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Abstract In this paper, numerical solutions of elliptic partial differential equations with
both random input and interfaces are considered. The random coefficients are piecewise
smooth in the physical space and moderately depend on a large number of random variables
in the probability space. To relieve the curse of dimensionality, a sparse grid collocation
algorithm based on the Smolyak construction is used. The numerical method consists of an
immersed finite element discretization in the physical space and a Smolyak construction of
the extreme of Chebyshev polynomials in the probability space, which leads to the solution
of uncoupled deterministic problems as in the Monte Carlo method. Numerical experiments
on two-dimensional domains are also presented. Convergence is verified and compared with
the Monte Carlo simulations.

Keywords Sparse grids · Stochastic inputs · Interface · Immersed finite element · Smolyak
construction

1 Introduction

In many applications, a simulation domain is often composed of several materials separated
by curves or surfaces from each other, and this often leads to a so-called interface problem
consisting of a boundary value problem of a partial differential equation coupled by jump
conditions across the material interface required by pertinent physics. Elliptic interface prob-
lems have a variety of applications in many scientific and engineering disciplines, including
fluid dynamics, materials science, and biological systems. An efficient solver for this type of
interface problem is critical for numerical simulations. The immersed finite element method

B Zhiyue Zhang
zhangzhiyue@njnu.edu.cn

1 School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS, Nanjing Normal
University, Nanjing 210023, China

2 Center for Research in Scientific Computation and Department of Mathematics, North Carolina State
University, Raleigh, NC 27695-8205, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-015-0080-x&domain=pdf
http://orcid.org/0000-0001-7070-2532


J Sci Comput (2016) 67:262–280 263

(IFEM) [17–20] has been proposed as a good choice. The IFEM is based on uniform meshes
which have many advantages over the usual fitted meshes. The degree of freedom remains
the same as the standard linear finite element method. When the discontinuity disappears,
the IFEM becomes the standard FEM. The optimal accuracy is obtained by modifying the
basis functions on interface elements. Moreover, one does not need to generate a new grid at
each time step when a moving interface is involved [14].

On the other hand, in many cases, the information available for a given problem is far
from complete and is in general very limited. This leads to the use of stochastic partial
differential equations (SPDEs), whose input data, such as model coefficients, forcing terms,
boundary conditions, or geometry that are known to some accuracy. There has been growing
interest in designing efficient numerical methods for the solution of SPDEs. The methods for
solving such problems includeMonteCarlo sampling basedmethods [7,11,22,27], stochastic
Galerkin methods [1,3,13,26,34,45], and stochastic collocation methods [2,4,29,35,38].

In real applications, one may encounter both of the two difficulties mentioned above, i.e.,
an interface problem together with randomness. However, to our knowledge, few papers in
the literature deal with interface problems with random input on uniform meshes. In recent
years it has become more and more important to model and simulate interface problems with
stochastic input parameters. One simple approach to solve interface problems with stochastic
input is the Monte Carlo method which has a rate of convergence that may be considered
slow. In this paper, we aim at a direct and more effective method. We especially address the
situation where the probability space has a moderate dimensionality, which means that the
stochastic problem depends on amoderately large number of random variables. One intrusive
approach, such as the gPCGalerkinmethod [37,39,40], is usually hard to implement, because
it requires the modification of the deterministic code and this may be difficult, expensive,
and time consuming for many complex computational problems. The stochastic collocation
method as a non-intrusive method seems to be an ideal approach for computing the numerical
solutions of the interface problems with random input discussed in this paper. Stochastic
collocation method will not be affected by the complexity of the numerical schemes for the
governing differential equations and only needs the execution of the deterministic algorithm
as in the Monte Carlo method. In addition, the stochastic collocation method essentially
preserves the fast convergence of the corresponding Galerkin method. For these reasons,
stochastic collocation methods have become popular, and attracted much attention recently
[4,15,24,25,28].

If the number of random variables is moderately large, one should rather consider sparse
tensor product spaces as first proposed by Smolyak [33]. We present an isotropic sparse
collocation algorithm based on the Smolyak construction for the elliptic interface problem
whose discontinuous coefficients depend on a moderate number of random variables. A
Galerkin method using bi-orthogonal polynomials is used to solve the stochastic elliptic
interface problem in [43]. The proposed method which is equal to the full tensor product
method decouples the equation and yields a number of uncoupled systems which motives us
to adopt the so-called sparse grid collocationmethod [6] based on theSmolyak construction.
There is a clear advantage of the isotropic Smolyak method with respect to the full tensor,
and this justifies our claim that the use of the Smolyak approximation can reduce the curse
of dimensionality.

