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Abstract As the number of processor cores on supercomputers becomes larger and larger,
algorithms with high degree of parallelism attract more attention. In this work, we propose
a two-level space–time domain decomposition method for solving an inverse source prob-
lem associated with the time-dependent convection–diffusion equation in three dimensions.
We introduce a mixed finite element/finite difference method and a one-level and a two-level
space–time parallel domain decomposition preconditioner for the Karush–Kuhn–Tucker sys-
tem induced from reformulating the inverse problem as an output least-squares optimization
problem in the entire space-time domain. The new full space–time approach eliminates the
sequential steps in the optimization outer loop and the inner forward and backward time
marching processes, thus achieves high degree of parallelism. Numerical experiments vali-
date that this approach is effective and robust for recovering unsteady moving sources. We
will present strong scalability results obtained on a supercomputer with more than 1000
processors.
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1 Introduction

In this paper, we consider an inverse problem associatedwith the time-dependent convection–
diffusion equation defined in Ω ∈ R3:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂C

∂t
= ∇ · (a(x)∇C) − ∇ · (v(x)C) + f (x, t), 0 < t < T, x ∈ Ω

C(x, t) = p(x, t), x ∈ Γ1

a(x)
∂C

∂n
= q(x, t), x ∈ Γ2

C(x, 0) = C0(x), x ∈ Ω,

(1)

where f (x, t) is the source profile to be recovered, a(x) and v(x) are the given diffusivity and
convective coefficients, andΓ1 andΓ2 are twodisjoint parts of the boundary ∂Ω . Dirichlet and
Neumann boundary conditions are imposed respectively on Γ1 and Γ2.When the observation
data C(x, t) is available at certain locations, several classes of inverse problems associated
with the convection–diffusion equation (1) have been investigated, such as the recovery of
the diffusivity coefficient with applications in, for examples, laminar wavy film flows [21],
and flows in porous media [27], the recovery of the source with applications in, for examples,
convective heat transfer problems [39], indoor airborne pollutant tracking [25], and ground
water contamination modeling [29,32,36], etc.

The main focus of this work is to study the following inverse problem: given the measure-
ment dataCε(x, t) ofC(x, t) at some locations insideΩ for the period 0 < t < T (ε denotes
the noise level), we try to recover the space–time-varying source locations and intensities,
i.e., the source function f (x, t) in Eq. (1). The inverse source problem has been studied in
different cases, for example, the recovering of the location and time-dependent intensity of
point sources in [4,13,20,34], the piecewise-constant sources in [3,37] and Gaussian con-
centrated sources in [2,3]. Among these different approaches, the Tikhonov optimization
method is most popular [4,13,19,34], which reformulates the original inverse source prob-
lem into an output least-squares optimization problem with PDE-constraints, by introducing
some appropriate regularizations to ensure the stability of the resulting optimization problem
with respect to the change of noise in the observation data [14,35].

We define the following objective functional with Tikhonov regularization:

J ( f ) = 1

2

∫ T

0

∫

Ω

A(x)(C(x, t) − Cε(x, t))2 dxdt + Nβ( f ), (2)

where C = C( f ) is the solution to the system (1) corresponding to a given source f, A(x) is
the data range indicator function given by A(x) = ∑s

i=1 δ(x−xi ), with x1, x2, . . . , xs being
a set of specified locations where the concentration C is measured, and Cε(x, t) represents
the measurement of C(x, t) at a specified location x and time t . The term Nβ( f ) in (2) is
called the regularization with respect to the source. Since f (x, t) depends on both space and
time, we propose the following space–time H1–H1 regularization:

Nβ( f ) = β1

2

∫ T

0

∫

Ω

| ḟ |2dxdt + β2

2

∫ T

0

∫

Ω

|∇ f |2dxdt. (3)
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Here β1 and β2 are two regularization parameters. Other regularizations, such as H1–L2,
may be used, but we will show later by numerical experiments that H1–H1 regularization
may offer better numerical reconstructions.

Various approaches are available for the minimization of the nonlinear functional J ( f )
in (2) associated with the system (1) [22,34,38]. One of the approaches is the Lagrange
multiplier method, which converts the constrained minimization of functional J ( f ) into a
unconstrained minimization of the corresponding Lagrange functional of J ( f ). This results
in the solution of a so-called Karush–Kuhn–Tucker (KKT) system [23], which involves three
coupled time-dependent PDEs here, namely the governing equation (1) for the concentration
C , its adjoint equation for the Lagrange multiplier and the equation for the identifying source
function f ; see Sect. 2 for more detail. For solving such a KKT system, the traditional
reduced space SQP method is a popular and natural choice [2,13,34]. The SQP method
solves the three coupled PDEs in the KKT system alternatively by iteration. One may see the
essential sequential feature of the SQP: the outer iteration is sequential among the solutions
of three PDEs, the governing equation (1) is forward in time, and the adjoint equation for
the Lagrange multiplier is backward in time. The parallelization of the SQP may happen
for the solution of each of the three time-dependent PDEs, which can be solved by, e.g., the
traditional fast algorithms such as domain decomposition and multigrid methods [2]. SQP
requires low memory, but it usually takes a large number of iterations to reach convergence.
Because of its essential sequential feature, the reduced space SQP method is less ideal for
parallel computers with a large number of processor cores, compared with the full space
SQP methods. Full space methods were studied for steady state problems in [9,11], but for
unsteady problems it needs to eliminate the sequential steps in the outer iteration of the SQP
and solve the full space–time system as a coupled system. Because of the much larger size of
the system, the full space approach may not be suitable for parallel computer systems with
a small number of processor cores, but it has fewer sequential steps and thus offers a much
higher degree of parallelism required by large scale supercomputers [12].

It is a very active research direction to construct efficient parallelizationmethods for highly
nonlinear optimizations constrained with PDEs. An unsteady PDE-constrained optimization
problem was solved in [38] for the boundary control of unsteady incompressible flows by
solving a subproblem at each time step. It has the sequential time-marching process and
each subproblem is steady-state. The parareal algorithms were studied in [5,15,24], which
involve a coarse-grid solver for prediction and a fine-grid solver for correction in time. Parallel
implicit time integratormethod (PITA), space–timemultigrid, multiple shootingmethods can
be categorized as improved versions of the parareal algorithm [17,18]. The parareal algorithm
combined with domain decomposition method [26] or multigrid method can be powerful.
However, most existing parareal related studies have focused mainly on the stability and
convergence [16].

