
J Sci Comput (2016) 67:821–835
DOI 10.1007/s10915-015-0103-7

REVIEW PAPER

Numerical Methods for the Genvar Criterion
of Multiple-Sets Canonical Analysis

Xinguo Liu1 · Jianping You1

Received: 9 February 2015 / Revised: 9 September 2015 / Accepted: 11 September 2015 /
Published online: 18 September 2015
© Springer Science+Business Media New York 2015

Abstract The Genvar criterion, proposed by Steel, is one of the important generalizations
of canonical correlation analysis. This paper deals with iterative methods for the Genvar
criterion. An alternating variable method is analysed and an inexact version of it is proposed.
Two starting point strategies are suggested to enhance these iterative algorithms. Numerical
results show that, these starting point strategies not only can improve the rate of convergence,
but also boost up the probability of finding a global solution.

Keywords Multiple-sets canonical correlation analysis · Genvar criterion · Alternating
variable method · Starting point strategy

Mathematics Subject Classification 62H20 · 65C60

1 Introduction

Since Hotelling [1] proposed canonical correlation analysis (CCA) as themethod for describ-
ing the relation between the scores of a set of observation units on two groups of variables,
CCA has become an important method in numerous applications, including cluster analy-
sis, principal component analysis, multidimensional scaling, pattern recognition, artificial
intelligence, and bioinformatics. Several generalizations of canonical correlation analysis
for multiple-sets of variables have been proposed by Steel [2], Kettenring [3], Horst [4],
Van de Geer [5], Hanafi and Kiers [6], Via et al. [7,8], and other scholars. Among the five
CCA criteria in [3], the sum of correlation (SUMCOR) or its covariance-based version called

This work was partially supported by NSF of China, Grant 11371333.

B Jianping You
you_jian_ping@163.com

Xinguo Liu
liuxinguo@ouc.edu.cn

1 School of Mathematical Sciences, Ocean University of China, Qingdao 266003, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-015-0103-7&domain=pdf


822 J Sci Comput (2016) 67:821–835

Maxbet in [5] is the most popular one in practical applications and has been extensively stud-
ied. In this paper, we shall concern ourselves with the Genvar criterion originally proposed
by Steel [2], which can be introduced briefly as follows.

Let yi =
⎛
⎜⎝

yi,1
...

yi,ni

⎞
⎟⎠, i = 1, . . . ,m bem-sets of random variables. Suppose the covariance

matrix A of y =
⎛
⎜⎝

y1
...

ym

⎞
⎟⎠ exists and is given by

A = (
Σi j

)
m×m , Σi i ∈ Rni×ni .

Here Σi j is the covariance between yi and y j , and we suppose all of the covariance matrix

Σi i of yi are invertible. Then the correlation matrix of y =
⎛
⎜⎝

y1
...

ym

⎞
⎟⎠ is given by

R = (
Ri j

)
m×m , Ri j = Σ

− 1
2

i i Σi jΣ
− 1

2
j j . (1.1)

Here Σ
1
2
i i denotes the square root of Σi i .

Let

Σm =

⎧⎪⎨
⎪⎩
t =

⎛
⎜⎝

t1
...

tm

⎞
⎟⎠ ∈ Rn : ti ∈ Rni , ‖ ti ‖2= 1

⎫⎪⎬
⎪⎭

, (1.2)

R(t) =
(
t Ti Ri j t j

)
m×m

. (1.3)

TheGenvar criterion proposed bySteel [2] is to find aminimizer of the following optimization
problem

min det(R(t)), s.t. t ∈ Σm . (1.4)

BecauseΣm is a bounded and closed set inRn , det(R(t)) is a continuous function, we see that
the solution of Genvar always exists. One important feature of the Genvar criterion is that it
reduces to Hotelling’s CCA when the number of sets is only two. Another feature of Genvar
is that it is related to the multi-normal negative log-likelihood [2,9]. Its covariance-based
version is closely related to the Box–Cox approach in regression [9]. In [10], some interesting
statistical properties of Genvar are proved. In the recent paper [11], the authors point out that
the multi-feature fusion method based on SUMCOR is difficult to reveal integral relation
among multi-set variables, so they suggest applying Genvar to extract multi-set integral
canonical correlation features. In the present paper, we mainly focus on the computational
issue of Genvar. The Genvar criterion is a constrained nonlinear optimization problem and
can only be solved by means of iteration. General-purpose iterative methods (see, e.g., [12])
can be employed. However, these methods stop at a stationary point, which serves only as a
necessary condition for the global minima of Genvar. For statistical applications on the other
hand, a global solution is quite desirable, which has substantial importance for the reliability
of the statistical prediction. In fact, finding a global solution of the general Genvar is a very
hard problem because a particular Genvar wherem = n is equivalent to the so-called Boolean