This work claims that the sparse grid methods, which are “non-intrusive”, are efficient
for the elliptic interface problems with random input data. Due to the easy implementa-
tion, the “non-intrusive” methods have attracted much attention. The developments of them
become active and produce many different techniques. There are recently many alterna-
tive “non-intrusive” approaches, for example, least-squares projection on polynomial spaces
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[9,23,36,44], compressed sensing approach [10,32,41,42] and the least interpolationmethod
[25].

The remainder of the paper is organized as follows. In Sect. 2 we formulate the mathe-
matical problem and introduce some definitions and assumptions.We describe our numerical
methods and error estimation in Sect. 3. In Sect. 4, we present several numerical examples.
We conclude in the last section.

2 The problem description

Let D ⊂ R
2 be a convex bounded polygonal domain which is separated into two sub-

domains D+ and D− by a smooth interface �, and (�,F, P) be a complete probability
space. Here � is the set of outcomes, F ∈ 2� is the σ -algebra of events, and P : F → [0, 1]
is a probability measure. Consider the stochastic elliptic interface problem: Find a random
function, u : � × D → R, such that P-almost everywhere in �, or in other words, almost
surely, the following equation holds:

− ∇ · (β(ω, ·)∇u(ω, ·)) = f (ω, ·) in D+ ∪ D−, (2.1)

[u(ω, ·)]� = 0

[
β(ω, ·) ∂u(ω, ·)

∂n

]
�

= 0 on �, (2.2)

u = 0 on ∂D. (2.3)

Here n is the unit outward normal direction pointing to the domain D+. The symbol [·]�
means the jump across the interface �, i.e., the value on D+ minus the value on D−. The
coefficient β(ω, x) : � × D → R is a piecewise random function, that is,

β(ω, x) =
{

β−(ω, x) x ∈ D−,

β+(ω, x) x ∈ D+.
(2.4)

We assume that β−(ω, ·) and β+(ω, ·) are smooth enough in each sub-domain for any
realization ω ∈ �. In addition, we shall make the following assumptions of the data:

1. The coefficient β(ω, ·) is uniformly bounded and coercive, i.e., there exist βmin, βmax ∈
(0, ∞) such that P {ω ∈ � : β(ω, x) ∈ [βmin, βmax ], ∀x ∈ D} = 1;

2. For any ω ∈ �, the function f (ω, ·) belongs to the space L2(D) and is square integrable
with respect to P in the sense of∫

�

‖ f (ω, ·)‖2L2(D)
dP(ω) < ∞.

Next, we introduce some Hilbert spaces:

• L2
P (�) ⊗ H1

0 (D), equipped with the norm ‖v‖2
L2
P (�)⊗H1

0 (D)
= ∫

D E[|∇v|2]dx, where
E[·] stands for the expectation.

• H̃2(D) = {v ∈ H1
0 (D) : v ∈ H2(Ds), s = +,−}, equipped with the norm

‖v‖2
H̃2(D)

= ‖v‖2H2(D+)
+ ‖v‖2H2(D−)

.

Multiplying the Eq. (2.1) by a function v ∈ L2
P (�) ⊗ H1

0 (D), integrating by parts and
using the interface conditions (2.2), we obtain the weak form of the problem (2.1)–(2.3):
Find u ∈ L2

P (�) ⊗ H1
0 (D) such that
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∫
D
E[β∇u · ∇v]dx =

∫
D
E[ f v]dx for all v ∈ L2

P (�) ⊗ H1
0 (D). (2.5)

A straightforward application of the Lax–Milgram theorem together with the assumptions
made above allows one to state the well-posedness of the problem (2.5).

Moreover, we have the following regularity result for the problem with respect to x (see
[5]). The solution to (2.5) has realizations in the space H̃2(D), i.e., for any ω ∈ �, u(ω, ·) ∈
H̃2(D) and ‖u(ω, ·)‖H̃2(D) ≤ C‖ f (ω, ·)‖L2(D).

