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Abstract Optimal control problems governed by a fractional diffusion equation tends to
provide a better description than one by a classical second-order Fickian diffusion equation
in the context of transport or conduction processes in heterogeneous media. However, the
fractional control problem introduces significantly increased computational complexity and
storage requirement than the corresponding classical control problem, due to the nonlocal
nature of fractional differential operators. We develop a fast gradient projection method
for a pointwise constrained optimal control problem governed by a time-dependent space-
fractional diffusion equation, which requires the computational cost from O(MN 3) of a
conventional solver to O(MN log N ) and memory requirement from O(N 2) to O(N ) for
a problem of size N and of M time steps. Numerical experiments show the utility of the
method.
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1 Introduction

It is well known that numerical approximation of optimal control problems has long been an
important topic in engineering design work. There has been extensive researches on devel-
oping fast numerical algorithms for these optimal control problems. Some recent progress in
this area can be found in [5,8,12–17,21–23,25,29] and the references cited therein.

In this paper we consider the model of a pointwise-contrained time-dependent optimal
control problem imposed on the space interval (0, 1) over the time period [0, T ]: Find a
control u ∈ K := {v ∈ L2(0, T ; (0, 1)), v ≥ u0} with a prescribed function u0(x, t) to
minimize the objective functional

J (u) := 1

2

∫ T

0

∫ 1

0

(
y − ỹ

)2
dxdt + 1

2

∫ T

0

∫ 1

0
u2dxdt, (1)

which is governed by the initial-boundary value problem of a diffusion equation for the state
variable y(x, t)

Ly = f + u, (x, t) ∈ (0, 1) × (0, T ],
y(0, t) = y(1, t) = 0, t ∈ [0, T ], y(x, 0) = y0(x), x ∈ [0, 1]. (2)

Here ỹ(x, t) represents a prescribed or observed value of the state variable y, f (x, t) is
a prescribed source and sink term, u is the control variable, and L represents a diffusion
operator.

This type of problems occurs widely in engineering design and applications. For instance,
in the temperature control in a thermo conduction process, y represents the temperature in a
medium and u the heating or cooling source. The goal of the control problem is to optimize
the input of the heating or cooling source u such that the temperature distribution u is as
close as to the prescribed temperature distribution ỹ. Due to the limitation of the surrounding
environments or equipments, the input control u might be subject to certain constraint which
leads to a constrained control problem such as that with a pointwise obstacle constraint as
described by the admissible set K . Similar models also occur in the optimal control in mass
diffusive transport process in porous media and in the photocopier and the laser printer in
the modern office that rely on the transport of electrons in amorphous semiconductors in an
electric field. The resulting optimality conditions from these models consist of non-smooth
nonlinear systems of partial differential equations.

The canonical optimal control problems of this type, in which the differential operator L
is a classical second-order Fickian diffusion operator, have been studied extensively in the
literature and many efficient and reliable methods have been developed [5,12–15,17,21,25].
There exist at least three general classes of computational approaches to solving the resulting
nonlinear systems of partial differential equations derived from the optimality conditions.
The primal-dual active set method employs the primal-dual active set strategy based on the
augmented Lagrangian method in [12,13]. This method has widely been used in solving
numerical solutions of different kinds of optimal control in the literature. However in some
cases, e.g. when the Lagrange multipliers are irregular, the active sets are not easy to be
computed numerically. The second class is to apply the semi-Newton algorithm to solve
the resulting optimality conditions, which involves computations of second derivatives, see,
e.g., [14,15]. There exists an extensive body of research on the above two methods in the
literature, and it is even impossible to give a brief review here. The third kind is the class
of gradient projection methods that use a line search method to minimize the objective
functional, guided by the gradient whose computation needs repeatedly solving the state and
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the co-state equations. This class of methods has been found robust in practice [17], but its
effectiveness relies on very efficient solvers for the state and the co-state equations.

In the last few decades an increasinglymore number of evidence suggests that the classical
second-order Fickian diffusion equation or heat conduction equation does not necessarily
provides a proper description of the diffusion or heat conduction process in a heterogeneous
medium. A microscopic explanation is as follows: In a normal diffusion process modeled by
a classical second-order Fickian diffusion or heat conduction equation, a particle’s motion
in the underlying transport or conduction process has virtually no spatial correlation and
long walks in the same direction are rare, so the variance of a particle excursion distance is
finite. The central limit theorem ensures that the probability of finding a particle somewhere
in space satisfies a normal distribution, which gives a probabilistic description of a normal
diffusion. However, in a diffusion or heat conduction process in a heterogeneous medium, a
particle’s motion is better described by steps that are not independent and that can take vastly
different times to perform. A particle’s long walk may have long correlation length so the
processes can have large deviations from the stochastic process of Brownian motion or even
have an infinite variance. Thus, the assumptions of (i) the existence of a mean free path and
(ii) the existence of a mean time taken to perform a step, which were made by Einstein in his
derivation of diffusion equation or Brownian motion [9], are violated. As a matter of fact,
it was shown [3,20] that the heavy tail behavior of the transport processes in heterogeneous
media can be described accurately by Levy distribution, which can be viewed as a probability
description of fractional diffusion equations. This is the fundamental reason why fractional
diffusion or heat conduction equations provide a better description of transport processes in
heterogeneous media than classical Fickian diffusion or heat conduction equations do.

Motivated by these facts, in this paper we consider the optimal control problem of (1)–(2)
except that L is a fractional diffusion operator given by

Ly := ∂y

∂t
− d(x, t)

(
r 0D

2−β
x + (1 − r) x D

2−β
1

)
y, (x, t) ∈ (0, 1) × (0, T ] (3)

where d(x, t) is the diffusivity coefficient with positive lower and upper bounds, 0 ≤ r ≤ 1
indicates the relative weight of forward versus backward transition probability, 2 − β with
0 < β < 1 is the order of the anomalous diffusion in the governing equation. The left and
right fractional integrals are defined by Podlubny [24]

0D
−β
x w(x) := 1

Γ (β)

∫ x

0

w(s)

(x − s)1−β
ds,

x D
−β
1 w(x) := 1

Γ (β)

∫ 1

x

w(s)

(s − x)1−β
ds

For any positive integer m, the left and right Riemann–Liouville fractional derivatives of
order m − β are defined by

0D
m−β
x w(x) := Dm

0D
−β
x w(x) = 1

Γ (β)

dm

dxm

∫ x

0

w(s)

(x − s)1−β
ds,

x D
m−β
1 w(x) := (−D)mx D

−β
1 w(x) = (−1)m

Γ (β)

dm

dxm

∫ 1

x

w(s)

(s − x)1−β
ds.

