], such that the image can be characterized by its Gibbs prior
distribution, whose general form is:

Pr(u) = 1

Z

d2∏
i=1

exp
(− α Vci (u)

) = 1

Z
exp

(
− α

d2∑
i=1

Vci (u)

)
, (10)

where α > 0 is the MRF parameter, {ci }d2i=1 is the set of all cliques (a clique is a set
of neighboring pixels) for the MRF, Vci is the potential function defined on the clique ci
and Z is the partition function, that is a function not depending on u which allows for the
normalization of the prior.

Choosing as potential function at the generic ith pixel the magnitude of the discrete
gradient at the same pixel, i.e. Vci (u) := ‖(∇u)i‖2, the Gibbs prior in (10) reduces to the
popular TV prior:

Pr(u) = 1

Z
exp

(
− α

d2∑
i=1

‖(∇u)i‖2
)

. (11)

Using the TV prior in (11) can be regarded as implicitly assuming that the gradient magnitude
at each pixel of the unknown clean image, ‖∇u‖2, follows a half-Laplacian (or exponential)
distribution, whose probability density function (pdf) is given by:

Pr(x;α) =
{

α exp(−α x) for x ≥ 0
0 for x < 0

, (12)

where α > 0 is called the scale parameter of the distribution.
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Fig. 1 Top row the three images barbara (left), cameraman (center) and geometric (right). Center
row the associated normalized histograms of gradient magnitudes together with the best fitting half-Laplacian
distribution (dashed green line) and hGGD (solid red line). Bottom row zoomed details (Color figure online)

Replacing the Gaussian likelihood (9) and the TV prior (11) into the MAP inference
formula (8), one gets:

u∗ ← arg min
u∈Rd2

{
− ln

[
1

W
exp

(
−‖Ku − g‖22

2σ 2

)]

− ln

[
1

Z
exp

(
− α

d2∑
i=1

‖(∇u)i‖2
)]⎫⎬
⎭ . (13)

Dropping the constant terms in (13) and setting μ = 1/(ασ 2), one obtains model (2–3).
However, the half-Laplacian pdf in (12) for gradient magnitudes, implicitly assumed

by the TV-�2 model, can be too stringent and yield unsatisfactory reconstructions. More
precisely, both in case of images characterized by heavy tailed gradient distributions, such
as photographic and textured images, and even for images with sparse gradients, the unique
degree of freedom embodied by the scale parameter α in the TV prior (11) does not allow
for accurate modeling of the actual gradients distribution of the image to be restored.

Some evidence of this problem is given in Fig. 1, where three images characterized by
different gradient distributions are shown together with the associated normalized histograms
of gradient magnitudes. The superimposed dashed green lines, which represent the half-
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Fig. 2 The pdfs of hGGD for different values of the shape parameter p and m2 = 1

Laplacian pdfs that best fit the histograms, show how the half-Laplacian distribution does
not possess enough flexibility to suitably model these images.

In order to tackle this problem, we propose to replace the one-parameter half-Laplacian
distribution in (12) for gradientmagnitudeswith themoreflexible two-parameters generalized
Gaussian distribution (GGD); see [27,30,34] for parametric GGD estimation and [6] for an
application of GGD for modelling a reference gradient distribution.

More precisely, since gradient magnitudes are clearly not negative, we consider a half-
GGD (hGGD), whose pdf takes the form:

Pr(x;α, p) =
{ α p

Γ (1/p) exp
(− (α x )p

)
for x ≥ 0

0 for x < 0
, (14)

where α > 0 is the scale parameter, p > 0 is the shape parameter and Γ denotes the
Gamma function. This family of distributions covers a wider spectrum of pdfs including
half-Laplacian (p = 1), half-Gaussian (p = 2), and uniform (p → ∞) distributions. In
Fig. 2 we illustrate the pdfs of hGGD for a few different values of the shape parameter p
when keeping a fixed value m2 = 1 of the second noncentral (or raw) moment, which for
the hGGD in (14) takes the form:

m2 =
∫ +∞

−∞
x2 Pr(x;α, p) dx = α p

Γ (1/p)

∫ +∞

0
x2 exp

(− (α x )p
)
dx

= Γ (3/p)

α2Γ (1/p)
. (15)

By setting m2 = 1, from (15) we have that α = √
Γ (3/p)/Γ (1/p), so that for each

considered p value in Fig. 2, namely p = 0.7, 1, 2, 100, the associated α value is univocally
defined.

In Fig. 1 the superimposed solid red lines represent the hGGDs that best fit the real gradient
distributions of the three given images. These distributions derive from (14) by choosing an
optimal estimated parameter p as suggested in [27] and briefly summarized at the end of
this Section. It is evident from Fig. 1 that the hGGD holds the potential to model gradient
magnitudes of images better than the half-Laplacian distribution.
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Assuming the hGGD pdf in (14) for gradient magnitudes at each pixel corresponds to
choosing the following TVp Gibbs prior for the unknown clean image u:

Pr(u) = 1

Z
exp

(
− θ

d2∑
i=1

‖(∇u)i‖p
2

)
, (16)

where θ = α p . Replacing the Gaussian likelihood (9) and the TVp prior (16) into the MAP
inference formula (8), we obtain a generalization of the TV-�2 model (2–3) given by model
(5–7).

Estimating the shape parameter p of a hGGD is thus a crucial issue, as a suitably chosen
p allows to adapt the prior to the particular image context. In fact, in the image deblurring
context, the parameter p does not necessarily need to be close to zero neither lower than one,
but, instead, has to guarantee the hGGDwhich best represents the actual gradient distribution
of the particular image to be restored.

We conclude this section by introducing a brief review of the Global ConvergenceMethod
(GCM) proposed in [27] for the estimation of the shape parameter p of a GGD model and
then verifying how this procedure can be seamlessly used for the estimation of the shape
parameter of a hGGD. The usefulness of this estimate will be demonstrated in Sect. 5, where
the usage of the estimated shape parameter p will provide a substantial improvement of the
image restoration results. For an extended review of theoretically and practically comparisons
of estimation methods we refer the reader to [34].