In this work, we will study an effective reconstruction of the time history and intensity
profile of a source function simultaneously. For this aim, we propose a fully implicit, mixed
finite element and finite difference discretization scheme for the globally coupled KKT
system, and a corresponding space–time overlapping Schwarz preconditioner for solving
the large-scale discretised KKT system. The method removes all the sequential inner time
steps and achieves full parallelization in both space and time. We shall not compare the
proposed method with traditional reduced space SQP methods, since it is likely that, for
supercomputers with a small number of processor cores, the traditional approach is still a
better choice. The focus of the current study is to formulate the technical details of our
new space–time parallel algorithm, which may play a promising role for future exascale
computing systems. Furthermore, to resolve the dilemma that the number of linear iterations
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of one-level methods increases with the number of processors [33], we will develop a two-
level space–time hybrid Schwarz preconditioner, which offers better performance in terms
of the number of iterations and the total compute time.

The rest of the paper is arranged as follows. In Sect. 2, we describe the mathematical
formulation of the inverse problem and the derivation of the KKT system. We propose, in
Sect. 3, the main algorithm of the paper, and discuss several technical issues involved in the
fully implicit discretization scheme and the one- and two-level overlapping Schwarzmethods
for solving the KKT system. Numerical experiments for the recovery of 3D sources are given
in Sect. 4, and some concluding remarks are provided in Sect. 5.

2 Strong Formulation of KKT System

We now derive the KKT system of theminimisation of J ( f ) in (2) combined with the Eq. (1).
To do so, we formally write the first equation in (1) as an operator equation L(C, f ) = 0. By
introducing a Lagrange multiplier or adjoint variable G ∈ H1(0, T ; H1(Ω)), the Lagrange
functional [3,22]

J (C, f,G) = 1

2

∫ T

0

∫

Ω

A(x)(C − Cε)2dxdt + Nβ( f ) + (G, L(C, f )) (4)

transforms the PDE-constrained minimization of J ( f ) in (2) into an unconstrained saddle-
point optimization problem,where (G, L(C, f )) denotes the inner product ofG and L(C, f ).
Two approaches are available for the resulting saddle-point optimization ofJ , the optimize–
then–discretize approach and the discretize–then–optimize approach. The first approach
derives a continuous optimality system and then applies certain discretization scheme, such
as a finite element method to obtain a discrete system ready for computation. The second
approach discretizes the Lagrange functionalJ , and then the objective functional becomes a
finite dimensional quadratic polynomial. The solution algorithm is then based on the polyno-
mial system. The two approaches perform the approximation and discretization at different
stages, both have been applied successfully [28]. We shall use the optimize–then–discretize
approach in this work.

The first-order optimality conditions of J in (4), i.e., the KKT system, is obtained by
taking its variations with respect to G, C and f as

⎧
⎪⎨

⎪⎩

JG(C, f,G)v = 0

JC (C, f,G)w = 0

J f (C, f,G)g = 0

(5)

for all v,w ∈ L2(0, T ; H1
Γ1

(Ω)) with zero traces on Γ1 and g ∈ H1(0, T ; H1(Ω)). Then
by using integration by parts, we may derive the following strong form of the KKT system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂C

∂t
− ∇ · (a∇C) + ∇ · (v(x)C) − f = 0

−∂G

∂t
− ∇ · (a∇G) − v(x) · ∇G + A(x)C = A(x)Cε

G + β1
∂2 f

∂t2
+ β2Δ f = 0.

(6)

To derive the boundary, initial and terminal conditions for each variable of the equations, we
make use of the property that (5) holds for arbitrary directional functions v,w and g. For
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the state equation, i.e., the first one in (6), it maintains the same conditions as in (1). For the
adjoint equation, i.e., the second one in (5) or (6), we can deduce by integration by parts for
any test function w ∈ L2(0, T ; H1

Γ1
(Ω)) with w(·, 0) = 0 and a(x)∂w/∂n = 0 on Γ2:

JC (C, f,G)w =
∫ T

0

∫

Ω

A(x)(C − Cε)wdxdt +
∫

Ω

G(x, T )w(x, T )dx

−
∫ T

0

∫

Ω

(
∂G

∂t
+ ∇ · (a(x)∇G) + v(x) · ∇G

)

wdxdt

−
∫ T

0

∫

Γ1

(

a(x)
∂w

∂n

)

GdΓ dt

+
∫ T

0

∫

Γ2

(

a(x)
∂G

∂n
+ v(x) · n

)

wdΓ dt.

By the arbitrariness of w, the boundary and terminal conditions for G are derived:

G(x, t) = 0, x ∈ Γ1, t ∈ [0, T ]
a(x)

∂G

∂n
+ v(x) · n = 0, x ∈ Γ2, t ∈ [0, T ]

G(x, T ) = 0, x ∈ Ω.

Similarly for the third equation of (5) or (6), we can deduce

J f (C, f,G)g = −
∫ T

0

∫

Ω

Ggdxdt +
∫ T

0

∫

Ω

( ḟ ġ + ∇ f · ∇g)dxdt

= −
∫ T

0

∫

Ω

Ggdxdt + ( ḟ g)|t=0,T −
∫ T

0

∫

Ω

f̈ g

+
∫ T

0

∫

∂Ω

∂ f

∂n
gdΓ dt −

∫ T

0

∫

Ω

Δ f gdxdt

= −
∫ T

0

∫

Ω

(G + f̈ + Δ f )gdxdt + ( ḟ g)|t=0,T +
∫ T

0

∫

∂Ω

∂ f

∂n
gdΓ dt.

Using the arbitrariness of g, we derive the boundary, initial and terminal conditions for f :

∂ f

∂t
= 0 for t = 0, T, x ∈ Ω ; ∂ f

∂n
= 0 for x ∈ ∂Ω, t ∈ [0, T ]. (7)

3 A Fully Implicit and Fully Coupled Method

In this section, we first introduce a mixed finite element and finite difference method for the
discretization of the continuous KKT system derived in the previous section, then we briefly
mention the algebraic structure of the discrete system of equations. In the second part of the
section, we introduce the one- and two-level space–time Schwarz preconditioners that are
the most important components for the success of the overall algorithm.