Because of the improved modeling capability of the fractional differential equations,
there has been increasingly more research on both mathematical analysis and numerical
approximation of the fractional control problems [1,7,10]. However, because of the nonlocal
nature of fractional differential operators, the corresponding numerical methods for solving
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the fractional state and costate equations generate full stiffness matrices. Consequently, the
resulting computational complexity is of O(N 3) and the memory requirement is of O(N 2)

for a problem of size N , which is in sharp contrast to the computational work and memory
requirement of O(N ) for numerical methods for second-order Fickian diffusion equations.
Recall that the fractional state and costate equations have to be iteratively solved for many
times. Hence, the computational bottleneck becomes a really severe burden. To our best
knowledge, there is no work in the literature that has addressed the significantly increased
computational cost issue.

The goal of this paper is to develop a fast gradient projection method for the fractional
optimal control problem (1)–(3), which significantly reduces the computational cost of the
solution of the fractional state and costate equations to O(MN log N ) from O(MN 3), with
M being the number of time steps, per iterative solve of the two equations, and the memory
requirement to O(N ) from O(N 2). Numerical experiments justify these. The rest of the
paper is organized as follows. In Sect. 2 we derive the optimality condition for the fractional
optimal control problem. In Sect. 3 we present a fractional gradient projection method. In
Sect. 4 we present a fast and faithful solution method. In Sect. 5 we carry out numerical
experiments to validate the fast gradient projection method developed.

2 The Optimality Condition of the Fractional Control Problem

We frequently use the following properties in this section. The left and right Riemann–
Liouville fractional integral operators are adjoints in the L2 sense [24,26]:

∫ 1

0

(
0D

−β
x w

)
vdx =

∫ 1

0
w
(
x D

−β
1 v

)
dx, ∀v,w ∈ L2(0, 1). (4)

For any v,w with v(0) = 0 and w(1) = 0, the fractional integral operator and the classical
first-order differential operators commute [33]:

0D
−β
x Dv = D0D

−β
x v, x D

−β
1 Dw = Dx D

−β
1 w. (5)

To derive the adjoint costate equation for the costate function we rewrite the state equation
(2) as

d−1 ∂y

∂t
− (

r 0D
2−β
x + (1 − r) x D

2−β
1

)
y = d−1( f + u),

y(0, t) = y(1, t) = 0, t ∈ [0, T ],
y(x, 0) = y0(x), x ∈ [0, 1]. (6)

We then multiply the equation by any test function p with appropriately specified boundary
condition and terminal conditions [as in (7)] and utilize the adjoint property (4) to obtain the
following terminal-boundary value problem of the adjoint costate equation for the costate
function p(x, t)

−∂(d−1 p)

∂t
− (

(1 − r) 0D
2−β
x + r x D

2−β
1

)
p = y − ỹ,

p(0, t) = p(1, t) = 0, t ∈ [0, T ],
p(x, T ) = 0, x ∈ [0, 1]. (7)

To derive the optimality condition for (1), we calculate the Gâteaux derivative of the
objective functional J (u). Let u ∈ K be the minimizer of the objective functional J (u). Let
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v ∈ K be any admissible function and δu = v − u. For any arbitrarily small positive number
ε, we note that

δy := lim
ε→0+

y(u + εδu) − y(u)

ε
= y′(u)δu (8)

exists, provided that y is differentiable with respect to u. Consequently,

y(u + εδu) = y(u) + εy′(u)δu + o(|εδu|)
= y(u) + εδy + o(|εδu|)

as ε tends to zero. Therefore, we expand J (u + εδu) as follows

J (u + εδu) = 1

2

∫ T

0

∫ 1

0
(y(u + εδu) − ỹ)2dxdt

+ 1

2

∫ T

0

∫ 1

0
(u + εδu)2dxdt

= 1

2

∫ T

0

∫ 1

0
(y(u) − ỹ)2 + 2ε(y(u) − ỹ)δydxdt

+ 1

2

∫ T

0

∫ 1

0
u2 + 2ε u δudxdt + o(ε).

We accordingly find that

J ′(u)δu = lim
ε→0+

J (u + εδu) − J (u)

ε

=
∫ T

0

∫ 1

0
(y − ỹ)δy dxdt +

∫ T

0

∫ 1

0
uδu dxdt

=
∫ T

0

∫ 1

0

[
− ∂(d−1 p)

∂t
−
(
(1 − r) 0D

2−β
x + r x D

2−β
1

)
p
]
δy dxdt

+
∫ T

0

∫ 1

0
uδu dxdt. (9)

In the last step we have replaced y − ỹ in the integrand of the first integral by the left-hand
side of the costate equation (7).

We see from (8) that δy satisfies the homogeneous initial and boundary conditions. We
further utilize the fact that p(x, T ) = 0 and integrate the first integrand in the first integral
on the right-hand side with respect to time by parts to get

∫ T

0

∫ 1

0

∂(d−1 p)

∂t
δydxdt = −

∫ T

0

∫ 1

0
pd−1 ∂δy

∂t
dxdt. (10)

We intend to utilize the facts that δy and p both vanish at the boundary to integrate the second
integrand in the first integral on the right-hand side with respect to x by parts in a similar
fashion. However because the fractional integral operators and the classical differential oper-
ators do not commute in general, we have to take extra care by utilizing (4) and (5) repeatedly
to obtain ∫ T

0

∫ 1

0

[(
(1 − r) 0D

2−β
x + r x D

2−β
1

)
p
]
δydxdt

=
∫ T

0

∫ 1

0

[(
(1 − r) D2

0D
−β
x + r D2

x D
−β
1

)
p
]
δydxdt
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=
∫ T

0

∫ 1

0

[(
(1 − r) D 0D

−β
x D + r Dx D

−β
1 D

)
p
]
δydxdt

= −
∫ T

0

∫ 1

0

[(
(1 − r) 0D

−β
x D + r x D

−β
1 D

)
p
]
(Dδy)dxdt

= −
∫ T

0

∫ 1

0

[(
r 0D

−β
x + (1 − r) x D

−β
1

)
Dδy

]
Dpdxdt

= −
∫ T

0

∫ 1

0

[(
r D 0D

−β
x + (1 − r)D x D

−β
1

)
δy
]
Dpdxdt

=
∫ T

0

∫ 1

0

[(
r D2

0D
−β
x + (1 − r)D2

x D
−β
1

)
δy
]
pdxdt

=
∫ T

0

∫ 1

0

[(
r 0D

2−β
x + (1 − r) x D

2−β
1

)
δy
]
pdxdt. (11)

We incorporate (10) and (11) into (9) to obtain

J ′(u)δu =
∫ T

0

∫ 1

0

[
d−1 ∂δy

∂t
−
(
r 0D

2−β
x + (1 − r) x D

2−β
1

)
δy
]
pdxdt

+
∫ T

0

∫ 1

0
uδu dxdt.

