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Abstract The split feasibility problem (SFP) captures awide range of inverse problems, such
as signal processing, image reconstruction, and so on. Recently, applications of �1-norm regu-
larization to linear inverse problems, a special case of SFP, have been received a considerable
amount of attention in the signal/image processing and statistical learning communities.How-
ever, the study of the �1-norm regularized SFP still deserves attention, especially in terms
of algorithmic issues. In this paper, we shall propose an algorithm for solving the �1-norm
regularized SFP. More specifically, we first formulate the �1-norm regularized SFP as a sep-
arable convex minimization problem with linear constraints, and then introduce our splitting
method, which takes advantage of the separable structure and gives rise to subproblems with
closed-form solutions. We prove global convergence of the proposed algorithm under certain
mild conditions. Moreover, numerical experiments on an image deblurring problem verify
the efficiency of our algorithm.

Keywords Split feasibility problem · �1-norm · Splitting method · Proximal point
algorithm · Alternating direction method of multipliers · Linearization · Image deblurring

Mathematics Subject Classification 65K15 · 49J40 · 90C25 · 47J25

B Hong-Kun Xu
xuhk@hdu.edu.cn; xuhk@math.nsysu.edu.tw

Hongjin He
hehjmath@hdu.edu.cn

Chen Ling
cling_zufe@sina.com

1 Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018,
Zhejiang, China

2 Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-015-0078-4&domain=pdf


282 J Sci Comput (2016) 67:281–298

1 Introduction

The split feasibility problem (SFP), which was first introduced by Censor and Elfving [12]
to model phase retrieval problems, models a variety of inverse problems. Its recent applica-
tions to the medical treatment of intensity-modulated radiation therapy and medical imaging
reconstruction [7,11,13,15–17] have inspired more studies theoretically and practically.

The mathematical formulation of SFP is indeed a feasibility problem that amounts to
finding a point x∗ ∈ R

n with the property

x∗ ∈ C and Ax∗ ∈ Q, (1.1)

where C and Q are nonempty, closed and convex subsets of Rn and R
m , respectively, and

A : Rn → R
m is a linear operator.

It is known that SFP (1.1) includes a variety of real-world inverse problems as special
cases. For instance, whenQ = {b} is singleton, SFP (1.1) is reduced to the classical convexly
constrained linear inverse problem, that is, finding a point x∗ ∈ R

n such that

x∗ ∈ C and Ax∗ = b. (1.2)

This problem has extensively been studied in the literature (see [29,30,45,48,51] and the
references therein). Due possibly to the unclear structure of the general constraint setQ, SFP
(1.1) has however been received much less attention than its special case (1.2). As a matter of
fact, certain algorithms thatwork for (1.2) seemingly have no straightforward counterparts for
SFP (1.1). For instance, it still remains unclear whether the dual approach for (1.2) proposed
in [45] (see also [48]) can be extended to SFP (1.1).

The SFP (1.1) can be solved by optimization algorithms since it is equivalent to the
constrained minimization problem:

min
x∈C f (x) := 1

2
‖Ax − PQAx‖2. (1.3)

[Here PQ is the projection ontoQ (see (2.1)).] Among the existing algorithms for SFP (1.1),
the CQ algorithm introduced by Byrne [7,8] is the most popular; it generates a sequence {xk}
through the recursion process:

xk+1 = PC
(
xk − A� (

Axk − PQAxk
))

.

This is indeed the gradient-projection algorithm applied to the minimization problem (1.3)
(it is also a special case of the proximal forward-backward splitting method [24]). Recent
improvements of the CQ algorithm with relaxed stepsizes and projections can be found in
[26,46,55,57,60].

It is often the case that SFP (1.1) and (1.2) are ill-posed, due to possible ill-conditionedness
of A. As a result, regularizationmust be reinforced. In fact, for the past decades, regularization
techniques have successfully been used for solving (1.2), in particular, the unconstrained case
of C = R

n ; see [30,32,39,49] and the references therein. Regularization methods for SFP
(1.1) have however been quite a recent topic; see [10,14,55,58] where the classical Tikhonov
regularization [51] is used to promote stability of solutions. In contrast with Tikhonov’s reg-
ularization, the �1-norm regularization for (1.2) has been paid much more attention recently,
due to the fact that the �1-norm induces sparsity of solutions [6,22,27,31,56]. A typical exam-
ple is the lasso [50] (also known as basis pursuit denoising [22]) which is the minimization
problem:

min
x∈Rn

1

2
‖Ax − b‖2 + σ‖x‖1, (1.4)
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where b ∈ R
m and σ > 0 is a regularization parameter.

The �1-norm regularization of SFP (1.1) is the following constrained minimization prob-
lem:

min
x∈Rn

{ ‖x‖1 | x ∈ C and Ax ∈ Q} , (1.5)

which can also be recast as

min
x∈C

1

2
‖Ax − PQ(Ax)‖2 + σ‖x‖1. (1.6)

Notice that the lasso (1.4), the basis pursuit (BP) and basis pursuit denoising (BPDN) of
Chen et al. [22] (see also [9,27,31,53,56]) are special cases of (1.5) and (1.6).

Compared with (1.4), the �1-regularized SFP (1.6) has been received much less atten-
tion. In fact, as far as we have noticed, (1.6) has been considered only in [38], in which
certain properties of the solution set of (1.6) were discussed, leaving algorithmic approaches
unattached.