2.1 Finite-dimensional noise assumption

In some problems the source of randomness can be characterized exactly by a finite number
of independent random variables. However, in many applications, the random inputs are
stochastic processes which are infinite-dimensional objects. For example, the coefficient
β±(ω, x)often represents an uncertainmaterial property, e.g., conductivity, that is a stochastic
process in space. So, to solve the problem (2.5) numerically, the first step is to reduce the
infinite-dimensional probability space to a finite-dimensional space. The Karhunen–Loève
expansion [12,13,31] is one of the most widely used techniques for dimension reduction.

Let the mean and the covariance of β±(ω, x) be defined as

β±
0 (x) =

∫
�

β±(ω, x)dP, ∀x ∈ D±

and

Covβ±(x, x1) =
∫

�

(
β±(ω, x) − β±

0 (x)
) (

β±(ω, x1) − β±
0 (x1)

)
dP,

respectively. Then the Karhunen–Loève (KL) expansion of β±(ω, x) is

β±(ω, x) = β±
0 (x) +

∞∑
n=1

√
λ±
n β±

n (x)y±
n (ω),

where β±
n are the orthogonal and normalized eigenfunctions and λ±

n are the corresponding
eigenvalues of the following eigenvalue problem∫

D±
Covβ±(x, x1)β±

n (x1)dx1 = λ±
n β±

n (x).

The random variables y±
n (ω) are mutually uncorrelated with zero mean value and unit vari-

ance and are defined by

y±
n (ω) = 1√

λ±
n

∫
D±

β±(ω, x − β±
0 (x)β±

n (x))dx, n = 1, 2, · · · .

It is shown in [13] that the Karhunen–Loève expansion is optimal among all possible
representations of random processes in the sense of the mean-square error. The truncated
Karhunen–Loève expansion reads

β±
N±(ω, x) = β±

0 (x) +
N±∑
n=1

√
λ±
n β±

n (x)y±
n (ω). (2.6)

In practice, one has to choose the number of the truncated terms N± properly so that the
influence of truncation error is relatively small and can be omitted.

In summary, the above descriptions motivate us to make the following assumption.
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Assumption 2.1 (Finite-dimensional noise) The coefficients in the original equation have
the form

β±(ω, x) = β± (
y±
1 (ω), y±

2 (ω), . . . , y±
N±(ω), x

)

= β±
0 (x) +

N±∑
n=1

√
λ±
n β±

n (x)y±
n (ω) in � × D±,

where N± are positive integers, {y±
n }N±

n=1 are real-valued and independent random variables
with mean value zero and unit variance. The function f has a similar form f (ω, x) =
f (y f

1 (ω), . . . , y f
N f (ω), x). Define y = (y1, . . . , yN ) = (y+

1 , . . . , y+
N+ , y−

1 , . . . , y−
N− , y f

1 ,

. . . , y f
N f ) with N = N+ + N− + N f , we can rewrite β±(ω, x) = β±(y, x) and f (ω, x) =

f (y, x).

For n = 1, . . . , N , we assume that the image of yn , i.e., the set 	n ≡ yn(�), is a bounded
interval inR, and the random variable yn has a known density function ρn : 	n → R

+. Since
the random variables yn are independent, the joint probability density of y = (y1, . . . , yN )

is ρ(y) = ∏N
n=1 ρn(yn) : 	 → R

+, where 	 ≡ ∏N
n=1 	n ⊂ R

N .
Under the finite-dimensional assumption, the stochastic problem (2.1)–(2.3) now becomes

a deterministic elliptic interface problem with N -dimensional parameter, i.e., find u(y, x) :
	 × D → R, for all y ∈ 	, the following holds

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ∇ · (β(y, x)∇u(y, x)) = f (y, x) x ∈ D+ ∪ D−,

[u(y, x)]� = 0

[
β

∂u(y, x)
∂n

]
�

= 0 x ∈ �,

u(y, x) = 0 x ∈ ∂D.

(2.7)

Note that here and later in this paper the gradient notation, ∇, means differentiation with
respect to x ∈ D. The stochastic variational formulation (2.5) has a deterministic equivalent:
Find u(y, x) ∈ L2

ρ(	) ⊗ H1
0 (D) such that

∫
	×D

ρ(y)β(y, x)∇u(y, x) · ∇v(y, x)dydx

=
∫

	×D
ρ(y) f (y, x)v(y, x)dydx, ∀v ∈ L2

ρ(	) ⊗ H1
0 (D). (2.8)

3 Stochastic collocation methods

In this section, we introduce the stochastic collocation method for computing the statistical
moments of the solution u to the problem (2.7). In the stochastic collocation method, the
numerical solution is sought in a finite-dimensional space Pp(	) ⊗ Wh(D) which can be
regarded as an approximation of L2

ρ(	) ⊗ H1
0 (D).

