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Abstract Multipoint moment matching based methods are considered as powerful methods
for model-order reduction problems. They are related to rational Krylov subspaces (classical
or block ones) and are based on the selection of some interpolation points which is the
major problem for these methods. In this work, an adaptive rational block Lanczos-type
algorithm is proposed and applied for model order reduction of dynamical multi-input and
multi-output linear time independent dynamical systems. We give some algebraic properties
of the proposed algorithm and derive an explicit formulation of the error between the original
and the reduced transfer functions. An adaptive method for choosing the interpolation points
is also introduced. Finally, some numerical experiments are reported to show the effectiveness
of the proposed adaptive rational block Lanczos-type process.
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1 Introduction

We consider the following multi-input and multi-output (MIMO) linear time invariant (LTI)
dynamical system {

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

(1)

where x(t) ∈ R
n is the state vector, u(t), y(t) ∈ R

p are the input and the output vectors of
the system (1), respectively. The systemmatrices B,CT ∈ R

n×p and A ∈ R
n×n are assumed

to be large and sparse. The transfer function of the original system (1) is defined by

H(s) = C(s In − A)−1B.

Then, the aim of the model-order reduction problem is to produce a low-order dimensional
system that preserves the important properties of the original system and has the following
form {

ẋr (t) = Ar xr (t) + Bru(t)
yr (t) = Cr xr (t),

(2)

where Ar ∈ R
r×r , Br ,CT

r ∈ R
r×p and r � n. The associated low-order transfer function is

denoted by

Hr (s) = Cr (s Ir − Ar )
−1Br .

Various model reduction methods for MIMO systems have been explored these last years.
Some of them are based on Krylov subspace methods (moment matching) while others use
balanced truncation; see [3,17,21] and the references therein. In particular, the Lanczos
process has been used for the single-input and single-output (SISO) (the case p = 1) and
MIMO dynamical systems; see [12,13,23,24] and the references therein. The standard ver-
sion of the Lanczos algorithm builds reduced order models that poorly approximate some
frequency dynamics and to overcome this problem, rational Krylov subspace methods have
been developed these last years [11,14,15,19,20,29,31]. However, the selection of the inter-
polation points is a major problem of these methods and they have to be appropriately chosen
to get good approximations. When p > 1, we can use Krylov subspace methods based on
block versions of the Arnoldi or the Lanczos algorithms. In this paper, we are interested
in multi-point rational interpolation method for model order reduction for MIMO systems,
which was first proposed by Yousuff and Skelton in [32]. By multipoint rational interpolation
we mean that the reduced system matches the moments of the original system at multiple
interpolation points. One of the main problems is the selection of suitable shifts to guarantee
a good convergence of the process. Various methods have been proposed in the literature
to construct the set of interpolation points. In [7,22] Gugercin et al. proposed an Iterative
Rational Krylov Algorithm (IRKA) to compute a reduced order model satisfying the first-
order conditions for the H2 approximation. Other adaptive methods (for the SISO case) are
introduced in [9,19,20,25,27,30] and the references therein.

The paper is organized as follows. In Sect. 2, we first review some moment matching
techniques for model order reduction. In Sect. 3, we propose a rational block Lanczos-type
process and give some algebraic properties. An error expression between the original and the
reduced-order transfer functions is derived in Sect. 4. In Sect. 5 we propose adaptive tech-
niques for selecting some interpolation points. The last section is devoted to some numerical
experiments.

123



J Sci Comput (2016) 67:221–236 223

2 Moment Matching Problems

Let H(s) = C(s In − A)−1B be the transfer function of the linear dynamical system as
described in the state space form (1). If H(s) is expanded as a power series around a given
finite point σ0 ∈ R, then we get

H(s) = h0 + h1(s − σ0) + h2(s − σ0)
2 + ...

where the coefficients h j , j ≥ 0 are known as the moments of the dynamical system around
σ0 and they are given by

h j (σ0) = C(σ0 In − A)−( j+1)B.

