
J Sci Comput (2016) 67:103–129
DOI 10.1007/s10915-015-0073-9

Removing Mixture of Gaussian and Impulse Noise by
Patch-Based Weighted Means

Haijuan Hu1,2,3 · Bing Li4 · Quansheng Liu3

Received: 7 March 2014 / Revised: 5 June 2015 / Accepted: 11 July 2015 / Published online: 21 July 2015
© Springer Science+Business Media New York 2015

Abstract Wefirst establish a law of large numbers and a convergence theorem in distribution
to show the rate of convergence of the non-local means filter for removing Gaussian noise.
Based on the convergence theorems, we propose a patch-based weighted means filter for
removing an impulse noise and its mixture with a Gaussian noise by combining the essential
idea of the trilateral filter and that of the non-local means filter. Experiments show that our
filter is competitive compared to recently proposed methods. We also introduce the notion
of degree of similarity to measure the impact of the similarity among patches on the non-
local means filter for removing a Gaussian noise, as well as on our new filter for removing
an impulse noise or a mixed noise. Using again the convergence theorem in distribution,
together with the notion of degree of similarity, we obtain an estimation for the PSNR value
of the denoised image by the non-local means filter or by the new proposed filter, which is
close to the real PSNR value.
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1 Introduction

Images are produced to record or display useful information. Due to the visibility of images
and the rapid development of science and technology, images play an increasingly important
role in our lives. However, because of imperfections in the imaging and capturing process,
the recorded image invariably represents a degraded version of the original scene [3,5].
The undoing of these imperfections is crucial to many of the subsequent image processing
tasks.

There exists a wide range of different degradations. A very important example is the
existence of noise. Noise may be introduced by the medium through which the image is
created and transmitted. In this paper, we concentrate on removing impulse noise and its
mixture with Gaussian noise.

We present a numerical image by a M × N matrix u = {u(i) : i ∈ I }, where I =
{0, 1, . . . , M − 1} × {0, 1, . . . , N − 1} is the image domain, and u(i) ∈ {0, 1, 2, . . . , 255}
represents the gray value at the pixel i for 8-bit gray images. The additive Gaussian noise
model is:

v(i) = u(i) + η(i),

where u = {u(i) : i ∈ I } is the original image, v = {v(i) : i ∈ I } is the noisy one, and
η is the Gaussian noise: η(i) are independent and identically distributed Gaussian random
variables with mean 0 and standard deviation σ . In the sequel we always denote by u the
original image, and v the noisy one. The random impulse noise model is:

v(i) =
{

η(i) with probability p,
u(i) with probability (1 − p),

where 0 < p < 1 is the impulse probability (the proportion of the occurrence of the impulse
noise), and η(i) are independent random variables uniformly distributed on [min{u(i) : i ∈
I },max{u(i) : i ∈ I }], generally taken as [0,255] for 8-bit gray images. For the mixture
of Gaussian noise and impulse noise model, an image is first added by Gaussian noise and
then contaminated by impulse noise. The task of image denoising is to recover the unknown
original image u as well as possible from the degraded one v.

Many denoising methods have been developed in the literature. To remove a Gaussian
noise, there are approaches based on wavelets [7,10,15], approaches based on variational
models [16,32], andweightedmeans approaches [4,23,33,34,41], etc. An important progress
was marked by the proposition of the non-local means filter [4], abbreviated as NL-means;
this filter estimates original images by weighted means along similar local patches. Since
then, many researchers have combined the basic idea of NL-means with some other methods
to remove noise, see for instance [11,18,20,27]. There are also many methods to remove
an impulse noise, including median based filters [1,8,30], fuzzy filters [42], and variational
based methods [6,14,29].

The above-mentionedmethods can only be applied to remove one kind of noise (aGaussian
noise or an impulse noise), and can not be used to remove a mixture of a Gaussian noise
and an impulse noise. To remove a mixed noise, a successful method is the trilateral filter
proposed in [19], where an interesting statistic called ROAD (Rank of Ordered Absolute
Differences) is introduced to detect the impulse noisy pixels; this filter combines the ROAD
statistic with the bilateral filter [33,34] to remove the noise. The trilateral filter [19] is also
effective for removing an impulse noise; a variant of the ROAD statistic, named ROLD
(Rank-Ordered Logarithmic Difference), has been proposed in [14], where it is combined
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with the edge-preserving variational method [6] for removing impulse noise. Other methods
have also been developed recently to remove a mixed noise. The papers [12,13,21,24,38]
use the patch-based idea of NL-means to remove an impulse noise and a mixed noise. In
[21,24], generalizations of NL-means are proposed for removing an impulse noise and its
mixture with a Gaussian noise, using the ROAD statistic [19]; the main idea therein is to
define weights in terms of the ROAD statistic and the similarity of local patches, which are
nearly zero for impulse noisy points. In [38], NL-means is adapted by estimating the similar-
ity of patches with the reference image obtained in an impulse noise detection mechanism.
The papers [12,13] also use a patch-based approach, where a robust distance is introduced
(inspired by order statistics) to estimate the similarity between patches using the tail of
the binomial distribution, and the maximum likelihood estimator (MLE) is used to esti-
mate the original image. The methods in [40] and [37,43] use the ideas of BM3D [11] and
K-SVD [18] (which are the state-of-the-art algorithms for Gaussian noise removal) respec-
tively to remove a mixed noise; the algorithm proposed in [25] is based on a Bayesian
classification of the input pixels, which is combined with the kernel regression frame-
work.

The NL-means filter [4] explores in a nice way the similarity phenomenon existing very
often in natural images. As stated above, many filters have been proposed based on the basic
idea of NL-means. But the theoretic aspects have not been so much studied. A probabilistic
explanation called similarity principle was given in [24]. In this paper we will improve this
principle by proving a Marcinkiewicz law of large numbers and a convergence theorem in
distribution, which describe the rate of convergence of NL-means.