We observe from (6) and (8) that

d−1 ∂δy

∂t
−
(
r 0D

2−β
x + (1 − r) x D

2−β
1

)
δy = d−1δu.

Recall that u is the minimizer of the objective functional J (·) and δu = v − u, the fact that
J ′(u)δu ≥ 0 leads to the following variational inequality

J ′(u)δu =
∫ T

0

∫ 1

0
(d−1 p + u)δudxdt

=
∫ T

0

∫ 1

0
(d−1 p + u)(v − u)dxdt ≥ 0 (12)

for all v ∈ K . This variational inequality has the following closed form solution [17]

u = max
{
u0,−d−1 p

}
. (13)

As amatter of fact, if−d−1 p > u0 on the entire interval (0, 1), then (13) implies u = −d−1 p
and so d−1 p + u = 0 on the entire interval (0, 1). The variational inequality (12) becomes
identically zero for all v ∈ K . If −d−1 p ≤ u0 on the entire interval (0, 1), (13) implies
u = u0. Thus, d−1 p + u = d−1 p + u0 ≥ 0. Since v − u = v − u0 ≥ 0 for all v ∈ K , the
variational inequality (12) holds.

In the general case, themaximum in (13)may be reached by either on different subdomains
of [0, 1] × [0, T ]. Suppose that u = −d−1 p on Ω1 and u = u0 on Ω2 with Ω1 ∪ Ω2 =
[0, 1] × [0, T ]. It follows that the integral

∫
Ω1

(d−1 p + u)(v − u)dxdt = 0. Hence, the

integral in (12) reduces to an integral on Ω2, on which u = u0. Then the same argument
in the preceding paragraph shows that this integral remains nonnegative for all v ∈ K .
Therefore, (12) still holds.
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3 A Fractional Gradient Projection Method

The optimality condition of the constrained optimal control problem (1) and (2) reduces the
problem to the solution of a coupled system of the state equation (6), the costate equation (7),
and the optimal control condition (13). A commonly used method for the efficient solution
of the system is the following sequentially decoupled gradient projection method [17]:

(i) Pick up an guess of the control u0.
For n = 0, 1, . . ., do

(ii) With the known control un , solve the state equation forward in time for the state variable
yn

d−1 ∂ yn

∂t
−
(
r 0D

2−β
x + (1 − r) x D

2−β
1

)
yn = d−1

(
f + un

)
.

(iii) With the known state variable yn , solve the costate equation backward in time for the
costate variable pn

−∂(d−1 pn)

∂t
−
(

(1 − r) 0D
2−β
x + r x D

2−β
1

)
pn = yn − ỹ.

(iv) Update the optimal control

un+1 = max
{
u0,−d−1 pn

}
.

(v) If ‖un+1 − un‖∞ is within the tolerance, then stop
end do

It is clear that in the gradient projection method, the major computational cost comes
from the repeated solution of the state equation (6) and the costate equation (7). In the rest of
this section, we present two finite difference methods for these equations and discuss related
computational issues.

Let M and N be positive integers. Define the time step size τ := T/M and the spatial
mesh size h := 1/(N + 1), respectively. We define the temporal partition tk := kτ for
k = 0, 1, . . . , M and the spatial partition xi := ih for i = 0, 1, . . . , N + 1. Let yki , p

k
i , u

k
i

be the finite difference approximations to y(xi , tk), p(xi , tk), u(xi , tk), respectively, and
denote (d−1)ki := d−1(xi , tk), f ki := f (xi , tk), ỹki := ỹ(xi , tk). Then the Meerschaert
finite difference scheme for the state equation can be formulated as follows [19]: For k =
1, 2, . . . , M , solve the following equation forward in time to find {yki }Ni=1 such that

(
d−1)k

i

yki − yk−1
i

τ
−
⎡
⎣r

i+1∑
j=0

g(2−β)
j yki− j+1 + (1 − r)

N−i+1∑
j=0

g(2−β)
j yki+ j−1

⎤
⎦ hβ−2

= (
d−1)k

i

(
f ki + uki

)
. (14)

Here the fractional binomial coefficients g(α)
j can be evaluated recursively

g(α)
0 = 1, g(α)

j =
(
1 − α + 1

j

)
g(α)
j−1 for j ≥ 1.

We can similarly formulate theMeerschaert finite difference scheme for the costate equation:
For k = M, M − 1, . . . , 1, solve the following equation backward in time to find {pki }Ni=1
such that
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(d−1)k−1
i pk−1

i −(d−1)ki p
k
i

τ
−
⎡
⎣(1 − r)

i+1∑
j=0

g(2−β)
j pki− j+1 +r

N−i+1∑
j=0

g(2−β)
j pki+ j−1

⎤
⎦ hβ−2

= yk−1
i − ỹk−1

i . (15)

Because a shifted Grünwald approximation was used, the Meerschaert scheme has only
first-order accuracy in both space and time [19].