These moments are the values of the transfer function of the system (1) and its derivatives
evaluated atσ0 (they are also called the shiftedmoments). Themodel-order reduction problem
using a moment matching method consists in finding a lower order transfer function Hr (s)
having a power series expansion at σ0 as

Hr (s) = ĥ0 + ĥ1(s − σ0) + ĥ2(s − σ0)
2 + ...

such that the first k moments are matched, i.e.,

h j (σ0) = ĥ j (σ0), j = 0, ..., k − 1,

for an appropriate k � n. The reduced-order model resulting is known as a rational interpo-
lation [1]. If σ0 = 0, the moments satisfy h j = −CA−( j+1)B for j ≥ 0 and the problem
is known as a Padé approximation [6]. The Laurent series of the transfer function H around
σ0 = ∞ is expressed as .

H(s) =
∞∑
i=0

hi s
−i ,

where hi = CAi B for i ≥ 0 are called theMarkov parameters and the corresponding problem
is known as a partial realization [18]. We can also consider multiple interpolation points, the
resulting reduced-order model is a multipoint Padé approximation or a multipoint rational
interpolation [26].

2.1 The Standard Block Lanczos Algorithm

Let V and W be two initial blocks of Rn×p , and consider the following block Krylov sub-
spaces

Km(A, V ) = Range
(
V, AV, . . . , Am−1V

)
and Km(AT ,W )

= Range
(
W, . . . , (AT )(m−1)W

)
.

The nonsymmetric block Lanczos algorithm applied to the pairs (A, V ) and (AT ,W ) gen-
erates two sequences of bi-orthonormal n × p matrices {Vi } and {Wj } such that

Km(A, V ) = Range(V1, V2, . . . , Vm).

and

Km(AT ,W ) = Range(W1,W2, . . . ,Wm).
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The matrices Vi and Wj that are generated by the block Lanczos algorithm satisfy the
biorthogonality conditions, i.e. {

WT
j Vi = 0p, if i �= j,

WT
j Vi = Ip, if i = j.

(3)

Next, we give a stable version of the nonsymmetric block Lanczos algorithm that was
defined in [4]. The algorithm is summarized as follows.

Algorithm 1. The nonsymmetric block Lanczos algorithm

• Inputs: A ∈ R
n×n, V,W ∈ R

n×p and m an integer.

1. Compute the QR decomposition of WT V , i.e., WT V = δβ;
V1 = Vβ−1;W1 = Wδ; Ṽ2 = AV1; W̃2 = ATW1;

2. For j = 1, . . . ,m
α j = WT

j Ṽ j+1; Ṽ j+1 = Ṽ j+1 − Vjα j ; W̃ j+1 = W̃ j+1 − Wjα
T
j ;

Compute the QR decomposition of Ṽ j+1 and W̃ j+1, i.e.,
Ṽ j+1 = Vj+1β j+1; W̃ j+1 = Wj+1δ

T
j+1;

Compute the singular value decomposition of WT
j+1Vj+1, i.e.,

WT
j+1Vj+1 = Uj� j Z T

j ;

δ j+1 = δ j+1Uj�
1/2
j ;β j+1 = �

1/2
j Z T

j β j+1;

Vj+1 = Vj+1Z j�
−1/2
j ;Wj+1 = Wj+1Uj�

−1/2
j ;

Ṽ j+2 = AVj+1 − Vjδ j+1; W̃ j+2 = ATWj+1 − Wjβ
T
j+1;

3. end For.

Setting Vm = [V1, V2, . . . , Vm] and Wm = [W1,W2, . . . ,Wm], we have the following
block Lanczos relations

AVm = VmTm + Vm+1βm+1E
T
m ,

and

AT
Wm = WmT

T
m + Wm+1δ

T
m+1E

T
m ,

where Em is last mp × p block of the identity matrix Imp and Tm is the mp × mp block
tridiagonal matrix defined by

Tm =

⎛
⎜⎜⎜⎜⎝

α1 δ2
β2 α2 .

. . .

. . δm
βm αm

⎞
⎟⎟⎟⎟⎠ .

Let Vm,Wm ∈ R
n×mp be the bi-orthonormal matrices computed by Algorithm 1, the appli-

cation of the oblique projector �m = VmW
T
m on the original system (1) yields a reduced

order system such that

Am = W
T
m AVm, Bm = W

T
m B and Cm = CVm . (4)
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3 The Rational Block Lanczos Algorithm

Rational block Lanczos procedure [26] is an algorithm for constructing bi-orthonormal bases
of the union of block Krylov subspaces. The following theorem is presented in [19] for
SISO systems, and is extended to the MIMO case in [16]. It shows how we can construct
the biorthogonal bases {V1, V2, . . . , Vm} and {W1,W2, . . . ,Wm} of the rational Krylov sub-
spaces Range((A−σ1 In)−1B, . . . , (A−σm In)−1B) and Range((A−σ1 In)−T CT , . . . , (A−
σm In)−T CT ), respectively so that the multi-point rational interpolation problem is solved,
i.e., the reduced order model has to interpolate the original transfer function H(s) and its
first derivative at the interpolation points {σi }mi=1.