The main purpose of this paper is to introduce an implementable splitting algorithm for
solving the �1-regularized SFP (1.6) via the technique of alternating direction method of
multipliers (ADMM) [33] in the framework of variational inequalities. Towards this we use
the trick of variable splitting to rewrite (1.6) as

min
x,z

f (x) + σ‖z‖1
s.t. x = z, x ∈ C, z ∈ R

n,
(1.7)

where f (x) is defined as in (1.3). Now ADMM, which has been widely used in the areas
of variational inequalities, compressive sensing, image processing, and statistical learning
(cf. [2,6,19,21,35,36,40,56,59]), works for (1.7) as follows: Given the k-th iterate wk :=
(xk, zk, λk) ∈ C × R

n × R
n ; the (k + 1)-th iterate wk+1 := (xk+1, zk+1, λk+1) is obtained

by solving three subproblems
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zk+1 = argmin
z∈Rn

{
‖z‖1 + γ

2

∥∥∥∥xk − z − λk

γ

∥∥∥∥
2
}

, (1.8)

xk+1 = argmin
x∈C

{
f (x) + γ

2

∥∥∥∥x − zk+1 − λk

γ

∥∥∥∥
2
}

, (1.9)

λk+1 = λk − γ (xk+1 − zk+1), (1.10)

where {λk} is a sequence of Lagrangian multipliers and γ > 0 is a penalty parameter for
violation of the linear constraints. The advantage of ADMM lies in its full exploiture of the
separability structure of (1.7). Nevertheless, the subproblem (1.9) may not be easy enough
to get solved due to the existence of the constraint set C. To overcome this difficulty we will
combine the techniques of linearization of ADMM and the proximal point algorithm [41]
to propose a new algorithm, Algorithm 1 in Sect. 3. The main contribution of this paper
is to prove the global convergence of this algorithm and apply it to solve image deblurring
problems.

The rest of this paper is structured as follows. In Sect. 2, we summarize some basic
notation, definitions and properties that will be useful for our subsequent analysis. In Sect. 3,
we analyze the subproblems of ADMM for (1.7) and propose an implementable algorithm
by incorporating the ideas of linearization and the proximal point algorithm into the new
algorithm. Then, we prove global convergence of the proposed algorithm under some mild
conditions. In Sect. 4, numerical experiments on image deblurring problems are carried out to
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verify the efficiency and reliability of our algorithm. Finally, concluding remarks are included
in Sect. 5.

2 Preliminaries

In this section, we summarize some basic notation, concepts and well known results that will
be useful for further discussions in subsequent sections.

Let Rn be an n-dimensional Euclidean space. For any two vectors x, y ∈ R
n , 〈x, y〉

denotes the standard inner product. Furthermore, for a given symmetric and positive definite
matrix M , we denote by ‖x‖M = √〈x, Mx〉 the M-norm of x . For any matrix A, we denote
‖A‖ as its matrix 2-norm.

Throughout this paper, we denote by ιΩ the indicator function of a nonempty closed
convex set Ω , i.e.,

ιΩ(x) :=
{
0, if x ∈ Ω,

+∞, if x /∈ Ω.

The projection operator PΩ,M from R
n onto the nonempty closed convex set Ω under M-

norm is defined by

PΩ,M [x] := argmin { ‖y − x‖M | y ∈ Ω } , x ∈ R
n . (2.1)

For simplicity, let PΩ be the projection operator under Euclidean norm. It is well-known that
the projection PΩ,M (in Ω) can be characterized by the relation

〈
u − PΩ,M [u], M

(
v − PΩ,M [u])〉 ≤ 0, u ∈ R

n, v ∈ Ω.

(The proof is available in any standard optimization textbook, such as [5, p. 211].) Next
we introduce Moreau’s notion [42] of proximity operators which extends the concept of
projections.

Definition 2.1 Let ϕ : R
n → R ∪ {+∞} be a proper, lower semicontinuous and convex

function. The proximity operator of ϕ, denoted by proxϕ , is defined as an operator from R
n

into itself and given by

proxϕ(x) = argmin
y∈Rn

{
ϕ(y) + 1

2
‖x − y‖2

}
, x ∈ R

n . (2.2)

It is clear that PΩ = proxϕ when ϕ = ιΩ . Moreover, if we denote by I the identity operator
on R

n , then proxϕ and (I− proxϕ) share the same nonexpansivity of PΩ and (I− PΩ). The
reader is referred to [23,24,42] for more details.

Definition 2.2 Let ϕ : R
n → R ∪ {+∞} be a proper, lower semicontinuous and convex

function. The subdifferential of ϕ is the set-valued operator ∂ϕ : Rn → 2R
n
, given by, for

x ∈ R
n ,

∂ϕ(x) := {
ζ ∈ R

n | ϕ(y) ≥ ϕ(x) + 〈y − x, ζ 〉 , y ∈ R
n } .

According to the above two definitions, the minimizer in the definition (2.2) of proxϕ(x) is
characterized by the inclusion

0 ∈ ∂ϕ(proxϕ(x)) + proxϕ(x) − x .
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Definition 2.3 A set-valued operator T from R
n to 2R

n
is said to be monotone if

〈
x1 − x2, x∗

1 − x∗
2

〉 ≥ 0, x1, x2 ∈ R
n, x∗

1 ∈ T (x1), x∗
2 ∈ T (x2).