Second-order finite difference methods were developed to improve the computational
efficiency. A Crank-Nicolson temporal discretization plus a Richardson extrapolation of the
spatial discretization in (14) results in a scheme that has second-order accuracy in both space
and time [18]. In this paper we use an alternative second-order scheme, the CN-WSGD
scheme, developed in [28]: For k = 1, 2, . . . , M , solve the following equation forward in
time to find {yki }Ni=1 such that

(
d−1)k− 1

2
i

yki − yk−1
i

τ
−
⎡
⎣r

i+1∑
j=0

w
(2−β)
j y

k− 1
2

i− j+1 + (1 − r)
N−i+1∑
j=0

w
(2−β)
j y

k− 1
2

i+ j−1

⎤
⎦ hβ−2

= (
d−1)k− 1

2
i

(
f
k− 1

2
i + u

k− 1
2

i

)
. (16)

Here the superscript k − 1
2 denotes the mean value of the function on k and k − 1 levels and

w
(α)
j can be evaluated by

w
(α)
0 = α

2
g(α)
0 , w

(α)
j = α

2
g(α)
j + 2 − α

2
g(α)
j−1 for j ≥ 1.

We can similarly formulate the CN-WSGD scheme for the costate equation as follows: For
k = M, M − 1, . . . , 1, solve the following equation backward in time to find {pki }Ni=1 such
that

(d−1)k−1
i pk−1

i −(d−1)ki p
k
i

τ
−
[
(1 − r)

i+1∑
j=0

w
(2−β)
j p

k− 1
2

i− j+1 + r
N−i+1∑
j=0

w
(2−β)
j p

k− 1
2

i+ j−1

]
hβ−2

= y
k− 1

2
i − ỹ

k− 1
2

i . (17)

The nonlocal property of fractional differential operators results in a significant increase
in the already expensive computational and storage cost in the gradient projection method
for the constrained optimal control problem. Despite that the optimal control constrained by
space-fractional diffusion equations provides amore appropriate description than its analogue
constrained by second-order diffusion equations, the significantly increased computational
and storage cost poses a severe computational challenge to the new model. More precisely,
within each outer loop in the gradient projection method, the computational cost of the
space-fractional state and costate equations is of order O(MN 3), which is a very sharp
increase of the computational cost of second-order state and costate equations that has a
computational cost of O(MN ). This significantly increased computational cost gets even
worse as the state and costate equations have to be solved iteratively in the gradient projection
method. Therefore, the development of a fast and faithful numericalmethod is of fundamental
importance.
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4 A Fast and Faithful Solution Method

The goal of this section is to develop a fast and faithful gradient projection method for the
optimal control problem (1) and (2). As the major computational complexity of the gradient
projection method comes from the numerical solution of the state and costate equations, we
focus on the development of fast and faithful solution methods for these equations.

4.1 Fast Implementation of the Finite Difference Methods for the State and
Costate Equations

Let yk := (yk1 , y
k
2 , . . . , y

k
N )T , and yk−1, fk , uk be introduced in a similar fashion. Then the

Meerschaert scheme for the state equation (14) can be expressed in a matrix form [19]
(
Dk + γA

)
yk = Dkyk−1 + τDk(fk + uk

)
, (18)

where γ = τ/h2−β ,Dk = diag((d−1)ki )
N
i=1, andA is a full stiffness matrix. Traditionally, the

linear system (18) has been solved numerically by Gaussian elimination [19], which requires
computational work of O(N 3) per time step. It was reported in [32] that the stiffness matrix
A can be decomposed as

A = rG + (1 − r)GT (19)

where G is a Toeplitz matrix of the form

G = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g1 g0

g2 g1
. . .

...
. . .

. . .
. . .

...
. . .

. . . g1 g0
gN · · · · · · g2 g1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(20)

with gi := g(2−β)
i .

Fast finite difference methods were developed by exploring the decomposition [31,32]
which reduce the computational cost from O(N 3) at each time step to O(N log N ) per inner
iteration. It is known that an N × N Toeplitz matrix T = (ti− j )0≤i, j≤N can be embedded
into a 2N × 2N circulant matrix C2N [6,11]

C2N =
[
T T̂
T̂ T

]
, T̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 tN−1 . . . t2 t1
t1−N 0 tN−1 . . . t2

... t1−N 0
. . .

...

t−2
...

. . .
. . . tN−1

t−1 t−2 . . . t1−N 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (21)

The circulant matrix C2N can be decomposed as

C2N = F−1
2Ndiag(F2N c)F2N , (22)

where c is the first column vector ofC2N and F2N is the 2N ×2N discrete Fourier transform
matrix. It is well known that the matrix-vector multiplication F2Nv2N for v2N ∈ R2N can
be carried out in O(2N log(2N )) = O(N log N ) operations via the fast Fourier transform
(FFT). Therefore, C2Nv2N can be evaluated in O(N log N ) operations by (22).
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The same idea can be applied to other schemes in the previous section. The Meerschaert
scheme (15) for the costate equation can be expressed in the matrix form

(
Dk−1 + γAT

)
pk−1 = Dkpk + τ

(
yk−1 − ỹk−1

)
. (23)

It was shown in [30,32] that the matrix G is diagonal-dominant and positive-definite for
0 < β < 1, and so does A. Clearly the matrix A is Toeplitz, and the coefficient matrices
Dk + γA, Dk−1 + γAT are of diagonal-plus-Toeplitz type. Thus, the memory requirements
to store them are O(N ), instead of a traditional storage for them that uses O(N 2) of storage.
Furthermore, if r = 1/2, A is symmetric and positive-definite, so the conjugate gradient can
be used to solve the linear systems (18) and (23) iteratively. For r �= 1/2,A is nonsymmetric,
the conjugate gradient squared type of methods can be employed to solve the systems.

Similarly, the CN-WSGD schemes (16) and (17) can be expressed in the matrix forms

(
Dk− 1

2 + 1

2
γB

)
yk =

(
Dk− 1

2 − 1

2
γ B̄

)
yk−1 + τDk− 1

2

(
fk−

1
2 + uk−

1
2

)
(24)

and

(
Dk−1 + 1

2
γBT

)
pk−1 =

(
Dk − 1

2
γBT

)
pk + τ

(
yk−

1
2 − ỹk−

1
2

)
. (25)

Here B = rḠ + (1 − r)ḠT and Ḡ is also given by the expression in (20) with gi being

replaced by w
(2−β)
i . Dk− 1

2 , fk− 1
2 , uk− 1

2 , yk− 1
2 , and ỹk− 1

2 are their corresponding average at
time step tk−1 and tk . The matrix Ḡ was shown to be positive definite [28], and so is B.
Hence, the fast method described earlier in the subsection still applies.