Theorem 1 Given H(s) = C(s In − A)−1B and m interpolation points {σi }mi=1 that verify
σi �= σ j for i �= j . Let Vm ∈ R

n×mp and Wm ∈ R
n×mp be obtained as follows:

Range(Vm) = Range
{
(A − σ1 In)

−1B, . . . , (A − σm In)
−1B

}
Range(Wm) = Range

{
(A − σ1 In)

−T CT , . . . , (A − σm In)
−T CT

}
(5)

with W
T
mVm = Imp. Then, the reduced order transfer function Hm(s) = Cm(s Imp −

Am)−1Bm obtained in (4) interpolates H(s) and its first derivative at {σi }mi=1.

The rational block Lanczos-type algorithm is defined as follows

Algorithm 2. The rational block Lanczos-type algorithm

1. Input: A ∈ R
n×n, B, CT ∈ R

n×p.
2. Output: two biorthogonal matrices Vm+1 and Wm+1 of Rn×(m+1)p .

function [Vm,Wm] =Rational-Block-Lanczos(A,B,C,{σ1, . . . , σm})
3. Set S0 = (A − σ1 In)−1B and R0 = (A − σ1 In)−T CT

4. Set S0 = V1H1,0 and R0 = W1G1,0 such that WT
1 V1 = Ip;

5. Initialize: V1 = [V1] and W1 = [W1].
6. For k = 1, . . . ,m
7. if (k < m)

8. if {σk+1 = ∞}; Sk = AVk and Rk = ATWk; else
9. Sk = (A − σk+1 In)−1Vk and Rk = (A − σk+1 In)−T Wk; endif

10. Hk = W
T
k Sk and Gk = V

T
k Rk ;

11. Sk = Sk − Vk Hk and Rk = Rk − WkGk;
12. Sk = Vk+1Hk+1,k and Rk = Wk+1Gk+1,k; (QR factorization)
13. WT

k+1Vk+1 = PkDkQT
k ; (Singular Value Decomposition)

14. Vk+1 = Vk+1QkD
−1/2
k and Wk+1 = Wk+1PkD

−1/2
k ;

15. Hk+1,k = D1/2
k QT

k Hk+1,k and Gk+1,k = D1/2
k PT

k Gk+1,k ;
16. Vk+1 = [Vk, Vk+1]; Wk+1 = [Wk,Wk+1];
17. else
18. if {σm+1 = ∞}; Sm = AB and Rm = ATC; else
19. Sm = A−1B and Rm = A−T CT ; endif
20. Hm = W

T
m Sm and Gm = V

T
m Rm ;

21. Sm = Sm − VmHm and Rm = Rm − WmGm;
22. Sm = Vm+1Hm+1,m and Rm = Wm+1Gm+1,m; (QR factorization)
23. WT

m+1Vm+1 = PmDmQT
m; (Singular Value Decomposition)

24. Vm+1 = Vm+1QmD−1/2
m and Wm+1 = Wm+1PmD−1/2

m ;
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25. Hm+1,m = D1/2
m QT

mHm+1,m and Gm+1,m = D1/2
m PT

m Gm+1,m ;
26. Vm+1 = [Vm, Vm+1];Wm+1 = [Wm,Wm+1];
27. endif
28. endFor.

We notice that in our setting, we assume that we are not given the sequence of shifts
σ1, σ2, . . . , σm+1 and then we need to include the procedure to automatically generate this
sequence during the iterations of the process. This adaptive procedure well be defined in the
next sections.
The rational block Krylov subspaces used in the above algorithm can be defined as

Km(A, B, �m) = Range

{
(A − σ1 In)

−1B, . . . ,

m∏
k=1

(A − σk In)
−1B

}
, (6)

Km(AT ,CT , �m) = Range

{
(A − σ1 In)

−T CT , . . . ,

m∏
k=1

(A − σk In)
−T CT

}
, (7)

where �m = {σ1, . . . , σm} is the set of interpolation points.

