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Abstract In this paper, we propose a Barzilai–Borwein-like iterative half thresholding algo-
rithm for the L1/2 regularized problem. The algorithm is closely related to the iterative
reweighted minimization algorithm and the iterative half thresholding algorithm. Under mild
conditions, we verify that any accumulation point of the sequence of iterates generated by the
algorithm is a first-order stationary point of the L1/2 regularized problem. We also prove that
any accumulation point is a local minimizer of the L1/2 regularized problem when additional
conditions are satisfied. Furthermore, we show that the worst-case iteration complexity for
finding an ε scaled first-order stationary point is O(ε−2). Preliminary numerical results show
that the proposed algorithm is practically effective.
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1 Introduction

In this paper, we consider the following L1/2 regularized problem

min
x∈Rn

F(x) � f (x) + ρ‖x‖1/21/2, (1.1)

where ρ > 0, ‖x‖1/21/2 = ∑n
i=1 |xi |1/2, and f is bounded below and Lipschitz continuously

differentiable in Rn , that is, there exist two constants L low and L f > 0 such that

f (x) ≥ L low and ‖∇ f (x) − ∇ f (y)‖2 ≤ L f ‖x − y‖2, ∀x, y ∈ Rn . (1.2)

The L1/2 regularized problem is a nonconvex, nonsmooth and non-Lipschitz optimization
problem, which has many applications in variable selection and compressed sensing [18,23].
When f (x) = ‖Ax − b‖22/2 with A ∈ Rm×n and b ∈ Rm (m < n or even m � n), problem
(1.1) reduces to the following L2–L1/2 minimization problem

min
x∈Rn

F(x) �
1

2
‖Ax − b‖22 + ρ‖x‖1/21/2, (1.3)

which is a penalty version of the following constrained L1/2 minimization problem

min
x∈Rn

‖x‖1/21/2, s.t. Ax = b.

Problem (1.3) is a special L2–L p (0 < p < 1) minimization problem [5,6,15]. The purpose
of solving this unconstrained (or constrained) optimization problem is to compute the sparse
solution of underdetermined linear systems Ax = b (see, e.g., [22,23], for details).

Because of nonconvexity and nonsmoothness, many efficient iterative algorithms for opti-
mization problems cannot be directly applied to solve the L1/2 regularized problem and the
general L p (0 < p < 1) regularized problem. Recently, a great deal of effort was made
to study iterative algorithms for solving this class of optimization problems (see, e.g., [3–
6,15,17,18,21–23], for details).

Bian et al. [3] proposed first-order and second-order interior point algorithms to solve
a class of nonsmooth, nonconvex, and non-Lipschitz minimization problems and proved
that the worst-case iteration complexity for finding an ε scaled first-order stationary point is
O(ε−2) for first-order interior point algorithm and O(ε−3/2) for second-order interior point
algorithm. By the use of the first-order necessary condition of (1.3), Wu et al. [21] proposed
a gradient based method to solve it and verified that the sequence of iterates converges to
a stationary point of (1.3). Li et al. [17] proposed feasible direction algorithms to solve an
equivalent smooth constrained reformulation of (1.1) and showed that the iterate sequence
generated by the proposed algorithms converges to a stationary point of (1.1).

Iterative reweighted minimization algorithms are another class of important algorithms
for solving the L p (0 < p < 1) regularized problem [4,6,15,18,23]. This class of algo-
rithms was firstly proposed to solve the L2–L p minimization problem [4,6,15,16,23] and it
consists of solving a sequence of weighted convex optimization problems. According to the
type of unconstrained optimization problems solved at each iteration, they were called the
iterative reweighted L1 minimization algorithm (IRL1) [4,6,18] and the iterative reweighted
L2 minimization algorithm (IRL2) [15,16,18]. Lu [18] extended IRL1 and IRL2 algorithms
and proposed a more general IRLα algorithm to solve the L p regularized problem. For the
L1/2 regularized problem (1.1), the IRLα algorithm at each iteration solves a weighted opti-
mization problem of the form:
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xk+1 := arg min
x∈Rn

f (x) + ρ

n∑

i=1

wk
i |xi |α, (1.4)

where

wk
i = 1

2α

(
|xki |α + ξ

) 1
2α −1

, ∀i = 1, 2, . . . , n,

with ξ > 0 and α ≥ 1. When α = 1 and α = 2, respectively, the IRLα algorithm reduces to
the IRL1 algorithm [4,6,18] and the IRL2 algorithm [15,16,18]. It is verified [6,15,18] that
the sequence {xk} converges to a stationary point of the approximation of the form

min
x∈Rn

Fα,ξ (x) � f (x) + ρ

n∑

i=1

(|xi |α + ξ)1/2α. (1.5)

The iterative reweighted minimization algorithms need to solve a sequence of large-scale
optimization problems. Moreover, they require ξ to be dynamically updated and approach
zero (we refer the reader to [18] for details). This usually brings in lots of computational
effort. In order to improve the computational efficiency, one prox-linear iteration was applied
to approximately solve (1.4), which yielded the following variant [18]:

xk+1 := arg min
x∈Rn

f
(
xk
)

+ ∇ f
(
xk
)T (

x − xk
)

+ λk

2
‖x − xk‖22 + ρ

n∑

i=1

wk
i |xi |α, (1.6)

where λk is chosen to ensure that the new iterate xk+1 satisfies the following inequality

Fα,ξ

(
xk+1

)
≤ Fα,ξ

(
xk
)

− c

2
‖xk+1 − xk‖22,

with c > 0. We call the variant the accelerated iterative reweighted Lα minimization algo-
rithm (abbreviated by AIRLα).

There is also an alternative way to derive (1.6). We first apply the prox-linear algorithm
to (1.1) and obtain the iteration

xk+1 = arg min
x∈Rn

f
(
xk
)

+ ∇ f
(
xk
)T (

x − xk
)

+ λk

2
‖x − xk‖22 + ρ‖x‖1/21/2. (1.7)

The iteration (1.7) is equivalent to solving n one-dimensional L2–L1/2 minimization
problems. Applying one iteration of the IRLα algorithm to approximately solve these one-
dimensional problems yields (1.6). In this way, the prox-linear algorithm can be regarded as
outer iteration and the IRLα algorithm is inner iteration.

The one-dimensional L2–L1/2 minimization problem has a closed-form solution [22].
Using the closed-form solution, Xu et al. [22] proposed an iterative half Thresholding algo-
rithm (denoted by IHTA) to solve the L2–L1/2 minimization problem of the form (1.3). The
IHTA iteration can be described as follows:

xk+1 = Hρμk ,
1
2

(
xk − μk A

T
(
Axk − b

))
, (1.8)

where μk is a steplength parameter and Hα, 12
: Rn → Rn is called the half thresholding

operator [22], defined by

(
Hα, 12

(x)
)

i
=
⎧
⎨

⎩

2

3
xi

(

1 + cos

(
2

3
π − 2

3
h(xi , α)

))

, if |xi | >
3

2

(α

2

)2/3
,

0, otherwise,
(1.9)
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with

h(xi , α) = arccos

(
α

8

( |xi |
3

)−3/2
)

.