123



J Sci Comput (2016) 67:821–835 823

quadratic program, which is long-known to be computationally difficult and belongs to the
class of NP-hard problems (see e.g., [13]). To tackle Genvar, Steel [2] using a compound
matrix approach developed a system of nonlinear equations. These equations seem to be quite
difficult to solve except in special cases.Kettenring [3] outlined an alternating variablemethod
(AVM, see Algorithm 2.2 in Sect. 2), which is a descent-type iterative procedure. To our best
knowledge, this is the state-of-art algorithm for Genvar. The AVM algorithm has several
disadvantages. Numerical experiment indicates that AVM depends closely on the starting
point, and unless it is specially selected, the AVM algorithm has a high probability to stop
at a local but non-global minima of Genvar. In addition, for some cases, the AVM algorithm
with random starting point converges very slowly. In the present paper, we will numerically
demonstrate the performance ofAVMandpresent some theoretical results.An inexact version
of AVM is presented. Two starting point strategies are suggested to improve these iterative
methods in both reducing the number of iterations and boosting up the probability of finding
a global solution of (1.4).

This paper is organised as follows. Section 2 focuses on the optimality conditions for (1.4),
and suggests the Gauss–Seidel method. We present upper and lower bounds of the optimal
objective function value in Sect. 3. In Sect. 4, we suggest two starting point strategies. We
present numerical test results in Sect. 5 and followed by some remarks in Sect. 6.

2 Optimality Conditions

Let Ri (t) denote the matrix obtained by deleting the i-th row and column of R(t). We note
that Ri (t) is independent of ti .

Let

Gi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t T1 R1,i

...

t Ti−1Ri−1,i

t Ti+1Ri+1,i

...

t Tm Rm,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Theorem 2.1 Suppose t ∈ Σm is a solution of (1.4). Then there exist real numbers
u1, . . . , um such that

⎛
⎜⎝
det(R1(t))GT

1 R1(t)−1G1
. . .

det(Rm(t))GT
m Rm(t)−1Gm

⎞
⎟⎠ t =

⎛
⎜⎝
u1 In1

. . .

um Inm

⎞
⎟⎠ t

(2.1)

Proof Consider the Lagrangian function of (1.4)

L(t, u) = det(R(t)) +
m∑
j=1

u j

(
t Tj t j − 1

)
.

123



824 J Sci Comput (2016) 67:821–835

We see that

det(R(t)) = det(Ri (t))
(
1 − (Gi ti )

T Ri (t)
−1Gi ti

)
. (2.2)

Therefore,

∂ det(R(t))

∂ti
= −2 det(Ri (t))G

T
i Ri (t)

−1Gi ti .

Consequently,

∂L(t, u)

∂t
= −2diag

(
det(R1(t))G

T
1 R1(t)

−1G1, . . . , det(Rm(t))GT
m Rm(t)−1Gm

)
t+2Ωt.

Here Ω ≡ diag
(
u1 In1 , . . . , um Inm

)
. It follows that (2.1) holds. ��

We note that (2.1) can be rewritten as

det(Ri (t))G
T
i Ri (t)

−1Gi ti = ui ti , ‖ ti ‖2= 1, i = 1, 2, . . . ,m, (2.3)

andGi and Ri (t) are independent of ti , but depend on t j ( j �= i). Hence, naturally, we suggest
the following Gauss–Seidel method to solve (2.3).

Algorithm 2.1 (Gauss–Seidel type method, G–S method)

(1) Take t (0) =

⎛
⎜⎜⎝
t (0)1
...

t (0)m

⎞
⎟⎟⎠ ∈ Σm .

(2) Suppose that the current approximate point is t (k) =

⎛
⎜⎜⎝
t (k)1
...

t (k)m

⎞
⎟⎟⎠ ∈ Σm . Then compute

t (k+1) as follows.

y(k)
i = Gi

(
z(i)

)T
Ri

(
z(i)

)−1
Gi

(
z(i)

)
t (k)i ,

u(k)
i = ‖ y(k)

i ‖2,
t (k+1)
i = 1

u(k)
i

y(k)
i . (2.4)

Here

z(i) =
(
t (k+1)T

1 , . . . , t (k+1)T

i−1 , t (k)
T

i , . . . , t (k)
T

m

)T
, i = 1, 2, . . . ,m.

(3) If | det(R(t (k+1))) − det(R(t (k))) |� ε, then stop the algorithm with the approximate
solution t (k+1).