Remark 1 A higher order multipoint moment matching is a simple generalization of Algo-
rithm 2. In this case, 2mi moments are to be matched per interpolation point σi , i = 1, . . . , l,
i.e.,

h j (σi ) = ĥ j (σi ), j = 0, . . . , 2mi − 1, i = 1, . . . , l, (8)

and the column vectors of the matrices Vm and Wm are determined from the l block Krylov
subspaces Kmi (A, B, σi ) and Kmi (A

T ,CT , σi ), respectively, where

Kmi (A, B, σi ) = Range{(A − σi In)
−1B, (A − σi In)

−2B, . . . , (A − σi In)
−m B},

see [12,13]. The matrices Vm and Wm should satisfy the following condition

∪l
i=1Kmi (A, B, σi ) ⊆ Range(Vm)

∪l
i=1Kmi (A

T ,CT , σi ) ⊆ Range(Wm)

where
l∑

i=1

mi = m, for that the multipoint rational interpolation problem (8) is solved.

In the rational block Lanczos-type algorithm (Algorithm 2), steps 8-9 and steps 18-19 are
used to generate the nextLanczos vectors.According toAlgorithm2, two residual expressions
are used. At each iteration k, we used a new interpolation point σk+1, k = 1, . . . ,m − 1
and we initialize the subsequent Krylov subspaces corresponding to this shift by Sk =
(A−σk+1 In)−1Vk and Rk = (A−σk+1 In)−T Wk if σk+1 is finite and Sk = AVk, Rk = ATWk

if σk+1 = ∞.
To insure that the block vectors Vk+1 and Wk+1 generated in each iteration are biorthog-

onal, the QR and SVD decompositions are used (steps 12–14 and 22–24). The matrices Hk

and Gk constructed in steps 10 and 20 are kp × p and they are used to construct the block
upper Hessenberg matrices Hm and Gm , respectively (for more details see Theorem 2).
We notice that a breakdown may occur in Algorithm 2 if the smallest singular value of
WT

k+1Vk+1 is zero, which causes a problem in the calculating of the block Vk+1 and Wk+1.
In [4], a novel breakdown treatment scheme was proposed to overcome this problem for the
single point block Lanczos algorithm ABLE. This method is generalized in [26] for MABLE
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algorithm. Here, the same technique could be used to detect and cure breakdowns. However,
this problem of breakdown or near-breakdown is not developed in this paper.

Next, we give a theorem that establishes the rational Lanczos equations that relate
A,Vm,Wm and the Hessenberg matrices constructed by Algorithm 2.

Theorem 2 Let Vm+1 and Wm+1 be the matrices generated by Algorithm 2, assuming that
A is nonsingular and that all the interpolation points σi , i = 1, . . . ,m + 1 are finite real
numbers. Then, there exist (m + 1)p × mp block upper Hessenberg matrices H̃m, G̃m, K̃m

and L̃msuch that the following relations hold for the left and the right Krylov subspaces:

AVm+1H̃m = Vm+1K̃m (9)

AT
Wm+1G̃m = Wm+1L̃m, (10)

Hm = W
T
m A−1

VmKm, (11)

Gm = V
T
m A−T

WmLm, (12)

where Hm, Gm, Km and Lm are the mp ×mp block upper Hessenberg matrices obtained by
deleting the last row block vectors of H̃m, G̃m, K̃m and L̃m, respectively.

Proof We begin by the case where k = 1, . . . ,m − 1 which involves the execution of Step
9. Replacing the expression of Sk into the expressions of Step 11 and Step 12 yields the
following relation

Vk+1Hk+1,k = (A − σk+1 In)
−1Vk − Vk Hk

which can be written as

[Vk Vk+1]
[

Hk

Hk+1,k

]
= (A − σk+1 In)

−1Vk . (13)

Multiplying (13) on the left by (A − σk+1 In) and replacing Vk by Vk Ek gives

(A − σk+1 In)Vk+1

[
Hk

Hk+1,k

]
= Vk Ek,

where Ek is an kp× p tall thin matrix with an identity matrix of dimension p at the kth block
and zero elsewhere. Re-arranging the expression of the last equation as

AVk+1

[
Hk

Hk+1,k

]
= Vk+1

([
Ek

0

]
+ σk+1

[
Hk

Hk+1,k

])
, k = 1, . . . ,m − 1. (14)