Based on the convergence theorems, we will propose a new filter, called Patch-based
Weighted Means Filter (PWMF) to improve the Mixed Noise Filter (MNF) introduced in
[24]. Compared to MNF, the new filter simplifies the joint impulse factor in MNF, adds a
spatial factor so that the filter extends entirely both the trilateral filter and the NL-means
filter, and adjusts the choice of parameters. Experimental results show that our new filter is
competitive for removing both the impulse noise and the mixed noise, compared to recently
developed filters [13,19,37,38,40].

To well understand the impact of the similarity on the quality of NL-means, we will
introduce the notion of degree of similarity. We will see that, in general, the larger the value
of degree of similarity, the better the restoration result by NL-means. Furthermore, using
the degree of similarity together with the convergence theorem in law, we will give a good
estimation of the PSNR value of the denoised image (without knowing the original image).
Our simulations show that the estimated PSNR value is quite close to the real one when the
original image is known.

This paper is an extended and improved version of our conference paper [21]; it also
develops and improves the earlier work [24].

The rest of this paper is organized as follows. In Sect. 2, we recall the non-local means
filter [4], and present two convergence theorems (Theorems 1 and 2) to show the rate of
convergence of NL-means. The proofs of the convergence theorems are postponed in an
appendix by the end of the paper. In Sect. 3, we recall the trilateral filter [19] and intro-
duce our new patch-based weighted means filter. Experiments are presented in Sect. 4 to
compare the new filter with some recently proposed ones. In Sect. 5, the notion of degree
of similarity is first introduced, and then applied to estimations of PSNR values, using the
convergence theorem in law. Conclusions are made in Sect. 6. The paper is ended by an
appendix in which we give the proofs of the convergence theorems, by establishing two
more general convergence theorems for random weighted means of l-dependent random
variables.
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2 Convergence Theorems for Non-local Means

In this section, we present a Marcinkiewicz law of large numbers and a convergence theorem
in distribution for NL-means [4] to remove Gaussian noise.

2.1 Non-local Means

Begin with some notation. For i ∈ I and d > 1 an odd integer, let

Ni (d) =
{
j ∈ I : ‖ j − i‖∞ ≤ d − 1

2

}
and N 0

i (d) = Ni (d)\{i},

with ‖ · ‖∞ denoting the sup norm:

‖ j − i‖∞ = max(| j1 − i1|, | j2 − i2|) if i = (i1, i2) and j = ( j1, j2).

In other words, Ni (d) is the window with center i and size d × d , and N 0
i (d) is the same

window but with the center i deleted. We sometimes simply writeNi andN 0
i forNi (d) and

N 0
i (d), respectively. Denote by

v(Ni ) = {v(k) : k ∈ Ni }
the vector composed of the gray values of v in the windowNi arranged lexicographically; it
represents the local oriented image patch defined on the window Ni .

For another odd integer D, letNi (D) be the windowwith center i and size D×D, defined
in the same way as we did for Ni (d). The denoised image by NL-means is given by

NLM(v)(i) =
∑

j∈Ni (D) w(i, j)v( j)∑
j∈Ni (D) w(i, j)

, i ∈ I, (1)

with
w(i, j) = e−||v(Ni )−v(N j )||2a/(2σ 2

r ), (2)

where σr > 0 is a control parameter,

||v(Ni ) − v(N j )||2a =
∑

k∈Ni (d) a(i, k)|v(k) − v(T (k))|2∑
k∈Ni (d) a(i, k)

, (3)

a(i, k) > 0 being some fixed weights usually chosen to be a decreasing function of the
Euclidean norm ‖i − k‖ or the sup norm ‖i − k‖∞, and T = Ti j is the translation mapping
i to j (thus mapping Ni onto N j ):

T (k) = k − i + j, k ∈ Ni .

We call Ni (D) search windows, and Ni = Ni (d) local patches. Theoretically, the search
window Ni (D) in (1) can be chosen as the whole image I ; but in practice, it is better to
choose Ni (D) with an appropriate number D not too large.

2.2 Convergence Theorems

Wenowpresent two convergence theorems forNL-means using probability theory. Following
[24], first give a definition of similarity and recall the notion of l-dependence.

For simplicity, use the same notation v(Ni ) to denote both the observed image patch
centered at i and the corresponding random variable (in fact the observed image is just a
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realization of the corresponding variable). Therefore the distribution of the observed image
v(Ni ) is just that of the corresponding random variable.

Definition 1 (Similarity) Two patches v(Ni ) and v(N j ) are called similar if they have the
same probability distribution.

Definition 1 is a probabilistic interpretation of the similarity phenomenon. According to
this definition, two observed patches v(Ni ) and v(N j ) are similar if they are issued from
the same probability distribution. In practice, we consider that two patches v(Ni ) and v(N j )

are similar if their Euclidean distance is small enough, say ‖v(Ni ) − v(Ni )‖ < T for some
threshold T . We will come back to this point later in Sect. 5 when we consider the notion of
degree of similarity.

Note that Definition 1 is equivalent to say that the non-noisy patches u(Ni ) and u(N j )

are equal. In fact, when v(Ni ) and v(N j ) have the same distribution, they have the same
expected value, so that u(Ni ) = u(N j ). The converse is also easy: when u(Ni ) = u(N j ),
then v(Ni ) and v(N j ) have the same distribution, as so do η(Ni ) and η(N j ). The definition
seems to be somehow restrictive, but this models the ideal situation, and coincides with our
intuition that u(Ni ) and u(N j ) are very close when the patches are similar.

Definition 2 (l-dependence) For an integer l ≥ 0, a sequence of random variables
X1, X2, . . . is called to be l-dependent if each subsequence Xk1 , Xk2 , . . . is independent
whenever |km − kn | > l for all m, n ≥ 1. (That is, random variables with distances strictly
greater than l are independent of each other.)