The expression (2.2) of the objective function motivates us to employ an alternating variable
method (AVM) to solve (1.4), which is a natural extension of the so-called coordinated
descent method [12, p. 53] and is described in Algorithm 2.2.

123



J Sci Comput (2016) 67:821–835 825

Algorithm 2.2 (Alternating variable method [3], AVM)

(1) Take t (0) =

⎛
⎜⎜⎝
t (0)1
...

t (0)m

⎞
⎟⎟⎠ ∈ Σm .

(2) Suppose that the current approximate point is t (k) =

⎛
⎜⎜⎝
t (k)1
...

t (k)m

⎞
⎟⎟⎠ ∈ Σm . Then compute

t (k+1) by

t (k+1)
i = arg min‖ti‖2=1

det
(
R(t (k+1)

1 , . . . , t (k+1)
i−1 , ti , t

(k)
i+1, . . . , t

(k)
m )

)
, i = 1, 2, . . . ,m.

(2.5)

(3) If | det(R(t (k+1)))− det(R(t (k))) |� ε, then stop the algorithm, and t (k+1) is an approx-
imate solution.

This algorithm was outlined by Kettenring [3]. We will present some analysis below and
numerically demonstrate its performance in Sect. 5.

Let

ρ(t) = det(R(t)), ẑ(i) =
(
t (k+1)T
1 , . . . , t (k+1)T

i−1 , t (k)Ti , . . . , t (k)Tm

)T
.

We see that

ρ
(
t (k)

)
≥ ρ

(
ẑ(2)

)
≥ · · · ≥ ρ

(
ẑ(m+1)

)
= ρ

(
t (k+1)

)
. (2.6)

Thus it is very clear that the sequence {ρ(t (k))} is monotonically non-increasing and bounded.
This directly implies the convergence of {ρ(t (k))}.

Let

G(k)
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t (k+1)T
1 R1,i

...

t (k+1)T
i−1 Ri−1,i

t (k)Ti+1 Ri+1,i

...

t (k)Tm Rm,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then (2.2) implies that (2.5) is equivalent to the following optimization problem:

max‖ti‖2=1
t Ti G(k)T

i Ri (z
(i))−1G(k)

i ti , (2.7)

and its solution t (k+1)
i is the unit eigenvector according to the largest eigenvalue of

G(k)T
i Ri (z(i))−1G(k)

i . There are several efficient algorithms to compute t (k+1)
i , see e.g., [14].

123



826 J Sci Comput (2016) 67:821–835

Next, we will show Algorithm 2.1 is closely relating to Algorithm 2.2. Indeed, we will
apply iterative majorization principle(see, e.g., [15]) to (2.7) to demonstrate that Algo-
rithm 2.1 is an inexact version of Algorithm 2.2. To this end, let

Mik = G(k)T
i Ri (z

(i))−1G(k)
i ,

g(ti ) = t Ti Mik ti .

Then, Mik is a symmetric and positive semi-definite matrix, g(ti ) is a convex function. We
note that

g(ti ) = g
(
t (k)i

)
+ 2

(
Mikt

(k)
i

)T (
ti − t (k)i

)
+

(
ti − t (k)i

)T
Mik

(
ti − t (k)i

)

≥ hi (ti ) ≡ gi
(
t (k)i

)
+ 2

(
Mikt

(k)
i

)T (
ti − t (k)i

)
. (2.8)

Noticing that gi (t
(k)
i ) = hi (t

(k)
i ), (2.7) can be approximately solved by

t (k+1)
i = arg max‖ti‖2=1

hi (ti )

= y(k)
i / ‖ y(k)

i ‖2 . (2.9)

Here y(k)
i = Mikt

(k)
i .

We see that (2.9) is same as (2.4). Therefore, Algorithm 2.1 can be seen as an inexact
version of the AVM algorithm. From (2.8), we see that the sequence {t (k)} generated by
Algorithm 2.1 has the following property:

ρ
(
t (k)

)
≥ ρ

(
z(2)

)
≥ · · · ≥ ρ

(
z(m)

)
≥ ρ

(
t (k+1)

)
. (2.10)

That is, Algorithm 2.1 is also a descent algorithm. Furthermore, we see that ρ(t (k)) =
ρ(t (k+1)) if and only if there exists u(k)

i ≥ 0 to satisfy

Mikt
(k)
i = u(k)

i t (k)i .

In other words, for Algorithm 2.1, ρ(t (k)) = ρ(t (k+1)) if and only if t (k) is a stationary point
of the Genvar criterion.