On the other hand, for k = 1, . . . ,m − 1, we have

AVm+1 = [AVk+1, AVk+2, . . . , AVm, AVm+1].
Therefore, we can deduce from 14, the following expression

AVm+1

⎡
⎣ Hk

Hk+1,k

0

⎤
⎦ = Vm+1

⎛
⎝
⎡
⎣ Ek

0
0

⎤
⎦ + σk+1

⎡
⎣ Hk

Hk+1,k

0

⎤
⎦
⎞
⎠ , (15)

where 0 is the zero matrix having m − k rows.
Now, consider the case where k = m. Using steps 19-21 gives the following relation

Vm+1Hm+1,m = A−1B − VmHm (16)
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Since (A − σ1 In)−1B = V1H1,0 and V1 = VmE1, (16) can be rewritten as

Vm+1

[
Hm

Hm+1,m

]
= A−1(A − σ1 In)VmE1H1,0.

Multiplying on the left by A and rearranging the expression results in

AVm+1

([
Hm

Hm+1,m

]
−

[
E1

0

]
H1,0

)
= Vm+1

(
−σ1

[
E1

0

]
H1,0

)
(17)

Equations (15) and (17) can be expressed lead to the following expression

AVm+1H̃m = Vm+1K̃m, (18)

where H̃m and K̃m are the block upper Hessenberg matrices ofR(m+1)p×mp , given as follows

H̃m = [H̃(1), H̃(2), . . . , H̃(m)] and

K̃m = [K̃(1), K̃(2), . . . , K̃(m)],
where for k = 1, . . . ,m − 1 the k-th block columns are given by

H̃
(k) =

⎡
⎣ Hk

Hk+1,k

0

⎤
⎦ and K̃

(k) =
⎡
⎣ Ek + σk+1Hk

σk+1Hk+1,k

0

⎤
⎦

and for k = m we have

H̃
(m) =

[
Hm − E1H1,0

Hm+1,m

]
and K̃

(m) =
[−σ1E1H1,0

0

]

Equation (11) is easily derived from the relation (9).
In a similar way, we can show the relations (10) and (12) for the left Krylov subspace.

We notice that since K̃(m) =
[
K

(m)

0

]
, and AVm+1 = [AVm, AVm+1] it follows that

AVm+1H̃m = VmKm . (19)

In the same manner, we also have

AT
Wm+1G̃m = WmLm . (20)

In what follows, we assume that all the shifts σi , i = 1, . . . ,m+1 are finite real numbers.
This was always the case in our numerical examples.

4 An Error Estimation for the Transfer Function

The computation of the exact transfer matrix error between the original and the reduced
systems

ε(s) = H(s) − Hm(s) (21)

is important for the measure of the accuracy of the resulting reduced-order model. Unfortu-
nately, the exact error ε(s) is not available, because the higher dimensionof the original system
yields the computation of H(s) very difficult. To remedy this situation, various approaches
have been explored in the literature for estimating the error (21).
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In [19], Grimme proposed the computation of the modelling error in term of two residual
vectors in the case of single-input and single-output systems. The result is extended here to
the multi-input and multi-output case. Let

{
RB(s) = B − (s In − A)Vm X̃B(s),
RC (s) = CT − (s In − A)TWm X̃C (s)

be the residual expressions, where X̃ B(s) and X̃C (s) are the solutions of the matrix equations
{

(s Imp − Am)X̃ B(s) = Bm,

(s Imp − Am)T X̃C (s) = CT
m ,

and satisfy the Petrov-Galerkin conditions{
RB(s) ⊥ Range(W1, . . . ,Wm)

RC (s) ⊥ Range(V1, . . . , Vm),

which means thatWT
m RB(s) = V

T
m RC (s) = 0. In the following theorem, we give an expres-

sion of the error ε(s).

Theorem 3 The error between the frequency responses of the original and reduced-order
systems can be expressed as

ε(s) = RT
C (s)(s In − A)−1RB(s). (22)

The proof of this theorem is similar to the one of Theorem 5.1 given in [19] for single-input
and single-output system. In [5], a new matrix-based derivation of the error between the
original system and the rational interpolation resulting is proposed using the PVL (Padé Via
Lanczos) method.