A monotone operator is said to be maximal monotone if its graph is not properly contained
in the graph of any other monotone operator.

It is well-known [47] that the subdifferential operator ∂ϕ of a proper, lower semicontinuous
and convex function ϕ is maximal monotone.

Definition 2.4 Let g : R
n → R be a convex and differentiable function. We say that its

gradient ∇g is Lipschitz continuous with constant L > 0 if

‖∇g(x1) − ∇g(x2)‖ ≤ L‖x1 − x2‖, x1, x2 ∈ R
n .

Notice that the gradient of the function f defined in (1.6) is ∇ f = A�(I − PΩ)A. It is
easily seen that ∇ f is monotone and Lipschitz continuous with constant ‖A‖2, i.e.,

‖∇ f (x1) − ∇ f (x2)‖ ≤ ‖A‖2‖x1 − x2‖, x1, x2 ∈ R
n . (2.3)

3 Algorithm and Its Convergence Analysis

We are aimed in this section to invent a new algorithm, Algorithm 1 below, and prove its
global convergence under certain mild conditions.

3.1 Algorithm

We begin with more analysis on the algorithm (1.8)–(1.9). The subproblem (1.9) is a con-
strained optimization problem which might not be easy enough to be solved efficiently. To
make ADMM implementable for some constrained models, it is suggested directly lineariz-
ing the constrained subproblem [i.e., (1.9)] [18,20,52]. Clearly, an immediate benefit is that
the solutions to the subproblems can be represented explicitly. It is noteworthy that direct
linearization on ADMM must often be imposed strong conditions (e.g., strict convexity) for
global convergence. Notice that the linearization on ADMM yields an approximate function
involving a proximal term. Since the proximal point algorithm (PPA) [41] is one of the most
powerful solvers in optimization, which not only provides a unified algorithmic framework
including ADMM as its special case [28], but also, as Parikh and Boyd [44] emphasized,
works under extremely general conditions, we combine the ideas of linearization on ADMM
and PPA to propose an implementable splitting algorithmwhich has easier subproblems with
closed-form solutions and shares similar convergence results to the PPA’s. More concretely,
our idea is that we first add a proximal term to the subproblem (1.8), and the resulting sub-
problem has a closed-form solution via the shrinkage operator. We then linearize the function
f at the latest iterate xk in such a way that the subproblem (1.9) is simple enough to possess
a closed-form expression. Following these two steps, we get an intermediate Lagrangian
multiplier via (1.10).

Taking a revisit on the linearization procedure, we see that the resulting subproblem is
essentially a one-step approximation of ADMM, which might not be the best output for
the next iterate. Accordingly, we add a correction step with lower computational costs to
update the output of the linearized ADMM (LADMM) for the purpose of compensating the
approximation errors caused by linearization. A notable feature is that the correction-step
can improve the numerical performance in terms of taking fewer iterations than LADMM, in
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addition to relaxing the conditions for global convergence and inducing a strong convergence
result as [4].

Basing upon the above analysis, we will design an algorithm that inherits the advantages
of ADMM and PPA. Our algorithm is a two-stage method, consisting of a prediction step and
a correction step. Below, we mainly state the details of the prediction step. First, we generate
the predictor z̃k via

z̃k = argmin
z∈Rn

{
σ‖z‖1 + γ

2

∥∥∥∥xk − z − λk

γ

∥∥∥∥
2

+ ρ2

2

∥∥∥z − zk
∥∥∥
2
}

, (3.1)

where ρ2 is a positive constant. The reason of imposing an proximal term ρ2
2

∥∥z − zk
∥∥2 is to

regularize the z-related subproblem. Besides, we can further derive a stronger convergence
result theoretically with the help of such proximal term. Obviously, (3.1) can be rewritten as

z̃k = argmin
z∈Rn

{
σ‖z‖1 + γ + ρ2

2

∥∥∥∥z − 1

γ + ρ2

(
γ xk − λk + ρ2z

k
)∥∥∥∥

2
}

.

Consequently, using the shrinkage operator [24,56], we can solve the last minimization and
express z̃k in closed-form as

z̃k = shrink

(
ωk,

σ

γ + ρ2

)
with ωk := 1

γ + ρ2

(
γ xk − λk + ρ2z

k
)

. (3.2)

Recall that the shrinkage operator ‘shrink(·, ·)’ is defined by

shrink(w,μ) := sign(w) � max {0, |w| − μ} , w ∈ R
n, μ > 0, (3.3)

where the ‘sign’, ‘max’, and the absolute value function ‘| · |’ are component-wise, and ‘�’
denotes the component-wise product.