The IHTA algorithm can be seen as an operator splitting algorithm. Based on the operator
splitting technique, the iterative soft thresholding algorithm (denoted by ISTA) was also
proposed to solve the L1 regularized problem [7,9,13]. IHTA and ISTA algorithms require
the steplength to be sufficiently small to guarantee convergence (see [7,9,13,22] for details).
A small steplength usually results in slow convergence in practice (see, e.g., [2,10,14,20,21]).
By combining the Barzilai–Borwein (BB) steplength [1] with the nonmonotone line search
[11], accelerated ISTA methods were proposed to solve the L1 regularized problem [14,20].
Numerical experiments show that the BB steplength significantly improve the speed of ISTA
[14,20].

Motivated by [14,20], we shall propose a Barzilai–Borwein-like iterative half Threshold-
ing algorithm (abbreviated by BBIHTA) to solve the L1/2 regularized problem (1.1). We
firstly apply the prox-linear algorithm to (1.1) and obtain the iteration (1.7), in which the λk
is closely related to the BB steplength and is chosen such that the new iterate xk+1 satisfies
the inequality

F
(
xk+1

)
≤ max

0≤ j≤min(k,M)
F
(
xk− j

)
− γ ‖xk+1 − xk‖22,

where M is a given nonnegative integer, γ is a positive constant and F is defined by (1.1).
Noting that the one-dimensional L2–L1/2 minimization problem has a closed-form solution,
we then solve these one-dimensional L2–L1/2 minimization problems exactly. Under appro-
priate conditions, we study the convergence of the BBIHTA algorithm and show that the
worst-case iteration complexity for finding an ε scaled first-order stationary point is O(ε−2).
Finally,we do somepreliminary numerical experiments to show the efficiency of the proposed
algorithm.

The remainder of the paper is organized as follows. In Sect. 2, we give some preliminaries
and propose the BBIHTA algorithm to solve the L1/2 regularized problem (1.1). In Sect. 3,
we study the convergence of the proposed algorithm and verify that any accumulation point
of the sequence of iterates is a first-order stationary point of (1.1) under mild conditions and
is also a local minimizer when additional conditions are satisfied. In Sect. 4, we show that the
worst-case iteration complexity for finding an ε scaled first-order stationary point is O(ε−2).
Finally in Sect. 5, we shall numerically compare the performance of the BBIHTA algorithm
with that of the other two algorithms.

2 Preliminaries and the Algorithm

The BBIHTA algorithm is based on the iteration (1.7). It is readily seen that the iteration
(1.7) can be equivalently reformulated as

xk+1 := arg min
x∈Rn

∥
∥
∥
∥x −

(

xk − ∇ f (xk)

λk

)∥
∥
∥
∥

2

2
+ 2ρ

λk
‖x‖1/21/2. (2.1)

For simplicity, we let, in the latter part of the paper,

yk = xk − ∇ f
(
xk
)

/λk and βk = 2ρ/λk . (2.2)

123



J Sci Comput (2016) 67:581–601 585

Then (2.1) can be decomposed into n one-dimensional L2–L1/2 minimization problems

xk+1
i = argmin

t∈R

(
t − yki

)2 + βk |t |1/2, i = 1, 2, · · · , n, (2.3)

where xk+1
i and yki are, respectively, the i th components of xk+1 and yk . Since the optimiza-

tion problem (2.3) is nonconvex, it may have more than one local minimizer. The following
lemma shows this.

Lemma 2.1 The optimization problem of the form (2.3) has at most two local minimizers.

Proof Without loss of generality, let us assume that yki > 0. Define ϕ : R → R by

ϕ(t) ≡
(
t − yki

)2 + βk |t |1/2. (2.4)

Then ϕ(t) is a monotonically decreasing function of t on the interval (−∞, 0]. Therefore,
the optimization problem (2.3) has no local minimizer on the interval (−∞, 0). Let t∗ be a
local minimizer. Then t∗ = 0 or it satisfies

t∗ > 0 and ϕ′ (t∗
) = 2

(
t∗ − yki

)
+ βk

(
t∗
)−1/2

/2 = 0. (2.5)

From (2.5) we deduce that if t∗ > 0, (t∗)1/2 must be a root of the following equation

4t
(
t2 − yki

)
+ βk = 0.

Let ti (i = 1, 2, 3) be the solutions of the equation above and satisfy t1 ≤ t2 ≤ t3.
Then we get t1t2t3 = −βk/4 and t1 + t2 + t3 = 0, which imply that t1 < 0 and t2 > 0.
Therefore, ϕ′((t2)2) = 0 and ϕ′((t3)2) = 0. Note that lim

t→0+ ϕ′(t) = +∞. By continuity of

ϕ′(t), we deduce that ϕ′(t) > 0 in the interval (0, (t2)2), which implies that the function
ϕ(t) is monotonically increasing in this interval. Hence, (t2)2 is not a local minimizer of
the optimization problem (2.3) and this problem has at most one local minimizer in the
interval (0,+∞). On the other hand, since ϕ(t) is monotonically decreasing on the interval
(−∞, 0] and is monotonically increasing in the interval (0, (t2)2), 0 is a local minimizer of
the optimization problem (2.3).

The discussion above shows that the optimization problem of the form (2.3) has at most
two local minimizers. The proof is complete. ��

Generally, it is difficult to find an optimal solution (i.e., a globalminimizer) of a nonconvex
optimization problem. Xu et al. [22] proved that the optimization problem of the form (2.3)
has a closed-form solution and derived its expression.We introduce the following two lemmas
to show this. For completeness, we provide a simpler proof for Lemma 2.2.

Lemma 2.2 Let xk+1
i ∈ R be an optimal solution of problem (2.3). Then xk+1

i �= 0 if and
only if the following inequality holds

∣
∣
∣yki

∣
∣
∣ >

3

2

(
βk

2

)2/3

.

Proof Necessary. Without loss of generality, let us assume that xk+1
i > 0. Then from (2.3)

we derive that
(
xk+1
i − yki

)2 + βk |xk+1
i |1/2 <

(
yki

)2
. (2.6)
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Moreover, by the first-order necessary condition of (2.3) we know that xk+1
i satisfies the

following equality

2
(
xk+1
i − yki

)
+ βk

2
(
xk+1
i

)1/2 = 0.

This yields

yki = xk+1
i + βk

4
(
xk+1
i

)1/2 . (2.7)

Substituting (2.7) into (2.6), we get

xk+1
i >

(
βk

2

)2/3

.