In the following, we compute an error estimation using our rational block Lanczos-type
algorithm and the derived rational Lanczos equations. In the previous section we defined the
rational block Krylov subspaces by (6) and (7). However, the inclusion of the block vectors
B and CT may be beneficial. Then for computing an error estimation, we use the following
rational Krylov subspaces

Km(A, B, �′
m) = Range

{
B, (A − σ2 In)

−1B, . . . ,

m∏
k=2

(A − σk In)
−1B

}
, (23)

Km(AT ,CT , �′
m) = Range

{
CT , (A − σ2 In)

−T CT , . . . ,

m∏
k=2

(A − σk In)
−T CT

}
, (24)

where �′
m = {σ2, . . . , σm} is the set of interpolation points. Thus we have the following

theorem.

Theorem 4 Let Vm and Wm be the matrices computed using the rational block Lanczos
algorithm. If (s In − A) and (s Imp − Am) are nonsingular, we have

H(s) − Hm(s) = C(s In − A)−1(VmW
T
m − In)AVm+1Hm+1,mE

T
mH

−1
m (s Imp − Am)−1Bm .

(25)

Proof The error between the initial and the projected transfer functions is given by

H(s) − Hm(s) = C(s In − A)−1 (B − (s In − A)Vm(s Imp − Am)−1Bm
)
.
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Since
AVm+1H̃m = VmKm, (26)

then
AVm =

(
VmKm − AVm+1Hm+1,mE

T
m

)
H

−1
m (27)

and
Am = W

T
m AVm = (Km − W

T
m AVm+1Hm+1,mE

T
m)H−1

m . (28)

Using equations (27) and (28), we obtain

(s In − A)Vm = Vm(s Imp − Am) − 	m,

where

	m =
(
VmW

T
m − In

)
AVm+1Hm+1,mE

T
mH

−1
m .

The relation (25) can be obtained using this result and the fact that VmW
T
m B = B.

4.1 Residual Error Expressions for the Rational Lanczos Algorithm

In [12] simple Lanczos equations for the standard rational case are proposed and used for
deriving simple residual error-expressions. In this section, we use the rational Lanczos equa-
tions given inTheorem3.2 to simplify the residual error expressions. To simplify calculations,
we use the rational Krylov subspaces in (23) and (24). Using the rational Lanczos equations
and the fact that B ∈ Km(A, B, �′

m),CT ∈ Km(AT ,CT , �′
m), the expressions of the resid-

ual RB(s) and RC (s) could be written as

RB(s) = B − (s In − A)Vm(s Imp − Am)−1Bm

=
(
VmW

T
m − I

)
AVm+1︸ ︷︷ ︸

B̃

Hm+1,mE
T
mH

−1
m

(
s Imp − Am

)−1
Bm︸ ︷︷ ︸

R̃B (s)

(29)

RC (s) = CT − (s I − A)TWm(s Imp − Am)−T CT
m

=
(
WmV

T
m − I

)
ATWm+1︸ ︷︷ ︸

C̃T

Gm+1,mE
T
mG

−1
m

(
s Imp − Am

)−T
CT
m︸ ︷︷ ︸

R̃C (s)

, (30)

where R̃B(s), R̃C (s) are the terms of the residual errors RB(s) and RC (s), respectively,
depending on the frequencies. Thematrices B̃, C̃T are frequency-independent terms of RB(s)
and RC (s), respectively. Therefore, the error expression in (22) becomes

ε(s) = R̃C (s)T C̃(s In − A)−1 B̃ R̃B(s) = R̃C (s)T H̃(s)R̃B(s). (31)

The transfer function H̃(s) = C̃(s In−A)−1 B̃ contains terms related to the original system
which makes the computation of ‖R̃T

C H̃ R̃B‖∞ very expensive. Then, instead of using H̃(s)
we can use an approximation of H̃(s). Various possible approximations of the error ε(s) are
listed in Table 1.

5 An Adaptive-Order Rational Block Lanczos-Type Algorithm

Model-order reduction usingmultipoint rational interpolation generally gives amore accurate
reduced-order model than interpolation around a single point. Unfortunately, the selection
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Table 1 Estimations of the error
ε(s) 1 ε̂(s) = R̃B (s)

2 ε̂(s) = R̃C (s)T

3 ε̂(s) = H̃m (s)R̃B (s)

4 ε̂(s) = H̃m (s)

5 ε̂(s) = R̃T
C (s)H̃m (s)

6 ε̂(s) = R̃T
C (s)H̃m (s)R̃B (s)

of interpolation points is not an automated process and it requires an adequate choice for
more accurate rational Krylov subspace. In [7,22] the Iterative Rational Krylov Algorithm
(IRKA) has been proposed in the context of theH2-optimal model-order reduction by using
a specific way to choose the interpolation points σi , i = 1, . . . ,m. Starting from an initial set
of interpolation points, a reduced-order system is determined and a new set of interpolation
points is chosen as the Ritz values−λi (Am), i = 1, . . . ,m, where λi (Am) are the eigenvalues
of Am . The process continues until the Ritz values from consecutive reduced-order models
stagnate.