Algorithms 2.1 and 2.2 mainly deal with the first-stage of Genvar. That is, a first-stage
canonical vector, s(1), is obtained.We can expand these algorithms successively to later stages

as follows. Suppose we have obtained the first p − 1 canonical vectors s(i) =

⎛
⎜⎜⎝
s(i)
1
...

s(i)
m

⎞
⎟⎟⎠ ∈

Σm, i = 1, 2, . . . , p − 1; p ≤ min
1≤i≤m

ni . To compute the p-stage canonical vector s(p) =
⎛
⎜⎜⎝
s(p)
1
...

s(p)
m

⎞
⎟⎟⎠, we consider the following optimization problem

min det (R(t)) , s.t. t ∈ Σm, t Ti s
(l)
i = 0, for l = 1, . . . , p − 1; i = 1, . . . ,m.

(2.11)

123



J Sci Comput (2016) 67:821–835 827

Let Q(1)
i = [s(1)

i , . . . , s(p−1)
i ] and let Qi = [Q(1)

i , Xi ] be an ni × ni orthogonal matrix. Let

R̃ =
(
R̃i j

)
m×m

, R̃i j ≡ XT
i Ri j X j ,

Σ̃m =

⎧⎪⎨
⎪⎩
t̃ =

⎛
⎜⎝

t̃1
...

t̃m

⎞
⎟⎠ : t̃i ∈ Rni−p+1, ‖ t̃i ‖2= 1

⎫⎪⎬
⎪⎭

,

R̃(t̃) =
(
t̃ Ti R̃i j t̃ j

)
m×m

.

The constraints in (2.11) mean that ti can be expressed as ti = Xi t̃i and so we consider the
following optimization problem

min det
(
R̃(t̃)

)
, s.t. t̃ ∈ Σ̃m . (2.12)

Suppose t̃ =

⎛
⎜⎜⎝
t̃ (p)1
...

t̃ (p)m

⎞
⎟⎟⎠ is one solution of (2.12), then we see that s(p) =

⎛
⎜⎜⎝
s(p)
1
...

s(p)
m

⎞
⎟⎟⎠ with

s(p)
i = Xi t̃

(p)
i (i = 1, 2, . . . ,m) is the p-stage canonical vector of Genvar. Obviously, we

can apply Algorithms 2.1 and 2.2 to solve problem (2.12).

3 Upper and lower bounds of the optimal objective function value

In this section, we present some upper and lower bounds of the optimal objective function
value of (1.4). Throughout this section we suppose R is an invertible matrix (then symmetric
and positive definite matrix), and therefore can be factorized as

R = PT P, P = [P1, . . . , Pm], Pj ∈ Rn×n j . (3.1)

Clearly, PT
j Pj = In j ( j = 1, 2, . . . ,m).

Let

Rm(t) = (t Ti Ri j t j )1≤i, j≤m−1,

am(t) =
⎛
⎜⎝

t T1 R1,mtm
...

t Tm−1Rm−1,mtm

⎞
⎟⎠ .

Then, we see that

det(R(t)) = det(Rm(t))(1 − aTm Rm(t)−1am). (3.2)

Let

L(t) = [P1t1, . . . , Pmtm], Lm−1(t) = [P1t1, . . . , Pm−1tm−1].
The following auxiliary result presents a least squares expression of 1 − aTm Rm(t)−1am .

Lemma 3.1

1 − aTm Rm(t)−1am = min
y∈Rm−1

‖ Pmtm − Lm−1(t)y ‖22 . (3.3)

123



828 J Sci Comput (2016) 67:821–835

Proof The solution of the least squares problem (3.3) is

y = Lm−1(t)
†Pmtm .

Consequently,

γm ≡ min
y∈Rm−1

‖ Pmtm − Lm−1(t)y ‖22
=‖ Pmtm − Lm−1L

†
m−1Pmtm ‖22

=‖ Pmtm ‖22 − ‖ Lm−1L
†
m−1Pmtm ‖22

= 1 −
(
LT
m−1Pmtm

)T
Rm(t)−1

(
LT
m−1Pmtm

)

= 1 − aTm Rm(t)−1am .

��
Now, we present a lower bound of min

t∈Σm
det (R(t)). Let

Hm−1 = [
P1, . . . , Pm−1

]
. (3.4)

Then,

γm = min
y∈Rm−1

‖ Pmtm − Hm−1

⎛
⎜⎝

y1t1
...

ym−1tm−1

⎞
⎟⎠ ‖22

≥ min
z∈Rn−nm

‖ Pmtm − Hm−1z ‖22
= 1− ‖ Hm−1H

†
m−1Pmtm ‖22 . (3.5)

Theorem 3.1 Let Hk = [P1, . . . , Pk], then,

det(R(t)) ≥
m−1∏
k=1

(
1− ‖ HkH

†
k Pk+1 ‖22

)
, for all t ∈ Σm . (3.6)

Proof From (3.5), we see that

det(R(t)) = det(Rm(t))(1 − aTm Rm(t)−1am)

≥ det(Rm(t))(1− ‖ Hm−1H
†
m−1Pm ‖22).