Fix two odd integers d > 1 and D > 1. For i ∈ I , define

Ii = { j ∈ Ni (D) : v(Ni ) and v(N j ) are similar}. (4)

For convenience, we write Ii in the form

Ii = { j1, j2, . . . jn} with n = |Ii | (5)

(throughout the paper for a set S we write |S| for the cardinality of S). The elements j ∈ Ii
are ordered according to the increasing order of ‖ j − i‖∞, and for the j ′s with the same
distance ‖ j − i‖∞, say ‖ j − i‖∞ = c for some constant c, they are ordered anticlockwise
beginning from the upper left corner of the quadrilateral {x ∈ R

2 : ‖x − i‖∞ = c}. Notice
that v(Ni ) and v(N j ) are independent if Ni ∩ N j = ∅. Since N j ∩ N j 
= ∅ if and only if
‖ j − i‖∞ ≤ d −1, there are precisely (2d −1)2 −1 windowsN j with j 
= i which intersect
Ni (as the elements j 
= i with ‖ j − i‖∞ ≤ d − 1 constitute a window centered at i of size
(2d − 1) × (2d − 1), whose center is deleted). Therefore, we have:

Lemma 1 For each i ∈ I , with the order of Ii that we defined above, the sequence of random
vectors {v(N j ) : j ∈ Ii } is l-dependent for l = (2d − 1)2 − 1.

Actually, very often we can take l smaller, as we only consider similar patches. Notice that
if we choose the lexicographical order for Ii , then we need to choose l much larger for the
l-dependence. This is why we ordered j ∈ Ii according to the increasing order of ‖ j − i‖∞.

As usual, for two sequences of real numbers an and bn , we write

an = o(bn) if lim
n→∞

an
bn

= 0, and an = O(bn) if lim sup
n→∞

|an |
|bn | < ∞.
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Accordingly, when an and bn are random, an = o(bn) (resp. an = O(bn)) almost surely
means that

lim
n→∞

an
bn

= 0

(
resp. lim sup

n→∞
|an |
|bn | < ∞

)
almost surely.

The following theorem is a kind of Marcinkiewicz law of large numbers. It gives an
estimation of the almost sure convergence rate of the estimator to the original image for the
non-local means filter.

Theorem 1 Let i ∈ I and let Ii be the set of j such that the patches v(Ni ) and v(N j ) are
similar (in the sense of Definition 1). Set

v0(i) =
∑

j∈Ii w0(i, j)v( j)∑
j∈Ii w0(i, j)

, (6)

where
w0(i, j) = e−‖v(N 0

i )−v(N 0
j )‖2a/(2σ 2

r )
. (7)

Then for any ε ∈ (0, 1
2 ], as |Ii | → ∞,

v0(i) − u(i) = o
(
|Ii |−( 12−ε)

)
almost surely, (8)

where |Ii | denotes the cardinality of Ii .
Notice that when ε = 1

2 , (8) means that

lim|Ii |→∞ v0(i) = u(i) almost surely, (9)

which is the similarity principle in [24].
Recall that N 0

i = Ni\{i}. Theorem 1 shows that v0(i) is a good estimator of the original
image u(i) if the number of similar patches |Ii | is sufficiently large. Here we use the weight
w0(i, j) instead of w(i, j), as w0(i, j) has the nice property that it is independent of v( j)
if j /∈ Ni . This property is used in the proof, and makes the estimator v0(i) to be nearly
non-biased: in fact, if the family {v( j)} j is independent of the family {w0(i, j)} j (e.g. this is
the case when the similar patches are disjoint), then it is evident that Ev0(i) = u(i). We can
consider that this non-biased property holds approximately as for each j there are few k such
that w0(i, k) is dependent of v( j). A closely related explanation about the biased estimation
of NL-means can be found in [39].

Notice that when v(N j ) is not similar to v(Ni ), the weightw0(i, j) is small and negligible.
Therefore it is also reasonable to take all patches for the calculation. Indeed, taking just similar
patches or all patches does not make much difference for the denoising results, as shown in
Table 1 of [2]. However, selecting only similar patches can slightly improve the restoration
result, and can also speed up the algorithm, as shown in [2,26] where a pre-classification of
patches is proposed so that we only need calculate the weights for similar patches. On the
other hand, as illustrated by [39], the difference between w0(i, j) and w(i, j) is also small,

Table 1 Choice of search
window sizes D for PWMF

σ = 0 σ = 10 σ = 20 σ = 30

D 7 7 11 15
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but w0(i) often gives a little better restoration result. Therefore, Theorem 1 not only gives a
mathematical justification of the original non-local means filter (showing that NLM(v)(i) is
a reasonable estimator of u(i)), but also suggests some improvements by taking just similar
patches instead of all patches, and using the weights w0(i, j) instead of w(i, j).

The next result is a convergence theorem in distribution. It states that v0(i) − u(i) → 0
with a rate as 1/

√|Ii | in the sense of distribution.

Theorem 2 Under the condition of Theorem 1, assume additionally that {v(N j ) : j ∈ Ii }
is a stationary sequence of random vectors. Then as |Ii | → ∞,

√|Ii |
(
v0(i) − u(i)

) d→ L,

where
d→ means the convergence in distribution, and L is a mixture of centered Gaussian

laws in the sense that it has a density of the form

f (t) =
∫
R

|N 0
i |

1√
2πcx

e
− t2

2c2x μ(dx), (10)

μ being the law of v(N 0
i ) and

cx = 1

Ea1

√
E(a21)E(v1 − Ev1)2 + 2

∑d2

k=2
E(a1ak(v1 − Ev1)(vk − Evk)), (11)

with
ak = e

−‖x−v(N 0
jk

)‖2/(2σ 2
r )

, vk = v( jk). (12)

Moreover, writing m = |N 0
i | = d2 − 1, ν = E(v(N 0

jk
)) and

c(x) = σm/2+1
(

(σ 2 + σ 2
r )2

σ 2σ 2
r (2σ 2 + σ 2

r )

)m/4

exp

(
σ 2‖x‖2

2(σ 2
r + σ 2)(σ 2

r + 2σ 2)

)
, (13)

we have the approximations
cx ≈ c(x − ν), x ∈ R

m, (14)

and

f (t) ≈ f̃ (t) :=
∫
Rm

1√
2πc(x)

e
− t2

2c2(x)
1

(
√
2πσ)m

e− ‖x‖2
2σ2 dx, t ∈ R. (15)

To apply Theorem 2 we often need to calculate the probability of the form L(a, b) =∫ b
a f (t)dt , where a, b are real numbers such that a < b. In practice, to this end we can
replace the density function f (t) by its approximation f̃ (t). But a direct calculation of f̃ (t)
is not easy whenm is large (as we have a multiple integral of orderm whose numerical calcu-
lation is not easy). An efficient way for the calculation is to use the Monte-Carlo simulation
as follows.