In [9,10,20,25,30] some techniques for choosing good interpolation points have been
proposed. The aim of these methods is the construction of the next interpolation point at
every step and they are based on the idea that the shifts should be selected such that the
norm of certain approximation of the errors should be minimized at every iteration. Here, an
adaptive approach is proposed by using the following error-approximation expression

ε̂(s) = R̃T
C (s)R̃B(s).

Then the next shift σk+1 ∈ R is selected as

σ̃k+1 = argmax
s∈S ‖R̃T

C (s)R̃B(s)‖2, (32)

and if σ̃k+1 is complex, its real part is retained and used as the next interpolation point.

Remark 2 The choice of the approximated error expression ε̂(s) = R̃T
C (s)R̃B(s) is a heuristic

choice that allowed to have good shifts without much calculations as it is shown in the
numerical tests. We notice that for small problems, one can also use the following criterion
for selecting the shifts

σk+1 = argmax
s∈S ‖RT

C (s)RB(s)‖2, (33)

This selection gives good results but, at it is related to the dimension n of the space, it needs
more computation times and arithmetic operations for large problems. In our numerical
examples, we used (32) for large dimensions and (33) for small problems.

An adaptive order rational block Lanczos algorithm for the computation of the reduced-
order system using the rational block Lanczos process (Algorithm 2) and the above adaptive
approach for selecting the interpolation points can be summarized as follows.

Algorithm 3. The Adaptive Order Rational Block Lanczos-type (AORBL) algorithm for
model-order reduction

1. Input: The original system (A,B,C), the initial values σ1, σ2, choose a tolerance tol and
set H0 = Ip .
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2. Output: The reduced system (Am, Bm,Cm).
3. Define ε̂ = 1 and m = 1.
4. While (ε̂ > tol) do
5. [Vm,Wm] = Rational-Block-Lanczos(A,B,C).
6. Compute the reduced model Am = W

T
m AVm, Bm = W

T
m B,Cm = CVm and the

corresponding transfer function Hm .
7. Compute the error estimation ε̂ = ‖Hm − Hm−1‖∞.
8. Set m = m + 1.
9. end while.

Notice that, for choosing the interpolation points, we can also use one of the approximated
error expressions listed in Table 1. The way of choosing these parameters affects the speed
of convergence of the algorithm.

Remark 3 For large problems, the total number of arithmetic operations after m iterations is
dominated by O(mpn2) and also LU factorizations for solving shifted linear systems with
the shifted matrices A − σi In (Line 3 and Line 9 of Algorithm 2). One can also use solvers
such as GMRES with a preconditioner for solving these shifted linear systems.

6 Numerical Experiments

In this section, we give some experimental results to show the effectiveness of the proposed
approaches. All the experiments were performed on a computer of Intel Core i5 at 1.3GHz
and 8GB of RAM. The algorithms were coded inMatlab 8.0.We give some numerical tests to
show the performance of the adaptive-order rational blockLanczos-type (AORBL) algorithm.
In all the presented experiments, tol = 10−8 and the (AORBL) algorithm is stopped when
the H∞-error

err = ‖Hm − Hm−1‖∞
between the previous reduced system and the current one is less than tol, where the H∞-norm
of the error is given as (cf., e.g., [2], sect. 5.3)

‖Hm − Hm−1‖∞ = sup
ω∈R

‖Hm( jω) − Hm−1( jω)‖2,

where ω ∈ [10−3, 103] and j = √−1.
To compute the H∞-norm, the following functions from LYAPACK [28] are used :

– lp_lgfrq: Generates the set of logarithmically distributed frequency sampling points.
– lp_para: Used for computing the initial first two shifts.
– lp_gnorm: Computes ‖Hm( jω) − Hm−1( jω)‖2.