For the x-related subproblem, the minimization subproblem (1.9) is not simple enough
to have closed-form solution due to the nonlinearity of the function f . We may treat the
nonlinearity of f by linearization. As a matter of fact, given

(
xk, z̃k, λk

)
, we linearize f at

xk to get an approximate subproblem of (1.9), that is,

x̃ k = argmin
x∈C

{〈
∇ f

(
xk
)

, x − xk
〉
+ ρ1

2

∥∥∥x − xk
∥∥∥
2 + γ

2

∥∥∥∥x − z̃k − λk

γ

∥∥∥∥
2
}

= PC
[

1

ρ1 + γ

(
ρ1x

k + γ z̃k + λk − ∇ f
(
xk
))]

, (3.4)

where ρ1 is a suitable constant for approximation. With a pair of predictors (̃xk, z̃k), we
generate the last predictor of λ via

λ̃k = λk − γ
(
x̃ k − z̃k

)
. (3.5)

Finally, with the predictor w̃k = (̃
xk, z̃k, λ̃k

)
, we update the next iterate with a correction

step to compensate the approximation errors caused by the linearization of ADMM. This
correction step together with the proximal regularization further relaxes the convergence
requirements and improves the numerical performance (see Sect. 4).
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Before presenting the splitting algorithm, for the sake of convenience, we denote
η1(x, x̃) := ∇ f (x) − ∇ f (̃x), In the n-dimensional identity matrix, and

w :=
⎛
⎝
x
z
λ

⎞
⎠ , M :=

⎛
⎝

(ρ1 + γ )In 0 0
0 ρ2 In 0
0 0 1

γ
In

⎞
⎠ and η(w, w̃) :=

⎛
⎝

η1(x, x̃)
0
0

⎞
⎠ .

(3.6)
Then, the corresponding algorithm is described formally in Algorithm 1.

Algorithm 1 (Implementable Splitting Method)

1: Choose ρ1 ≥ ‖A‖2, ρ2 > 0, γ > 0 and τ ∈ (0, 2). Set w0 := (x0, z0, λ0) ∈ C × R
n × R

n .
2: for k = 0, 1, 2, . . . do
3: Generate a predictor w̃k =

(
x̃k , z̃k , λ̃k

)
via (3.2), (3.4) and (3.5), respectively.

4: Update the next iterate wk+1 =
(
xk+1, zk+1, λk+1

)
via

wk+1 = wk − ταkd
(
wk , w̃k

)
, (3.7)

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αk = φ
(
wk ,w̃k

)

‖d(wk ,w̃k
)‖2M

, (3.8)

φ
(
wk , w̃k

)
=
〈
wk − w̃k , Md

(
wk , w̃k

)〉
+
〈
λ̃k − λk , x̃k − xk

〉
, (3.9)

d
(
wk , w̃k

)
=
(
wk − w̃k

)
− M−1η

(
wk , w̃k

)
. (3.10)

5: end for

Remark 3.1 It is worth pointing out that Algorithm 1 is not limited to solve the �1-norm
regularized SFP. When we use a general regularizer ϕ(z) instead of σ‖z‖1 in subproblem
(3.1), then (3.1) amounts to

z̃k = argmin
z∈Rn

{
ϕ(z) + γ + ρ2

2

∥∥∥∥z − 1

γ + ρ2

(
γ xk − λk + ρ2z

k
)∥∥∥∥

2
}

.

By invoking the definition of the proximity operator given in (2.2), the above scheme can be
rewritten as

z̃k = prox 1
γ+ρ2

ϕ

(
ωk

)
with ωk := 1

γ + ρ2

(
γ xk − λk + ρ2z

k
)

.

Therefore, Algorithm 1 is easily implementable as long as the above proximity operator has
explicit representation. We refer the reader to [23] for more details of proximity operators.

Remark 3.2 The direction d
(
wk, w̃k

)
defined by (3.10) apparently involves the matrix

inverse of M . This is however not a computational worry since M is a block scalar matrix
and its inverse is trivially obtained.

Remark 3.3 Even if we deal with the special case of Q := {b} in the ADMM algorithm
(1.8)–(1.10), the second subproblem (1.9) is still not easy to solve under the assumption
C �= R

n or A �= In . When we further consider special cases C ⊂ R
n+, an interesting work

[61] showed that the resulting problem can be recast as

min
x,z

σ
(
z�e

) + 1
2‖Ax − b‖2

s.t. x = z, x ∈ R
n, z ∈ C,

(3.11)
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where e := (1, 1, . . . , 1)�. Accordingly, applying ADMM to (3.11) yields an implementable
algorithm such that all subproblems have closed-form solutions. However, for general set-
tings on C and Q, we can not directly formulate ‖z‖1 as (z�e) and the nonlinearity of
f (x) = 1

2‖Ax − PQ(Ax)‖2 also results in a subproblem without explicit representation.
Comparatively speaking, our formulation for (1.6) and linearization are more suitable for
general convex sets C and Q.

3.2 Convergence Analysis

In this section we prove the global convergence of Algorithm 1. We begin with stating a
fundamental fact derived from the first-order optimality condition, that is, problem (1.7) is
equivalent to the variational inequality (VI) of finding a vector w∗ ∈ Ω with the property

〈
w − w∗, F

(
w∗)〉 ≥ 0, w ∈ Ω, (3.12a)

with

w :=
⎛
⎝
x
z
λ

⎞
⎠ , F(w) :=

⎛
⎝

∇ f (x) − λ

ζ + λ

x − z

⎞
⎠ and Ω := C × R

n × R
n, (3.12b)

where ζ ∈ ∂(σ‖ · ‖1)(z). The global convergence of Algorithm 1 will be established within
the VI framework.