Remark 1 (Calculation of
∫ b
a f (t)dt by Monte-Carlo simulation) Let −∞ < a < b < ∞,

and let Xi and Ui be independent random variables such that each Xi has the normal law
N (0, σ 2 I dm) on R

m (with I dm denoting the identity matrix of size m ×m), and eachUi has
the uniform law on (a, b). Then for a < b and k large enough,

∫ b

a
f (t)dt ≈

∫ b

a
f̃ (t)dt ≈ (b − a)

k∑
i=1

1√
2πc(Xi )

e
− U2

i
2[c(Xi )]2 . (16)
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To see the approximation, it suffices to notice that, by the law of large numbers,

1

b − a

∫ b

a
f̃ (t)dt = lim

k→∞

k∑
i=1

1√
2πc(Xi )

e
− U2

i
2[c(Xi )]2 almost surely. (17)

By Theorems 1 and 2, the larger the value of |Ii |, the better the approximation of v0(i) to
u(i), that is to say, the larger the number of similar patches, the better the restored result. This
will be confirmed in Sect. 5 where we shall introduce the notion of degree of similarity for
images, showing that the larger the degree of similarity, the better the quality of restoration.

The proofs of the theorems will be given in Appendix.

3 Patch-Based Weighted Means Filter

In this section, we first introduce our new filter which combines the basic idea of NL-means
[4] and that of the trilateral filter [19]. We then analyse the convergence of this new filter for
removing mixed noise.

3.1 Trilateral Filter

The authors of [19] proposed a neighborhood filter called the trilateral filter as an extension
of the bilateral filter [33,34] to remove random impulse noise and its mixture with Gaussian
noise. Firstly, they introduced the statistic ROAD (Rank of Ordered Absolute Differences)
to measure how like a point is an impulse noisy point defined by

ROAD(i) = r1(i) + · · · + rm(i), (18)

rk(i) being the k-th smallest term in the set {|u(i) − u( j)| : j ∈ Ni (d)\{i}}, d and m two
constants taken as d = 3,m = 4 in [19]. If i is an impulse noisy point, then ROAD(i) is
large; otherwise it is small. Therefore, the ROAD statistic serves to detect impulse noisy
points.

Secondly, with the ROAD statistic, they defined the impulse factor wI (i) and the joint
impulse factor JI (i, j):

wI (i) = e
− ROAD(i)2

2σ2I , (19)

JI (i, j) = e
− 1

2σ2J

(
ROAD(i)+ ROAD( j)

2

)2
, (20)

where σI and σJ are control parameters 1. If i is an impulse noisy point, then the value of
wI (i) is close to 0; otherwise it is close to 1. Similarly, if either i or j is an impulse noisy
point, then the value of JI (i, j) is close to 0; otherwise it is close to 1.

Finally, the restored image by the trilateral filter is

TriF(v)(i) =
∑

j∈Ni (D) w(i, j)v( j)∑
j∈Ni (D) w(i, j)

, (21)

where

w(i, j) = wS(i, j)wR(i, j)JI (i, j)wI ( j)
1−JI (i, j),

1 In fact, [19] defines the joint impulse factor as J (i, j) = 1− JI (i, j). Following [24], we use JI (i, j) rather
than J (i, j), which seems more convenient.
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with

wS(i, j) = e
− |i− j |2

2σ2S , wR(i, j) = e
− (v(i)−v( j))2

2σ2R .

3.2 Patch-Based Weighted Means Filter

As in the non-local means filter [4], our filter estimates each point by the weighed means
of its neighbors, and the weight for each neighbor is determined by the similarity of local
patches centered at the estimated point and the neighbor. Due to the existence of impulse
noise, some points are totally destroyed, so that noisy values are not related to original values
at all. So we have to diminish the influence of impulse noisy points. Similarly to [21,24], we
introduce the following weighted norm:

‖v(Ni ) − v(N j )‖2M =
∑

k∈N 0
i

wS,M (i, k)F
(
k, T (k)

) |v(k) − v
(
T (k)

)|2
∑

k∈N 0
i

wS,M (i, k)F
(
k, T (k)

) , (22)

where

wS,M (i, k) = e
− |i−k|2

2σ2S,M , F
(
k, T (k)

) = wI (k)wI
(
T (k)

)
. (23)

Recall that here k = (k1, k2) represents a two-dimensional spatial location of a pixel, wI

is defined in (19), and T is the translation mapping i to j (and thus Ni (d) onto N j (d)).
F

(
k, T (k)

)
is a joint impulse factor: if k or T (k) is an impulse noisy point, then F

(
k, T (k)

)
is close to 0, so that these points contribute little to the weighted norm; otherwise F

(
k, T (k)

)
is close to 1.

We now define our filter that we call Patch-Based Weighted Means Filter (PWMF). The
restored image by PWMF is defined as

PWMF(v)(i) =
∑

j∈Ni (D) w(i, j)v( j)∑
j∈Ni (D) w(i, j)

, (24)

where

w(i, j) = wS(i, j)wI ( j)wM (i, j),

with
wS(i, j) = e−|i− j |2/(2σ 2

S ), wM (i, j) = e−||v(Ni )−v(N j )||2M/(2σ 2
M ), (25)

and wI ( j) is defined in (19). In addition, we mention that, in this paper, we use the joint
impulse factor F

(
k, T (k)

) = wI (k)wI
(
T (k)

)
, which is different from the choice in [24] and

[21], where F
(
k, T (k)

) = JI
(
k, T (k)

)
. In fact, we can see that with this new choice, we

simplify the methods in [24] and [21] by eliminating a parameter and speeding up the imple-
mentation. Furthermore, we empirically find that the new choice leads to an improvement of
the quality of restored images, especially for impulse noise.