4.2 A Fast Preconditioned Conjugate Gradient Algorithm

Although the fast Krylov subspace iterative solvers described in the previous subsection
significantly reduced the computational cost to O(N log N ) per iteration, large number of
iterations might be needed if the condition number of the coefficient matrix is large. In
addition, the round off errors accumulated due to large number of iterations might deteriorate
the convergence behavior of the iterative solvers [30]. Thismotivates us to use preconditioned
Krylov subspace solvers.

For r = 1/2, the coefficient matrices of the systems (18), (23), (24), and (25) are of
diagonal-plus-symmetric and positive-definite Toeplitz type. We modify the Strang precon-
ditioner as follows [27]: For the Toeplitz matrix T given in the previous subsection, the
diagonals s j of the Strang circulant preconditioner S(T) = (si− j )0≤i, j≤N are given by

sl =
⎧⎨
⎩
tl , 0 ≤ l ≤ N/2,
tl−N , N/2 < l < N ,

tl+N , −N < l < 0.
(26)

Then, the diagonal-plus-symmetric and positive-definite Toeplitz coefficient matrices in the
systems in (18), (23), (24), and (25) are preconditioned by the following circulant precondi-
tioner
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Mk = DkI + γS(T), (27)

where Dk = 1
N

∑N
i=1(d

−1)ki is the mean value of the diagonal elements of Dk , I is the
identity matrix of order N , and T = A for the systems (18) and (23) or T = B for (24) and
(25). We use the system (18) as an example to formulate the fast preconditioned conjugate
gradient method as follows [2]:

For a given initial guess y(0), compute
r(0) = Dkyk−1 + τDk(fk + uk) − (Dk + γA)y(0)

Solve Mkq(0) = r(0)

p(0) = q(0)

For i = 1, 2, . . .

αi−1 = (r(i−1))T p(i−1)

(p(i−1))T (Dk + γA)p(i−1)

y(i) = y(i−1) + αi−1p(i−1)

r(i) = r(i−1) − αi−1(Dk + γA)p(i−1)

δ = ‖r(i)‖
Check for convergence: if δ is small enough, exit
Solve Mkq(i) = r(i)

βi−1 = (q(i))T r(i)

(q(i−1))T r(i−1)

p(i) = q(i) + βi−1p(i−1)

end
yk = y(i)

In the above algorithm, all steps need O(N ) operations except for two matrix-vector
multiplications Ay(0), Ap(i−1), and the solution of the system Mkq(i) = r(i). The matrix-
vector multiplications can be carried out in O(N log N ) operations as shown in Sect. 4.1.
The preconditionerMk is an N × N circulant matrix and so can be decomposed similarly as
(22)

Mk = F−1
N diag(FN s)FN ,

where s is the first column vector of Mk and FN is the N × N discrete Fourier transform
matrix. It can be inverted in O(N log N ) operations.

4.3 A Fast Preconditioned Conjugate Gradient Squared Algorithm

For r �= 1/2, the stiffness matrices A and B in the systems (18), (23), (24), and (25) are
positive-definite but nonsymmatric Toeplitz matrices. We again use the Meerschaert scheme
(18) as an example to demonstrate the idea. We still use a circulant preconditioner of the
structureMk = DkI+γS(A). However, note thatS(A) is different from that of the symmetric
case. Of course, we can also replace S(A) by a T. Chan preconditioner [4]. Then a fast
preconditioned conjugate gradient squared algorithm for (18) can be formulated as follows
[2]:
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For a given initial guess y(0), compute
r(0) = Dkyk−1 + τDk(fk + uk) − (Dk + γA)y(0)

Choose r̃ (for example, r̃ = r(0))
for i = 1, 2, . . .

ρi−1 = r̃T r(i−1)

if ρi−1 = 0 method fails
if i = 1
w(1) = r(0)

e(1) = w(1)

else
βi−1 = ρi−1/ρi−2

w(i) = r(i−1) + βi−1q(i−1)

e(i) = w(i) + βi−1(q(i−1) + βi−1e(i−1))

end if
solve Mk ê = e(i)

v̂ = (Dk + γA)ê
αi = ρi−1/r̃T v̂
q(i) = w(i) − αi v̂
solve Mkŵ = w(i) + q(i)

y(i) = y(i−1) + αi ŵ
q̂ = (Dk + γA)ŵ
r(i) = r(i−1) − αi q̂
δ = ‖r(i)‖
Check for convergence: if δ is small enough, exit

end
yk = y(i)

5 Numerical Experiments

In this section we carry out numerical experiments to investigate the performance of the fast
gradient projection method. These methods were implemented using Compaq Visual Fortran
6.6 on a ThinkPad T410 Laptop.

5.1 An Optimal Control Problem with r = 0.5

We consider the optimal control problem (1) and (2) with the following data

β = 0.2, r = 0.5, T = 1, u0 = 1,

ỹ = 100x3(1 − x)2 sin(T − t)

(1 + xt)2
+ 100x2(1 − x)2 cos(T − t)

1 + xt

− sin(T − t)

Γ (1.2)

[
(x0.2 + (1 − x)0.2) − 5(x1.2 + (1 − x)1.2) + 50

11
(x2.2 + (1 − x)2.2)

]
,

f = −max
{100x2(1 − x)2 sin(T − t)

1 + xt
, 1
}
,

d = 1 + xt

100
. (28)
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The analytical solution of this problem is given by

y = 0,

p = −x2(1 − x)2 sin(T − t),

u = max
{100x2(1 − x)2 sin(T − t)

1 + xt
, 1
}
. (29)

Since r = 0.5, the coefficient matrices for the states equations are symmetric. We solve
the Meerschaert schemes (18) and (23) as well as the CN-WSGD systems (24) and (25) by
Gaussian elimination (Gauss), the fast conjugate gradient (CG) method, and the fast precon-
ditioned conjugate gradient (PCG) method. We present the l2 errors of the approximations
to y, p, and u, and the convergence rates of the PCG scheme in Tables 1 and 2, respectively.
Since Gauss elimination consumes too much CPU time, we skipped the numerical solution
by Gauss elimination for the finest mesh N = 210. We present the consumed CPU times of
the two schemes in Table 3.