Lemma 3.1 Suppose that w∗ is a solution of (3.12). Then, we have
〈
wk − w∗, Md

(
wk, w̃k

)〉
≥ φ

(
wk, w̃k

)
. (3.13)

Proof First, the iterative scheme (3.4) can be easily recast into a VI, that is,
〈
x − x̃ k, ∇ f

(
xk
)

+ (ρ1 + γ )
(
x̃ k − xk

)
+ γ xk − γ z̃k − λk

〉
≥ 0, x ∈ C.

Using (3.5) and rearranging terms of the above inequality yields
〈
x − x̃ k, ∇ f

(
x̃ k
)

− λ̃k + (ρ1 + γ )
(
x̃ k − xk

)
+ η1

(
xk, x̃ k

)〉
≥ γ

〈
x − x̃ k, x̃ k − xk

〉
,

(3.14)
where η1

(
xk, x̃ k

)
is given in (3.6).

Similarly, it follows from (3.1) and, respectively, (3.5) that
⎧⎪⎨
⎪⎩

〈
z − z̃k, ζ k + λ̃k + ρ2

(
z̃k − zk

)〉
≥ γ

〈
z̃k − z, x̃ k − xk

〉
, z ∈ R

n, (3.15)
〈
λ − λ̃k, x̃ k − z̃k + 1

γ

(
λ̃k − λk

)〉
= 0, λ ∈ R

n, (3.16)

where ζ k ∈ ∂ (σ‖ · ‖1)
(
zk
)
.Upon summingup (3.14)–(3.16),we can rewrite it into a compact

form as follows
〈
w − w̃k, F

(
w̃k

)
− Md

(
wk, w̃k

)〉
≥ γ

〈
z̃k − x̃ k + x − z, x̃ k − xk

〉
, w ∈ Ω. (3.17)

Setting now w := w∗ in the above inequality and noticing the fact that x∗ = z∗, we get
〈
w∗ − w̃k, F

(
w̃k

)
− Md

(
wk, w̃k

)〉
≥
〈
λ̃k − λk, x̃ k − xk

〉
.
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Equivalently,
〈
w̃k − w∗, Md

(
wk, w̃k

)〉
≥
〈
w̃k − w∗, F

(
w̃k

)〉
+
〈
λ̃k − λk, x̃ k − xk

〉
. (3.18)

Since f and σ‖ · ‖1 are convex functions, it is easy to derive that the function F defined in
(3.12) is monotone. It turns out that

〈
w̃k − w∗, F

(
w̃k

)〉
≥
〈
w̃k − w∗, F

(
w∗)〉 ≥ 0.

This together with (3.18) further implies that
〈
w̃k − w∗, Md

(
wk, w̃k

)〉
≥
〈
λ̃k − λk, x̃ k − xk

〉
.

The desired inequality (3.13) now immediately follows from the above inequality and the
definition of φ

(
wk, w̃k

)
given by (3.9). ��

Indeed, the above result implies that −d
(
wk, w̃k

)
is a descent search direction of the

unknown distance function 1
2‖w − w∗‖2M at the point w = wk . Below, we show that the

stepsize defined by (3.8) is reasonable. To see this we define two functions

wk+1(α) := wk − αd
(
wk, w̃k

)
(3.19)

and
Θ(α) := ‖wk − w∗‖2M − ‖wk+1(α) − w∗‖2M . (3.20)

Note that the functionΘ(α)may be viewed as the progress-function to measure the improve-
ment obtained at the k-th iteration of Algorithm 1. We need to maximize Θ(α) for seeking
an optimal improvement.

Lemma 3.2 Suppose that w∗ is a solution of (3.12). Then we have

Θ(α) ≥ q(α), (3.21)

where

q(α) = 2αφ
(
wk, w̃k

)
− α2‖d

(
wk, w̃k

)
‖2M .

Proof It follows from (3.19) and (3.20) that

Θ(α) = ‖wk − w∗‖2M − ‖wk+1(α) − w∗‖2M
= ‖wk − w∗‖2M − ‖wk − αd

(
wk, w̃k

)
− w∗‖2M

= 2α
〈
wk − w∗, Md

(
wk, w̃k

)〉
− α2‖d

(
wk, w̃k

)
‖2M

≥ 2αφ
(
wk, w̃k

)
− α2‖d

(
wk, w̃k

)
‖2M ,

where the last inequality follows from Lemma 3.1. ��
Since q(α) is a quadratic function of α, it is easy to find that q(α) attains its maximum

value at the point

αk := φ
(
wk, w̃k

)

‖d (wk, w̃k
) ‖2M

. (3.22)
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It then turns out that, for any relaxation factor τ > 0,

Θ(ταk) ≥ 2ταkφ
(
wk, w̃k

)
− τ 2α2

k‖d
(
wk, w̃k

)
‖2M

= τ(2 − τ)αkφ
(
wk, w̃k

)
.

To ensure that an improvement can be obtained at each iteration, we should limit τ ∈ (0, 2)
so that the right-hand side in the above relation is positive. However, we suggest to choose
τ ∈ [1, 2) for fast convergence in practice (see Sect. 4).

Lemma 3.3 Suppose that ρ1 ≥ ‖A‖2. Then, the step size αk defined by (3.8) is bounded
away below from zero; that is, infk≥1 αk ≥ αmin > 0 for some positive constant αmin.