HereWh(D) is a finite element space,which contains piecewise polynomials definedon the
triangulation Th that has a maximum mesh-spacing parameter h > 0. For elliptic problems
with smooth coefficients, the common choice is the standard linear finite element space.
While for the interface problems the standard linear finite element can not achieve optimal
accuracy, unless the triangulation is aligned with the interface. So we choose the immersed
finite element space Sh(D) which is discussed in Sect. 3.2 together with the immersed finite
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element method. The semidiscrete approximation uh(y, ·) : 	 → Sh(D) is obtained by the
immersed finite element method.

In random spaces, Pp(	) ⊂ L2
ρ(	) is the span of tensor product polynomials with

degree at most p = (p1, . . . , pN ), i.e., Pp(	) = ⊗N
n=1Ppn (	n), with Ppn (	n)=span

{
ykn , k

= 0, . . . , pn} , n = 1, . . . , N . Hence the dimension of Pp(	) is Np = ∏N
n=1(pn + 1).

In the stochastic collocationmethod, we first evaluate approximation functions uh(yk, ·) ∈
Sh(D) to the solution of (2.7) on a suitable set of points yk ∈ 	 using the immersed finite
element method (see Sect. 3.2). Then the fully discrete solution uh,p ∈ C0(	; Sh(D)) is a
polynomial interpolation in the random space, i.e.,

uh,p(y, x) =
∑
k

uh(yk, x)l
p
k (y), (3.1)

where, for instance, the functions lpk can be taken as the Lagrange polynomials. Then the
approximation of the expected value of u to the stochastic equation (2.1)–(2.3) can be eval-
uated as

E[u] ≈ E[uh,p] =
∑
k

uh(yk, x)
∫

	

ρ(y)lpk (y)dy.

3.1 Smolyak approximation

First we assume N = 1, and let {yi1, . . . , yimi
} ⊂ 	 be a sequence of abscissas for Lagrange

interpolation. Here the integer i means the level of approximation and mi is the number of
interpolation points used at level i . Then, the one-dimensional Lagrange interpolation is

U i (u) =
mi∑
k=1

u(yik)l
i
k,

where lik ∈ Pmi−1(	) are the Lagrange polynomials of degree mi − 1, i.e., lik(y) =∏mi
k=1,k �= j

(y−yik )

(yij−yik )
. In the multi-dimensional case, i.e., N > 1, the Lagrange interpolation

based on the full tensor product is defined by

IN
i (u)(y) = (U i1 ⊗ · · · ⊗ U iN )(u)(y) =

mi1∑
j1=1

· · ·
miN∑
jN=1

u(yi1j1 , . . . , y
iN
jN

)(li1j1 ⊗ · · · ⊗ liNjN ).

(3.2)

Obviously, the number of the total interpolation points needed in the full tensor interpolation
is η = �N

n=1
min . If we use the same points in each direction, i.e., mi = m, i = 1, . . . , N ,

then η = mN . The exponential growth of interpolation nodes with respect to the dimension
of random space is a drawback which is often called the curse of dimensionality. The sparse
grid method proposed in [2,38], which greatly reduces the curse of dimensionality, is a good
choice for solving the stochastic problem.

Now we briefly describe the isotropic Smolyak formulation which is a linear combination
of low order tensor product formula (3.2). The Smolyak formula is then given by (see [29])

A(w, N ) =
∑

w+1≤|i|≤w+N

(−1)w+N−|i|
(

N − 1
w + N − |i|

)
(U i1 ⊗ · · · ⊗ U iN ), (3.3)
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Fig. 1 Two-dimensional (N=2) interpolation nodes based on the extreme of Chebyshev polynomials (3.4).
Left sparse grids H(w, N ) with w = 5. Total number of points is 145. Right the tensor product grids based
on the same one-dimensional nodes. Total number of nodes is 1089

where i ∈ N
N+ and |i| = i1 + · · · + iN . The set of the sparse grids needed to compute