Table 1 Performance of the Meerschaert scheme solved by Gauss, the CG, and the PCG solvers for the
example in Sect. 5.1

Gauss CG PCG

N = M ‖u − uh‖l2 ‖u − uh‖l2 ‖u − uh‖l2 Conv. rate

25 8.7775 × 10−3 8.7775 × 10−3 8.7775 × 10−3

26 4.3653 × 10−3 4.3653 × 10−3 4.3653 × 10−3 1.0077

27 2.1765 × 10−3 2.1766 × 10−3 2.1765 × 10−3 1.0040

28 1.0866 × 10−3 1.0866 × 10−3 1.0866 × 10−3 1.0022

29 5.4289 × 10−4 5.4289 × 10−4 5.4289 × 10−4 1.0011

210 N/A 2.7135 × 10−4 2.7135 × 10−4 1.0005

N = M ‖y − yh‖l2 ‖y − yh‖l2 ‖y − yh‖l2 Conv. rate

25 4.8164 × 10−3 4.8164 × 10−3 4.8164 × 10−3

26 2.4410 × 10−3 2.4410 × 10−3 2.4410 × 10−3 0.9805

27 1.2294 × 10−3 1.2294 × 10−3 1.2294 × 10−3 0.9895

28 6.1668 × 10−4 6.1668 × 10−4 6.1668 × 10−4 0.9953

29 3.0889 × 10−4 3.0889 × 10−4 3.0889 × 10−4 0.9974

210 N/A 1.5458 × 10−4 1.5458 × 10−4 0.9988

N = M ‖p − ph‖l2 ‖p − ph‖l2 ‖p − ph‖l2 Conv. rate

25 1.0563 × 10−4 1.0563 × 10−4 1.0563 × 10−4

26 5.2743 × 10−5 5.2743 × 10−5 5.2743 × 10−5 1.0020

27 2.6355 × 10−5 2.6355 × 10−5 2.6355 × 10−5 1.0009

28 1.3177 × 10−5 1.3177 × 10−5 1.3177 × 10−5 1.0001

29 6.5885 × 10−6 6.5884 × 10−6 6.5884 × 10−6 1.0000

210 N/A 3.2942 × 10−6 3.2942 × 10−6 1.0000
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Table 2 Performance of the CN-WSGD scheme solved by Gauss, the CG, and the PCG solvers for the
example in Sect. 5.1

Gauss CG PCG

N = M ‖u − uh‖l2 ‖u − uh‖l2 ‖u − uh‖l2 Conv. rate

25 1.8638 × 10−4 1.8638 × 10−4 1.8638 × 10−4

26 4.7115 × 10−5 4.7116 × 10−5 4.7116 × 10−5 1.9840

27 1.1823 × 10−5 1.1826 × 10−5 1.1825 × 10−5 1.9943

28 2.9603 × 10−6 2.9667 × 10−6 2.9647 × 10−6 1.9959

29 7.4318 × 10−7 7.5945 × 10−7 7.5488 × 10−7 1.9736

210 N/A 2.5293 × 10−7 2.2979 × 10−7 1.7159

N = M ‖y − yh‖l2 ‖y − yh‖l2 ‖y − yh‖l2 Conv. rate

25 9.5396 × 10−5 9.5396 × 10−5 9.5396 × 10−5

26 2.4422 × 10−5 2.4422 × 10−5 2.4422 × 10−5 1.9657

27 6.1533 × 10−6 6.1531 × 10−6 6.1531 × 10−6 1.9888

28 1.5344 × 10−6 1.5344 × 10−6 1.5343 × 10−6 2.0038

29 3.7645 × 10−7 3.7782 × 10−7 3.7709 × 10−7 2.0246

210 N/A 9.7558 × 10−8 9.3049 × 10−8 2.0188

N = M ‖p − ph‖l2 ‖p − ph‖l2 ‖p − ph‖l2 Conv. rate

25 5.5368 × 10−6 5.5369 × 10−6 5.5369 × 10−6

26 1.7756 × 10−6 1.7758 × 10−6 1.7758 × 10−6 1.6406

27 5.2820 × 10−7 5.2849 × 10−7 5.2845 × 10−7 1.7486

28 1.5095 × 10−7 1.5137 × 10−7 1.5130 × 10−7 1.8043

29 4.2087 × 10−8 4.2672 × 10−8 4.2596 × 10−8 1.8286

210 N/A 1.2560 × 10−8 1.2312 × 10−8 1.7906

Table 3 The consumed CPU times of the two schemes solved by Gauss, the CG, and the PCG solvers for the
example in Sect. 5.1

Euler-Grünwald CN-WSGD

N = M Gauss CG PCG Gauss CG PCG

25 0.09s 0.22s 0.19s 0.14s 0.25s 0.25s

26 0.89s 1.00s 0.81s 1.11s 0.98s 0.92s

27 20s 4.88s 3.64s 20s 4.16s 3.77s

28 8m 18s 23s 14s 9m7s 18s 15s

29 2h 47m 50s 1m 45s 58s 2h 53m 18s 1m 19s 1m 2s

210 N/A 8m 24s 3m 55s N/A 6m 14s 4m 17s

We observe from Tables 1 and 2 that Gauss, the CG and the PCG solvers generate almost
identical numerical solutions. Thus, we only compute the convergence rates of the PCG
solutions as an indicator. The fast gradient projection method, as an iterated method for the

123



J Sci Comput (2016) 68:1–20 15

Table 4 Performance of the Meerschaert scheme solved by Gauss, the CGS, and the PCGS solvers for the
example in Sect. 5.2