Recursively, it follows that (3.6) holds. ��
An upper bound of min

t∈Σm
det(R(t)) is given below.Let

ρ(1) =‖ Ri1, j1 ‖2= max
i �= j

‖ Ri, j ‖2,
ρ(2) =‖ Ri2, j2 ‖2= max

i �= i1
j �= j1

‖ Ri, j ‖2,

...

123



J Sci Comput (2016) 67:821–835 829

ρ(k) =‖ Rik , jk ‖2= max
i �= i1, . . . , ik−1
j �= j1, . . . , jk−1

‖ Ri, j ‖2,

k ≡
[m
2

]
.

Theorem 3.2

min
t∈Σm

det(R(t)) ≤
k∏
j=1

(1 − ρ( j)2). (3.7)

Proof Without loss of generality, we suppose that

(i1, j1) = (1, 2), (is, js) = (2s − 1, 2s), s = 2, 3, . . . , k.

Let t2s−1 and t2s be respectively the unit right and left singular vectors corresponding to the
largest singular value of R2s−1,2s . Then

R2s−1,2s t2s−1 =‖ R2s−1,2s ‖2 t2s, s = 1, 2, . . . , k.

The Hadamard inequality implies that

min
t∈Σm

det(R(t)) ≤
k∏

s=1

det

(
1 t T2s−1R2s−1,2s t2s

t T2s−1R2s−1,2s t2s 1

)

=
k∏

s=1

(
1 − ρ(s)2

)
.

��
From the view point of practical application, the covariance matrix A usually is unknown,

we should replace A by a sample covariancematrix, and consequently a perturbed correlation
matrix R is applied in Genvar.

If ρmin ≡ min
t∈Σm

det (R(t)) is very small, then the perturbation of R may result in a large

relative perturbation of ρmin . The inequality (3.7) means that if any among ρ(s) is close to
1 then ρmin will be small. We note that ρ(s) is the canonical correlation between y2s−1 and
y2s[1]. Furthermore, by applying the interlacing property of eigenvalues for real symmetric
matrix, it is easy to see that 1 − ρ(s) is an upper bound of the smallest eigenvalue of R.

4 Starting point strategies

Although enjoying the monotone convergence, neither of Algorithms 2.1 and 2.2 can guaran-
tee convergence to a global solution of (1.4). So in this section we consider a preconditioning
technique to improve the performance of Algorithms 2.1 and 2.2. The idea of the precondi-
tioning technique is to choose a good approximate solution t (0) of (1.4) as a starting point
for both algorithms. Since Algorithms 2.1 and 2.2 are monotone, and

ρ(t (0)) − ρ(t (k)) =
k∑

i=1

(ρ(t (i−1)) − ρ(t (i))), (4.1)

we see that if ρ(t (0)) has been close to the optimal objective function value of Genvar,
then (4.1) means that the sequence {ρ(t (i−1)) − ρ(t (i))} will quickly converges to zero, and

123



830 J Sci Comput (2016) 67:821–835

therefore the special selection of t (0) increases the rate of convergence. On the other hand, if
t∗ is an accumulation point of {t (k)}, then

ρ(t∗) ≤ ρ(t (0)).

This result implies that some stationary points of (1.4) can be ruled out from the limiting
points of Algorithms 2.1 and 2.2. In this sense, a good starting point t (0) can boost up the
probability of finding a global solution.

Let the eigenvalues of R(t) be λ1(t) ≥ . . . ≥ λm(t). Then

λ1(t) + · · · + λm(t) = m, (4.2)

det(R(t)) =
m∏
j=1

λ j (t), (4.3)

λmin(R) ≤ λ j (t) ≤ λmax (R). (4.4)

Noticing that the solution of the maximization problem max
s.t.s1+···+sm=m

m∏
j=1

s j is s1 = · · · =
sm = 1, we consider two starting point strategies as following, in which the aim is to make
λ1(t) as large as possible (Strategy 4.1) or to make λm(t) as small as possible (Strategy 4.2).

Strategy 4.1 Compute the eigenvector y =
⎛
⎜⎝

y1
...

ym

⎞
⎟⎠ corresponding to the largest eigenvalue

λmax (R) of R, then

t (0)i =
{
yi/ ‖ yi ‖2, i f ‖ yi ‖2> 0,

ui , otherwise.
(4.5)

Here, ui ∈ Rni , ‖ ui ‖2= 1.