Proof An appropriate application of the Cauchy–Schwartz inequality

2 〈a,b〉 ≤ κ‖a‖2 + 1

κ
‖b‖2, a, b ∈ R

n, κ > 0

implies that
〈
λ̃k − λk, x̃ k − xk

〉
≤ 1

2γ
‖̃λk − λk‖2 + γ

2
‖x̃ k − xk‖2.

Consequently, it follows from (3.9) and (3.10) that

φ
(
wk, w̃k

)
=
〈
wk − w̃k, Md

(
wk, w̃k

)〉
+
〈
λ̃k − λk, x̃ k − xk

〉

≥
(
ρ1 + γ

2

)
‖x̃ k − xk‖2 + ρ2‖̃zk − zk‖2

+ 1

2γ
‖̃λk − λk‖2 −

〈
xk − x̃ k, η1

(
xk, x̃ k

)〉

≥
(
ρ1 − ‖A‖2 + γ

2

)
‖x̃ k − xk‖2 + ρ2‖̃zk − zk‖2 + 1

2γ
‖̃λk − λk‖2

≥ Cmin‖w̃k − wk‖2, (3.23)

where the second inequality follows from the Cauchy–Schwartz inequality and the Lipschitz
continuity of ∇ f , and the last inequality from the introduction of the constant Cmin :=
min

{
γ
2 , ρ2,

1
2γ

}
.

On the other hand, it follows again from theCauchy–Schwartz inequality andmonotonicity
of ∇ f that

‖d
(
wk, w̃k

)
‖2M =

〈
d
(
wk, w̃k

)
, Md

(
wk, w̃k

)〉

= ‖wk − w̃k‖2M − 2
〈
xk − x̃ k, η1

(
xk, x̃ k

)〉
+ 1

ρ1 + γ
‖η1

(
xk, x̃ k

)
‖2

≤
(

ρ1 + γ + ‖A‖4
ρ1 + γ

)
‖xk − x̃ k‖2 + ρ2‖zk − z̃k‖2 + 1

γ
‖λk − λ̃k‖2

≤ Cmax‖wk − w̃k‖2, (3.24)

where Cmax := max
{

(ρ1+γ )2+‖A‖4
ρ1+γ

, ρ2,
1
γ

}
. Thus, combining (3.23) and (3.24) immedi-

ately yields

αk ≥ Cmin

Cmax
=: αmin > 0.
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The assertion of this lemma is proved. ��
Theorem 3.1 Suppose that ρ1 ≥ ‖A‖2 and let w∗ be an arbitrary solution of (3.12). Then
the sequence {wk} generated by Algorithm 1 satisfies the following property

‖wk+1 − w∗‖2M ≤ ‖wk − w∗‖2M − τ(2 − τ)αminCmin‖wk − w̃k‖2. (3.25)

Proof From (3.7), (3.22) and (3.23) together with Lemmas 3.1 and 3.3, it follows that

‖wk+1 − w∗‖2M = ‖wk − ταkd
(
wk, w̃k

)
− w∗‖2M

= ‖wk−w∗‖2M−2ταk

〈
wk−w∗, Md

(
wk, w̃k

)〉
+τ 2α2

k‖d
(
wk, w̃k

)
‖2M

≤ ‖wk − w∗‖2M − 2ταkφ
(
wk, w̃k

)
+ τ 2α2

k‖d
(
wk, w̃k

)
‖2M

= ‖wk − w∗‖2M − τ(2 − τ)αkφ
(
wk, w̃k

)

≤ ‖wk − w∗‖2M − τ(2 − τ)αminCmin‖wk − w̃k‖2.
We obtained the desired result. ��
Theorem 3.2 Suppose that ρ1 ≥ ‖A‖2. Then, the sequence {wk} generated by Algorithm 1
is globally convergent to a solution of VI (3.12).

Proof Let w∗ be a solution of (3.12). It is immediately clear from (3.25) that

‖wk+1 − w∗‖2M ≤ ‖wk − w∗‖2M ≤ · · · ≤ ‖w0 − w∗‖2M . (3.26)

That is, the sequence {‖wk−w∗‖M } is decreasing. In particular, the sequence {wk} is bounded
and the

lim
k→∞ ‖wk − w∗‖M exists. (3.27)

By rewriting (3.25) as

τ(2 − τ)αminCmin‖wk − w̃k‖2 ≤ ‖wk − w∗‖2M − ‖wk+1 − w∗‖2M ,

we immediately conclude that
lim
k→∞ ‖wk − w̃k‖ = 0. (3.28)

It turns out that limk→∞ ‖xk − x̃ k‖ = 0 and that the sequences {wk} and {w̃k} have the same
cluster points. To prove the convergence of the sequence {wk}, let {wk j } be a subsequence of
{wk} that converges to some pointw∞; hence, the subsequence {w̃k j } of {w̃k} also converges
to w∞.

Now taking the limit as j → ∞ over the subsequence {k j } in (3.17) and using the
continuity of F , we arrive at

〈
w − w∞, F(w∞)

〉 ≥ 0, w ∈ Ω.

Namely, w∞ solves VI (3.12).
Finally, substitutingw∞ forw∗ in (3.27) and using the fact that‖wk−w∞‖M is convergent,

we conclude that

lim
k→∞ ‖wk − w∞‖M = lim

j→∞ ‖wk j − w∞‖M = 0.