3.3 Convergence Analysis

Our new filter can be regarded as an application of the mathematical justifications of the
non-local means filter stated in Sect. 2 to the remained image obtained after filtering the
impulse noisy points by the weighted norm (22), which can be considered to contain only
Gaussian noise.
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Let us explain this more precisely. For a fixed pixel i , let

P = { j ∈ Ni (D) : v( j) is an impulse noisy point} (26)

be the set of impulse noisy points, and Pc = Ni (D)\P be its complementary. We will show
that

PWMF(v)(i) =
∑

j∈Ni (D) w(i, j)v( j)∑
j∈Ni (D) w(i, j)

≈
∑

j∈Pc w(i, j)v( j)∑
j∈Pc w(i, j)

, (27)

which demonstrates that the estimated value by this filter is close to the weighted average
of gray value of the non-impulse noisy points. Since wI ( j) ≈ 0 for impulse noisy point j ,
and wI ( j) ≈ 1 for other points, we can think that PWMF is close to NL-means applied to
images containing only Gaussian noisy points. By Theorem 1, the right-hand side of (27) is
close to u(i), which indicates the convergence PWMF(v)(i) to u(i).

To obtain (27), set

R1 =
∑
j∈Pc

w(i, j)v( j), R2 =
∑
j∈P

w(i, j)v( j),

J1 =
∑
j∈Pc

w(i, j), J2 =
∑
j∈P

w(i, j),

then it holds that

PWMF(v)(i) −
∑

j∈Pc w(i, j)v( j)∑
j∈Pc w(i, j)

= R1 + R2

J1 + J2
− R1

J1

= − R1

J1

J2
J1 + J2

+ R2

J2

J2
J1 + J2

.

Since

0 ≤ R1

J1
≤ max

j
v( j) ≤ 255 and 0 ≤ R2

J2
≤ max

j
v( j) ≤ 255,

it follows that

|PWMF(v)(i) − R1

J1
| ≤ 255 × J2

J1 + J2
. (28)

We claim that J2/J1 is very small, and so is J2/(J1 + J2). In fact,

J2
J1

=
∑

j∈P w(i, j)∑
j∈Pc w(i, j)

=
∑

j∈P wS(i, j)wI ( j)wM (i, j)∑
j∈Pc wS(i, j)wI ( j)wM (i, j)

.

For j ∈ P , we can approximately replace the ROAD statistic by its mean value R̄(P) over
P; for j ∈ Pc, we do the same by the mean value R̄(Pc) over Pc. Therefore writing

WI (P) = e−(R̄(P))2/(2σ 2
I ) and WI (P

c) = e−(R̄(Pc))2/(2σ 2
I ),

we get

J2
J1

≈ WI (P)

WI (Pc)

∑
j∈P wS(i, j)wM (i, j)∑
j∈Pc wS(i, j)wM (i, j)

≈ WI (P)

WI (Pc)

p

1 − p
,
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where the last step holds by Theorem 1 of [31]. Therefore, it follows that

J2
J1 + J2

≈ pWI (P)

pWI (P) + (1 − p)WI (Pc)
. (29)

The value of right-hand side of (29) is generally small. For example, for impulse noise
p = 0.2, by results in [19], R̄(P) is about 242, and R̄(Pc) is about 17. Therefore, with the
parameter σI = 50 used in the experiments,

J2
J1 + J2

≈ pe−2422/(2σ 2
I )

pe−2422/(2σ 2
I ) + (1 − p)e−172/(2σ 2

I )
= 2.2 × 10−6.

Thus, by (28), the value PWMF(v)(i) is very close to R1
J1
: we have approximately

|PWMF(v)(i) − R1

J1
| ≤ 5.6 × 10−4. (30)

4 Choices of Parameters and Comparison with Other Filters by
Simulations

4.1 Choices of Parameters

Notice that PWMF reduces to NL-means when σI = σS = ∞. So for removing Gaussian
noise, a reasonable choice is to take σI and σS large enough. Now present the choices of
parameters for removing impulse noise and mixed noise, which are determined empirically
and important for our filter. The noise level σ and p, are supposed to be known, otherwise,
there are methods to estimate them in the literature, for example [22,28,40].

In the calculation of ROAD [cf.(18)], we choose 3 × 3 neighborhoods and m = 4. For
impulse noise or mixed noise with p = 0.4, 0.5, to further improve the results, 5 × 5
neighborhoods and m = 12 are used to calculate ROAD.

The patch size d = 9 is used in all cases; the search window sizes D are shown in Table 1.
Now come to the choice of σI , σM , σS, σS,M appearing in (19), (25) and (23). To apply

our filter easily in practice, simple and uniform formulas in terms of p and σ are searched
empirically. Assume that there is some simple relation between the desired parameters and
the given parameters (the values of σ and p). We try some simple relations of the form
aσ + bp + c, then determine a, b, c by experiments in different cases, and then verify their
validity again by many experiments.

• To remove impulse noise, use σM = 3 + 20p, σS = 0.6 + p, and omit the factor wS,M

(i.e. σS,M can be taken a value large enough); σI = 50 for p = 0.2, 0.3, and σI = 160
for p = 0.4, 0.5.

• For mixed noise, choose σI = 50 + 5σ/3, σM = 3 + 0.4σ + 20p, σS,M = 2, and omit
the factor wS , while σ = 10, 20, 30 and p = 0.2, 0.3.

• For other values of σ or p, choose parameters by linear interpolation, linear extension or
according to the adjacent values of σ or p.