A(w, N )(u) is

H(w, N ) =
∑

w+1≤|i|≤w+N

(ϑ i1 × · · · × ϑ iN ),

where ϑ i = {yi1, . . . , yimi
} is the set of abscissas used by U i . In this paper we choose to use

Clenshaw–Curtis abscissas which are the extreme of Chebyshev polynomials, that is, for any
choice of mi > 1,

yij = −cos
π( j − 1)

mi − 1
, j = 1, . . . ,mi . (3.4)

In addition, we define yi1 = 0 if mi = 1, and choose m1 = 1 and mi = 2i−1 + 1 for i > 1.
Note that Clenshaw–Curtis abscissas are nested, so that the Smolyak approximation

requires fewer interpolation points than the corresponding formula with non-nested points,
for example, Gaussian abscissas. In Fig. 1, we show the sparse grids inH(w, N ) with w = 5
and N = 2. For comparison, the full tensor product grids based on the same one-dimensional
nodes are shown on the right of Fig. 1, and we observe that the sparse grid has significantly
fewer nodes.

3.2 Immersed finite element methods

In this section we give a brief review of the immersed finite element space introduced in [20].
Since the triangulation Th is independent of the interface�, there exist some elements that the
interface passes through.We call these elements interface elements and the rest non-interface
elements. The set of interface elements and non-interface elements are denoted by T int

h and
T non
h , respectively. For complicated interfaces, it may be necessary to refine the mesh to

resolve the interface.
On non-interface elements, we use the standard linear basis functions. On interface ele-

ments, the linear functions are broken along the interface to satisfy the jump conditions across
the interface in some sense. We take a typical interface element �ABC whose geometric
configuration is given in Fig. 2 as a demonstration. The line segment SE divides T into two
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Fig. 2 A typical interface
element and a neighboring
element

E
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ΓF
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t
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parts T+ and T−. Let n and t be the unit normal and tangential directions of the line segment
SE , respectively. We construct the following piecewise linear function on this element,

φ(x) =
{

φ+ = a+ + b+x1 + c+x2, x = (x1, x2) ∈ T+,

φ− = a− + b−x1 + c−x2, x = (x1, x2) ∈ T−.
(3.5)

The coefficients are chosen such that

φ(A) = V1, φ(B) = V2, φ(C) = V3, (3.6)

φ+(S) = φ−(S), φ+(E) = φ−(E), β+ ∂φ+

∂n
= β− ∂φ−

∂n
, (3.7)

where Vi , i = 1, 2, 3 are the nodal variables. Intuitively, there are six unknowns in (3.5) and
six restrictions in (3.6)–(3.7). The piecewise linear function is uniquely determined by Vi ,
i = 1, 2, 3 (see [20]). Now we define the immersed finite element space Sh(D) as the set of
all piecewise linear functions that satisfy⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ|T is the linear function if T ∈ T non
h ,

φ|T is the piecewise linear function defined in (3.5)–(3.7) if T ∈ T int
h ,

φ is continuous at all nodal points,

φ(xb) = 0 if xb is a nodal point on ∂D.

The immersed finite element space Sh is a modification to the standard piecewise linear
conforming finite element space when the coefficient β is discontinuous. The two spaces are
the same when β+ = β−. For any y ∈ 	, the immersed finite element approximation of
(2.7) reads: Find uh(y, ·) ∈ Sh(D) such that

ah(uh(y, x), v(x)) =
∫
D

f (y, x)v(x)dx, ∀v(x) ∈ Sh(D), (3.8)

where the bilinear form ah(·, ·) is defined by

ah(w, v) =
∑
T∈Th

∫
T

β∇w · ∇vdx, ∀w, v ∈ Sh(D). (3.9)

It has been proven in [8, Theorem 5.1] that the immersed finite element method has the
optimal convergence order in L2-norm, that is,

‖u(y, ·) − uh(y, ·)‖L2(D) ≤ Ch2‖u(y, ·)‖H̃2(D), ∀y ∈ 	. (3.10)

We note that vh(x) in Sh is likely discontinuous across the adjacent edges of two interface
elements. That is why Sh is called a non-conforming finite element space in [20]. We can
see this from the diagram in Fig. 2. If φ(A), φ(B), φ(C) and φ(G) are given, we can obtain
φ|�ABC and φ|�ACG independently so that φ|�ACG(E) �= φ�ACG(E). The set of these
edges where the function of Sh(D) is discontinuous is denoted by E inth . To cancel the non-
conforming error caused by the discontinuity on E inth , two correction terms are added to the
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bilinear form and the resulting method is outperform than original immersed finite element
method (see [16,21]).