As stated in [27], given a random variable X which is distributed according to a zero-mean
GGD, the random variable Y defined as

Y := | α X |p = α p |X |p (17)

is gamma-distributed, such that (see equation (2) in [27]) the ratio between the second-order
moment and the squared first-order moment of Y is given by:

E
[
Y 2

]
(
E
[
Y
])2 = E

[
α2p | X |2p ]

(E [α p | X |p ])2 = E
[ | X |2p ]

(E [ | X |p ])2 = p + 1, (18)

where E[ · ] denotes the expectation operator. The following function of the shape parameter
p, referred to as shape function, has thus been proposed in [27]:

Z(p) := E
[ |X |2p ]

(E [ |X |p ])2 − (1 + p), (19)

then the author demonstrates (see Theorem 1 and Theorem 2 in [27]) that the shape equation

Z(p) = 0 (20)

has a unique global root in ]0,+∞[ which is equal to the true shape parameter value, and
that this root can be obtained by the Newton–Raphson iterative algorithm starting from any
initial guess.
Since the true shape parameter value is clearly unknown, the above shape function and shape
equation cannot be used in practice. Hence, an empirical (or sample-based) shape function
is introduced in [27]:

Zm(p) :=
1
m

∑m
i=1 |xi |2p( 1

m

∑m
i=1 |xi |p

)2 − (1 + p), (21)
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where {xi }mi=1 represents a set of observed samples from theGGD to be estimated. In Theorem
3 of [27] the author proves that the sample-based shape equation

Zm(p) = 0 (22)

has a unique global root (with probability tending to 1) and that this root tends to the true shape
parameter in probability, that is the root of (22) is a consistent estimator of the true shape
parameter. Finally, Theorem 4 of [27] demonstrates that the Newton–Raphson functional
iteration:

pk+1 = pk − Zm(pk)

Z ′
m(pk)

, (23)

where

Z ′
m(p) =

( 2
m

∑m
i=1 |xi |2p log |xi |

) ( 1
m

∑m
i=1 |xi |p

)2
( 1
m

∑m
i=1 |xi |p

)4

−
( 1
m

∑m
i=1 |xi |p log |xi |

) ( 1
m

∑m
i=1 |xi |2p

) ( 2
m

∑m
i=1 |xi |p

)
( 1
m

∑m
i=1 |xi |p

)4 − 1, (24)

converges (with probability tending to 1) to the unique global root of (22) starting from any
initial guess.

In our case, we need to estimate the shape parameter of a hGGD. Let X denote a GGD-
distributed random variable, then the associated hGGD random variable X̃ is defined in terms
of (i.e., as a function of) X as follows:

X̃ := |X |. (25)

Hence, the analogous Ỹ of the variable Y in (17) is given by:

Ỹ = ∣∣α X̃
∣∣p = α p X̃ p = α p | X p | = Y. (26)

It follows from (26) that the GCM estimation formulas (21–24) can be used to estimate the
shape parameter p of a hGGD.

3 Applying ADMM to the Proposed Model

Constrained problems are in general much more difficult to solve than unconstrained ones
[35] as discussed in the introduction. Recently, Chan et al. [3] successfully adapted the
ADMM strategy for solving the constrained TV-�2 model. In the following we introduce a
suitable variant of the basicADMMapproach to solve the proposed constrainedminimization
problem in (5–6) with the feasible set S defined in (7).

Towards this aim, we first introduce two auxiliary variables t and r to reformulate it into
the following equivalent form:

{u∗, t∗, r∗} ← argmin
u,t,r

⎧⎨
⎩

d2∑
i=1

‖ ti ‖p
2 + ıB(r)

⎫⎬
⎭

s.t. : t = Du, r = Ku − g, (27)
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where D = (Dx ; Dy) ∈ R
2d2×d2 , ti = (Dx,i u; Dy,i u) ∈ R

2, and ıB is the indicator function
of the feasible set B for the variable r defined as

B =
{
r ∈ R

d2 : ‖r‖2 ≤ τσd
}

, (28)

with the convention that ıB(r) takes the value 0 for r ∈ B and +∞ otherwise [2].
The auxiliary variable t is introduced to transfer the discrete gradient operator (∇u)i out

of the possibly non-differentiable non-convex term ‖ · ‖p
2 . The variable r plays the role of

the restoration residue Ku − g within the discrepancy principle-based constraint (7) so that
the simpler constraint (28) is now imposed on r .

To solve (27), we define the augmented Lagrangian functional

L(u, t, r; λt , λr ) =
d2∑
i=1

‖ ti ‖p
2 + ıB(r)

−〈 λt , t − Du 〉 + βt

2
‖ t − Du ‖22

−〈 λr , r − (Ku − g) 〉 + βr

2
‖ r − (Ku − g) ‖22 , (29)

where βt , βr > 0 are scalar penalty parameters and λt , λr are the vectors of Lagrange
multipliers, λt ∈ Q, λr ,∈ V with V = R

d2 , Q = R
2d2 .

Solving (27) is thus equivalent to search for the solutions of the following saddle point
problem:

Find (x∗; λ∗) ∈ X × �

s.t. L(x∗; λ) ≤ L(x∗; λ∗) ≤ L(x; λ∗)
∀ (x; λ) ∈ X × �, (30)

with L defined in (29) and where, for simplicity of notations, we set x = (u, t, r), λ =
(λt , λr ), X = V × Q × V and � = Q × V .

Starting at u = uk , r = rk , λt = λkt , and λr = λkr , the ADMM iterative scheme [2]
applied to the solution of (27) reads as follows:

tk+1 ← arg min
t∈Q L

(
uk, t, rk; λkt , λ

k
r

)
(31)

rk+1 ← arg min
r∈V L

(
uk, tk+1, r; λkt , λ

k
r

)
(32)

uk+1 ← arg min
u∈V L

(
u, tk+1, rk+1; λkt , λ

k
r

)
(33)

(
λk+1
t

λk+1
r

)
←

(
λkt − γ βt

(
tk+1 − Duk+1

)
λkr − γ βr

(
rk+1 − (Kuk+1 − g)

)
)

, (34)

where γ is a relaxation parameter chosen in the interval (0, (
√
5+ 1)/2) , as analyzed in [3].

In the following subsections we show in detail how to solve the three minimization sub-
problems (31–33) for the variables t , r and u, respectively, thenwe present the overall iterative
ADMM-based minimization algorithm. The minimization sub-problem (31) for the variable
t requires a proximal calculus result which will be given in Sect. 4.
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3.1 Solving the Sub-problem for t

Given the definition of the augmented Lagrangian functional in (29), the minimization sub-
problem for t in (31) can be written as follows:

tk+1 ← arg min
t∈Q

⎧⎨
⎩

d2∑
i=1

‖ti‖p
2 − 〈λkt , t − Duk〉 + βt

2

∥∥∥t − Duk
∥∥∥
2

2

⎫⎬
⎭

← arg min
t∈Q

⎧⎨
⎩

d2∑
i=1

‖ti‖p
2 + βt

2

∥∥∥∥t −
(
Duk + 1

βt
λkt

)∥∥∥∥
2

2

⎫⎬
⎭

← arg min
t∈Q

d2∑
i=1

{
‖ti‖p

2 + βt

2

∥∥∥∥ti −
((

Duk
)
i
+ 1

βt

(
λkt

)
i

)∥∥∥∥
2

2

}
. (35)