It is not difficult to verify that the function φ(t) ≡ t +βk t−1/2/4 is monotonically increasing
when t ≥ (βk/2)2/3. Therefore, we deduce from (2.7) that

yki >
3

2

(
βk

2

)2/3

. (2.8)

Sufficiency. Without loss of generality, we assume that (2.8) holds. Let

t̄ ≡
(

βk

2

)2/3

. (2.9)

Then it holds

ϕ
(
xk+1
i

)
≤ ϕ(t̄) =

(
t̄ − yki

)2 + βk t̄
1/2 =

(
yki

)2 + t̄2 − 2yki t̄ + βk t̄
1/2, (2.10)

where ϕ is defined by (2.4). By combining (2.4), (2.8) and (2.9), we obtain

t̄2 − 2yki t̄ + βk t̄
1/2 = t̄1/2

(
t̄3/2 − 2yki t̄

1/2 + βk

)
<

(
βk

2

)2/3 (
βk

2
− 3βk

2
+ βk

)

= 0.

This together with (2.10) yields

ϕ
(
xk+1
i

)
<
(
yki

)2 = ϕ(0).

Hence, xk+1
i �= 0. The proof is complete. ��

The following lemma is from [22], which gives an explicit expression for the optimal
solution of problem (2.3).

Lemma 2.3 For any i = 1, 2, . . . , n, define

xk+1
i �

(
Hβk ,

1
2

(
yk
))

i
, (2.11)

where yk and βk are defined by (2.2) and (Hβk ,
1
2
(yk))i is calculated according to (1.9) with

α = βk . Then xk+1
i is an optimal solution of problem (2.3).
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Now we give a first-order necessary condition for optimality for problem (1.1). Let x∗ =
(x∗

1 , x
∗
2 , . . . , x

∗
n )

T ∈ Rn be a local minimizer of (1.1). For any i = 1, 2, . . . , n, if x∗
i �= 0,

then simple calculation shows that

∇i f
(
x∗)+ ρ

sgn
(
x∗
i

)

2|x∗
i |1/2 = 0,

that is,

2|x∗
i |1/2∇i f

(
x∗)+ ρsgn

(
x∗
i

) = 0,

where ∇i f (x) denotes the i th component of ∇ f (x) and sgn : R → {−1, 0, 1} is defined by

sgn(t) =
⎧
⎨

⎩

1, t > 0,
0, t = 0,

−1, t < 0.

Define a mapping Ψ (x) = (Ψ1(x), Ψ2(x), . . . , Ψn(x))T : Rn → Rn with

Ψi (x) = mid
{
2|xi |1/2∇i f (x) − ρ, xi , 2|xi |1/2∇i f (x) + ρ

}
, i = 1, 2, . . . , n,

(2.12)
where mid{a, b, c} takes the medium value among three variables a, b, c. With the notions
above, it is not difficult to verify the following proposition. The proof is omitted here.

Proposition 2.1 If x∗ ∈ Rn is a local minimizer of problem (1.1), then Ψ (x∗) = 0.

We call a vector x ∈ Rn a first-order stationary point if it satisfies that Ψ (x) = 0. From
Proposition 2.1 it follows that every localminimizer of problem (1.1) is a first-order stationary
point. In [5,18], similar concepts and properties were also presented.

We now propose the Barzilai–Borwein-like iterative half thresholding algorithm with a
nonmonotone line search strategy [11] to solve problem (1.1).

Algorithm 2.1 (Barzilai–Borwein-Like Iterative Half Thresholding (BBIHTA) Algorithm)
Given x0 ∈ Rn , 0 < λmin < λmax < +∞, λ̄ ∈ [λmin, λmax], γ ∈ (0, 1), 1 < σ1 < σ2 <

+∞, and integer M ≥ 0. Set k := 0.

Step 1. If ‖Ψ (xk)‖2 = 0 stop.
Step 2. Set λk ← λ̄.
Step 3. Compute yk and βk by

yk = xk − ∇ f
(
xk
)

/λk and βk = 2ρ/λk .

Step 4. For each i = 1, 2, . . . , n, compute xk+1
i by (2.11) and set

xk+1 =
(
xk+1
1 , xk+1

2 , . . . , xk+1
n

)T
.

Step 5. (nonmonotone line search)
If

F
(
xk+1

)
≤ max

0≤ j≤min(k,M)
F
(
xk− j

)
− γ ‖xk+1 − xk‖22, (2.13)

then set sk = xk+1 − xk , dk = ∇ f (xk+1) − ∇ f (xk) and go to Step 7; otherwise, go to
Step 6.

123



588 J Sci Comput (2016) 67:581–601

Step 6. Choose

λnew ∈ [σ1λk, σ2λk],
set λk ← λnew, and go to Step 3.
Step 7. Compute pk = (sk)T dk and qk = (sk)T sk . Define λBB

k = pk/qk and

λ̄ = min{λmax,max{λmin, λ
BB
k }}. (2.14)

Let k := k + 1, and go to Step 1.

Remark 2.1 (i) The λBB
k in Step 7 is the BB steplength and is introduced by Barzilai and

Borwein in [1]. The BB gradient method possesses the R-superlinear convergence for
two-dimensional convex quadratics. Raydan [19] extended the method to unconstrained
optimization by incorporating the nonmonotone line search [11]. The resulting method
is globally convergent and is competitive with some standard conjugate gradient codes.
Due to the simplicity and efficiency, the BB-like methods have received much attentions
in finding sparse approximation solutions to large underdetermined linear systems of
equations from signal/image processing [12,14,20]. However, it is difficult to analyze
the convergence rate of the BB-like methods even if the objective function is convex
[8]. The object of (2.14) is to keep λ̄ uniformly bounded and this λ̄ is always accepted
by the non-monotone line search.

(ii) From the previous discussion, we know that xk+1 generated by (2.11) satisfies

xk+1 = arg min
x∈Rn

f (xk) + ∇ f
(
xk
)T (

x − xk
)

+ λk

2
‖x − xk‖22 + ρ‖x‖1/21/2.

(iii) Denote

Ω0 � {x : F(x) ≤ F(x0)}.
Since f is bounded below, it is not difficult to verify that Ω0 is a closed and bounded
set. That is, there exists a constant β > 0 such that

‖x‖2 < β, ∀x ∈ Ω0.

Moreover, the sequence {xk} generated by Algorithm 2.1 is contained in Ω0.

Proposition 2.2 The BBIHTA algorithm cannot cycle indefinitely between Step 3 and
Step 6.