Strategy 4.2 Compute the eigenvector z =
⎛
⎜⎝

z1
...

zm

⎞
⎟⎠ corresponding to the smallest eigenvalue

λmin(R) of R, then

t (0)i =
{
zi/ ‖ zi ‖2, i f ‖ zi ‖2> 0,

νi , otherwise.
(4.6)

Here, νi ∈ Rni , ‖ νi ‖2= 1.

We note that the following results have been proved by Kettenring [3].

min
t∈Σm

λm(t) = λmin(R),

max
t∈Σm

λ1(t) = λmax (R). (4.7)

These results imply that t (0) generated by Strategy 4.1 is a solution of the so-called Maxvar,
and t (0) generated by Strategy 4.2 is a solution of the so-calledMinvar. Since bothMaxvar and
Minvar are generalizations of CCA, and Genvar also is a generalization of CCA, intuitively,
t (0) should be a good approximate solution of the Genvar criterion.

If λmin(R) is small, then employ Strategy 4.2, however, if λmax (R) is large, then employ
Strategy 4.1. we now present some estimates of λmax (R) and λmin(R).

123



J Sci Comput (2016) 67:821–835 831

Proposition 4.1 Let Rx = λmax (R)x, ‖ x ‖2= 1, x =
⎛
⎜⎝

x1
...

xm

⎞
⎟⎠, x j ∈ Rn j . Then

λmax (R) ≤
⎛
⎝

m∑
j=1

‖ x j ‖2
⎞
⎠

2

.

Proof Consider the decomposition of R (block Cholesky decomposition)

R = LT L , L = [L1, . . . , Lm], Li ∈ Rn×ni .

Then,

λmax (R) = xT Rx

=‖ Lx ‖22

=
⎛
⎝‖

m∑
j=1

L j x j ‖2
⎞
⎠

2

≤
⎛
⎝

m∑
j=1

‖ x j ‖2
⎞
⎠

2

.

��
The proof of Proposition 4.1 shows that, unless L j x j ≈ L1x1, j = 2, . . . ,m, λmax (R) is

not very close to m. This seems to imply that usually Strategy 4.2 is better than Strategy 4.1.
The following result is a consequence of interlacing property of eigenvalues of real symmetric
matrix.

Proposition 4.2

λmin(R) ≤ 1 − ρ2
max .

Here, ρmax = max
i �= j

‖ Ri j ‖2.

5 Numerical Examples

In this section, we present our numerical experiment of Algorithms 2.1 and 2.2 with
Strategies 4.1 and 4.2 to show their efficiency, and most importantly, the effectiveness of
Strategies 4.1 and 4.2 both in reducing the number of iterations and in seeking the global
minima of Genvar. All of our tests were conducted in MATLAB on a PC with Intel(R)
Pentium(R)4 processor of 3.20 GHZ. The defaults value of ε is 10−5.

For our comparison, we first create two small examples, Examples 5.1 and 5.2. Then, in
Examples 5.3 and 5.4, thematrices are of size 100×100,whichwere randomly generated, and
we ran both algorithms for eachmatrix starting from100 random initial points. The test results
are documented inTables 1, 2 and3, respectively.Under columns “Avg.I ter
” are the average
numbers of iterations needed to meet the stopping criterion. Under columns ”Avg.T ime” are
the average CPU times (in seconds, measured by the MATLAB function cputime) including

123



832 J Sci Comput (2016) 67:821–835

the cost of computing initial point. Under columns “ρ̄Genvar” are the average objective
function values. Under columns “Total Global%” are the sample probabilities, out of all
converged objective function values for fixed A, of hitting the best we’ve seen.

First, we list the related algorithms below:

Gauss-R: Algorithm 2.1 with random starting point.
Gauss-4.1: Algorithm 2.1 with Strategy 4.1.
Gauss-4.2: Algorithm 2.1 with Strategy 4.2.
AVM-R: Algorithm 2.2 with random starting point.
AVM-4.1: Algorithm 2.2 with Strategy 4.1.
AVM-4.2: Algorithm 2.2 with Strategy 4.2.

Example 5.1 The matrix X is given by:

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

7 0 5 8 4 0 5 7 4 2 6 9 7 9
5 6 6 3 3 6 5 2 0 6 6 8 6 7
7 2 5 5 3 3 7 6 3 4 7 10 6 7
5 7 7 4 1 6 3 2 0 6 4 7 7 8
5 7 6 4 2 5 5 5 1 5 6 8 7 8
6 8 6 1 1 5 4 3 0 5 5 8 8 10
5 4 10 3 0 4 2 2 0 4 3 6 5 10
6 6 6 5 2 6 4 4 0 4 5 8 9 10

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We centered each column of X and got a matrix X̂ . Then, the matrix A was formed by
A = X̂ T X̂ . Here, m = 4, n1 = 4, n2 = 3, n3 = 4, n4 = 3. This example, which is based on
data from sensory evaluation of port wines, had been used by Hanafi and Kiers [6].