Note that in (35) the minimized functional is written in explicit component-wise form, with(
Duk

)
i ,
(
λkt
)
i ∈ R

2 denoting the discrete gradient and the Lagrange multipliers at pixel i ,
respectively. The minimization in (35) is thus equivalent to the following d2 2-dimensional
problems:

tk+1
i ← arg min

ti∈R2

{
‖ti‖p

2 + βt

2

∥∥∥ti − qki

∥∥∥
2

2

}
, i = 1, . . . , d2, (36)

with the constant vectors qki ∈ R
2 defined as

qki :=
(
Duk

)
i
+ 1

βt

(
λkt

)
i
, i = 1, . . . , d2. (37)

The solution of (36) is obtained based on Proposition 1 reported in Sect. 4, that is:

tk+1
i = ξ k+1

i qki , i = 1, . . . , d2, (38)

where, in particular, the shrinkage coefficients ξ k+1
i ∈ [0, 1], i = 1, . . . , d2, are com-

puted according to statement (50) of Proposition 1. The overall computational cost of this
subproblem is linear in the number of pixels d2.

In the context of proximal calculus, (36) can be formulated as

tk+1
i ← proxβt f (q

k
i ), i = 1, . . . , d2 , (39)

where proxβt f : R
2 → R

2 denotes the proximal operator of the function f (ti ) =(√
t2i,1 + t2i,2

)p
, ti ∈ R

2. The solution for the proximal operator (39) will be provided in

Sect. 4.

3.2 Solving the Sub-problem for r

Given the definition of the augmented Lagrangian functional in (29), the minimization sub-
problem for r in (32) is as follows:

rk+1 ← arg min
r∈B

{
−
〈
λkr , r −

(
Kuk − g

)〉
+ βr

2

∥∥∥r −
(
Kuk − g

)∥∥∥
2

2

}

← arg min
r∈B

{
βr

2

∥∥∥∥r −
(
Kuk − g + 1

βr
λkr

)∥∥∥∥
2

2

}
. (40)
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Recalling that βr > 0, the solution of (40) is thus given by a simple Euclidean projection of
the d2-dimensional vector

qk := Kuk − g + 1

βr
λkr (41)

onto the feasible set B defined in (28). Since B is nothing else but the l2-ball with radius
ρ = τσd , such a projection can be easily obtained as follows:

rk+1 = min
{

ρ ,

∥∥∥qk
∥∥∥
2

} qk∥∥qk∥∥2
, (42)

where 0 · (0/0) = 0 is assumed. The computational complexity of this sub-problem is clearly
linear in the number of pixels d2.

3.3 Solving the Sub-problem for u

The minimization sub-problem for u in (33) can be re-written as follows:

uk+1 ← argmin
u∈V

{
−
〈
λkt , t

k+1 − Du
〉

+ βt

2

∥∥∥tk+1 − Du
∥∥∥
2

2

−
〈
λkr , r

k+1 − (Ku − g)
〉

+ βr

2

∥∥∥rk+1 − (Ku − g)
∥∥∥
2

2

}

← arg min
u∈V

{
+
〈
λkt , Du

〉
+ βt

2

∥∥∥tk+1 − Du
∥∥∥
2

2

+
〈
λkr , Ku

〉
+ βr

2

∥∥∥rk+1 − (Ku − g)
∥∥∥
2

2

}
, (43)

where in (43) we omitted the constant terms. Problem (43) is a quadratic minimization
problem whose first-order optimality conditions read as follows:

DT λkt − βt D
T
(
tk+1 − Du

)
+ KT λkr − βr K

T
(
rk+1 − (Ku − g)

)
= 0 (44)

that is(
βt D

T D + βr K
T K

)
u = −DT λkt + βt D

T tk+1 − KT λkr + βr K
T
(
rk+1 + g

)
(45)

which reduces to the linear system
(
DT D + βr

βt
K T K

)
u = DT

(
tk+1 − 1

βt
λkt

)
+ βr

βt
K T

(
rk+1 − 1

βr
λkr + g

)
. (46)

The d2 × d2 linear system in (46) is solvable if the coefficient matrix has full-rank, that is if
the following condition holds:

Ker
(
DT D

)
∩ Ker

(
KT K

)
= {0}, (47)

where Ker(M) denotes the null space of the matrix M and 0 is the d2-dimensional null
vector. In image restoration, condition (47) is typically satisfied. In fact, K represents a
blurring operator, which is a low-pass filter, whereas the regularization matrix D is usually
a difference operator and, hence, is a high-pass filter.

In case that (47) is satisfied, the coefficient matrix in (46) is symmetric positive definite
and, typically, is highly sparse. Hence, the linear system in (46) can be solved quite efficiently
by the iterative (preconditioned) Conjugate Gradient method. Moreover, under appropriate
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assumptions about the solution u near the image boundary, the linear system can be solved
even more efficiently. For example, under periodic boundary conditions for u both DT D and
KT K are block circulant matrices with circulant blocks, so that the coefficient matrix in (46)
can be diagonalized by the 2D discrete Fourier transform (FFT implementation). However,
it is well known that imposing periodic boundary conditions leads to ringing effects in
the solution u due to artificially introduced image discontinuities. The use of more natural
reflective and anti-reflective boundary conditions in image deblurring has been considered
in [20] and [7], respectively. With these choices, no artificial discontinuities near the image
boundary are introduced, hence higher quality solutions can be obtained. As illustrated in
[20] and [7], under reflective and anti-reflective boundary conditions the coefficient matrix
in (46) can be diagonalized by the 2D discrete cosine and sine transforms (FCT and FST
implementations), respectively. Provided that the penalty parameters βt and βr are kept fixed
for all the ADMM iterations, the coefficient matrix in (46) does not change and it can be
diagonalized once for all at the beginning. Therefore, at each ADMM iteration the linear
system (46) can be solved by one forward FFT/FCT/FST and one inverse FFT/FCT/FST,
each at a cost of O(d2 log d).

Finally, we notice that, in image restoration, the requirement for non-negativity of the
solution u is sometimes imposed. Such a constraint can be integrated in the sub-problem for
u, for example, by following the non-negative quadratic programming strategy proposed in
[25] and used, e.g., in [22].

3.4 ADMM Iterative Scheme

To solve the proposed constrained TVp-�2 optimization problem in (6–7), or equivalently the
split problem in (27), we use the efficient iterative ADMM-based scheme reported in Algo-
rithm 1. The efficiency comes from using a novel proximal operator to solve the subproblem
for t , as explained in Sect. 4.