Proof Since f is Lipschitz continuously differentiable in Rn , it holds

F(xk+1) = f
(
xk+1

)
+ ρ‖xk+1‖1/21/2

= f
(
xk
)

+
∫ 1

0
∇ f

(
xk + t

(
xk+1 − xk

))T (
xk+1 − xk

)
dt + ρ‖xk+1‖1/21/2

= f
(
xk
)

+ ∇ f
(
xk
)T (

xk+1 − xk
)

+
∫ 1

0

[
∇ f

(
xk+t

(
xk+1−xk

))
−∇ f

(
xk
)]T (

xk+1−xk
)
dt + ρ‖xk+1‖1/21/2.

(2.15)

From (1.2) it follows
∣
∣
∣
∣

[
∇ f

(
xk + t

(
xk+1 − xk

))
− ∇ f

(
xk
)]T (

xk+1 − xk
)∣∣
∣
∣ ≤ t L f ‖xk+1 − xk‖22,

123



J Sci Comput (2016) 67:581–601 589

which together with (2.15) implies

F
(
xk+1

)
≤ f

(
xk
)

+ ∇ f
(
xk
)T (

xk+1 − xk
)

+ L f ‖xk+1 − xk‖22
∫ 1

0
tdt + ρ‖xk+1‖1/21/2

= f
(
xk
)

+ ∇ f
(
xk
)T (

xk+1 − xk
)

+ L f

2
‖xk+1 − xk‖22 + ρ‖xk+1‖1/21/2.

(2.16)

Assume that λk ≥ L f + 2γ . Then by (2.16) we have

F
(
xk+1

)
≤ f

(
xk
)

+ ∇ f
(
xk
)T (

xk+1 − xk
)

+λk

2
‖xk+1 − xk‖22 + ρ‖xk+1‖1/21/2 − γ ‖xk+1 − xk‖22. (2.17)

From (ii) of Remark 2.1, it follows

f
(
xk
)

+ ∇ f
(
xk
)T (

xk+1 − xk
)

+ λk

2
‖xk+1 − xk‖22 + ρ‖xk+1‖1/21/2

≤ f
(
xk
)

+ ρ‖xk‖1/21/2 = F
(
xk
)

. (2.18)

Combining (2.17) and (2.18), we obtain

F
(
xk+1

)
≤ F

(
xk
)

− γ ‖xk+1 − xk‖22 ≤ max
0≤ j≤min(k,M)

F
(
xk− j

)
− γ ‖xk+1 − xk‖22.

Therefore, when λk ≥ L f + 2γ , the xk+1 generated by (2.11) satisfies (2.13).
At kth iteration, we get, by Steps 2, 6 and 7, λk = λ̄σ l

1 ≥ λminσ
l
1, after l cycles between

Step 3 and Step 6. Since σ1 > 1, it holds λk ≥ L f + 2γ when l ≥ log(L f +2γ )−log(λmin)

log(σ1)
.

Therefore, by the discussion above, we deduce that the BBIHTA algorithm cannot cycle
indefinitely between Step 3 and Step 6. The proof is complete. ��

The following proposition shows that the sequence {λk} generated by Algorithm 2.1 is
bounded. This proposition shall be used to prove Theorem 3.1 and Lemma 4.1.

Proposition 2.3 Let {λk} be a sequence generated by Algorithm 2.1. Then the following
inequalities hold

λmin ≤ λk ≤ max{λmax, σ2(L f + 2γ )}, ∀k = 0, 1, . . . .

Proof For any k = 0, 1, . . ., by Algorithm 2.1 we obtain λk ≥ λ̄ ≥ λmin. If λk = λ̄, by (2.14)
we get λk ≤ λmax. Otherwise, from Step 6 of Algorithm 2.1 and the proof of Proposition 2.2
it follows that

λk/σ2 < L f + 2γ.

Thismeans thatλk < σ2(L f +2γ ). Therefore, for any k = 0, 1, . . ., the following inequalities
hold

λmin ≤ λk ≤ max{λmax, σ2(L f + 2γ )}.
The proof is complete. ��
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3 The Convergence of the BBIHTA Algorithm

In this section, we shall study the convergence of the BBIHTA algorithm. To this end, we
first show the following lemma.

Lemma 3.1 Suppose that the sequence {xk} generated by Algorithm 2.1 is infinite. Then we
have

lim
k→∞ ‖xk+1 − xk‖2 = 0.

Proof Let l(k) be an integer such that

k − min(k, M) ≤ l(k) ≤ k and F
(
xl(k)

)
= max

0≤ j≤min(k,M)
F
(
xk− j

)
. (3.1)

Then, we have

F
(
xl(k+1)

)
= max

0≤ j≤min(k+1,M)
F
(
xk+1− j

)

≤ max
0≤ j≤min(k,M)+1

F
(
xk+1− j

)
= max

{
F
(
xk+1

)
, F

(
xl(k)

)}
.

This together with (2.13) implies

F
(
xl(k+1)

)
≤ F

(
xl(k)

)
.

Hence, the sequence {F(xl(k))} is nonincreasing. Moreover we obtain from (2.13) for any
k > M ,

F
(
xl(k)

) ≤ max
0≤ j≤min(l(k)−1,M)

F
(
xl(k)−1− j

)− γ ‖xl(k) − xl(k)−1‖22
= F

(
xl(l(k)−1)

)− γ ‖xl(k) − xl(k)−1‖22.
(3.2)

Since f is bounded below, the function F is also bounded below. Consequently the sequence
{F(xl(k))} admits a limit. This together with (3.2) implies

lim
k→∞ ‖xl(k) − xl(k)−1‖2 = 0. (3.3)

In what follows, we shall prove that limk→∞ ‖xk+1− xk‖2 = 0. First we show, by induction,
that for any given j = 1, 2, . . . , M + 1,

lim
k→∞ ‖xl(k)− j+1 − xl(k)− j‖2 = 0 (3.4)

and
lim
k→∞ F

(
xl(k)− j

)
= lim

k→∞ F
(
xl(k)

)
. (3.5)

(We assume, for the remainder of the proof, that the iteration index k is large enough to avoid
the occurrence of negative subscripts.) If j = 1, (3.4) follows from (3.3). Moreover, (3.4)
implies that (3.5) holds for j = 1 since F(x) is uniformly continuous on Ω0. Assume now
that (3.4) and (3.5) hold for a given j . Then by (2.13) we get

F
(
xl(k)− j

)
≤ F

(
xl(l(k)− j−1)

)
− γ ‖xl(k)− j − xl(k)− j−1‖22.

Taking limits in both sides of the last inequality as k → ∞, we have by (3.5)

lim
k→∞ ‖xl(k)− j − xl(k)− j−1‖2 = 0,
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which implies
{‖xl(k)− j − xl(k)−( j+1)‖2

} → 0. By (3.5) and the uniform continuity of F on
Ω0, we get

lim
k→∞ F

(
xl(k)−( j+1)

)
= lim

k→∞ F
(
xl(k)− j

)
= lim

k→∞ F
(
xl(k)

)
.