Example 5.2 The matrix A is given by

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7.4470 −5.3387 −4.8906 0.0903 2.2446 3.6421 −0.1752 −0.0246 1.7437 5.8028

−5.3387 13.8905 4.5704 −1.4263 0.5230 1.8020 −3.7392 3.5696 −1.9936 −8.1650

−4.8906 4.4704 8.8486 −0.1523 −0.3143 −1.6288 −1.3250 0.4012 −2.7730 −2.6152

−0.0903 −1.4263 −0.1523 4.4653 −4.2442 −5.9271 −3.8049 −3.9631 5.1445 −0.4010

2.2446 0.5230 −0.3143 −4.2442 25.9532 6.8747 −4.8952 −0.8508 3.9045 −4.8526

3.6421 1.8020 −1.6228 −5.9271 6.8747 12.3494 2.8848 3.0664 −3.8247 0.7834

−0.1752 −3.7392 −1.3250 −3.8049 −4.8952 2.8848 11.7609 5.7035 −7.7411 6.0963

−0.0246 3.5696 0.4012 −3.9631 −0.8508 3.0664 5.7035 12.4512 −11.9284 4.7289

1.7437 −1.9936 −2.7730 5.1445 3.9045 −3.8247 −7.7411 −11.9284 16.8287 −5.8446

5.8028 −8.1650 −2.6152 −0.4010 −4.8526 0.7834 6.0963 4.7289 −5.8446 11.6403

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with m = 3, n1 = 3, n2 = 3, n3 = 4.

The numerical results of Examples 5.1 and 5.2 are documented in Table 1. These results
show that for these examples Strategies 4.1 and 4.2 improved the performance of Algo-
rithms 2.1 and 2.2 in terms of iteration numbers and CPU time.

Example 5.3 In this example, we randomly generated 100 matrices of size 100 × 100, with
m = 4, n1 = 10, ni = n1 + (i − 1)10, i = 2, 3, 4. These matrices were constructed by
the following Matlab code.

C = rand(100, 100);
[Q, R] = qr(C);

Λ = diag(rand(1, 100));
A = Q ∗ Λ ∗ Q′.

123



J Sci Comput (2016) 67:821–835 833

Table 1 Numerical results for Examples 5.1 and 5.2

Example Algorithms Avg.Iter Avg.Time ρ̄Genvar

Exa. 5.1 AVM-4.1 1 0.014664094 9.81451E-09

AVM-4.2 1 0.016068103 2.22703E-16

AVM-R 2.95 0.013572087 6.79982E-08

Gauss-4.1 1 0.014664094 1.61662E-07

Gauss-4.2 1 0.014196091 0.1.8971E-16

Gauss-R 7.83 0.034008218 2.64304E-06

Exa. 5.2 AVM-4.1 9 0.0312002 0.026311657

AVM-4.2 7 0.0312002 0.026756604

AVM-R 27.66 0.074256476 0.035880097

Gauss-4.1 30 0.1092007 0.028023752

Gauss-4.2 14 0.1092007 0.027663713

Gauss-R 43.52 0.109668703 0.035243719

Table 2 Numerical results for
Example 5.3

Avg.Iter.
 Avg.Time Total Global%

AVM-4.1 85.26 1.638634504 10

AVM-4.2 2.11 0.157405009 93

AVM-R 82.8807 1.603339278 10.73

Gauss-4.1 90.44 1.116187155 8

Gauss-4.2 2.11 0.145236931 93

Gauss-R 87.5964 1.066034394 10.29

For each matrix A, we ran Algorithms 2.1 and 2.2 starting from 100 randomly generated
initial points. Thus for each A, we obtained 204 objective function values. The numerical
results are documented in Table 2.

The results in Table 2 show that Strategy 4.2 significantly improved the performance of
Algorithms 2.1 and 2.2 in terms of iterative steps, CPU time and “Total Global”. Strategy 4.2
is much better than Strategy 4.1. In addition, for this example, Algorithm 2.1 is faster than
Algorithm 2.2.

Example 5.4 In this example, we randomly generated 100 matrices, with m = 4, n1 =
10, ni = n1 + (i − 1)10, i = 2, 3, 4. These matrices were constructed by the following
Matlab code.