This proves that the full sequence {wk} converges to w∞. ��
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4 Numerical Experiments

The development of implementable algorithms tailored for �1-norm regularized SFP [(even if
for its special case of (1.2)] is in infant stage. Our main goal here is not to investigate the com-
petitiveness of this approach with other algorithms, but simply to illustrate the reliability and
the sensitivity with respect to some involved parameters of the presented method. Certainly,
we also report some results to support our motivation by comparing Algorithm 1 (abbreviated
as ‘ISM’) with ADMM and the straightforward linearized ADMM (we use “LADMM” for
short) corresponding to (3.2), (3.4) and (3.5). Specifically, we demonstrate the application of
the three algorithms to an image deblurring problem and report some preliminary numerical
results to achieve the aforementioned goals.

All codes were written by Matlab 2010b and run on a Lenovo desktop computer with
Intel Pentium Dual-Core processor 2.33GHz and 2Gb main memory.

The problem under test here is a wavelet-based image deblurring problem, which is a
special case of (1.5) with a box constraint C and Q := {b}. More concretely, the model for
this problem can be formulated as:

min
x

{
σ‖Wx‖1 + 1

2
‖Ax − b‖2

∣∣∣ x ∈ C
}

, (4.1)

where b represents the (vectorized) observed image, the matrix A := BW consists of a blur
operator B and an inverse of a three stage Haar wavelet transform W , and the set C is a box
area in R

n . Indeed, if the image is considered with double precision entries, then the pixel
values lie in C := [0, 1], and an 8-bit gray-scale image corresponds to C := [0, 255]. Notice
that the unconstrained alternative of (4.1), i.e., C := R

n , is more popular in the literature
(see, for instance, [1,3,37]). However, as shown in [18,20,34,43], more precise restoration,
especially for binary images, may occur by absorbing an additional box constraint C into the
model. In this section, we are concerned with the constrained model (4.1) and investigate the
behavior of Algorithm 1 for this problem.

In these experiments, we adopt the reflective boundary condition and set the regularization
parameterσ as 2e−5.We test eight different images,whichwere scaled into the rangebetween
0 and 1, i.e., C := [0, 1], and corrupted in the same way used in [3]. More specifically, each
image was degraded by a Gaussian blur of size 9× 9 and standard deviation 4 and corrupted
by adding an additive zero-mean white Gaussian noise with standard deviation 10−3. The
original and degraded eight images are listed in Figs. 1 and 2, respectively.

We first define the usual signal-to-noise ratio (SNR) in decibel (dB) to measure the quality
of the recovered image, i.e.,

SNR := 20 log10
‖x‖

‖x̃ − x‖ ,

where x is a clean image and x̃ is a restored image. Clearly, a larger SNR value means that
we restored a better image. Without loss of generality, we use

‖xk+1 − xk‖
‖xk‖ ≤ tol (4.2)

to be the stopping criterion throughout the experiments. Throughout, we report the number
of iterations (Iter.); computing time in seconds (Time), and SNR values (SNR).

We first investigate the numerical behavior of our ISM for (4.1). Notice that the global
convergence of our ISM is built up under the assumption ρ1 ≥ ‖A‖2. We thus set ρ1 =
1.5‖A‖2 throughout the experiments. Below, we test ‘chart.tiff’ image and investigate the
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Fig. 1 Original images. Left to right, top to bottom shape.jpg (128 × 128); chart.tiff (256 × 256); satellite
(256× 256); church (256× 256); barbara (512× 512); lena (512× 512); man (512× 512); boat (512× 512)

Fig. 2 Observed images

performance of the rest of parameters involved in our method. For the relaxation parameter
τ , we set γ = 0.02, ρ2 = 0.01, and test three cases of τ = {1.0, 1.4, 1.8}. For the penalty
parameter γ , we take τ = 1.8, ρ2 = 0.01 and then consider four cases of γ = {0.1, 0.02,
0.001, 0.0001}. Finally, we set τ = 1.8 and γ = 0.02 to investigate the performance of ρ2
with ρ2 = {1, 0.05, 0.1, 0.01}. For each case, we plot the evolution of SNR with respect to
iterations in Fig. 3.

It can be easily seen from the first plot in Fig. 3 that larger τ performs better than the
smaller ones, which also supports the theoretical analysis in Sect. 3 [see Lemma 3.2 and
(3.22)]. From the last two plots in Fig. 3, however, smaller γ and ρ2 bring better performance
relatively. Indeed, we can choose ρ2 = 0 due to η(w, w̃) defined in (3.6) can be simplified
as η1(x, x̃). Of course a suitable ρ2 > 0 may have benefits for stable performance in certain
applications, because ρ2

2 ‖z − zk‖2 serves a similar role as Tikhonov regularization. Though
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Fig. 3 Numerical performance of our ISM with different parameters

Table 1 Numerical performance of ISM under different tolerances ‘tol’