In the field of image and signal processing the ADMM has been one of the most powerful
and successful methods for solving various convex or nonconvex optimization problems. In
convex settings, numerous convergence results have been established for ADMM as well as
its varieties, see for example [12] and references therein. In particular, convergence results
cover the proposed TVp-�2 model in the special case of p ≥ 1.

However, for p < 1 the ADMM is under nonconvex settings, where there have been a few
studies on the convergence properties. To the best of our knowledge, existing convergence
analysis of ADMM for nonconvex problems is very limited to particular classes of problems
and under certain conditions of the dual step size [11].

Nevertheless, the ADMM works extremely well for various applications involving non-
convex objectives, and this is a practical justification of its wide use.

4 Result on the Proximal Minimization

The proximal operator for solving the Lp non-convex minimization problem for univariate
functions was computed in [14] by both the look-up table (LUT) approach and an analytic
approach for two specific values of p. However, these approaches cannot be trivially extended
to the multidimensional case and general p. In [36] the authors introduce a generalization of
soft-thresholding proximal operator for univariate functions and general p and they simply
apply it element-wise to the solution of an anisotropic TV. However, the proximal operator
(39) cannot be reduced to an element-wise computation of proximal operator of univariate
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Algorithm 1 ADMM for the solution of constrained TVp-�2 problem in (6)

Input: g, K , σ > 0, τ > 0, βt > 0, βr > 0, 0 < γ ≤ (
√
5 + 1)/2

Output: approximate solution u∗ of (6)

1. Initialize: u0 = g, λ0t = 0, λ0r = 0;

2. For k = 0, 1, 2, . . . until convergence:

1) given uk , λkt , compute tk+1 according to Proposition 1

2) given uk , λkr , compute rk+1 according to (41)-(42)

3) given tk+1, rk+1, λkt , λ
k
r , compute uk+1 by solving (46)

4) given uk+1, tk+1, rk+1, λkt , λ
k
r , compute λk+1

t , λk+1
r by (34)

End For

functions thus the proximal operator needs an ad hoc demonstration. Nevertheless we should
remark that the proposition below generalizes the result in [36], which corresponds to set the
problem dimensionality to m = 1.

Proposition 1 Let β > 0, 0 < p < 2 and q ∈ R
m with m ≥ 1 be given constants. Then,

the proximal operator of the m-variate function f (x) = (‖x‖2)p , x ∈ R
m, defined as the

m-dimensional minimization problem

x∗ ← proxβ f (q) := arg min
x∈Rm

{
φ(x) = ‖x‖p

2 + β

2
‖x − q‖22

}
(48)

is given by
x∗ = ξ∗q , where ξ∗ ∈ [0, 1] (49)

with
a) ξ∗ = 0 if ‖q‖2 = 0 , ∀p
b) ξ∗ = max {1 − 1/α , 0 } if ‖q‖2 > 0 , p = 1
c) ξ∗ unique solution in ]0, 1[ of :

p ξ p−1 + α(ξ − 1) = 0 if ‖q‖2 > 0 , 1 < p < 2

d)

⎧⎪⎪⎨
⎪⎪⎩

ξ∗ = 0 if α < ᾱ

ξ∗ ∈ {0, ξ̄} if α = ᾱ

ξ∗ unique solution in ]ξ̄ , 1[ of :
p ξ p−1 + α(ξ − 1) = 0 if α > ᾱ

if ‖q‖2 > 0 , 0 < p < 1

(50)

where we set

α := β ‖q‖2−p
2 , (51)

ᾱ := (2 − p)2−p

(2 − 2p)1−p , ξ̄ := 2
1 − p

2 − p
. (52)

Proof In the following, we prove separately the proposition statement in (49) and the four
cases (a), (b), (c), (d) of the proposition statement in (50).

Proof of statement (49) To allow for a clearer understanding of the proof, in Fig. 3 we give a
geometric representation of problem (48) in the 2-dimensional case (m = 2). First, we prove
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(b)(a)

Fig. 3 Geometric representation of problem (48) in the 2-dimensional case

that the solution x∗ of (48) lies on the closed half-line Oq with origin at the m-dimensional
null vector O and passing through q , represented in solid red in Fig. 3a. To this purpose,
we demonstrate that for every point z not lying on Oq there always exists a point z∗ on Oq
such that φ(z) − φ(z∗) > 0. In particular, we define z∗ as the intersection point between the
half-line Oq and the (m − 1)-dimensional sphere with center in O and passing through z,
depicted in solid blue in Fig. 3a. Noting that ‖z∗‖2 = ‖z‖2 by construction, we can thus
write:

φ(z) − φ(z∗) = ‖z‖p
2 − ‖z∗‖p

2 + β

2

(‖z − q‖22 − ‖z∗ − q‖22
)

= β

2

(‖z‖22 + ‖q‖22 − 2 〈 z , q〉 − ‖z∗‖22 − ‖q‖22 + 2 〈 z∗ , q〉)

= β
〈
z∗ − z, q

〉

= β
∥∥z∗ − z

∥∥
2 ‖q‖2 cos

(
Ô z∗z

)
> 0. (53)

Hence, the solution x∗ of (48) lies on the closed half-line Oq , i.e. x∗ = ξ∗q , ξ∗ ≥ 0. We
notice that for m = 1 the above part of the proof is not necessary.

We now prove that the solution x∗ of (48) lies inside the segment [Oq], represented in
solid red in Fig. 3b. Towards this aim, by replacing x = ξq , ξ ≥ 0 we reduce the origi-
nal m-dimensional minimization problem in (48) to the following equivalent 1-dimensional
problem:

ξ∗← argmin
ξ≥0

{
‖ξq‖p

2 + β

2
‖ξq − q‖22

}

← argmin
ξ≥0

{
‖q‖p

2 ξ p + β

2
‖q‖22 (ξ − 1)2

}

← argmin
ξ≥0

{
ξ p + β

2
‖q‖2−p

2 (ξ − 1)2
}

← argmin
ξ≥0

{
f (ξ) = ξ p + α

2

(
ξ2 − 2ξ

) }
, (54)

123



78 J Sci Comput (2016) 68:64–91

where in (54) we omitted the constant terms in f (ξ), and α is defined in (51).
We demonstrate that for every point z lying on the half-line Oq but outside the segment

[Oq], i.e. z = ξzq with ξz > 1, there always exists a point z∗ = ξz∗q on [Oq] with ξz∗ ≤ 1
such that f (ξz) − f (ξz∗) > 0. In particular, it suffices to choose z∗ = q , that is ξz∗ = 1, as
illustrated in Fig. 3b. We obtain:

f (ξz) − f (ξz∗) = f (ξz) − f (1) = (
ξ
p
z − 1

) + α

2
(ξz − 1)2 . (55)

Since ξz > 1 by construction and p > 0 by hypothesis, clearly the two terms
(
ξ
p
z − 1

)
and (ξz − 1) are both positive and cause the expression in (55) to be positive. Hence, the
solution x∗ = ξ∗q of the original minimization problem (48) lies in the segment [Oq], i.e.
0 ≤ ξ∗ ≤ 1.