3.1 Fully Implicit Space–Time Discretization

In this subsection, we introduce a fully implicit finite element/finite difference scheme to
discretize (6). To discretize the state and adjoint equations, i.e., the first two equations in
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(6), we use a second-order Crank–Nicolson finite difference scheme in time and a piecewise
linear continuous finite element method in space. Consider a regular triangulation T h of
domainΩ , and a time partition Pτ of the interval [0, T ]: 0 = t0 < t1 < · · · < t M = T,with
tn = nτ, τ = T/M . Let V h be the piecewise linear continuous finite element space on T h ,
and V̊ h be the subspace of V h with zero trace on Γ1. We introduce the difference quotient
and the averaging of a function ψ(x, t) as

∂τψ
n(x) = ψn(x) − ψn−1(x)

τ
, ψ̄n(x) = 1

τ

∫ tn

tn−1
ψ(x, t)dt,

with ψn(x) := ψ(x, tn). Let πh be the finite element interpolation associated with the
space V h , then we obtain the discretizations for the state and adjoint equations by find-
ing the sequence of approximations Cn

h ,Gn
h ∈ V h for n = 0, 1, . . . , M such that

C0
h = πhC0, GM

h = 0, and Cn
h (x) = πh p(x, tn),Gn

h(x) = 0 for x ∈ Γ1, and satisfying

⎧
⎪⎨

⎪⎩

(
∂τCn

h , vh
) + (

a∇C̄n
h ,∇vh

) + (∇ · (
vC̄n

h

)
, vh

) = (
f̄ nh , vh

) + 〈q̄n, vh〉Γ2 , ∀ vh ∈ V̊ h

− (
∂τGn

h, wh
) + (

a∇Ḡn
h,∇wh

) + (∇ · (vwh) , Ḡn
h

)

= − (
A(x)

(
C̄n
h (x) − C̄ε,n(x)

)
, wh

)
, ∀wh ∈ V̊ h .

(8)

Unlike the approximations of the forward and adjoint equations in (8), we shall approxi-
mate the source function f differently. We know that the source function satisfies an elliptic
equation [see the third equation in (6)] in the space–time domain Ω × (0, T ). So we shall
apply T h × Pτ to generate a partition of the space–time domain Ω × (0, T ), and then apply
the piecewise linear finite element method in both space (three dimensions) and time (one
dimension), denoted by W τ

h , to approximate the source function f . Then the equation for
f ∈ W τ

h can be discretized as follows: Find the sequence of f nh for n = 0, 1, . . . , M such
that

− (Gn
h, g

τ
h ) + β1(∂τ f nh , ∂τ g

τ
h ) + β2(∇ f nh ,∇gτ

h ) = 0, ∀ gτ
h ∈ W τ

h . (9)

The coupled system (8)–(9) is the so-called fully discretized KKT system. In the Appendix,
we provide some details of the discrete structure of this KKT system.

3.2 One- and Two-Level Space–Time Schwarz Preconditioner

The unknowns of the KKT system (8)–(9) are often ordered physical variable by physical
variable, namely in the form

Ũ = (C0,C1, . . . ,CM ,G0,G1, . . . ,GM , f 0, f 1, . . . , f M )T .

Such ordering is used extensively in reduced space SQP methods [13]. In our all-at-once
method, the unknowns C,G and f are ordered mesh point by mesh point and time step by
time step, and all unknowns associated with a point stay together as a block. At each mesh
point x j , j = 1, . . . , N , and time step tn, n = 0, . . . , M , the unknowns are arranged in
the order ofCn

j ,G
n
j , f nj . Such ordering avoids zero values on the main diagonal of the matrix

and has better cache performance for point-block LU (or ILU) factorization based subdomain
solvers. More precisely, we define the solution vector as
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U = (C0
1 ,G

0
1, f 01 , . . . ,C0

N ,G0
N , f 0N ,C1

1 ,G
1
1, f 11 , . . . ,C1

N ,G1
N , f 1N , . . . ,CM

1 ,GM
1 , f M1 ,

. . . , CM
N ,GM

N , f MN )T .

then the linear system (8)–(9) is rewritten as

FhU = b, (10)

where Fh is a sparse block matrix of size (M + 1)(3N ) by (M + 1)(3N ) with the following
block structure:

Fh =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

S00 S01 0 · · · 0
S10 S11 S12 · · · 0

0
. . .

. . .
. . . 0

0 · · · SM−1,M−2 SM−1,M−1 SM−1,M

0 · · · 0 SM,M−1 SM,M

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where the block matrices Si j for 0 ≤ i, j ≤ M are of size 3N × 3N and most of its elements
are zero matrices except the ones in the tridiagonal stripes {Si,i−1}, {Si,i }, {Si,i+1}. It is noted
that if we denote the submatrices for C,G and f of size N × N respectively by SCi j , S

G
i j , S

f
i j

in each block Si j , the sparsity of the matrices are inconsistent, namely, S f
i j is the densest and

SGi j is the sparest. This is due to the discretization scheme we have used. The system (10) is
large-scale and ill-conditioned, therefore is difficult to solve because the space–time coupled
system is denser than the decoupled system, especially in three dimensions.

We shall design the preconditioner by extending the classical spatial Schwarz precon-
ditioner to include both spatial and temporal variables. Such an approach eliminates all
sequential steps and the unknowns at all time steps are solved simultaneously. We use a
right-preconditioned Krylov subspace method to solve (10),

FhM
−1U ′ = b,

where M−1 is a space–time Schwarz preconditioner and U = M−1U ′.
Denoting the space–time domain by Θ = Ω × (0, T ), an overlapping decomposition of

Θ is defined as follows: we divide Ω into Ns subdomains, Ω1,Ω2, . . . , ΩNs , then partition
the time interval [0, T ] into Nt subintervals using the partition: 0 < T1 < T2 < · · · <

TNt . By coupling all the space subdomains and time subintervals, a decomposition of Θ

is Θ = ∪Ns
i=1(∪Nt

j=1Θi j ), where Θi j = Ωi × (Tj−1, Tj ). For convenience, the number of
subdomains, i.e. NsNt , is equal to the number of processors. These subdomains Θi j are
then extended to Θ ′

i j to overlap each other. The boundary of each subdomain is extended
by an integral number of mesh cells in each dimension, and we trim the cells outside of
Θ . The corresponding overlapping decomposition of Θ is Θ = ∪Ns

i=1(∪Nt
j=1Θ

′
i j ). See the

left figure of Fig. 1 for the overlapping extension. The matrix on each subdomain Θ ′
i j =