Image tol = 10−3 tol = 5 × 10−4 tol = 10−4 tol = 5 × 10−5

Iter. Time SNR Iter. Time SNR Iter. Time SNR Iter. Time SNR

Shape 31 0.91 14.57 91 2.17 15.82 499 12.00 19.59 848 19.91 20.99

Chart 45 6.11 18.97 91 12.58 20.89 329 44.95 25.36 532 73.56 27.14

Satellite 50 7.02 12.93 104 14.36 13.62 458 62.89 15.19 788 108.80 15.64

Church 22 3.00 21.73 43 5.80 22.59 196 26.69 24.92 336 45.53 25.67

Barbara 16 9.78 17.87 31 18.86 18.08 206 126.55 18.88 377 232.00 19.11

Lena 16 9.72 23.32 28 16.95 23.76 150 92.69 25.30 276 170.63 25.79

Man 18 11.11 20.63 39 23.97 21.24 196 120.45 22.70 356 219.58 23.15

Boat 19 11.78 20.60 45 27.69 21.48 213 132.39 23.40 377 233.78 24.00

we can not demonstrate (possibly impossible, indeed) the best choices of the parameters for
all problems, the results in Fig. 3 provide a direction for us to choose them empirically.

According to the above data, we now take τ = 1.8, γ = 0.02, ρ2 = 0.01 and report the
numerical results of our ISM under different stopping tolerances ‘tol’. More specifically, we
set four different tolerances tol = {10−3, 5 × 10−4, 10−4, 5 · 10−5} in (4.2) and summarize
the corresponding results in Table 1.
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Table 2 Numerical comparison (tol=10−5)

Image ISM LADMM ADMM

Iter. Time SNR Iter. Time SNR Iter. (InIt.) Time SNR

Shape 2404 55.78 23.09 2990 39.14 22.50 427 (8249) 76.34 24.09

Chart 1383 192.38 29.95 1786 134.56 29.16 185 (3759) 206.59 31.31

Satellite 2370 328.52 16.10 2905 218.52 16.02 388 (9735) 531.83 16.17

Church 1154 161.91 26.87 1307 98.02 26.52 354 (6906) 380.69 27.31

Barbara 1403 870.09 19.47 1569 771.97 19.37 478 (5223) 1619.06 19.83

Lena 1024 632.80 26.50 1126 554.08 26.30 297 (3292) 1013.45 26.78

Man 1260 780.11 23.78 1426 702.05 23.62 327 (3590) 1108.84 24.05

Boat 1300 798.52 24.90 1493 731.98 24.65 332 (3960) 1212.42 25.35

Fig. 4 Recovered images by the three methods. From top to bottom: ISM, LADMM and ADMM

The data in Table 1 show that the number of iterations is increasing significantly when
we set a smaller tolerance ‘tol’. However, our method is still efficient for the case of tol ≥
5×10−4. More importantly, our ISM is easily implementable due to its simple subproblems.

Hereafter, we turn to compare ISM with LADMM and ADMM showing the necessity
of linearization and correction step. For the parameters involved in LADMM and ADMM,
we follow the same settings of ISM, that is, ρ1 = 1.5‖A‖2 for LADMM and γ = 0.02
for both LADMM and ADMM. Here, we set the tolerance as tol = 10−5 and reported the
corresponding results in Table 2. Note that the subproblem (1.9) of ADMM does not have
closed-form solution. We thus implemented the projected Barzilai–Borwein method in [25]
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to pursuit an approximate solution to this problem and allow a maximal number of 30 for the
inner loop. Accordingly, we also report the inner iteration (denoted by “InIt.”) of ADMM in
Table 2. The recovered images are listed in Fig. 4.

As shown inTable 2,we can see thatADMMrequires fewest iterations to recover a satisfac-
tory image. However, ADMM needs a time-consuming inner loop to pursuit an approximate
solution such that ADMM takes more computing time than ISM and LADMM, which can
be clearly seen from the number of inner iterations. Thus, the linearization is necessary for
the problem under consideration. Comparing ISM and LADMM, we can see that ISM takes
fewer iterations to get higher SNR than LADMM, but more computing time. This supports
that our correction step can improve the performance of ISM in terms of iterations. Since
the correction step requires to compute η1(xk, x̃ k), ISM needs one more discrete cosine
transform and its inverse, which thus takes more computing time than LADMM. From the
recovered images in Fig. 4, the three methods can recover desirable images. In summary, all
experiments in this section verify the efficiency and reliability of our ISM.

5 Conclusions

Wehave considered the �1-norm regularized SFP,which is an extension of the timely �1-norm
regularized linear inverse problems, but has been received much less attention. Due to the
nondifferentiability of �1-norm regularizer,many traditional iterativemethods in the literature
of SFP can not be directly applied to the �1-regularizedmodel. Therefore, we have proposed a
splitting algorithm, which exploits the structure of the problem such that its subproblems are
simple enough to have closed-form solutions under the assumptions that projections onto the
sets C andQ are readily computed. Our preliminary numerical results have supported the idea
of the application of �1-norm regularization to SFP, and verified the reliability and efficiency
of Algorithm 1. Recently, an extension of SFP, i.e., multiple-set split feasibility problem
(MSFP), has been received considerable attention, e.g., see [13,54,62,63]. Therefore, to
investigate the application of �1-norm regularization to MSFP and the applicability of the
proposed algorithm to the regularizedMSFP is our futurework. On the other hand, as stated in
[38], larger regularization parameter σ in (1.6) will yields sparser solutions, and it is difficult
to choose σ that fits well for all problems. Thus, how to choose a suitable σ automatically in
algorithmic implementation is also our further investigation.
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