As a consequence of previous demonstration, we can rewrite the initial problem (48) as

ξ∗← arg min
0≤ξ≤1

f (ξ) , (56)

where, for future references, the first and second order derivatives are given by:

f ′(ξ) = p ξ p−1 + α (ξ − 1) , (57)

f ′′(ξ) = p (p − 1) ξ p−2 + α. (58)

��
Proof of case a) of statement (50) If ‖q‖2 = 0, that is q is the m-dimensional null vector,
the objective function φ(x) minimized in (48) depends on x only through its l2-norm ‖x‖2.
Hence, the minimizers will be all the vectors x∗ belonging to the (m−1)-dimensional sphere
‖x‖2 = r∗, with radius r∗ ≥ 0 given by the solution of the constrained 1-dimensional
problem obtained from (48) by setting q = 0 and r = ‖x‖2, that is

r∗ = argmin
r≥0

{
r p + β

2
r2
}

. (59)

Since β > 0 and p > 0 by hypothesis, the function minimized in (59) is continuous and
strictly increasing for r ≥ 0, hence it admits the unique global minimum at r∗ = 0 and the
solution of the original problem (48) is x∗ = 0. ��
Proof of case b) of statement (50) If ‖q‖2 > 0 and p = 1, problem (56) simplifies to:

ξ∗← arg min
0≤ξ≤1

{
f (ξ) = α

2
ξ2 + (1 − α) ξ

}
, (60)

with α = β‖q‖2 a strictly positive coefficient (β > 0 by hypothesis). The function f (ξ)

minimized in (60) represents a strictly convex parabola passing through the origin and having
its unconstrained global minimum at the abscissa of its vertex:

ξv = 1 − 1

α
. (61)

Therefore, after noting that ξv < 1 ∀α > 0, for what concern the constrained minimization
in (60) we have two cases:

ξ∗ =
{

ξv if ξv > 0
0 if ξv ≤ 0

, that is : ξ∗ = max

{
1 − 1

α
, 0

}
. (62)

��
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Fig. 4 Case c) of statement (50). Plot of g1(ξ) and g2(ξ) defined in (63) for p = 1.5 and for two different
values α1 < α2 of α (left) and plot of the associated minimized functions f (ξ) defined in (56) (right). Red
asterisks indicate global minimums of the minimized functions (Color figure online)

Proof of case c) of statement (50) If ‖q‖2 > 0 and 1 < p < 2, then the coefficient α defined
in (51) and the term p(p − 1) are both strictly positive; hence, the second derivative f ′′(ξ)

in (58) is strictly positive for 0 < ξ ≤ 1 and tends to +∞ as ξ tends to 0+, so that the
minimized function f (ξ) in (56) is strictly convex. For what concern the sign of the first
derivative f ′(ξ) defined in (57) we can write:

f ′(ξ) � 0 for g1(ξ) � g2(ξ) , with g1(ξ) = ξ p−1, g2(ξ) = α

p
(1 − ξ) . (63)

We note that g1(ξ) is a power function with exponent 0 < p − 1 < 1; hence, for every
1 < p < 2, g1(ξ) is a continuous, strictly increasing and strictly concave function passing
through the points (0,0) and (1,1). g2(ξ) represents a bundle of straight lines passing through
the point (1,0) with negative angular coefficient −α/p. In Fig. 4 we show g1(ξ) and g2(ξ)

for p = 1.5 and for two different values α1 < α2 of α, together with the associated objective
functions f (ξ)minimized in (56). Clearly, g1(ξ) and g2(ξ) admit a unique intersection point
with abscissa 0 < ξ∗ < 1 for every 1 < p < 2 and α > 0, hence ξ∗ is the unique root of
equation f ′(ξ) = 0. Moreover, since f (ξ) is strictly convex, ξ∗ is the abscissa of the global
minimum of f (ξ). ��

Proof of case d) of statement (50) If ‖q‖2 > 0 and 0 < p < 1, then p(p − 1) < 0, the
second derivative f ′′(ξ) satisfies

f ′′(ξ) � 0 for ξ � ξin f , with ξin f =
(
p (1 − p)

α

) 1
2−p

. (64)

It can be easily demonstrated that the inflection point at ξ = ξin f lies inside the considered
optimization domain 0 < ξ < 1 if and only if the following condition on α holds:

α > p (1 − p). (65)

If (65) does not hold, f (ξ) does not admit any local minimum in 0 < ξ < 1. On the contrary,
if (65) holds then f (ξ) may admit a local minimum in ξin f ≤ ξ < 1.
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For what concern the first derivative f ′(ξ), we notice how the considerations expressed
in (63) for the case 1 < p < 2 are still formally valid, the only substantial difference being
in the power function g1(ξ) having here negative exponent −1 < p − 1 < 0. In Fig. 5a we
show g1(ξ) and g2(ξ) for p = 0.5 and for five different α values, and in Fig. 5b–f we depict
the associated objective functions f (ξ) to be minimized in (56) where α̂ and ᾱ are defined
in (66) and (68), respectively.

We can distinguish the following cases depending on α:

– If α < α̂ then g1(ξ) > g2(ξ) ∀ξ , that is, according to (63), f ′(ξ) > 0 ∀ξ thus the global
minimum is at ξ∗ = 0. See Fig. 5b.

– If α = α̂ then g1(ξ) > g2(ξ) everywhere but at ξ̂ where g1(ξ) and g2(ξ) intersect, that
is f ′(ξ̂ ) = 0. Therefore, f (ξ) is increasing and presents a stationary point of inflection
at ξ̂ ; the global minimum is again at ξ∗ = 0. See Fig. 5c. It can be easily demonstrated
that:

α̂ = p
(2 − p)2−p

(1 − p)1−p , ξ̂ = 1 − p

2 − p
, f (ξ̂ ) = 1

2
(1 − p)1+p (2 − p)1−p . (66)

– If α > α̂, then g1(x) and g2(x) intersect in two points of abscissae ξ1 and ξ2 with
0 < ξ1 < ξ̂ < ξ2 < 1; see Fig. 5a. Hence, recalling (63), f (ξ) has two stationary points
in ]0, 1[: a local maximum at ξ = ξ1 and a local minimum at ξ = ξ2, where ξ1 and ξ2
are the two roots of the nonlinear equation f ′(ξ) = 0. The local minimum of f (ξ) at ξ2
is a global minimum if and only if f (ξ2) < f (0) = 0. Such a point can be obtained by
solving the following system of two nonlinear equations in the two unknowns α and ξ :

{
f (ξ) = ξ p + α

2

(
ξ2 − 2ξ

) = 0

f ′(ξ) = p ξ p−1 + α (ξ − 1) = 0
, (67)

that admits the unique solution:

ᾱ = (2 − p)2−p

(2 − 2p)1−p , ξ̄ = 2
1 − p

2 − p
(68)

– If α̂ < α < ᾱ, with α̂ given in (66) and ᾱ given in (68), then f (ξ2(α)) > f (0) = 0.
Hence, the global minimum is again at ξ∗ = 0. See Fig. 5d.