By the principle of induction,we have proved (3.4) and (3.5) for any given j = 1, 2, · · · , M+
1.

Now for any k, it holds that

xk+1 = xl(k+2+M) −
l(k+2+M)−(k+1)∑

j=1

(
xl(k+2+M)− j+1 − xl(k+2+M)− j

)
. (3.6)

By (3.1), we have l(k + 2 + M) − (k + 1) ≤ k + 2 + M − (k + 1) = M + 1 and
l(k + 2 + M) − (k + 1) ≥ k + 2 + M − M − (k + 1) = 1. It then follows from (3.4) and
(3.6) that

lim
k→∞ ‖xk+1 − xl(k+2+M)‖ = 0.

Since {F(xl(k))} admits a limit, by the uniform continuity of F on Ω0, it holds that

lim
k→∞ F(xk) = lim

k→∞ F
(
xl(k)

)
. (3.7)

By (2.13), we have

F(xk+1) ≤ F(xl(k)) − γ ‖xk+1 − xk‖22.
Taking limits in both sides of the last inequality as k → ∞, we obtain by (3.7)

lim
k→∞ ‖xk+1 − xk‖2 = 0.

The proof is complete. ��
The convergence of the BBIHTA algorithm is stated in the following theorem. This theo-

rem shows that every accumulation point of the sequence of iterates generated by theBBIHTA
algorithm is a first-order stationary point of (1.1).

Theorem 3.1 Suppose that the sequence {xk} is generated by Algorithm 2.1. Then either
Ψ (x j ) = 0 for some finite j , or every accumulation point x̄ of {xk} satisfies Ψ (x̄) = 0.

Proof When {xk} is finite, from the termination condition, it is clear that there exists some
finite j satisfying Ψ (x j ) = 0. Suppose that {xk} is infinite. Then by Lemma 3.1 we have

lim
k→∞ ‖xk+1 − xk‖2 = 0. (3.8)

Let x̄ be an arbitrary accumulation point of {xk}. Then there exists a subsequence {xkl } ⊂
{xk} such that

lim
l→+∞ xkl = x̄ . (3.9)

For any i with x̄i = 0, by (2.12) we get

Ψi (x̄) = 0.

For any i with x̄i �= 0, by (3.9) we deduce that xkli �= 0 for sufficiently large l. Without loss

of generality, let us assume that x̄i > 0. Then it holds that xkli > 0 for sufficiently large l.
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Note that xkli is an optimal solution of (2.3). By the first-order necessary condition of (2.3),

we know that for sufficiently large l, xkli satisfies

2
(
xkli − ykl−1

i

)
+ βkl−1

2
(
xkli

)1/2 = 0,

where ykl−1
i = xkl−1

i − ∇i f (xkl−1)/λkl−1 and βkl−1 = 2ρ/λkl−1. Therefore, it holds

xkli − xkl−1
i + ∇i f

(
xkl−1

)

λkl−1
+ ρ

2λkl−1

(
xkli

)1/2 = 0,

which implies

2
(
xkli

)1/2 ∇i f
(
xkl−1

)
+ ρ = −2λkl−1

(
xkli

)1/2 (
xkli − xkl−1

i

)
. (3.10)

By Proposition 2.3 we know that the sequence {λk−1} is bounded. From (3.8) and (3.9) we
deduce that

lim
l→+∞

(
xkli − xkl−1

i

)
= 0 and lim

l→+∞ xkl−1 = x̄ .

So using these facts together with (3.10) and (3.9), we obtain

2(x̄i )1/2∇i f (x̄) + ρ = lim
l→+∞

(

2
(
xkli

)1/2 ∇i f
(
xkl−1

)+ ρ

)

= − lim
l→+∞

(

2λkl−1

(
xkli

)1/2 (
xkli − xkl−1

i

))

= 0.

This together with (2.12) and the assumption x̄i > 0 implies

Ψi (x̄) = 0.

The discussion above shows

Ψi (x̄) = 0, ∀i.
This completes the proof. ��
Remark 3.1 Since the L1/2 regularized problem (1.1) is a nonconvex optimization problem,
its first-order stationary pointmay not be a localminimizer. To see this, consider the following
one-dimensional L1/2 regularized problem

min
t∈R

1

3
t3 + 2|t |1/2.

Simple calculation shows that the point −1 is a first-order stationary point of the problem
above but not a minimizer.

The following theorem gives a sufficient condition for an accumulation point x̄ of {xk}
to be a local minimizer of (1.1). Before giving the theorem, we introduce some notations on
submatrix and subvector. Given index sets I ⊂ {1, 2, . . . , n} and J ⊂ {1, 2, . . . , n},∇2

I J f (x̄)
denotes the submatrix of the Hessian matrix∇2 f (x̄) consisting of rows and columns indexed
by I and J respectively, ∇I f (x̄) denotes the subvector of the gradient ∇ f (x̄) consisting of
components indexed by I and xI denotes the subvector of x consisting of components indexed
by I .
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Theorem 3.2 Let f be twice continuously differentiable. Assume that {xk} is a sequence
of iterates generated by Algorithm 2.1 and x̄ is an accumulation point of {xk}. If it holds
ĪA = ∅, or ĪA �= ∅ and

σ
(
∇2
ĪA ĪA

f (x̄)
)

>
1

4
ρ max

i∈ ĪA
{|x̄i |−3/2}, (3.11)

then x̄ is a local minimizer of the L1/2 regularized problem (1.1). Here, ĪA := {i | x̄i �= 0},
and σ(∇2

ĪA ĪA
f (x̄)) denotes the smallest eigenvalue of ∇2

ĪA ĪA
f (x̄).

Proof For any d ∈ Rn sufficiently small, it holds that

F(x̄ + d) − F(x̄) = ∇ f (x̄)T d + 1

2

∫ 1

0
dT∇2 f (x̄ + td)ddt + ρ

(
‖x̄ + d‖1/21/2 − ‖x̄‖1/21/2

)

= 1

2
dT∇2 f (x̄)d+∇ f (x̄)T d+ρ

n∑

i=1

(|x̄i + di |1/2 − |x̄i |1/2
)+ o

(‖d‖22
)

= 1

2
dT∇2 f (x̄)d +

∑

i∈ ĪA

(
∂ f (x̄)

∂xi
+ ρsgn(x̄i )

|x̄i + di |1/2 + |x̄i |1/2
)

di

+
∑

i∈ ĪC

(
∂ f (x̄)

∂xi
di + ρ|di |1/2

)

+ o
(‖d‖22

)
, (3.12)

where ĪC := {i | x̄i = 0}.
Assuming that ĪA = ∅, by (3.12) we have

F(x̄ + d) − F(x̄) = ρ‖d‖1/21/2 + ∇ f (x̄)T d + 1

2
dT∇2 f (x̄)d + o

(‖d‖22
)
,

which implies that for any d sufficiently small, it holds

F(x̄ + d) > F(x̄).