Ω ′
i × (T ′

j−1, T
′
j ), i = 1, 2, . . . , Ns, j = 1, 2, . . . , Nt is the discretized version of the

following system of PDEs
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
= ∇ · (a(x)∇C) − ∇ · (v(x)C) + f (x, t), (x, t) ∈ Θ ′

i j

∂G

∂t
= −∇ · (a(x)∇G) − v(x) · ∇G

+ A(x)(C(x, t) − Cε(x, t)), (x, t) ∈ Θ ′
i j

β1
∂2 f

∂t2
+ β2Δ f + G = 0, (x, t) ∈ Θ ′

i j

(11)
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Fig. 1 Left a sample overlapping decomposition in space–time domain Θ on a fine mesh. Right the same
decomposition on the coarse mesh

with the following boundary conditions

C(x, t) = 0, G(x, t) = 0, f (x, t) = 0, x ∈ ∂Ω ′
i , t ∈ [T ′

j−1, T
′
j ] (12)

along with the initial and terminal time boundary conditions
{
C(x, T ′

j−1) = 0, G(x, T ′
j−1) = 0, f (x, T ′

j−1) = 0, x ∈ Ω ′
i

C(x, T ′
j ) = 0, G(x, T ′

j ) = 0, f (x, T ′
j ) = 0, x ∈ Ω ′

i .
(13)

One may notice from (13) that the homogenous Dirichlet boundary conditions are applied
in each time interval (T ′

j−1, T
′
j ), as the solution of the subdomain problem is not really

physical. This is one of the major differences between the space–time Schwarz method and
the parareal algorithm [24]. The time boundary condition for each subproblem of the parareal
algorithm is obtained by an interpolation of the coarse solution, and if the coarse mesh is
fine enough, the solution of the subdomain problem is physical. Therefore, the parareal
algorithms can be used as a solver, but our space–time Schwarz method can only be used
as a preconditioner. Surprisingly, as we shall see from our numerical experiments in Sect. 4,
the Schwarz preconditioner is an excellent one even though the time boundary conditions
violate the physics.

We solve the subdomain problems using the same method as for the global problem (10),
no time-marching is performed in our new algorithm, and all unknowns affiliated with the
subdomain are solved simultaneously. Let Mi j be the matrix generated in the same way
as the global matrix Fh in (10) but for the subproblem (11)–(13), and M̃−1

i j be an exact or
approximate inverse of Mi j . By denoting the restriction matrix fromΘ to the subdomainΘ ′

i j

by Rδ
i j , with overlapping size δ, we propose the following one-level space–time restricted

Schwarz preconditioner for the global matrix Fh :

M−1
one-level =

Nt∑

j=1

Ns∑

i=1

(Rδ
i j )

T M̃−1
i j R0

i j .

As it is well known, any one-level domain decomposition methods are not scalable with
the increasing number of subdomains or processors [33]. Instead one should have multilevel
methods in order to observe possible scalable effects [1,33]. We now propose a two-level
space–time additive Schwarz preconditioner. To do so, we partition Ω with a fine mesh
Ωh and a coarse mesh Ωc. For the time interval, we have a fine partition Pτ and a coarse
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partition Pτc with τ < τc. We will adopt a nested mesh, i.e., the nodal points of the coarse
mesh Ωc × Pτc are a subset of the nodal points of the fine mesh Ωh × Pτ . In practice, the
size of the coarse mesh should be adjusted properly to obtain the best performance. On the
fine level, we simply apply the previously defined one-level space–time additive Schwarz
preconditioner; and to efficiently solve the coarse problem, a parallel coarse preconditioner
is also necessary. Here we use the overlapping space–time additive Schwarz preconditioner
and for simplicity divide Ωc × Pτc into the same number of subdomains as on the fine level,
using the non-overlapping decomposition Θ = ∪Ns

i=1(∪Nt
j=1Θi j ). When the subdomains are

extended to overlapping ones, the overlapping size is not necessarily the same as that on the
fine mesh. See the right figure of Fig. 1 for a coarse version of the space–time decomposition.
We denote and define the preconditioner on the coarse level by

M−1
c =

Nt∑

j=1

Ns∑

i=1

(Rδc
i j,c)

T M̃−1
i j,c R

0
i j,c,

where δc is the overlapping size on the coarse mesh. Here the matrix M̃−1
i j,c is an approximate

inverse of Mi j,c which is obtained by a discretization of (11)–(13) on the coarse mesh on
Θ ′

i j .
To combine the coarse preconditioner with the finemesh preconditioner, we need a restric-

tion operator I ch from the fine to coarse mesh and an interpolation operator I hc from the coarse
to fine mesh. For our currently used nested structured mesh and linear finite elements, I hc is
easily obtained using a linear interpolation on the coarse mesh and I ch = (I hc )T . We note that
when the coarse and fine meshes are nested, instead of using I ch = (I hc )T , we may take I ch
to be a simple restriction, e.g., the identity one which assigns the values on the coarse mesh
using the same values on the fine mesh. In general, the coarse preconditioner and the fine
preconditioner can be combined additively ormultiplicatively. According to our experiments,
the following multiplicative version works well:

{
y = I hc F

−1
c I ch x

M−1
two-level x = y + M−1

one-level(x − Fh y),
(14)

where F−1
c corresponds to the GMRES solver right-preconditioned by M−1

c on the coarse
level, and Fh is the discrete KKT system (10) on the fine level.

4 Numerical Experiments

In this section we present some numerical experiments to study the parallel performance and
robustness of the newly developed algorithms. When using the one-level preconditioner, we
use a restarted GMRES method (restarts at 50) to solve the preconditioned system; when
using the two-level preconditioner, we use the restarted flexible GMRES (fGMRES) method
[30] (restarts at 30), considering the fact that the overall preconditioner changes from iteration
to iteration because of the iterative coarse solver. Although fGMRES needs more memory
than GMRES, we have observed its number of iterations can be significantly reduced. The
relative convergence tolerance of both GMRES and fGMRES is set to be 10−6. The initial
guesses for both GMRES and fGMRES method are zero. The size of the overlap between
two neighboring subdomains, denoted by iovlp, is set to be 1 unless otherwise specified. The
subsystem on each subdomain is solved by an incomplete LU factorization ILU(k), with k
being its fill-in level, and k = 0 if not specified. The algorithms are implemented based on the
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Portable, Extensible Toolkit for Scientific computation (PETSc) [6] and run on a Dawning
TC3600 blade server system at the National Supercomputing Center in Shenzhen, China with
a 1.271 PFlops/s peak performance.