It is not easy to find appropriate parameters for a filter. Different choices of parameters
can have great influence to the restored images. See also [13]. Some similar research for
NL-means can be found in [17,35,39].
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Fig. 1 Original 512× 512 images of Lena, Bridge, Peppers512, Boats. Since in the original Peppers images,
there are black boundaries of width of one pixel in the left and top which can be considered as impulse noise, to
make an impartial comparison, we compute PSNR for Peppers images after removing all the four boundaries,
that is with images of size 510 × 510 for Peppers512 and 254 × 254 for Peppers256

Note that our choice of parameters is different from [24]: for the patch size, we use d = 9,
while [24] uses d = 3 in most cases; for impulse noise with p = 0.4, 0.5, we use 5 × 5
neighborhoods for ROAD, while [24] always uses 3 × 3 neighborhoods.

4.2 Experiments and Comparisons

We use standard gray images to test the performance of our filter2. Original images are shown
in Fig. 1.3 As usual we use PSNR (Peak Signal-to-Noise Ratio)

PSNR (v̄) = 10 log10
2552|I |∑

i∈I (v̄(i) − u(i))2
dB

2 The code of our method and the images can be downloaded at
https://www.dropbox.com/s/oylg9to8n6029hh/to_j_sci_comput_paper_code.zip.
3 The images Lena, Peppers256 and Boats are originally downloaded from
http://decsai.ugr.es/~javier/denoise/test_images/index.htm; the image Peppers512 is from http://perso.
telecom-paristech.fr/~delon/Demos/Impulse and the image Bridge is from www.math.cuhk.edu.hk/~rchan/
paper/dcx/.

123

https://www.dropbox.com/s/oylg9to8n6029hh/to_j_sci_comput_paper_code.zip
http://decsai.ugr.es/~javier/denoise/test_images/index.htm
http://perso.telecom-paristech.fr/~delon/Demos/Impulse
http://perso.telecom-paristech.fr/~delon/Demos/Impulse
www.math.cuhk.edu.hk/~rchan/paper/dcx/
www.math.cuhk.edu.hk/~rchan/paper/dcx/


J Sci Comput (2016) 67:103–129 115

to measure the quality of a restored image, where u is the original image, and v̄ the restored
one. For the simulations, the gray value of impulse noise is uniformly distributed on the
interval [0,255]. We add Gaussian noise and then add impulse noise for the simulation of
mixed noise. The same realizations of noisy images for comparisons of different meth-
ods are used when codes are available, that is, for TriF [19], ROLD-EPR [14], NLMixF
[21] and MNF [24]. For other methods, the reported results in corresponding papers are
listed.

The results for TriF are obtained by the program made by ourselves. To compare the
performance of our filter with those of TriF fairly, we make our effort to obtain the best
results as we can according to the suggestion of [19].

• Use σI = 40, σJ = 50, σS = 0.5, and σR = 2σQGN, where σQGN is an estimator for the
standard deviation of “quasi-Gaussian” noise defined in [19].

• For impulse noise, apply one iteration for p = 0.2, two iterations for p = 0.3, 0.4, and
four iterations for p = 0.5. For mixed noise, apply TriF twice with different values of
σS as suggested in [19]: with all impulse noise levels p, for σ = 10, first use σS = 0.3,
then σS = 1; for σ = 20, first σS = 0.3, then σS = 15; for σ = 30, first σS = 15, then
σS = 15.

For ROLD-EPR, the listed values are the best PSNR values along iterations with the code
from the authors of [14].

Table 2 demonstrates the performances of PWMF for removing impulse noise by compar-
ingwithTriF [19], ROLD-EPR [14], PARIGI [13], andNLMixF [21]. For ease of comparison,
in this and following tables, the best results and the results where the differences from
the best ones are less than 0.1dB are displayed in bold. We can observe that our filter
PWMF attains the best performance in term of PSNR. Some visual comparisons are shown
in Figs. 2 and 3. Carefully comparing these images, we observe that TriF loses some small
textured details, while ROLD-EPR is not smooth enough. PARIGI and PWMF show better
results.

Different papers consider different mixtures of Gaussian noise and impulse noise. We
demonstrate the performance of PWMF for removing mixed noise in Tables 3, 4, 5, and
6 by comparing it with TriF [19], NLMixF [21], PARIGI [13] IPAMF+BM [40], Xiao
[37], MNF [24], and Zhou [43]. All these comparisons illustrate good performance of
our filter except for Barbara when comparing with PARIGI. Our method does not work
very well as PARIGI for Barbara, because the ROAD statistics is a very local statistics
and can not use the redundancy of this image very well to detect impulse noisy pix-
els, while PARIGI is particularly powerful for the restoration of textured regions. From
Fig. 4, it can be seen that the results of our filter are visually better than TriF. From
Fig. 5, we can see that when the standard deviation σ is high, our filter is smoother than
PARIGI, while PARIGI seems to preserve more weak textured details, but it has evident
artifacts throughout the whole image (see the electronic version of this paper at full resolu-
tion).

Finally, we compare the CPU time of TriF [19], NLMixF [21], and our method PWMF
for removing mixed nose in seconds in the platform of MATLAB R2011a with unoptimized
mex files. The computer is equipped with 2.13GHZ Intel (R) Core (TM) i3 CPU and 3.0GB
memory. The results are presented in Table 7, which demonstrate that PWMF is rather fast:
much faster than NLMixF and even faster than TriF when the noise level is low, thanks to
the simplified joint impulse factor F

(
k, T (k)

)
defined in (23). The results also show that our

method is faster than Zhou [43].
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Table 2 PSNR values (dB) to
remove impulse noise for TriF
[19], ROLD-EPR [14], PARIGI
[13], NLMixF [21] and our filter
PWMF