– If α = ᾱ, then the minimized function f (ξ) assumes the global minimum f (ξ∗) = 0
both at ξ = 0 and at ξ = ξ̄ , with ξ̄ defined in (68). See Fig 5e.

– If α > ᾱ, then the local minimum is the global minimum, that is ξ∗ = ξ2(α). Therefore,
ξ∗ can be obtained by searching for the unique root of f ′(ξ) = 0 in ]ξ̄ , 1[. See Fig. 5f.
This proves case d) of the proposition statement in (50). ��
In the case d) of statement (50), the result of the proposition allows us to limit the interval

of application of the root-finder algorithm to ]ξ̄ , 1[, which in practice let us to obtain a
sufficiently accurate approximation of the root by performing just one iteration of Newton-
Raphson method.

The generic Newton–Raphson iteration is as follows:

ξk+1 = ξk − f ′ (ξk)
f ′′ (ξk)

= ξk − pξ p−1
k + α (ξk − 1)

p (p − 1) ξ
p−2
k + α

= p (p − 2) ξ
p−1
k + α

p (p − 1) ξ
p−2
k + α

. (69)

It can be easily demonstrated that starting from ξ0 = 1 (within the domain of attraction of
the root) the iteration in (69) converges with quadratic rate to the local minimum.
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Fig. 5 Case d) of statement (50). Plot of g1(ξ) and g2(ξ) defined in (63) for p = 0.5 and for five different α
values a, and the associated minimized function f (ξ) b–f. a g1(ξ) and g2(ξ), b f (ξ) for α < α̂, c f (ξ) for
α = α̂, d f (ξ) for α̂ < α < ᾱ, e f (ξ) for α = ᾱ, f f (ξ) for α > ᾱ

As previously stated, experiments demonstrated that one iteration yields sufficiently accu-
rate solutions. Hence, the approximate solution ξ∗ is obtained as follows:

ξ∗ = p (p − 2) + α

p (p − 1) + α
. (70)

5 Experimental Results

In this section, we evaluate the performance of the proposed constrained TVp-�2 model in
(6–7) when applied to the restoration of gray-scale images synthetically corrupted by blur
and additive zero-mean white Gaussian noise. The performance will be evaluated in terms
of both accuracy of the obtained restorations and efficiency of the proposed ADMM-based
minimization scheme reported in Algorithm 1.

The blurred signal-to-noise ratio (BSNR) and the Improved signal-to-noise ratio (ISNR)
are used to measure the quality of the observed degraded images g and of the restored images
u∗, respectively. They are defined as follows:

BSNR(g, u) = 10 log10
‖Ku − E [Ku] ‖22

‖g − Ku‖22
dB,

ISNR(u∗, g, u) = 10 log10
‖g − u‖22
‖u∗ − u‖22

dB,

123



82 J Sci Comput (2016) 68:64–91

where u denotes the uncorrupted image. The ISNR quantity provides a quantitative measure
of the improvement in the quality of the restored image: a high ISNR value indicates that u∗ is
an accurate approximation of u. The standard deviation σ of the additive noise is univocally
related to the BSNR as follows:

σ =
√

‖Ku − E[Ku]‖22/(d210BSNR/10). (71)

As approximate solution u∗ of the image restoration problem, solved by ADMM-based
iterative scheme reported in Algorithm 1, we consider uk obtained as soon as the relative
difference between two successive iterates satisfies

ek := ‖uk − uk−1‖2 / ‖uk−1‖2 < 10−4, (72)

or after a maximum number of 500 iterations.
In Algorithm 1 we used for all the examples the same parameter value τ = 1 in the

discrepancy principle-based constraint (7) such that, at convergence, the standard deviation
of the restoration residual Ku∗−g is forced to be exactly equal to the noise standard deviation
σ .

The experiments were performed under Windows 7 in MATLAB on a HP G62 Notebook
PC with an Intel(R) Core(TM) i3 CPU M350 @2.27GHz processor and 4GB of RAM.

Example 1: the benefit of the parameter p. In this experiment, we show how the pro-
posed automatic estimate of the parameter p for the TVp regularizer in (5) provides image
restorations of better quality than setting p = 1, which corresponds to the classical TV-�2
functional [23,31], implemented as constrained model using Algorithm 1.

In particular, we applied a Gaussian blur with a kernel characterized by the two parameters
band and sigma: the former parameter specifies the half-bandwidth of the Toeplitz blocks
in the blur matrix, the latter the standard deviation of the Gaussian point spread function.
The larger the sigma is, the stronger the blur effect is, and, consequently, the worst the
ill-conditioning of the blur matrix will be. The kernel is generated through the MATLAB
command fspecial(’Gaussian’,band,sigma). Finally, each blurred image has
been corrupted with zero-mean white Gaussian noise of different levels.

The shape parameter p for the hGGD distribution (14) of the gradient magnitudes has
been estimated by the GCM described in Sect. 1, that is by solving the non-linear equation
(22). The Newton–Raphson method in (23) is started using as initial guess the value 0.8; for
all the experiments we got empirically the convergence.

The three uncorrupted images mandrill (d = 512), barbara (d = 512) and
geometric (d = 256), present different gradient distributions (hGGD) characterized by
a p value obtained by applying the GCM algorithm to the images u, which are pu = 1.28
for mandrill, pu = 0.67 for barbara and pu = 0.22 for geometric. Clearly, the
uncorrupted images are in practice not available, hence the automatic procedure GCM is
applied also to the available degraded images g after carrying out a few iterations (less than
5 for the considered examples) of the TV-�2 algorithm, which removes most of the spurious
gradients introduced by degradations. The obtained estimate of p is denoted by pg .