In our computations, the settings for the model system (1) are taken as follows.
The computational domain, the terminal time and the initial condition are taken to be
Ω = (−2, 2)3, T = 1 and C(·, 0) = 0 respectively. Let L = S = H = 2, then
the homogeneous Dirichlet and Neumann conditions in (1) are respectively imposed on
Γ1 = {x = (x1, x2, x3); |x1| = L or |x2| = S} and Γ2 = {x = (x1, x2, x3); |x3| = H}.
Furthermore, the diffusivity and convective coefficients are set to be a(x) = 1.0 and
v(x) = (1.0, 1.0, 1.0)T .

In order to generate the observation data, we solve the forward convection–diffusion
equation (1) on a very fine mesh 265 × 265 × 265 with a small time step size 1/96, and
the resulting approximate solution C(x, t) is used as the noise-free observation data. The
measurement data are chosen on a set of nested meshes (the concrete choice is given for
each numerical example later), which may not necessarily be part of the fine mesh we used
to compute the noise-free data and hence linear interpolations are needed to obtain the
concentration at each selected measurement point. Then a random noise is added in the
following form at the locations where the measurements are taken:

Cε(xi , t) = C(xi , t) + ε r C(xi , t), i = 1, . . . , s.

here r is a random function with the standard Gaussian distribution, and ε is the noise
level. We take ε = 1% in our numerical experiments if it is not specified otherwise. As for
most inverse problems, the regularization parameters [see β1 and β2 in (3)] are important
to effective numerical reconstructions. In this work we shall not discuss about the technical
selection of these regularization parameters but choose them heuristically.

The numerical tests are designed to investigate the reconstruction effects with different
types of three-dimensional sources by the proposed one- or two-level space–time Schwarz
method, as well as the robustness of the algorithm with respect to different noise levels,
different regularizations and amount of measurement data. In addition, parallel efficiency of
the proposed algorithms is also studied.

4.1 Reconstruction of 3D Sources

We devote this subsection to test the numerical reconstruction of three representative 3D
sources by the proposed one-level space–time method, with np = 256 processors. Each of
the three examples are constructed with its own special difficulty.

Example 1 (two Gaussian sources). This example tests two moving Gaussian sources in Ω ,
namely the source f takes the form:

f (x, t) =
2∑

i=1

exp
(

− (x − xi )2 + (y − yi )2 + (z − zi )2

a2

)
,

with a = 2.0 and two moving centers of the sources are given by
{

(x1, y1, z1) = (L sin(2π t), S cos(2π t), H cos(4π t))

(x2, y2, z2) = (L − 2L| cos(4t)|,−S + 2S| cos(4t)|,−H + 2Ht2).
(15)

The moving traces of the sources are shown in Fig. 2.
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Fig. 2 The traces of two moving sources

Fig. 3 Example 1: the source reconstructions at three moments t = 10/39, 20/39, 30/39 with measurements
collected at the mesh 14 × 14 × 14 (bottom), comparable with the exact source distribution (top)

In the first experiment, we use a 40 × 40 × 40 mesh and time step size 1/39 for the
inversion process. The measurements are taken from the mesh 14 × 14 × 14, which is
uniformly located inΩ , with the mesh size being 1/13. The regularization parameters are set
to be β1 = 3.6×10−6 and β2 = 3.6×10−3. In Fig. 3, the numerically reconstructed sources
are compared with the exact ones at three moments t1 = 10/39, t2 = 20/39, t3 = 30/39.
We can see that the source locations and intensities are quite close to the true values at the
three chosen moments. Then we increase the noise level to ε = 5% and ε = 10%, still
with the same set of parameters. The reconstruction results are shown in Fig. 4. We observe
that the reconstructed profiles deteriorate and become oscillatory as the noise level increases.
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Fig. 4 Example 1: source reconstructions with noise level ε = 5% (top) and ε = 10% (bottom)

Table 1 L2-norm errors at t = 10/39, 20/39, 30/39with different noise levels and regularization parameters

β L2-norm errors δ = 1% δ = 5% δ = 10%

β1 = 3.6e−6, β2 = 3.6e−3 e1 0.043 0.045 0.053

e2 0.0491 0.057 0.076

e3 0.022 0.044 0.081

β1 = 3.6e−5, β2 = 3.6e−3 e1 0.059 0.061 0.063

e2 0.064 0.067 0.076

e3 0.035 0.045 0.066

β1 = 3.6e−6, β2 = 3.6e−4 e1 0.031 0.058 0.104

e2 0.036 0.094 0.108

e3 0.027 0.053 0.056

β1 = 3.6e−5, β2 = 3.6e−4 e1 0.052 0.061 0.083

e2 0.058 0.081 0.127

e3 0.042 0.084 0.152

This is expected since the regularized solutions provided by the minimization of functional
J ( f ) in (2) become less accurate, so are their numerical approximate solutions obtained
from the discretised KKT system (8)–(9). We have tested four different sets of regularization
parameters for the H1–H1 regularization in (3), and present the L2-norm errors between the
reconstructed source f and the exact source function f ∗ at the aforementioned threemoments
t1, t2 and t3. The L2-norm error at time t j is defined here by e j = ‖( f − f ∗)(t j )‖L2(Ω) for
j = 1, 2, 3, and is shown in Table 1 for each set of regularization parameters.

Example 2 (Four constant sources). Appropriate choices of regularizations are important for
the inversion process. In the previous example we have used a H1–H1 Tikhonov regulariza-
tion in both space and time. In this example, we intend to compare the H1–H1 regularization
with the following H1–L2 regularization
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Fig. 5 Example 2: the source reconstructions with H1–H1 regularization (mid) and H1–L2 regularization
(bottom), compared with the exact solution (top)

Ñβ( f ) = β1

2

∫ T

0

∫

Ω

| ḟ (x, t)|2dxdt + β2

2

∫ T

0

∫

Ω

f 2dxdt.