p = 0.2 p = 0.3 p = 0.4 p = 0.5

Lena

TriF 34.75 32.54 31.28 29.37

ROLD-EPR 34.87 32.08 30.81 29.51

PARIGI 35.45 – 31.75 –

NLMixF 35.69 33.13 31.69 29.87

PWMF 35.90 33.45 31.98 30.17

Bridge

TriF 26.81 25.25 24.41 23.35

ROLD-EPR 27.60 25.58 24.42 23.45

PARIGI 27.68 – 24.80 –

NLMixF 27.77 25.54 24.45 23.33

PWMF 28.10 26.11 24.74 23.64

Peppers256

TriF 30.55 28.81 27.67 25.98

ROLD-EPR 31.03 28.10 27.34 25.96

PARIGI – – – –

NLMixF 31.78 29.38 28.10 26.47

PWMF 31.93 29.64 28.34 26.78

Peppers512

TriF 34.52 31.93 31.27 29.76

ROLD-EPR 34.46 32.31 31.12 30.03

PARIGI 34.75 – 31.63 –

NLMixF 34.77 32.56 31.73 30.23

PWMF 35.08 32.59 31.95 30.38

Boats

TriF 30.22 28.55 27.52 26.10

ROLD-EPR 30.75 28.19 26.95 25.91

PARIGI 31.21 – 27.56 –

NLMixF 31.32 29.01 27.42 26.10

PWMF 31.83 29.58 27.67 26.48

5 Degree of Similarity and Estimated PSNR Values

In this section, we introduce the notion of degree of similarity (DS) of images corrupted
by Gaussian noise and mixed noise. With this notion and Theorem 2, estimations of the
PSNR values of denoised images are obtained. For simplicity, in this section, impulse noise
is considered as particular mixed noise with σ = 0.

For Gaussian noise model, if two patches v(Ni ) and v(N j ) have the same distribution
and are independent of each other, i.e. u(Ni ) = u(N j ), then {v(k) − v(T (k)) : k ∈ Ni } are
independent variables with the same law N (0, 2σ 2) (recall that T is the translation mapping
of Ni onto N j ). Therefore

‖v(Ni ) − v(N j )‖2 =
∑
k∈Ni

|v(k) − v(T (k))|2 = 2σ 2X,
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Original Noisy p = 0.2 TriF PSNR = 34.75

ROLD-EPR PSNR = 34.87 PARIGI PSNR = 35.45 PWMF PSNR = 35.90

Fig. 2 Comparison of the performances of TriF [19], ROLD-EPR [14], PARIGI [13] and our filter PWMF
for removing impulse noise with p = 0.2 for Lena

Original Noisy p = 0.4 TriF PSNR = 31.27

ROLD-EPR PSNR = 31.12 PARIGI PSNR = 31.63 PWMF PSNR = 31.95

Fig. 3 Comparison of the performances of TriF [19], ROLD-EPR [14], PARIGI [13] and our filter PWMF
for removing impulse noise with p = 0.4 for Peppers512
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Table 3 PSNR values (dB) to remove mixed noise for TriF [19], NLMixF [21] and our filter PWMF

p σ = 10 σ = 20 σ = 30

TriF NLMixF PWMF TriF NLMixF PWMF TriF NLMixF PWMF

Lena

0.2 31.70 32.85 32.93 28.75 30.51 30.47 26.54 28.70 28.67

0.3 30.77 31.28 31.30 28.01 29.41 29.38 25.82 27.68 27.65

Bridge

0.2 25.28 26.14 26.35 23.84 24.48 24.53 22.50 23.33 23.35

0.3 24.66 24.73 25.00 23.34 23.59 23.70 22.08 22.66 22.72

Peppers256

0.2 29.09 30.57 30.65 26.82 28.56 28.53 24.70 26.73 26.71

0.3 27.89 28.68 28.73 26.01 27.16 27.13 23.97 25.55 25.57

Peppers512

0.2 31.84 32.64 32.70 29.01 30.74 30.69 26.82 29.04 29.07

0.3 30.92 31.06 30.93 28.27 29.55 29.39 26.01 27.92 27.86

Boats

0.2 28.37 29.75 29.91 26.40 27.71 27.74 24.58 26.23 26.23

0.3 27.63 28.15 28.38 25.84 26.66 26.75 24.09 25.44 25.48

For each PSNR value, the corresponding level of Gaussian noise and impulse noise are shown in the top and
left of the table

Table 4 PSNR values (dB) to
remove mixed noise for PARIGI
[13] and our filter PWMF

Lena Barbara Cameraman Boat

p = 0.1 σ = 5

PARIGI 34.72 31.55 34.98 31.41

PWMF 35.80 30.86 35.80 32.60

p = 0.3 σ = 15

PARIGI 29.22 27.33 28.59 26.57

PWMF 30.25 25.58 30.27 27.45

Table 5 PSNR values (dB) for
mixed noise removal with (Xiao)
[37], (IPAMF+BM) [40], (Zhou)
[43] and our filter PWMF

Lena σ = 10 p = 0.1 p = 0.2 p = 0.3

Xiao 32.75 31.66 30.42

IPAMF+BM 33.61 32.12 30.69

Zhou 34.25 32.68 31.21

PWMF 34.10 32.93 31.30

where X is the sum of squares of independent random variables with normal law N (0, 1),
and has the law χ2 of density function fκ with κ = d2, where

fκ (t) =
⎧⎨
⎩

xκ/2−1e−t/2

2κ/2Γ (κ/2)
t ≥ 0,

0 else.
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Table 6 PSNR values (dB) for
mixed noise removal with MNF
[24] and our filter PWMF

Lena σ = 10, p = 0.2 σ = 20, p = 0.2 σ = 30, p = 0.2

MNF 31.63 29.33 28.40

PWMF 32.93 30.47 28.67

Noisy σ = 30, p = 0.2 TriF PSNR = 26.54 PWMF PSNR = 28.67

Noisy σ = 20, p = 0.2 TriF PSNR = 26.40 PWMF PSNR = 27.74

Fig. 4 Comparison of the performances of TriF [19] and our filter PWMF for removing mixed noise

Let α ∈ (0, 1) represent the risk probability, chosen to be small enough. And let Tα > 0
be determined by

∫ Tα

0
fκ (t)dt = 1 − α, with κ = d2,

so that

P(‖v(Ni ) − v(N j )‖ ≤ Tα) = 1 − α.

When ‖v(Ni )−v(N j )‖ ≤ Tα , we consider that v(Ni ) and v(N j ) are similar with confidence
level 1 − α. This leads us to the following definition of the degree of similarity.