Therefore, x̄ is a local minimizer of the L1/2 regularized problem (1.1).
Assume that ĪA �= ∅. Since x̄ is an accumulation point of {xk}, by Theorem 3.1 and (2.12)

we get

∂ f (x̄)

∂xi
+ ρsgn(x̄i )

2|x̄i |1/2 = 0, ∀i ∈ ĪA.

This together with (3.12) implies that

F(x̄ + d) − F(x̄) = 1

2
dT∇2 f (x̄)d +

∑

i∈ ĪA

(
ρsgn(x̄i )

|x̄i + di |1/2 + |x̄i |1/2 − ρsgn(x̄i )

2|x̄i |1/2
)

di

+
∑

i∈ ĪC

(
∂ f (x̄)

∂xi
di + ρ|di |1/2

)

+ o
(‖d‖22

)
.

(3.13)
Simple calculation shows that

dT∇2 f (x̄)d = dT
ĪA

∇2
ĪA ĪA

f (x̄)dĪA + dT
ĪA

∇2
ĪA ĪC

f (x̄)dĪC + dT
ĪC

∇2
ĪC ĪA

f (x̄)dĪA

+ dT
ĪC

∇2
ĪC ĪC

f (x̄)dĪC

= dT
ĪA

∇2
ĪA ĪA

f (x̄)dĪA + gT dĪC ,

(3.14)
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where g is a bounded vector. For any i ∈ ĪA, it holds

ρsgn(x̄i )

|x̄i + di |1/2 + |x̄i |1/2 − ρsgn(x̄i )

2|x̄i |1/2 = ρsgn(x̄i )(|x̄i |1/2 − |x̄i + di |1/2)
2|x̄i |1/2(|x̄i + di |1/2 + |x̄i |1/2)

= −ρdi
2|x̄i |1/2(|x̄i + di |1/2 + |x̄i |1/2)2

= −ρdi
8|x̄i |3/2 + ρdi

2|x̄i |1/2
(

(|x̄i + di |1/2 + |x̄i |1/2)2 − 4|x̄i |
4|x̄i |(|x̄i + di |1/2 + |x̄i |1/2)2

)

= −ρdi
8|x̄i |3/2 + ρdi

2|x̄i |1/2
( |x̄i + di | + 2|x̄i + di |1/2|x̄i |1/2 − 3|x̄i |

4|x̄i |(|x̄i + di |1/2 + |x̄i |1/2)2
)

. (3.15)

Combining (3.13), (3.14) and (3.15), we get

F(x̄ + d) − F(x̄) = 1

2
dT
ĪA

∇2
ĪA ĪA

f (x̄)dĪA −
∑

i∈ ĪA

ρd2i
8|x̄i |3/2

+ ρ
∑

i∈ ĪA

( |x̄i + di | + 2|x̄i + di |1/2|x̄i |1/2 − 3|x̄i |
8|x̄i |3/2(|x̄i + di |1/2 + |x̄i |1/2)2

)

d2i

+
∑

i∈ ĪC

(
∂ f (x̄)

∂xi
di + ρ|di |1/2

)

+ gT dĪC + o(‖d‖22)

= 1

2
dT
ĪA

∇2
ĪA ĪA

f (x̄)dĪA

−
∑

i∈ ĪA

ρd2i
8|x̄i |3/2 + (∇ ĪC

f (x̄) + g)T dĪC + ρ‖dĪC ‖1/21/2 + o(‖d‖22),

(3.16)

where the second equality follows because

lim
d→0

|x̄i + di | + 2|x̄i + di |1/2|x̄i |1/2 − 3|x̄i | = 0.

From (3.11) and (3.16) we deduce that for any d sufficiently small, it holds

F(x̄ + d) > F(x̄).

Therefore, x̄ is a localminimizer of the L1/2 regularized problem (1.1). The proof is complete.

Similar to Theorem 2.2 of [5], the following theorem derives a bound on the number of
nonzero entries in any accumulation point x̄ of {xk}.
Theorem 3.3 Suppose that the sequence {xk} is generated by Algorithm 2.1 and that x0 is
the initial iterate. Let x̄ be an accumulation point of {xk}. Then the number of nonzero entries
in x̄ is bounded by

‖x̄‖0 ≤
√
L f [2(F(x0) − L low)]3

ρ2 .

Proof Since x̄ is an accumulation point of {xk} and x0 is the initial iterate, fromAlgorithm2.1
it follows that F(x̄) ≤ F(x0). Moreover, by Theorem 3.1 we know that x̄ is a first-order
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stationary point. Let x̄i �= 0. By Theorem 2.2 of [18], we get

|x̄i | ≥
⎛

⎝ ρ

2
√
2
√
L f (F(x0) − L low)

⎞

⎠

2

,

where L f and L low is defined by (1.2). Note that

‖x̄‖1/21/2 = F(x̄) − f (x̄)

ρ
≤ F(x0) − L low

ρ
.

Therefore, simple calculation shows that

‖x̄‖0 ≤
√
L f [2(F(x0) − L low)]3

ρ2 .

The proof is complete. ��
Theorem 3.3 shows that for any given x0 ∈ Rn , a smaller parameter ρ may yield a denser

approximation. Hence, both x0 and ρ should be chosen appropriately.

4 Complexity of the BBIHTA Algorithm

In this section, we shall study the complexity of the BBIHTA algorithm. We verify that the
worst-case complexity of the algorithm for generating an ε global minimizer or an ε scaled
first-order stationary point of (1.1) is O(ε−2). To this end, we introduce some notions and
an important lemma.

Definition 4.1 (i) For ε > 0, x is called an ε global minimizer of (1.1) if

F(x) − F(x∗) ≤ ε,

where x∗ is a global minimizer of (1.1);
(ii) x is called an ε scaled first-order stationary point of (1.1) if it satisfies

‖Ψ (x)‖2 ≤ ε.

Lemma 4.1 Let {xk} be a sequence of iterates generated by the BBIHTA algorithm. Then it
holds

‖xk+1 − xk‖2 ≥ ‖Ψ (
xk+1

) ‖2
2β1/2(λ + L f )

, k = 0, 1, . . . ,

where λ = max{λmax, σ2(L f + 2γ )}, β and L f are given by (iii) of Remark 2.1 and (1.2),
respectively.