To show how the automatically estimated value of p corresponds to a nearly optimal
restoration result, in Table 1 we report the ISNR values obtained by applying Algorithm
1 with different p values in the range [0.2,1.5] to the barbara test image corrupted by
Gaussian blur with band = 5, sigma = 1.0, and additive white Gaussian noise yielding
BSNR = 40. The pu value 0.67 corresponds to the best restoration result, and an estimate
pg = 0.7 seems to be a good compromise for practical image restorations.
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Table 1 Example 1. ISNR values obtained by restoring the image barbara corrupted by Gaussian blur with
band = 5, sigma = 1.0, and additive Gaussian noise yielding BSNR=40

p 0.2 0.3 0.4 0.5 0.6 0.67 0.7 0.8 0.9 1.0 1.5

ISNR 5.85 6.08 6.20 6.29 6.45 6.77 6.76 6.71 6.65 6.45 4.87

Table 2 Example 1. ISNR values obtained by restoring the images mandrill, barbara and geometric
corrupted by fixed Gaussian blur (band = 5, sigma = 1.0) and additive zero-mean white Gaussian noise
with increasing level

mandrill (pu =1.28) barbara (pu =0.67) geometric (pu =0.22)

BSNR TV-�2 TVpu -�2 TVpg -�2(pg) TV-�2 TVpu -�2 TVpg -�2(pg) TV-�2 TVpu -�2 TVpg -�2(pg)

40 5.32 5.56 5.56 (1.33) 4.84 6.77 6.76(0.70) 11.58 12.94 12.98 (0.22)

30 2.90 3.04 3.04 (1.36) 1.77 2.42 2.44 (0.71) 9.01 9.87 10.00 (0.28)

20 1.07 1.08 1.08 (1.38) 0.19 0.26 0.26 (0.68) 7.27 7.69 7.97 (0.31)

We evaluate quantitatively the robustness of the p estimation with respect to the noise
level, keeping a fixed Gaussian blur (band = 5, sigma = 1.0). Table 2 shows the resulting
ISNR values for increasing noise levels, with BSNRs ranging from 40 to 20. The restoration
results of TVp-�2 with pu and pg are similar and both outperform the TV-�2 algorithm.

Figure 6b shows the blurred and noisy image for the restoration of the image barbara.
The restored results by both methods are shown in Fig. 6c, d, the corresponding zoomed
details are illustrated in Fig. 6e, and the associated ISNR values are reported in the second
row of Table 2.

From Table 2, we observe that the ISNR values of the restored images by the proposed
method TVp-�2 are always better than those obtained by TV-�2, by using both the pu and
the pg values. The benefits of the appropriate gradient distribution are more significant for
smaller noise levels. Moreover, for the mandrill restoration, which corresponds to p > 1,
the performance gain is modest.

Example 2: convex versus nonconvex restorations.For the restoration of images charac-
terized by very sparse gradients, such as piecewise-constant images, nonconvex regularizers
hold the potential for better restorations than convex models.

In this example,we compare the proposedTVp-�2 modelwith the convexTV-�2 model and
with a state-of-the-art nonconvex model proposed in [19], whose software is made available
by the authors [18]. The nonconvex rational prior used in [20] depends on a parameter α

which has the same role of the parameter p for TVp in tuning nonconvexity of the model.
The model will be referred to as FNNMM. Since the authors did not provide any procedure
to estimate α, we used the suggested value α = 0.5 for all the experiments.

We compared the results of the three algorithms when applied to the two 200×200 purely
geometric images square and rectangles depicted in Figs. 7a and 8a, respectively. We
chose these two geometric images in order to better highlight some of the beneficial capa-
bilities of nonconvex models. The superimposed colored segments represent cross-sections
that will be analyzed in Figs. 7i, j and 8i, j.

The degraded images shown in Figs. 7b and 8b have been synthetically generated from
the uncorrupted images by first applying a Gaussian blur with kernel of parameters band =
15 and sigma = 3.5, and then adding zero-mean white Gaussian noise yielding a BSNR =
30.
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(b)(a)

(c) (d)

(e)

Fig. 6 Example 1. Restoration results obtained by TV-�2 c and TVp-�2 with estimated p = pg = 0.71
d on the test image barbara a corrupted by Gaussian blur with band = 5, sigma = 1.0 and additive
zero-mean white Gaussian noise yielding BSNR = 30 b. The small rectangular-contoured regions in a, b, c,
d are zoomed in e. a Original,b corrupted (BSNR=30), c restored by TVp-�2 (ISNR=1.77) d restored by
TVp-�2 (ISNR=2.44), e from left to right, zoomed details of original, corrupted, TV−�2, TVp-�2 images.

It is well-known that, among convex models, TV-�2 has the potential to yield satisfactory
restoration results since it allows the solution to have edges. In particular, piecewise constant
functions such as those represented by the considered square and rectangles images
are particularly prone to be well restored by TV-�2. However, TV-�2 also possesses some
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Fig. 7 Example 2. Restoration results obtained by TV-�2 c, FNNMM d and TVp-�2 with estimated p = 0.37
e on the test image square a corrupted by Gaussian blur with band = 15, sigma = 3.5 and additive
white Gaussian noise yielding BSNR = 30 b. a Original, b corrupted (BSNR=30), c TV-�2 (ISNR=16.02),
d FNNMM (ISNR=17.70), e TVp-�2 (ISNR=31.15), f restoration error of TV-�2, g restoration error of
FNNMM, h restoration error of TVp-�2 (Color figure online)

undesirable effects, such as the loss of image contrast [28], the smearing of textures [4],
and the staircase effect [1]. A thorough mathematical justification of these drawbacks can
be found in [5,28]. As shown in [20], nonconvex models provide solutions that tend to have
better quality and partially solve these problems.
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Fig. 8 Example 2. Restoration results obtained by TV-�2 c, FNNMM d and TVp-�2 with estimated p = 0.27
e on the test image rectangles a corrupted by Gaussian blur with band = 15, sigma = 3.5 and additive
white Gaussian noise yielding BSNR = 30 b. a Original, b corrupted (BSNR=30), c TV-�2 (ISNR=13.26),
d FNNMM (ISNR=14.67), e TVp-�2 (ISNR=23.98), f restoration error of TV-�2, g restoration error of
FNNMM, h restoration error of TVp-�2

For example, as discussed in [28], the TV of a feature is directly proportional to its
boundary size, so that one way of minimizing the TV of that feature would be to reduce its
boundary size, in particular by smoothing corners. This effect is well visible in Fig. 7, where
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Table 3 Example 2. ISNR values obtained by restoring the images square and rectangles corrupted
by fixed Gaussian blur with band = 15, sigma = 3.5 and additive zero-mean white Gaussian noise of
increasing level (i.e. decreasing BSNR)

square(pu = 0.37) rectangles(pu = 0.27)

BSNR TV-�2 FNNMM TVp-�2 TV-�2 FNNMM TVp-�2

40 18.37 18.41 50.17 16.09 16.12 44.20

30 16.02 17.70 31.15 13.26 14.67 23.98

20 13.86 17.62 18.33 10.42 12.38 11.71

the considered cross section passes through the corners of the white square thus highlighting
the better ability of nonconvex TVp-�2 and FNNMM models in restoring the correct shape
of the square in correspondence of the corners with respect to the convex TV-�2 model (see
the zoomed detail in Fig. 7j).