For the comparisons, we consider the case in which four constant sources move along the
diagonals of the cube to their far corner. The four source distributions are specified by

fi (x, t) = ai for |x − xi | < 0.4, |y − yi | < 0.4, |z − zi | < 0.4

for i = 1, 2, 3, 4, where the constants ai are given by a1 = a4 = 2.0, a2 = a3 = 1.0, and
their traces are described respectively by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x1, y1, z1) = (−L + 2Lt,−S + 2St, H − 2Ht)

(x2, y2, z2) = (L − 2Lt, S − 2St,−H + 2Ht)

(x3, y3, z3) = (L − 2Lt,−S + 2St,−H + 2Ht)

(x4, y4, z4) = (−L + 2Lt, S − 2St, H − 2Ht).

Same mesh and measurements are used as in Example 1, and the regularization parameters
are set to be β1 = 10−5, β2 = 10−3 in Nβ( f ), and β1 = 10−5, β2 = 10−8 in Ñβ( f ),
respectively. The reconstruction results are compared with the true solution at three moments
t1 = 10/39, t2 = 20/39, t3 = 30/39, and two slices at x = 0.95 and x = −0.95. It is
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Table 2 L2-norm errors of the reconstructed source at 3 moments for Example 2 with two regularizations

Time Error with H1–H1 regularization Error with H1–L2 regulzarization

10/39 0.019 0.023

20/39 0.012 0.019

30/39 0.019 0.026

observed from Fig. 5 that the resolution of the source profile is much better with the H1–H1

regularization Nβ( f ) than with the H1–L2 regularization Ñβ( f ), and the latter presents
a reconstruction process that is much less stable and much more oscillatory. Furthermore,
we demonstrate in Table 2 the L2-norm errors between the reconstructed source functions
fi and the exact sources f ∗

i at the three specified moments t1, t2, t3 for both the H1–
H1 and H1–L2 regularizations. The L2-norm error at time t j is defined here by e j =
‖ ∑4

i=1( fi − f ∗
i )(t j )‖L2(Ω) for j = 1, 2, 3. We can see that the errors with the H1–H1

regularization are slightly smaller than that of the H1–L2 regularization.

Example 3 (Eight moving sources). This last example presents a very challenging case that
eight Gaussian sources are initially located at the corners of the physical cubic domain, then
move inside the cube following their own traces given below. The Gaussian sources are
described by

f (x, t) =
8∑

i=1

ai e
−(x−xi )2−(y−yi )2−(z−zi )2 ,

where the coefficients ai and the source traces are represented by

a1 = a2 =a3 = a4 = 4.0; a5 = a6 = a7 = a8 = 6.0,

and

(x1, y1, z1) = (−L + 2L(1 − t),−S + 2S(1 − t),−H + 2H(1 − t))

(x2, y2, z2) = (−L + 2Lt,−S + 2St,−H + 2Ht)

(x3, y3, z3) = (−L+2L cos(π t)2(1 − t),−S+2S sin(π t)2t,−H + 2H cos(π t)2(1 − t)
)

(x4, y4, z4) = (−L + 2L cos(π t)2(1 − t),−S+2S cos(π t)2(1−t),−H+2H sin(π t)2t)
)

(x5, y5, z5) = (−L + 2L cos(2π t)2 cos (π/2t) ,−S + 2S sin(π t)2 sin (π/2t) ,

−H + 2H sin(π t)2 sin (π/2t)
)

(x6, y6, z6) = (−L + 2L sin(π t)2 sin (π/2t) ,−S + 2S cos(2π t)2 cos (π/2t) ,

−H + 2H sin(π t)2 sin (π/2t)
)

(x7, y7, z7) = (−L + 2L sin(π t)2 sin (π/2t) ,−S + 2S sin(π t)2 sin (π/2t) ,

−H + 2H cos(2π t)2 cos (π/2t)
)

(x8, y8, z8) = (−L + 2L sin(π t)2 sin (π/2t) ,−S + 2S cos(2π t)2 cos (π/2t) ,

−H + 2H cos(2π t)2 cos (π/2t)
)
.

We shall use the mesh 64 × 64 × 64 and the time step size 1/47, with two regularization
parameters β1 = 3.6 × 10−5 and β2 = 3.6 × 10−1. We compare the results recovered
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Fig. 6 Example 3: the source reconstructions with measurements collected at the mesh 22 × 22 × 22 (mid)
and 10 × 10 × 10 (bottom), compared with the exact solution (top)

by two sets of measurements, collected on two meshes 22 × 22 × 22 and 10 × 10 × 10,
with the mesh sizes 1/21 and 1/9 respectively. The solution is shown in Fig. 6, at three
moments t = 0.0, 10/47, 1.0. Clearly better reconstructions are observed for the case with
more measurements collected at the finer mesh 22 × 22 × 22, though the coarser mesh
10 × 10 × 10 is good enough for locating the sources, only with their recovered source
intensities smaller than the true values.

4.2 Performance in Parallel Efficiency

In the previous subsection, we have shown with 3 representative examples that the proposed
algorithm can successfully recover the intensities and distributions of unsteady sources and
is robust with respect to the noise in the data, the choice of Tikhonov regularizations and the
number of measurements. These numerical simulations are all computed using the proposed
one-level space–time method with np = 256 processors. In this section, we focus on our
proposed two-level space–time method and study its parallel efficiency with respect to the
number of ILU fill-in levels, namely the number k in ILU(k), the overlap size iovlp on the
fine level, and the mesh size on the coarse level. We also compare the number of iterations
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Table 3 Effects of ILU fill-in
levels on the two-level method
for Example 1 (columns 2–3),
Example 2 (columns 4–5), and
Example 3 (columns 6–7)

ILU(k) Ex1 Ex2 Ex3

Its Time (s) Its Time (s) Its Time (s)

0 47 10.498 55 12.448 81 17.238

1 28 33.633 36 47.766 60 49.622

2 18 230.552 23 232.914 48 257.798

3 15 1121.469 20 1132.841 45 1165.203

Table 4 Effects of the overlap
size on the two-level method for
Example 1 (columns 2–3),
Example 2 (columns 4–5), and
Example 3 (columns 6–7)

iovlp Ex1 Ex2 Ex3

Its Time (s) Its Time (s) Its Time (s)

1 47 10.498 55 12.448 81 17.238

2 39 13.071 51 23.663 69 27.952

4 37 27.423 49 45.225 68 47.032

and the total compute time of the one-level and two-level methods with increasing degrees
of freedoms (DOFs) and the number of processors.