Proof Since the sequence {xk} is generated by the BBIHTA algorithm, from the discussion
of Sect. 2 we derive that for any k and i , xk+1

i is an optimal solution of problem (2.3). Assume
that xk+1

i �= 0. Then by the first-order necessary condition for optimality, we get

2
(
xk+1
i − yki

)
+

βksgn
(
xk+1
i

)

2|xk+1
i |1/2 = 0.
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This together with (2.2) implies that

2

(

xk+1
i − xki + ∇i f (xk)

λk

)

+
ρsgn

(
xk+1
i

)

λk |xk+1
i |1/2 = 0.

Simple calculation shows that

2|xk+1
i |1/2∇i f

(
xk+1

)
+ ρsgn

(
xk+1
i

)

= −2|xk+1
i |1/2

[
λk

(
xk+1
i − xki

)
+ ∇i f

(
xk
)

− ∇i f
(
xk+1

)]

and so by combining with (2.12), we obtain

|Ψi
(
xk+1

) | ≤ |2|xk+1
i |1/2∇i f

(
xk+1

)+ ρsgn
(
xk+1
i

)
|

= 2|xk+1
i |1/2

∣
∣
∣λk

(
xk+1
i − xki

)
+ ∇i f

(
xk
)− ∇i f

(
xk+1

)∣∣
∣ .

(4.1)

It is easy to see that (4.1) also holds when xk+1
i = 0. Combining (4.1), (2.12), (1.2), (iii) of

Remark 2.1 and Proposition 2.3 gives

‖Ψ (xk+1)‖2 ≤
[

n∑

i=1

(
2|xk+1

i |1/2
∣
∣
∣λk

(
xk+1
i − xki

)
+ ∇i f (x

k) − ∇i f (x
k+1)

∣
∣
∣
)2
]1/2

= 2

[
n∑

i=1

|xk+1
i |

(
λk

(
xk+1
i − xki

)
+ ∇i f (x

k) − ∇i f (x
k+1)

)2
]1/2

≤ 2

[
n∑

i=1

‖xk+1‖2
(
λk

(
xk+1
i − xki

)
+ ∇i f (x

k) − ∇i f (x
k+1)

)2
]1/2

= 2
(
‖xk+1‖2

)1/2 ∥∥
∥λk(x

k+1 − xk) + ∇ f (xk) − ∇ f
(
xk+1

)∥
∥
∥
2

≤ 2
(
‖xk+1‖2

)1/2 (
λ

∥
∥
∥xk+1 − xk

∥
∥
∥
2
+
∥
∥
∥∇ f (xk) − ∇ f (xk+1)

∥
∥
∥
2

)

≤ 2β1/2(λ + L f )‖xk+1 − xk‖2,
where λ = max{λmax, σ2(L f + 2γ )}. Therefore,

‖xk+1 − xk‖2 ≥ ‖Ψ (
xk+1

) ‖2
2β1/2(λ + L f )

.

The proof is complete. ��
By Lemma 4.1, we can verify the following theorem.

Theorem 4.1 For any ε ∈ (0, 1), the BBIHTA algorithm obtains an ε scaled first-order
stationary point or an ε global minimizer of the L1/2 regularized problem (1.1) in no more
than O(ε−2) iterations.

Proof Let {xk} be a sequence of iterates generated by the BBIHTA algorithm. From (2.13)
and Lemma 4.1, we obtain

F(xk+1) ≤ max
0≤ j≤min(k,M)

F
(
xk− j

)− γ ‖xk+1 − xk‖22

≤ max
0≤ j≤min(k,M)

F
(
xk− j

)
− γ

( ‖Ψ (xk+1)‖2
2β1/2(λ + L f )

)2

, ∀k = 0, 1, 2, · · · .

123



J Sci Comput (2016) 67:581–601 597

Let l(k) be an integer satisfying (3.1). Then the following inequalities hold

1 ≤ k + 1 − l(k) ≤ M + 1 (4.2)

and

F
(
xk+1

)
− F

(
xl(k)

)
≤ −γ

( ‖Ψ (xk+1)‖2
2β1/2(λ + L f )

)2

. (4.3)

Assume that ‖Ψ (xk+1)‖2 > ε for all k. From (4.3) it follows that

F
(
xk+1

)
− F

(
xl(k)

)
< −γ

(
ε

2β1/2(λ + L f )

)2

, ∀k = 0, 1, 2, . . . . (4.4)

By combining (4.2) and (4.4), we deduce that for any k, there exist at least J � �k/(M +1)�
nonnegative integers (denoted by k1, k2, . . ., kJ ) such that

0 = k1 < k2 < . . . < kJ = k

and

F
(
xk j+1

)
− F

(
xk j

)
< −γ

(
ε

2β1/2(λ + L f )

)2

, ∀ j = 1, 2, . . . , J − 1.

This yields

F
(
xk
)− F (x∗) = F

(
xkJ

)
− F

(
x∗)

=
1∑

j=J−1

(
F
(
xk j+1

)
− F

(
xk j

))
+ F

(
xk1

)
− F(x∗)

< −(J − 1)γ

(
ε

2β1/2(λ + L f )

)2

+ F
(
x0
)− F

(
x∗) ,

where x∗ is a global minimizer of the L1/2 regularized problem (1.1). Choose

k = (M + 1)

⌈
(2β1/2(λ + fL))2(F(x0) − F(x∗))

γ
ε−2

⌉

+ 1.

Then by a simple calculation, we get

F
(
xk
)

− F
(
x∗) < 0 < ε.

Therefore, the conclusion holds. The proof is complete. ��

5 Numerical Experiments

In this section, we report some preliminary numerical results to demonstrate the performance
of the BBIHTA algorithm.We shall compare the performance of the BBIHTA algorithmwith
the IHTAalgorithmproposed byXu et al. [22] and theAIRL1 (i.e.,α = 1) algorithmproposed
by Lu in Section 3.1 of [18]. All codes are written in MATLAB and all computations are
performed on a Lenovo PC (2.53GHz, 2.00GB of RAM).

We test these algorithms on the sparse signal recovery problem, where the goal is to
reconstruct a length-n sparse signal xs from m observations b with m < n via solving the
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L2–L1/2 minimization problem (1.3). The signal xs , the sensingmatrix A and the observation
b in the problem are generated by the following Matlab code.

xs = zeros(n, 1); p = randperm(n); xs(p(1 : T)) = sign(randn(T, 1));
A = randn(m, n); A = orth(A′)′; b = A ∗ xs.

(5.1)

Obviously, ‖xs‖0 = T . Moreover, the vectors xs and b satisfy: b = Axs . In order to enforce
that Ax ≈ b in (1.3), we must choose ρ to be extremely small. Unfortunately, choosing a
small value for ρ makes (1.3) extremely difficult to solve numerically. Xu et al. [22] present
three schemes to adjust the parameter ρ. In these schemes, the parameter ρ is updated at each
iteration. Following [10] and [13], we adopt a continuation strategy to decrease ρ for three
algorithms. In particular, the ρ in (1.3) is set according to the following procedure:

(P1): set ρ := 3 × 10−2 and TOLA = 10−8;
(P2): compute x̄ via approximately solving (1.3) such that

‖Ψ (x̄)‖∞ < TOLA,

where Ψ is defined by (2.12);
(P3): if ‖Ax̄ − b‖∞ < 10−3, stop; otherwise, let ρ := 0.1 × ρ, and go to step (P2).