Gauss CGS PCGS

N = M ‖u − uh‖l2 ‖u − uh‖l2 ‖u − uh‖l2 Conv. rate

25 8.4267 × 10−3 8.4267 × 10−3 8.4267 × 10−3

26 4.1978 × 10−3 4.1978 × 10−3 4.1978 × 10−3 1.0053

27 2.0950 × 10−3 2.0950 × 10−3 2.0950 × 10−3 1.0027

28 1.0464 × 10−3 1.0464 × 10−3 1.0464 × 10−3 1.0015

29 5.2296 × 10−4 5.2296 × 10−4 5.2296 × 10−4 1.0007

210 N/A N/A 2.6142 × 10−4 1.0003

N = M ‖y − yh‖l2 ‖y − yh‖l2 ‖y − yh‖l2 Conv. rate

25 4.6956 × 10−3 4.6956 × 10−3 4.6956 × 10−3

26 2.3799 × 10−3 2.3799 × 10−3 2.3799 × 10−3 0.9804

27 1.1986 × 10−3 1.1986 × 10−3 1.1986 × 10−3 0.9896

28 6.0125 × 10−4 6.0125 × 10−4 6.0125 × 10−4 0.9953

29 3.0117 × 10−4 3.0117 × 10−4 3.0117 × 10−4 0.9974

210 N/A N/A 1.5071 × 10−4 0.9988

N = M ‖p − ph‖l2 ‖p − ph‖l2 ‖p − ph‖l2 Conv. rate

25 1.0103 × 10−4 1.0103 × 10−4 1.0103 × 10−4

26 5.0549 × 10−5 5.0549 × 10−5 5.0549 × 10−5 0.9990

27 2.5288 × 10−5 2.5288 × 10−5 2.5288 × 10−5 0.9992

28 1.2651 × 10−5 1.2651 × 10−5 1.2651 × 10−5 0.9992

29 6.3275 × 10−6 6.3275 × 10−6 6.3275 × 10−6 0.9996

210 N/A N/A 3.1644 × 10−6 0.9997

coupled nonlinear system, retains the first order convergence rate of Meerschaert scheme and
the second order convergence rate of the CN-WSGD scheme, respectively. These results,
together with the results in Table 3, show the utility of the fast preconditioned conjugate
gradient method.

5.2 An Optimal Control Problem with r = 0.8

We consider the same example as in Sect. 5.1 except that r = 0.8 and

ỹ = 100x3(1 − x)2 sin(T − t)

(1 + xt)2
+ 100x2(1 − x)2 cos(T − t)

1 + xt

−2 sin(T − t)

5Γ (1.2)

[(
x0.2 + 4(1 − x)0.2

)

−5
(
x1.2 + 4(1 − x)1.2

) + 50

11

(
x2.2 + 4(1 − x)2.2

)]
. (30)

The true solution of this problems is the same as the one in Sect. 5.1.
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Table 5 Performance of the CN-WSGD scheme solved by Gauss, the CGS, and the PCGS solvers for the
example in Sect. 5.2

Gauss CGS PCGS

N = M ‖u − uh‖l2 ‖u − uh‖l2 ‖u − uh‖l2 Conv. rate

25 1.9119 × 10−4 1.9119 × 10−4 1.9119 × 10−4

26 4.8584 × 10−5 4.8584 × 10−5 4.8578 × 10−5 1.9766

27 1.2228 × 10−5 1.2228 × 10−5 1.2219 × 10−5 1.9912

28 3.0667 × 10−6 3.0669 × 10−6 3.0558 × 10−6 1.9995

29 7.7081 × 10−7 7.7084 × 10−7 7.6673 × 10−7 1.9948

210 N/A 1.9603 × 10−7 1.9599 × 10−7 1.9679

N = M ‖y − yh‖l2 ‖y − yh‖l2 ‖y − yh‖l2 Conv. rate

25 9.5732 × 10−5 9.5732 × 10−5 9.5730 × 10−5

26 2.4534 × 10−5 2.4534 × 10−5 2.4530 × 10−5 1.9644

27 6.1905 × 10−6 6.1905 × 10−6 6.1847 × 10−6 1.9878

28 1.5459 × 10−6 1.5456 × 10−6 1.5377 × 10−6 2.0079

29 3.7990 × 10−7 3.7983 × 10−7 3.7699 × 10−7 2.0282

210 N/A 8.8457 × 10−8 8.8383 × 10−8 2.0927

N = M ‖p − ph‖l2 ‖p − ph‖l2 ‖p − ph‖l2 Conv. rate

25 6.7384 × 10−6 6.7384 × 10−6 6.7385 × 10−6

26 2.0756 × 10−6 2.0756 × 10−6 2.0758 × 10−6 1.6988

27 5.9744 × 10−7 5.9744 × 10−7 5.9767 × 10−7 1.7963

28 1.6612 × 10−7 1.6612 × 10−7 1.6639 × 10−7 1.8448

29 4.5253 × 10−8 4.5253 × 10−8 4.5386 × 10−8 1.8742

210 N/A 1.2157 × 10−8 1.2178 × 10−8 1.8980

As r = 0.8, the stiffnessmatrices of the numerical schemes are nonsymmetric, sowe solve
the Meerschaert schemes (18) and (23) and the CN-WSGD schemes (24) and (25) by Gauss
elimination, the fast conjugate gradient squared (CGS) method, and the fast preconditioned
conjugate gradient squared (PCGS)method.We present the corresponding results in Tables 4,
5 and 6, respectively.

We observe roughly the same convergence behavior as those in Sect. 5.1. One impor-
tant exception is that for the Meerschaert scheme with the finest mesh M = N = 210

the CGS solver diverged. As a matter of fact, the CGS solver does not converge within 4
hours of CPU time. In contrast, the PCGS solver still converged in 6 minutes and 15 sec-
onds of CPU time. In other words, the PCGS solver not only reduced the CPU time of
the CGS solver, but also improved its convergence behavior. Furthermore, the CGS solver
converged for the CN-WSGD scheme at M = N = 210. This showed an additional com-
putational benefit of the second-order CN-WSGD scheme over the first-order Meerschaert
scheme.
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Table 6 The consumed CPU times of the two schemes solved by Gauss, the CGS, and the PCGS solvers for
the example in Sect. 5.2

Meerschaert scheme CN-WSGD

N = M GAUSS CGS PCGS GAUSS CGS PCGS

25 0.09s 0.28s 0.23s 0.13s 0.30s 0.27s

26 0.91s 1.34s 0.98s 1.09s 1.30s 1.05s

27 20s 6.91s 4.53s 21s 5.84s 4.25s

28 8m 12s 35s 20s 8m 17s 27s 17s

29 2h 41m 23s 3m 1s 1m 29s 2h 43m 2s 2m 15s 1m 13s

210 N/A N/A 6m 15s N/A 11m 22s 5m 51s

Table 7 Performance of the Meerschaert scheme solved by Gauss, the CGS, and the PCGS solvers for the
example in Sect. 5.3