C = rand(100, 100);
[Q, R] = qr(C);

Λ = diag(100 ∗ rand(1, 20), rand(1, 80));
A = Q ∗ Λ ∗ Q′

The numerical results are documented in Table 3.

The results in Table 3 show that Strategy 4.1 significantly improved the performance of
Algorithms 2.1 and 2.2 in terms of iterative steps, CPU time and “Total Global”. Strategy 4.1
is much better than Strategy 4.2.

123



834 J Sci Comput (2016) 67:821–835

Table 3 Numerical results for
Example 5.4

Avg.Iter.
 Avg.Time Total Global%

AVM-4.1 1.03 0.119652767 94

AVM-4.2 11.85 0.312938006 6

AVM-R 18.9307 0.39156095 0.09

Gauss-4.1 1.02 0.108732697 93

Gauss-4.2 17.14 0.325262085 6

Gauss-R 41.7432 0.51479238 0.023

Summarizing the results of Examples 5.1-5.4, we can make several observations as fol-
lows.

(i) Generally, both AVM and Gauss–Seidel methods converge to the global minima with a
low probability if the starting point is randomly selected.

(ii) Strategies 4.1 and 4.2 can significantly improve these iterative methods in terms of
iterative steps and CPU time.

(iii) Strategy 4.1 and/or Strategy 4.2 can significantly boost up the probability of getting a
“better” solution of Genvar.

(iv) The Gauss–Seidel method frequently converges faster than the AVM in term of CPU
time.

6 Final Remarks

In this paper, the AVM method proposed by Kettenring for the Genvar criterion is analysed.
An inexact version of AVM, the Gauss–Seidel method, is presented. We suggest two starting
point strategies to improve these iterative methods in terms of rate of convergence and the
probability of finding a global solution of Genvar.

We ran Examples 5.3 and 5.4 for large m. The results show that, as m increases, the
efficiency of Strategies 4.1 and 4.2 descend. Hence, how to construct other starting point
strategy is a future topic. We hope the results in Sect. 3 can enlighten us on this topic.

Acknowledgments We are very grateful to both referees for their constructive comments and suggestions.

References

1. Hotelling, H.: Relations between two sets of variables. Biometrika 28, 321–377 (1936)
2. Steel, R.G.D.:Minimumgeneralized variance for a set of linear functions. Ann.Math. Statist. 22, 456–460

(1951)
3. Kettenring, J.R.: Canonical analysis of several sets of variables. Biometrika 58, 433–451 (1971)
4. Horst, P.: Relations among m sets of measures. Psychometrika 26, 129–149 (1961)
5. Van De Geer, J.P.: Linear relations among k sets of variables. Psychometrika 49(1), 70–94 (1984)
6. Hanafi, M., Kiers, H.A.L.: Analysis of K sets of data, with differential emphasis on agreement between

and within sets. Comput. Statist. Data Anal. 51, 1491–1508 (2006)
7. Vía, J., Santamaría, I., Pérez, J.: Canonical correlation analysis (CCA) algorithms formultiple data sets: an

application to blind SIMO equalization. European Signal Processing Conference, EUPSIPCO, Antalya,
Turkey (2005)

8. Vía, J., Santamaría, I., Pérez, J.: A learning algorithm for adaptive canonical correlation analysis of several
data sets. Neural Netw. 20, 139–152 (2007)

123



J Sci Comput (2016) 67:821–835 835

9. De leeuw, J.: Multivariate analysis with optimal scaling. In: Das Gupta, S., Ghosh, J.K.( eds.) Proceedings
of the International Conference on Advances in Multivariate Statistical Analysis, Calcutta, pp. 127–160
(1988)

10. Zhang, Y.T., Zhu, X.D.: Correlation of K groups of random variables. Chin. J. Appl. Probab. Statist. 4(1),
27–34 (1988)

11. Yuan, Y.H., et al.: A novel multiset integrated canonical correlation analysis framework and its application
in feature fusion. Pattern Recognit. 44, 1031–1040 (2011)

12. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
13. Geomans,M.Z.,Williamson,D.P.: Improved approximation algorithms formaximumcut and satisfiability

problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
14. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore

(1996)
15. Kiers, H.A.L.: Setting up alternating least squares and iterativemajorization algorithms for solving various

matrix optimization problems. Comput. Statist. Data Anal. 41, 157–170 (2002)

123


	Numerical Methods for the Genvar Criterion  of Multiple-Sets Canonical Analysis
	Abstract
	1 Introduction
	2 Optimality Conditions
	3 Upper and lower bounds of the optimal objective function value
	4 Starting point strategies
	5 Numerical Examples
	6 Final Remarks
	Acknowledgments
	References