By (5.1) it is not difficult to verify that the eigenvalues of AT A are 0 and 1. This means that
‖AT A‖2 = 1. Hence by [24], we set μk = 0.99 in the IHTA iteration (1.8). The parameters
in the BBIHTA algorithm are set as follows:

λmin = 10−8, λmax = 108, λ̄ = 1, M = 10, γ = 10−4, σ1 = 1.1, σ2 = 1.9.

The parameters in the AIRL1 algorithm are chosen according to [18], that is,

Lmin = 10−8, Lmax = 108, c = 10−4, τ = 1.1, L0
0 = 1,

and

L0
k = max

{

Lmin,min

{

Lmax,
ΔxTΔg

‖Δx‖2
}}

,

with Δx = xk − xk−1 and Δg = ∇ f (xk) − ∇ f (xk−1). We use the nonmonotone line
search to improve the convergence of the AIRL1 algorithm. Additionally, to ensure that the
sequence of iterates generated by the AIRL1 algorithm converges to a stationary point of
(1.3), we define the sequences of {εr } and {δr } by

εr+1 = 0.1 × εr and δr+1 = 0.1 × δr , r = 0, 1, . . . ,

where ε0 and δ0 are given. For each εr , the AIRL1 algorithm is applied to (1.5) for finding
xr such that

∥
∥
∥Xr∇ f (xr ) + ρ

2
|Xr |1/2 (|xr |1/2 + εr

)−1/2
∥
∥
∥ < δr ,

where Xr = Diag(xr ) and |Xr | = Diag(|xr |).
The initial guesses for three algorithms are generated by the following three schemes: (1)

x0 being a solution from the L2–L1 minimization problem

min
x∈Rn

1

2
‖Ax − b‖22 + ρ‖x‖1,

where ρ = 3× 10−2; (2) x0 = (0, 0, . . . , 0)T ; and (3) x0 = AT b. The L2–L1 minimization
problem is solved by the SpaRSA algorithm [20].
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Fig. 1 Successful frequency for signal reconstruction

We first test the ability of three algorithms in recovering the sparse solutions. In this
experiment, we fix m = 26 and n = 28 and vary the value of T from 1 to 27. For each T ,
we construct 400 random pairs (A, xs), and run these algorithms to obtain an approximation
x̄ for each pair (A, xs). For the AIRL1 algorithm, we choose three parameter pairs (ε0, δ0).
That is,

ε0 = 10−1, δ0 = 10−1; ε0 = 10−1, δ0 = 10−4; ε0 = 10−2, δ0 = 10−1.

For convenience of presentation, we name the corresponding algorithm as AIRL1
1, AIRL

2
1

and AIRL3
1. We consider the recovery a success if ‖xs − x̄‖∞ ≤ 10−2. For each T , Fig. 1

presents the percentages of successfully finding the sparse solutions for these algorithms.
From Fig. 1, we can see that the BBIHTA algorithm gives slightly better success rates

than other algorithms. Figure 1 also shows that the success rate of the AIRL1 algorithm is
dependent on the parameters ε0 and δ0. When ε0 = 10−1 and δ0 = 10−4, it gives better
success rates.

We then compare the computational efficiency of the BBIHTA algorithm against the IHTA
algorithm and the AIRL2

1 algorithm, i.e., ε0 = 10−1 and δ0 = 10−4. In this experiment, we
choose different T , m and n. For each (T,m, n), we construct 400 random pairs (A, xs),
and we run these algorithms to generate an approximation. Table 1 lists average number of
iterations and average CPU time. The results in this table show that, the BBIHTA algorithm
takes fewer iterations and requires less CPU time than the IHTA algorithm and the AIRL2

1
algorithm.

In previous experiments, BBIHTA, IHTA and AIRL1 algorithms are used to recover the
sparse signal by solving a sequence of L2–L1/2 minimization problems and the penalty
parameter ρ is adjusted by a continuous strategy. In the rest of this section, we compare three
algorithms by solving the L2–L1/2 minimization problem with fixed ρ, i.e., ρ = 3 × 10−2.
The stopping condition for all the methods is ‖Ψ (xk)‖∞ < 10−8 and the initial iterate x0

is a solution of the corresponding L2–L1 minimization problem. In the experiment, we fix
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Table 1 The number of iterations and CPU time (seconds) for three algorithms

Prolem (T,m, n) BBIHTA IHTA AIRL21

ITER Time ITER Time ITER Time

(10, 26, 28) 44.5125 0.0218 323.6050 0.1447 77.2125 0.0245

(20, 27, 29) 47.8700 0.0300 342.3900 0.2560 83.8850 0.0349

(40, 28, 210) 49.8950 0.1434 350.1025 0.9180 87.7850 0.2050

(80, 29, 211) 50.8025 0.4947 354.3900 3.1093 89.8775 0.7850

(160, 210, 212) 51.4900 1.5010 360.0575 10.5531 91.4675 2.5641

Table 2 The number of iterations and CPU time (seconds) for three algorithms

Prolem (T,m, n) BBIHTA IHTA AIRL21

ITER Time ITER Time ITER Time

(10, 28, 210) 11.3275 0.0257 74.6200 0.1772 28.0950 0.0461

(20, 28, 210) 13.8683 0.0266 91.3015 0.1972 37.2052 0.0500

(30, 28, 210) 16.1297 0.0283 110.4008 0.2227 44.3230 0.0560

(40, 28, 210) 18.0480 0.0297 129.9923 0.2388 51.7914 0.0639

m = 28 and n = 210, and choose T = 10, 20, 30, 40. For each (T,m, n), we construct 400
random pairs (A, xs), and we run these algorithms to generate an approximation. Table 2
lists average number of iterations and average CPU time. The results show that the BBIHTA
algorithm performs better than the other two algorithms.

6 Final Remarks

The L1/2 regularized problem arises in many important applications and is a class of non-
Lipschitz, nonconvex optimization problems. This paper proposes a Barzilai–Borwein-like
iterative half thresholding algorithm for the L1/2 regularized problem. We verify that any
accumulation point of the sequence of iterates generated by the algorithm is a first-order
stationary point of this problem under mild conditions and it is also a local minimizer when
additional conditions are satisfied. Furthermore, we show that the worst-case iteration com-
plexity for finding an ε scaled first-order stationary point is O(ε−2). Preliminary numerical
results show that the proposed algorithm is practically effective.
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