As observed in [28], the loss of contrast is inversely proportional to the local features scale.
Figure 8a represents rectangles of different sizes which can be seen as features at different
scales. The image restored by TV-�2 shown in Fig. 8c presents a loss of contrast which is
more significant for the smallest-scale features. The smoothed-out portions of the restored
image are well visible in Fig. 8f which represents the error image, given at each pixel by the
absolute value of the gray level difference between the uncorrupted and the restored images.
Figure 8i, j highlight the contrast loss problem by plotting a horizontal cross section of the
rectangles image.

We also apply TVp-�2 model to the rectangles image where we chose the value of
p according to the GCM procedure described in Sect. 1 applied to the uncorrupted image in
Fig. 8a. From Fig. 8f–j we observe how the TVp-�2 model is more contrast-preserving with
respect to both the convex TV-�2 and the nonconvex FNNMM models.

To provide more evidence of the benefits of using nonconvex versus convex regularizers,
in Table 3 we report the ISNR values obtained by the three algorithms on the square and
rectangles images for different noise levels yielding BSNR = 40,30,20. Results in Table
3 confirm the improvement in restoration quality provided by the considered nonconvex
TVp-�2 and FNNMMmodels with respect to the convex TV-�2 model. Moreover, we notice
how the proposed TVp-�2 approach significantly outperforms FNNMM for BSNR = 40,30,
whereas the two algorithms compete for BSNR = 20. We can conclude that the obtained
benefits are related both to the automatic selection of the p parameter, and to the different
nonconvex regularizer used in the model.

We notice that, as expected, the estimated p values of the hGGD shape parameter for the
two considered purely geometric images square and rectangles are very small, which
leads to a strongly nonconvex TVp-�2 model. Hence, we conclude this example presenting
an empirical investigatiion on the numerical convergence of the proposed ADMM-based
minimization scheme for the nonconvex case (p < 1).

Towards this aim, in Fig. 9 we report some convergence plots concerning the case BSNR
= 40 (first row of Table 3) for both the square (left column) and rectangles (right
column) test images.

In particular, the plots in the first, second and third row of Fig. 9 represent the logarithm of
the relative change of the iterates ek defined in (72), the values of the TVp functional defined
in (5), and the values of the standard deviation of the restoration residual, respectively, versus
the iteration index k for the first 4000 iterations of Algorithm 1. The plots in the first row of
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Fig. 9 Example 2. Empirical convergence related to the case BSNR=40 (first row of Table 3). a Test image
square, b test image rectangles

Fig. 9 show that for both the test images the iterates uk computed by Algorithm 1 converge to
some limit, whereas the plots in the second row demonstrate that, as expected from theory, the
approached limits correspond to some global/local minimum of the nonconvex nonsmooth
TVp functional.Moreover, plots in the third row of Fig. 9 show that the standard deviations of
the residuals converge quite quickly towards the limit values 0.7612 and 0.8837 for square
and rectangles, respectively. More precisely, the latter values correspond to the residual
standard deviations prescribed by the discrepancy principle-based formula (7) with τ = 1.

Finally, we observe that the ISNR values obtained at convergence after 4000 iterations are
equal to 52.90 for square and 46.68 for rectangles which both outperform the ISNR
values in Table 3.

Example 3: computational efficiency. In this example, experimental results are given
to evaluate computational efficiency of the proposed TVp-�2 ADMM-based minimization
procedure reported in Algorithm 1. In particular, we compare our algorithm TVp-�2 with
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Fig. 10 Example 3. ISNR (top row) and negative logarithm of relative change (bottom row) versus CPU
time (in seconds) for cameraman a and lena b images. The images are corrupted by 9 × 9 uniform blur
with noise of variance σ 2 = 0.562 (first column), and blur with 15 × 15 point spread function given by
hi, j = 1/(1 + i2 + j2) with noise of variance σ 2 = 2 (second column) and σ 2 = 8 (third column),
respectively. a Cameraman, b lena

p = 1 (hereinafter calledOUR)with a good candidate state-of-the-artmethod for the solution
of the constrained TV-�2 model presented in [32], that we will name CW in the following.
In particular, in [32] the authors proposed a primal-dual approach, and demonstrated that it
is more efficient than other existing algorithms for the solution of the same model.

For the comparison, we followed the same procedure as in [32] and considered the same
three image restoration problems: in the first problem, the point spread function is a 9 × 9
uniform blur and the additive Gaussian noise variance is σ 2 = 0.562; in the second and
third problems, the 15 × 15 point spread function is given by hi, j = 1/(1 + i2 + j2) with
i, j = −7, . . . , 7 and the noise variances are σ 2 = 2 and σ 2 = 8, respectively. These
three types of corruptions have been applied to the two 256 × 256 test grayscale images
cameraman and lena.
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The proposed algorithm OUR has been applied using the following parameters setting:
βt = 10, βr = 1000, γ = 1.618. For the CW approach we used the same parameter values
used in [32], that is the primal and dual step-sizes are set to s = 1, t = 1/16. We stopped the
iterations of both the algorithms as soon as the relative change criterion (72) was satisfied.

The MATLAB source code for CW has been provided us by the authors of [32].
For the two test images cameraman and lena, in Fig. 10 we plot the ISNR values (top)

and the negative logarithmof the relative change e (bottom), defined as in (72), versus theCPU
time. From the plots, we observe that OUR algorithm outperforms CW algorithm in terms of
speed-accuracy tradeoff. In particular, the top rows of Fig. 10a, b show that OUR algorithm
approximately halves the computational time required to satisfy the stopping criterion with
respect to the state-of-the-art CW algorithm. Furthermore, the plots on the bottom rows of
Fig. 10a, b outline that the efficiency gain increases with the decreasing of the tolerance used
in the stopping criterion.

6 Conclusion

We presented a constrained variational model for the restoration of images corrupted by blur
and additive white Gaussian noise. The proposed TVp-�2 model extends the well-known TV-
�2 model by adopting a parametrized hGGD prior for image gradients which generalizes the
half-Laplacian distribution assumed by TV-�2. An automatic estimation of the parameter p
has been introduced to exploit the great flexibility offered by the hGGD in matching gradient
distributions in real images. To solve the proposed model, a novel efficient minimization
algorithm based on the ADMM strategy has been presented which is supported by a novel
result in multivariate proximal calculus.

Experiments demonstrate both the good performance of the proposed model in terms of
restoration accuracy, and the computational efficiency of the presented minimization proce-
dure. Theoretical demonstrations of these improvements will be further investigated in future
work.
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