Firstly we test how the number of fGMRES iterations and the total compute time of the
two-levelmethod changewith different ILUfill-in levels.We use the coarsemesh 21×21×21
with the time step 1/20, and the fine mesh 41×41×41 with the time step 1/40 for Examples
1, 2, and 3, and the overlap size iovlp = 1. We see that the total number of DOFs on the
fine mesh is 16 times of the one on the coarse mesh. Table 3 shows the comparison with
np = 256 processors. Column 2–3, 4–5 and 6–7 present the results for Examples 1, 2 and 3
respectively. It is observed that as the fill-in level increases the number of fGMRES iterations
decreases, but the total compute time increases. When the fill-in level increases to 3, the
compute time increases significantly and the number of iterations only reduces by 3 times.
This suggests a suitable fill-in level to be ilulevel = 0 or 1.

Next we look at the impact of the overlap size.We still use the same fine and coarsemeshes
for all examples, and ILU(0) for the solver for each subdomain problem on both the coarse
and fine meshes. The overlap size on the coarse mesh is set to be 1. We test different overlap
sizes on the fine level, and the results are given in Table 4. It is observed that when the overlap
size increases from 1 to 2 and then to 4, the number of fGMRES iterations decreases slowly
and the total compute time increases. So we shall mostly use iovlp = 1 in our subsequent
computations.

It is well known that the size of the coarse mesh is an important factor for a two-level
method. Now we investigate the performance of our two-level method with different coarse
meshes. We know that if the mesh is too coarse, both the number of outer iterations and the
total compute time increase; on the other hand, if the mesh is not coarse enough, too much
time is spent on the coarse solver, the number of outer iterations may decrease significantly,
but the compute time may increase. For this experiment, we fix the fine mesh 43 × 43 × 43
with the time step 1/42, and the coarse mesh size in each direction is set to 1/2 or 1/3 of
the fine mesh. We combine these options and obtain four sets of coarse meshes and their
corresponding time steps. If we denote the ratios of the DOFs on the fine mesh compared to
that on the coarse mesh by n, then n = 8, 16, 24 and 27 for these coarse meshes respectively.
np = 256 processors are used. The fill-in level of the subdomain ILU solver is ilulevel = 0
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Table 5 Effects of the coarse mesh size on the two-level method for Example 1 (columns 4–5), Example 2
(columns 6–7), and Example 3 (columns 8–9)

Coarse mesh M n Ex1 Ex2 Ex3

Its Time (s) Its Time (s) Its Time (s)

22 × 22 × 22 43 8 46 13.754 43 13.236 50 17.207

22 × 22 × 22 22 16 49 12.967 50 13.174 69 16.035

22 × 22 × 22 15 24 52 13.185 53 13.355 77 19.371

15 × 15 × 15 43 27 58 14.677 58 14.706 92 20.515

and the size of overlap on both the coarse and fine level is iovlp = 1. The computational
results presented in Table 5 indicate that basically the number of fGMRES iterations increases
whenwedecrease the coarsemesh size, however the compute time does not necessarily follow
this trend, it decreases when the coarse mesh is fixed at 22 × 22 × 22 and the time step is
reduced from 1/42 to 1/21, then for the next two coarse mesh settings, the compute time
grows slowly. As a result, the proper coarse mesh for this example is 22× 22× 22 with time
step 1/21, i.e. 16 times coarser is the optimal choice for this test case.

Lastly we compare the performance of the one-level and two-level space–time Schwarz
preconditioners in Tables 6 and 7. On the coarse level, a restarted GMRES is used, with the
one-level space–time Schwarz preconditioner. ILU(0) is used as the local preconditioner on
each subdomain and the coarse overlap size is set to be 1. A tighter convergence tolerance
on the coarse mesh can reduce the number of outer fGMRES iterations, but often increases
the total compute time. In the following numerical examples, we set the tolerance to be 10−1

and the maximum number of GMRES iterations to four on the coarse mesh.
In the following experiments for Examples 1, 2 and 3, we use three sets of fine meshes,

33×33×33, 49×49×49 and 67×67×67, and the corresponding time steps are 1/32, 1/48
and 1/66 respectively, while the coarse meshes are chosen to be 17× 17× 17, 17× 17× 17
and 23×23×23, with the corresponding time steps being 1/16, 1/48 and 1/66. So the DOFs
on the fine meshes are 16, 27 and 27 times of the ones on the coarse meshes for Examples 1,
2 and 3 respectively. We use np = 64, 128 and 512 processors for the three sets of meshes
respectively and compare their performance with the one-level method in Table 6. Savings
in terms of the number of iterations and the total compute time are obtained for the two-level
method with all three sets of meshes. As we observe that the number of iterations of the
two-level method is mostly reduced by at least 4 times compared to the one for the one-level
method, but the compute time is usually reduced by 2–4 times.

Next we fix the space mesh to be 49 × 49 × 49 and the time step to be 1/48, resulting in
a very large-scale discrete system with 17,294,403 DOFs. For the two-level method, we set
the coarse mesh to be 17× 17× 17 with the time step 1/48, which implies that the DOFs on
the fine mesh is about 27 times of the ones on the coarse mesh. Then the problem is solved
with np = 128, 256, 512, and 1024 processors respectively. The performance results of the
one-level and two-level methods are presented in Table 7. We observe that when the number
of sources is small, both the one-level and two-level methods are scalable with up to 512
processors, but the two-level method takes much less compute time. The strong scalability
deteriorates when the number of processors is too large for the size of the problems. As
the number of sources increases, the scalability becomes slightly worse for both one-level
and two-level methods, even though the two-level method is still faster in terms of the total
compute time.
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Table 6 Comparisons between
the one-level and two-level
space–time preconditioners for
Examples 1–3 with different
meshes

np Mesh M level Its Time (s)