3.3 Error analysis

We recall that u is the solution of the original stochastic problem (2.1)–(2.3), uh is the semi-
discrete approximation obtained by the IFEM andA(w, N )uh is the fully discrete numerical
solution. The error to be considered can be split as

‖u − A(w, N )uh‖L2
ρ(	)⊗L2(D) ≤ ‖u − uh‖L2

ρ(	)⊗L2(D)

+‖uh − A(w, N )uh‖L2
ρ(	)⊗L2(D). (3.11)

The first term is nothing but the approximation error in physical spaces, i.e., the error of
the IFEM. By (3.10), we have

‖u − uh‖L2
ρ(	)⊗L2(D) =

(∫
	

∫
D

ρ|u(y, x) − uh(y, x)|2dxdy
)1/2

≤ Ch2‖u‖L2
ρ(	)⊗H̃2(D).

(3.12)

The second term is the Smolyak approximation error. To estimate the approximation error,
we first give the following lemma [29, Theorem 3.10].

Lemma 3.1 Let 	∗ = ∏N
j=1, j �=n 	 j and y∗

n be an arbitrary element of 	∗. For each yn ∈
	n, assume that there exists τn such that u(yn, y∗

n , x) as a function of yn admits an analytic
extension u(z, y∗

n , x), z ∈ C, in the region of the complex plane

σ(	n; τn) = {z ∈ C, dist (z,	n) ≤ τn}. (3.13)

Also define the parameter

σ = 1

2
min

n=1,...,N
log

⎛
⎝ 2τn

|	n | +
√
1 + 4τ 2n

|	n |2

⎞
⎠ . (3.14)

Then the isotropic Smolyak formula (3.3) based on Clenshaw–Curtis abscissas satisfies

‖u − A(w, N )(u)‖L∞(	N ;Wh(D)) ≤ C(σ, N )η−μ1 with μ1 = σ

1 + log(2N )
, (3.15)

where η = |H(w, N )| is the number of collocation points, and the constant C(σ, N ) only
depends on σ and N.

This lemma indicates that under some regularity assumptions the Smolyak formula based
on Clenshaw–Curtis abscissas has at least algebraic convergence with respect to the number
of collocation points.

However uh is required to satisfy the regularity assumption made in the above lemma. It
has been proved in [2, Lemma 3.2] that the problem satisfies the regularity assumption with
0 < τn < 1/(2/γn) if the following holds:

∥∥∥∥∥
∂kynβ(y, ·)
β(y, ·)

∥∥∥∥∥
L∞(D)

≤ γ k
n k!

‖∂kyn f (y, ·)‖L2(D)

1 + ‖ f (y, ·)‖L2(D)

≤ γ k
n k!. (3.16)
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Under the assumption 2.1, we have

∂kynβ
+(y, x)

β(y, x)
≤

{ √
λnβ

+
n (x)/βmin if k = 1

0 if k > 1 or n > N+ (3.17)

and similar results for β− and f . Thus (3.16) is satisfied if we take γn = √
λn‖β+

n ‖L∞(D+)

/βmin for n = 1, . . . , N+. For the case of n > N+, the constant γn can be chosen similarly.
Note that the regularity results are valid also for the semidiscrete solution uh .

Using Lemma 3.1, the second term now can be estimated as

‖uh − A(w, N )uh‖L2
ρ(	)⊗L2(D) ≤ C‖uh − A(w, N )uh‖L∞

ρ (	)⊗L2(D) ≤ C(σ, N )η−μ1 .

(3.18)

Substituting (3.12) and (3.18) into (3.11), we therefore get the following convergence result.

Theorem 3.2 Under the assumption 2.1, it holds that

‖u − A(w, N )uh‖L2
ρ(	)⊗L2(D) ≤ Ch2‖u‖L2

ρ(	)⊗H̃2(D) + C(σ, N )η−σ/(1+log(N )), (3.19)

where σ is defined in (3.14) and the constants C and C(σ, N ) are independent of h and η.