In our experiments, we used some matrices from LYAPACK . These matrix tests are reported
in the following Table 2. For the FOM model, we notice that originally, the model is SISO
system and we modified the inputs and outputs to get a MIMO system. The matrices B and
C are then given by

B = [b1, . . . , b6], CT = [c1, . . . , c6],
where

bT1 = c1 = (10, . . . , 10︸ ︷︷ ︸
6

, 1, . . . , 1︸ ︷︷ ︸
1000

), and b2, . . . , b6; c2, . . . , c6
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Table 2 The matrix tests Matrices Sizes

CD-Player n = 120, p = 2

Rail3113 n = 3113, p = 6

Modified FOM n = 1006, p = 6

ISS n = 270, p = 3

fdm n = 40.000, p = 5

are random column vectors.
For the fdmmodel, the corresponding matrix A is obtained from the centred finite difference
discretization of the operator

L A(u) = Δu − f (x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions with⎧⎨
⎩

f (x, y) = log(x + 2y),
g(x, y) = ex+y,

h(x, y) = x + y,

and the matrices B and C were random matrices with entries uniformly distributed in [0, 1].
The number of inner grid points in each direction was n0 = 200 and the dimension of A is
n = n20 = 40.000.

Example 1 For this experiment, we used the modified FOMmodel withm = 18. The left
plots of Fig. 1 show the frequency response of the original system (circles) compared to the
frequency response of its approximation (solid plot). The right plot of this figure represents
the exact error ‖H( jω) − Hm( jω)‖2 for different frequencies.

Example 2 In this example, we considered the ISSmodel and we plotted the H∞ error norm
‖H − Hm‖∞ versus the numberm of iterations. As can be shown from this plot, the AORBL
algorithm gives good result with small values of m (Fig. 2).

Example 3 We consider the well known CD player model. This is a small dimension
example but generally difficult and is always considered as a benchmark test. The left plots
of Fig. 3 represent the sigma plots of the original system (circles) and the reduced order
system (solid line). In the right part, we plotted the error norm ‖H(s) − Hm(s)‖2 versus the
frequencies.

Example 4 In the last example we compared the AORBL algorithm with IRKA. We used
four models: the CD player, the ISS, the Rail3113 and the fdm model (n = 40000,
p = 5). In Table 3,we listed the obtained H∞ normof the error transfer function ‖H−Hm‖∞,
the corresponding cpu-time, the number of required iterations for the two methods and in
parentheses we also gave the used space dimension for IRKA. A maximum number of
mmax = 500 iterations was allowed to the two algorithms. As observed from Table 3, IRKA
and AORBL returns similar results (computing times and norms of the errors) for the first
two models with an advantage for AORBL. However, for the last two examples, IRKA didn’t
converge within the allowed maximum number of iterations.
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Fig. 1 Left ‖H( jω)‖2 and it’s approximation ‖Hm ( jω)‖2. Right the exact error ‖H( jω) − Hm ( jω)‖2 for
the modified FOM model with m = 18
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Fig. 2 The H∞ error ‖H − Hm‖∞ versus the number of iterations for the ISS model

7 Conclusion

In this paper, we proposed a new adaptive rational block Lanczos process and an adaptive
method for choosing the interpolation points with applications in model order reduction
of multi-input and multi-output first-order stable linear dynamical systems. Moreover, we
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Fig. 3 The CD playermodel withm = 30. Left The singular values of the exact transfer function (circles)
and its approximation (solid) versus the frequencies. Right The error norms ‖H(s) − Hm (s)‖2

Table 3 Comparison between IRKA and AORBL for CD player, ISS, Rail3113 and fdm models

AORBL IRKA (tol = 10−4)

H∞ error No. iter. time H∞ error No. iter. (dim) time

CD player 2.6e-06 25 1.1s 1.5e-04 42(35) 1.4s

ISS 3.8e-05 20 1.2s 1.2e-04 54(30) 4.9s

Rail3113 1.1e-07 30 4.5s – – –

fdm (n = 4 .104) 4.5e-08 35 53s – – –

derived new Lanczos-like expressions and new error estimations between the original and
the reduced transfer functions. We presented some numerical results to confirm the good
performance of the rational block Lanczos subspace method compared with other known
methods. The proposed procedure is tested on well known benchmark problems of medium
and large dimensions and the numerical results show that the adaptive approach allows one
to obtain reduced order models of small dimension.
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