Ex1

64 33 × 33 × 33 33 1 175 53.635

2 57 20.653

128 49 × 49 × 49 49 1 346 200.664

2 83 47.812

512 67 × 67 × 67 67 1 491 675.985

2 105 212.72

Ex2

64 33 × 33 × 33 33 1 228 72.338

2 77 20.246

128 49 × 49 × 49 49 1 365 214.058

2 85 47.078

512 67 × 67 × 67 67 1 599 841.652

2 121 216.92

Ex3

64 33 × 33 × 33 33 1 297 82.834

2 76 21.738

128 49 × 49 × 49 49 1 405 238.712

2 93 57.244

512 67 × 67 × 67 67 1 716 872.766

2 137 263.222

Table 7 Comparisons between the one-level and two-level space–time preconditioners for Examples 1–3
with different number of processors

np level Ex1 Ex2 Ex3

Its Time (s) Its Time (s) Its Time (s)

128 1 346 200.664 365 214.815 405 238.712

2 83 47.812 85 47.072 93 57.244

256 1 343 127.035 363 152.334 408 145.213

2 82 24.744 87 26.424 90 36.307

512 1 343 69.482 363 95.707 400 101.343

2 82 16.461 101 19.453 100 18.611

1024 1 351 41.821 393 58.785 433 59.534

2 85 10.132 100 11.352 104 15.815

5 Concluding Remarks

In this work we have proposed and studied a fully implicit, space–time coupled, mixed finite
element and finite difference discretization method, and a parallel one- and two-level domain
decomposition solver for the three-dimensional unsteady inverse convection–diffusion prob-
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lem. With a suitable number of measurements, this all-at-once approach provides acceptable
reconstruction of the physical sources in space and time simultaneously. The classical over-
lapping Schwarz preconditioner is extended successfully to the coupled space–time problem
with a homogenous Dirichlet boundary condition applied on both the spatial and temporal
part of the space–time subdomain boundaries. The one-level method is easier to implement,
but the two-level hybrid space–time Schwarz method performs much better in terms of the
number of iterations and the total compute time. Good scalability results were obtained for
problems with more than 17 millions degrees of freedom on a supercomputer with more than
1000 processors. The approach is promising to more general unsteady inverse problems in
large-scale applications.
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6 The Discrete Structure of the KKT System

The KKT system (8)–(9) is formulated as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂τCn

h , vh
) + (

a∇C̄n
h ,∇vh

) + (∇ · (
vC̄n

h

)
, vh

) = (
f̄ nh , vh

) + 〈q̄n, vh〉Γ2 , ∀ vh ∈ V̊ h

− (
∂τGn

h, wh
) + (

a∇Ḡn
h,∇wh

) + (∇ · (vwh) , Ḡn
h

)

= − (
A(x)

(
C̄n
h (x) − C̄ε,n(x)

)
, wh

)
, ∀wh ∈ V̊ h

− (
Gn

h, g
τ
h

) + β1
(
∂τ f nh , ∂τ gτ

h

) + β2
(∇ f nh ,∇gτ

h

) = 0, ∀ gτ
h ∈ W τ

h .

(16)

To better understand the discrete structure of (16), we denote the identity and zero matrices
as I and 0 respectively, and the basis functions of the finite element spaces V h and W τ

h by
φ = (φi )

T , i = 1, . . . , N and gnj , j = 1, . . . , N , n = 0, . . . , M , respectively, let

A = (ai j )i, j=1,...,N , ai j = (a∇φi ,∇φ j )

B = (bi j )i, j=1,...,N , bi j = (φi , φ j )

E = (ei j )i, j=1,...,N , ei j = (∇ · (vφi ), φ j )

Lmn = (lmn
i j )i, j=1,...,N ,0≤m,n≤M , lmn

i j =
(

∂gmi
∂t

,
∂gnj
∂t

)

Kmn = (kmn
i j )i, j=1,...,N ,0≤m,n≤M , kmn

i j = (∇gmi ,∇gnj
)

Dmn = (dmn
i j )i, j=1,...,N ,0≤m,n≤M , dmn

i j = (
gmi , gnj

)
,

and based on these element matrices we define

A1 = B + τ

2
(A + E), A2 = −B + τ

2
(A + E)

B1 = B + τ

2

(
A + ET )

, B2 = −B + τ

2

(
A + ET )

B3 = zeros except 1 at the measurement locations

Wmn = β1L
mn + β2K

mn,
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Then the system (16) takes the following form

(
BC BG B f

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C0

C1

...

CM−2

CM−1

CM

G0

G1

G2

...

GM−2

GM−1

GM

f 0

f 1

f 2

...

f M−2

f M−1

f M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C0

〈q̄1, φ〉Γ2
...

〈q̄M−1, φ〉Γ2

〈q̄M , φ〉Γ2

τ/2B3
(
Cε,0 + Cε,1

)

...

τ/2B3
(
Cε,M−2 + Cε,M−1

)

τ/2B3
(
Cε,M−1 + Cε,M

)

GM

0
0
...

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the block matrices BC, BG and B f are given by

BC :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0 · · · 0 0 0
A2 A1 · · · 0 0 0

0
. . .

. . . 0 0 0

0 0
. . . A2 A1 0

0 0 · · · 0 A2 A1
τ
2 B3

τ
2 B3 · · · 0 0 0

0
. . .

. . . 0 0 0
0 0 · · · τ

2 B3
τ
2 B3 0

0 0 · · · 0 τ
2 B3

τ
2 B3

0 0 · · · 0 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0

,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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BG :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
B1 B2 0 · · · 0 0 0

0
. . .

. . . · · · 0 0 0
0 0 0 · · · B1 B2 0
0 0 0 · · · 0 B1 B2

0 0 0 · · · 0 0 I
−D00 −D01 0 · · · 0 0 0
−D10 −D11 −D12 · · · 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 0 · · · −DM−1,M−2 −DM−1,M−1 −DM−1,M

0 0 0 · · · 0 −DM,M−1 −DMM

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B f :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0 0
− τ

2 B − τ
2 B 0 · · · 0 0 0

0
. . .

. . . · · · 0 0 0

0 0
. . . · · · − τ

2 B − τ
2 B 0

0 0 0 · · · 0 − τ
2 B − τ

2 B
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0

W 00 W 01 0 · · · 0 0 0
W 10 W 11 W 12 · · · 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 0 · · · WM−1,M−2 WM−1,M−1 WM−1,M

0 0 0 · · · 0 WM,M−1 WMM

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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