Using the theorem, the error in the expected value of u is easily estimated, i.e.,

‖E[u] − E[A(w, N )uh]‖L2(D) ≤ ‖u − A(w, N )uh‖L2
ρ(	)⊗L2(D)

≤ Ch2‖u‖L2
ρ(	)⊗H̃2(D) + C(σ, N )η−σ/(1+log(N )).

(3.20)

4 Numerical examples

In this section, we present some numerical examples to show the performance of the sparse
grid stochastic collocation method. A comparison of the efficiency of the proposed sparse
grid stochastic collocation method with both the Monte Carlo method and the sparse grid
stochastic collocation method based on standard linear finite element methods will be given.
For simplicity, the problems are defined in the rectangular domain D = [−1, 1] × [−1, 1]
which is partitioned into 2N 2

h right triangles with mesh size h. We consider a deterministic
right-hand function f and construct the random coefficient as

β(y, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β−(y, x) = β−
0 (x)

(
1 + 0.5 ∗

M∑
n=1

1

n2
yn

)
, x ∈ D−,

β+(y, x) = β+
0 (x)

(
1 + 0.5 ∗

2M∑
n=M+1

1

n2
yn

)
, x ∈ D+,

(4.1)

with N = 2M the dimension of random space, and yn ∈ [−1, 1], n = 1, . . . , N , are
independent uniformly distributed random variables.

In all examples, we compute the L2(D) error to the expected value, i.e.,

Error = ‖E[u] − E[A(w, N )uh]‖L2(D), (4.2)

where the expected value of exact solution is approximated as E[u] ≈ E[A(w̃, N )uh] with
a larger w̃.
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Fig. 3 The domain and the
interface of Example 1
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Fig. 4 A comparison between the sparse grid stochastic collocation (SGSC) method based on the IFEM and
the standard linear FEM for solving Example 1 with N=6. a L2 error versus the number of collocation points
η. b L2 error versus the mesh-spacing parameter h with w = 4

Example 1 The interface � is a circle centered at the origin with radius r0 = 0.5, as shown
in Fig. 3. The true solution is

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r3

β− in D−,

r3

β+ + (
1

β− − 1

β+ )r30 in D+.

(4.3)

where r =
√
x21 + x22 . In this example, we choose β+

0 = 100 and β−
0 = 1 in (4.1).

First a low-dimensional random inputs with N = 6 is tested. We use the proposed sparse
grid stochastic collocation method based on immersed finite element method (SGSC-IFEM)
and linear finite element method (SGSC-Linear FEM) respectively. Figure 4 shows the L2
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Fig. 5 A comparison between the sparse grid stochastic collocation method and the Monte Carlo approach
for solving Example 1 with N=10 and Nh = 512

Fig. 6 The exact expectation of
Example 1 with N=10

error in expected value of the solution versus the number of collocation points η and the
mesh size h for different numerical methods. We plot the errors at different resolutions, such
as Nh = 128, Nh = 256 and Nh = 512. From Fig. 4a we can see that when we select a
fixed value of Nh , the error decays fast first and then stagnates as the number of collocation
points increases. The error stagnates because the approximation error in the physical spaces
becomes predominant. If we wish the error is reduced further, then we need to increase Nh .
From Fig. 4b we can see that when we fix the “level” w = 4, the order of errors in L2 norm
is O(h2) for the IFEM, but only O(h) for the standard linear FEM.

In practical stochastic collocation computing, the PDE solver is usually a “black-box”
to provide the function evaluations at the sample points. In the following experiments, we
use IFEM for both sparse grid stochastic collocation method and Monte Carlo method with
Nh = 512, assuming that the approximation error in the “black-box” is small enough to
investigate the convergence properties of the isotropic Smolyak method.
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Fig. 7 The error distribution of the expected value of Example 1 with N=10 and w=1, 2, 3, 4

Fig. 8 The domain and the
interface of Example 2. The
interface has a corner of angle 2θ
at (1, 0)
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Now we choose a moderately high-dimensional random space with N = 10. Figure 5
shows the error convergence with respect to the number of grids for the sparse grid stochastic
collocation method and Monte Carlo method. We can see that the sparse grid stochastic
collocation method converges quickly, and it converges faster than the Monte Carlo finite
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Fig. 9 A comparison between the SGSC-IFEM and the MC-IFEM for solving Example 2 with N=10

Fig. 10 The expected value of
Example 2 with N=10

element method. In Fig. 7, we plot the error distribution of the expected value of numerical
solution with different “level”. From these figures we can see that the numerical error is
small although very low “level” is used. In addition, we observe that the shape of the error
distribution for w = 1 and 2 is almost the same as that of exact expectation (see Fig. 6), but
changes completely when w = 3 and 4. The reason is that when w is small, such as w = 1
and 2, the error of the isotropic Smolyak approximation in the random space is larger than
the approximation error in the physical space. As we increase w, the approximation error in
the physical space becomes larger than that from the Smolyak approximation.