GAUSS CGS PCGS

N = M ‖u − uh‖l2 ‖u − uh‖l2 ‖u − uh‖l2 Conv. rate

25 1.5656 × 10−2 1.5656 × 10−2 1.5656 × 10−2

26 7.8740 × 10−3 7.8740 × 10−3 7.8740 × 10−3 0.9915

27 3.9488 × 10−3 3.9488 × 10−3 3.9488 × 10−3 0.9957

28 1.9774 × 10−3 1.9774 × 10−3 1.9774 × 10−3 0.9978

29 9.8945 × 10−4 9.8945 × 10−4 9.8945 × 10−4 0.9989

210 N/A N/A 4.9491 × 10−4 0.9995

N = M ‖y − yh‖l2 ‖y − yh‖l2 ‖y − yh‖l2 Conv. rate

25 7.9224 × 10−3 7.9224 × 10−3 7.9224 × 10−3

26 4.0504 × 10−3 4.0504 × 10−3 4.0504 × 10−3 0.9679

27 2.0486 × 10−3 2.0486 × 10−3 2.0486 × 10−3 0.9834

28 1.0302 × 10−3 1.0302 × 10−3 1.0302 × 10−3 0.9917

29 5.1661 × 10−4 5.1661 × 10−4 5.1661 × 10−4 0.9958

210 N/A N/A 2.5869 × 10−4 0.9979

N = M ‖p − ph‖l2 ‖p − ph‖l2 ‖p − ph‖l2 Conv. rate

25 1.8107 × 10−4 1.8107 × 10−4 1.8107 × 10−4

26 9.1388 × 10−5 9.1388 × 10−5 9.1388 × 10−5 0.9864

27 4.5912 × 10−5 4.5912 × 10−5 4.5912 × 10−5 0.9931

28 2.3012 × 10−5 2.3012 × 10−5 2.3012 × 10−5 0.9965

29 1.1520 × 10−5 1.1520 × 10−5 1.1520 × 10−5 0.9982

210 N/A N/A 5.7637 × 10−6 0.9991
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Table 8 Performance of the CN-WSGD scheme solved by Gauss, the CGS, and the PCGS solvers for the
example in Sect. 5.3

GAUSS CGS PCGS

N = M ‖u − uh‖l2 ‖u − uh‖l2 ‖u − uh‖l2 Conv. rate

25 2.5443 × 10−4 2.5443 × 10−4 2.5444 × 10−4

26 6.5173 × 10−5 6.5174 × 10−5 6.5179 × 10−5 1.9648

27 1.6528 × 10−5 1.6528 × 10−5 1.6531 × 10−5 1.9792

28 4.1939 × 10−6 4.1939 × 10−6 4.1948 × 10−6 1.9785

29 1.0650 × 10−6 1.0651 × 10−6 1.0657 × 10−6 1.9768

210 N/A N/A 2.7541 × 10−7 1.9521

N = M ‖y − yh‖l2 ‖y − yh‖l2 ‖y − yh‖l2 Conv. rate

25 1.3542 × 10−4 1.3542 × 10−4 1.3542 × 10−4

26 3.4955 × 10−5 3.4955 × 10−5 3.4957 × 10−5 1.9538

27 8.8796 × 10−6 8.8796 × 10−6 8.8813 × 10−6 1.9767

28 2.2334 × 10−6 2.2334 × 10−6 2.2338 × 10−6 1.9913

29 5.4987 × 10−7 5.4987 × 10−7 5.5013 × 10−7 2.0216

210 N/A N/A 1.2568 × 10−7 2.1300

N = M ‖p − ph‖l2 ‖p − ph‖l2 ‖p − ph‖l2 Conv. rate

25 8.4539 × 10−6 8.4539 × 10−6 8.4540 × 10−6

26 2.5212 × 10−6 2.5212 × 10−6 2.5213 × 10−6 1.7455

27 7.0685 × 10−7 7.0685 × 10−7 7.0693 × 10−7 1.8345

28 1.9205 × 10−7 1.9205 × 10−7 1.9207 × 10−7 1.8799

29 5.1264 × 10−8 5.1264 × 10−8 5.1277 × 10−8 1.9053

210 N/A N/A 1.3535 × 10−8 1.9216

Table 9 The consumed CPU times of the two schemes solved by Gauss, the CGS, and the PCGS solvers for
the example in Sect. 5.3

Euler–Grünwald CN-WSGD

N = M GAUSS CGS PCGS GAUSS CGS PCGS

25 0.09 s 0.36 s 0.28 s 0.13 s 0.36 s 0.31 s

26 0.97 s 1.72s 1.17 s 1.11 s 1.56 s 1.27 s

27 21s 8.48s 5.14 s 21s 7.23s 5.41 s

28 8m 27s 45s 22s 8m 32s 37s 24s

29 2h 51m 41s 4m 10s 1m 45s 3h 27s 3m 7s 1m 47s

210 N/A N/A 9m 10s N/A N/A 8m 19s
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5.3 An Optimal Control Problem with r = 1

We consider the optimal control problem (1) and (2) with the following data

T = 1, u0 = 1, β = 0.2, r = 1,

ỹ = x2(1 − x) sin(T − t) + 100x2(1 − x)2 sin(T − t)

(1 + xt)2

+100x(1 − x)2 cos(T − t)

1 + xt
− sin(T − t)

Γ (1.2)

[
2(1 − x)0.2 − 5(1 − x)1.2

]
,

f = −x2(1 − x) cos(T − t) − (1 + xt) sin(T − t)

100Γ (1.2)

[
2x0.2 − 5x1.2

]

−max
{100x(1 − x)2 sin(T − t)

1 + xt
, 1
}
,

d = 1 + xt

100
. (31)

The true solution to the problem is

y = x2(1 − x) sin(T − t)

p = −x(1 − x)2 sin(T − t)

u = max
{100x(1 − x)2 sin(T − t)

1 + xt
, 1
}
. (32)

This example has even stronger nonsymmetry, as the containing fractional diffusion equa-
tions are one-sided equations. Namely, the state equation is a left-sided fractional diffusion
equation while the costate equation is a right-sided equation. We solve the Meerschaert
schemes (18) and (23) and the CN-WSGD schemes (24) and (25) by Gauss elimination, the
CGS method, and the PCGS method. We present the corresponding results in Tables 7, 8 and
9, respectively.

We observe similar convergence behavior as in Sect. 5.2 except that the CGS solver
diverged even for the CN-WSGD scheme at M = N = 210. In contrast, the PCGS method
still converges for both the Meerschaert scheme and the CN-WSGD scheme. This again
shows the utility of the PCGS method.
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