Example 2 The interface is the zero level set of the function is ϕ(x1, x2) = −x22 + ((x1 −
1)tanθ)2x1, where θ is a parameter. The interface has a corner of angle 2θ at (1, 0) as shown
in Fig. 8. The exact solution is chosen as u = ϕ(x1, x2)/β. It is easy to verify that the solution
indeed satisfies the PDE and the jump conditions using the fact of n = ∇ϕ/|∇ϕ|. In this
case, we choose β−

0 = 1 and β+
0 = 10 in (4.1). The dimension of random space is set to be

N = 10.
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Fig. 11 The error distribution of the expected value of Example 2 with N=10 and w=1, 2, 3, 4
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Fig. 12 A comparison between the SGSC-IFEM and the MC-IFEM for solving Example 3 with N=8

A comparison between the sparse gird collocation method and the Monte Carlo method is
given in Fig. 9. It can be concluded again that the sparse grid collocation method is accurate
and performs better than the Monte Carlo method. We plot the expected value of the exact
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Fig. 13 The expected value of
Example 3 with N=8

Fig. 14 The error distribution of the expected value of Example 3 with N=8 and w=1, 2, 3, 4

solution in Fig. 10. The corresponding error distributions of expected value from “level” 1
to “level” 4 are displayed in Fig. 11. From these figures we observe the similar phenomena
as Example 1. The shape of the error distribution for w = 1 and 2 is almost the same as that
of exact expectation (see Fig. 10), but changes completely when w = 3 and 4.

Example 3 We consider the case where β+
0 and β−

0 in (4.1) is not a piecewise constant,{
β+
0 = 1 in D+,

β−
0 = 10 + 5(x21 − x1x2 + x22 ) in D−.

(4.4)
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The interface is the zero level set of ϕ(x1, x2) = x21/(0.5
2) + x22/(0.25)

2 − 1. The exact
solution is chosen as u = ϕ(x1, x2)/β. And we set N = 8.

A comparison between the sparse gird collocation method and the Monte Carlo method is
given in Fig. 12. It can be concluded again that the sparse grid collocation method is accurate
and performs better than the Monte Carlo method.

The expected value of the exact solution is presented in Fig. 13. The corresponding error
distributions of expected value from “level” 1 to “level” 4 are displayed in Fig. 14. We can
see that the shape of the error distribution is almost the same as that of exact expectation (see
Fig. 13) when w = 1 and 2, changes a little when w = 3, and changes completely when
w = 4. We can conclude that whenw is small, such asw = 1 and 2, the error of the isotropic
Smolyak method is dominant. As we increase w, the approximation error in the physical
space becomes larger than that from the Smolyak approximation.

5 Conclusion and future work

We have presented a stochastic collocation method for the numerical solution of elliptic
partial differential equations with both random inputs and interfaces. To relieve the curse of
dimensionality, we use the sparse grid collocation method based on the isotropic Smolyak
construction instead of using the full tensor product construction. In the error analysis, we
divide the error into two parts and provide the error estimates respectively. Numerical exam-
ples have shown that the sparse grid collocation method preserves a high level of accuracy
and it is a valid alternative to the more traditional Monte Carlo method. For the sparse grid
stochastic collocationmethod, the deterministic PDE solver is usually considered as a “black-
box” solver which is the case for interface problems. In order to apply the sparse isotropic
Smolyak approximation, we must guarantee the error in the “black-box” small enough. The
IFEM is a good choice as verified by our numerical experiments. The accuracy of the IFEM,
in fact, reduces the total computational cost.

In this paper, we only considered the case that the coefficient of the PDE has random
input. In real applications, it is also important to consider the interface itself as a random
curve owing to the lack of information for the media (see [30]). Whether our current work
can be extended to the random interfaces is under investigation.
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