Definition 3 (Degree of similarity of images corrupted by Gaussian noise) Let α ∈ (0, 1)
and let Tα > 0 be defined as above. For i ∈ I, let

DSi = #{ j ∈ Ni (D) : ‖v(Ni ) − v(N j )‖ ≤ Tα}
D2

be the proportion of patches v(N j ) similar to v(Ni ) in the search window Ni (D), and let

DS =
∑

i∈I DSi
MN
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Noisy p = 0.1, σ = 5 PWMF PSNR = 35.80 PARIGI PSNR = 34.72

Noisy p = 0.3, σ = 15 PWMF PSNR = 30.25 PARIGI PSNR = 29.22

Fig. 5 Comparison of the performances of our filter PWMF and PARIGI [13] for removing mixed noise with
Lena

Table 7 Time(s) for TriF [19],
NLMixF [21], and PWMF

Image Noise levels TriF NLMixF PWMF

Lena σ = 10, p = 0.2 6.9 60.6 5.4

Lena σ = 20, p = 0.3 7.9 170.0 16.7

be their mean over the whole image. We call DS the degree of similarity of the image v with
confidence level 1 − α.

For the mixed noise model, if the original patches satisfy u(Ni ) = u(N j ), then, letting

‖v(Ni ) − v(N j )‖2m =
∑
k∈Ni

F
(
k, T (k)

) |v(k) − v
(
T (k)

)|2, (31)

we have

1

2σ 2 ‖v(Ni ) − v(N j )‖2m ≈ 1

2σ 2

∑
k∈Pc,T (k)∈Pc

|v(k) − v
(
T (k)

)|2,
where Pc represents the set of non-impulse noisy points contained inNi , and the right-hand
side has the law χ2 with density function fκ (t) with κ ≈ (1 − p)2d2.

Similar to Definition 3, let T ′
α > 0 be determined by

∫ T ′
α

0
fκ (t)dt = 1 − α, with κ = (1 − p)2d2.

Definition 4 (Degree of similarity of images corrupted by mixed noise) Let α ∈ (0, 1) and
let T ′

α > 0 be defined as above. For i ∈ I, let
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DSi = (1 − p)|{ j ∈ Ni (D) : ‖v(Ni ) − v(N j )‖m ≤ T ′
α}|

D2 , (32)

and

DS =
∑

i∈I DSi
MN

.

We call DS the degree of similarity of the image v with confidence level 1 − α.

Note that, on average, the proportion of significant pixels in a search window Ni (D) is
(1 − p), which explains the factor (1 − p) in the right-hand side of (32).

For each pixel i ∈ I , denote by v̄(i) the gray value of the restored image at pixel i by
NL-means for Gaussian noise or by PWMF for mixed noise. Then by Theorem 2, it holds
that

P(|v̄(i) − u(i)| < Aβ/
√
n) ≈

∫ Aβ

−Aβ

f̃ (t)dt,

where n represents the number of similar patches in the search window Ni (D).

Definition 5 (Estimated PSNR value) For β ∈ (0, 1), let Aβ > 0 be such that
∫ Aβ

−Aβ

f̃ (t)dt = 1 − β, (33)

where f̃ (t) is defined by (15). Define

PSNRe = 20 log10(255
√
n/Aβ), (34)

where n = D2 · DS is the estimated number of similar patches by means of the degree of
similarity DS. We call PSNRe the estimated PSNR value with confidence level 1 − β.

The value of β is chosen to be small enough, representing the risk probability. For mixed
noise, we can replace σr by σM for the calculation of c(x) in f̃ (t). For given β, we can use the
Monte-Carlo simulation to obtain the approximate value of Aβ (see Remark 1 in Sect. 2.2).

We compute the DS values and estimated PSNR values for different images corrupted by
Gaussian noise with σ = 10, 20, 30, and mixed noise with σ = 20, p = 0.2 or 0.3 shown in
Tables 8 and 9. Note that the DS value depends on the choice of α, and the estimated PSNR
value depends on the choice of β and α. To have a good approximation to the true PSNR

Table 8 The degree of
similarity(DS), the estimated
PSNR values (PSNRe) and true
PSNR values (PSNR) with
NL-means for images corrupted
by Gaussian noise

σ Lena Peppers512 Peppers256 Boats Bridge

DS 0.53 0.49 0.37 0.33 0.11

10 PSNRe 34.99 34.81 33.56 33.05 28.00

PSNR 34.92 34.51 33.76 32.96 30.51

DS 0.39 0.38 0.27 0.27 0.09

20 PSNRe 31.32 31.13 29.65 29.65 25.01

PSNR 31.59 31.68 30.08 29.45 26.50

DS 0.30 0.29 0.21 0.22 0.09

30 PSNRe 29.07 28.94 27.53 27.80 23.82

PSNR 29.43 29.76 27.75 27.41 24.56
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Table 9 The degree of
similarity(DS), the estimated
PSNR values (PSNRe) and true
PSNR values (PSNR) with
PWMF for images corrupted by
mixed noise

σ = 20 Peppers512 Lena Peppers256 Boats Bridge

DS 0.45 0.43 0.33 0.35 0.19

p = 0.2 PSNRe 30.17 30.00 28.95 29.16 26.35

PSNR 30.69 30.47 28.53 27.74 24.53

DS 0.25 0.24 0.18 0.19 0.11

p = 0.3 PSNRe 28.20 27.90 26.65 27.04 24.56

PSNR 29.39 29.38 27.13 26.75 23.70

value, we take β = 0.03; α = 0.03, 0.3, 0.5 for Gaussian noise σ = 10, 20, 30 respectively,
and α = 0.04 for mixed noise. It can be seen that, generally, the larger the DS value, the
larger the estimated PSNR value and the true PSNR value, and the estimated PSNR value is
close to the true PSNR value.

6 Conclusions

Two convergence theorems, one for the almost sure convergence and the other for the con-
vergence in law, are established to show the rate of convergence of NL-means [4]. Based on
the convergence theorems, a new filter called patch-based weighted means filter (PWMF) is
proposed to remove mixed noise, leading to an extension of NL-means. The choice of para-
meters has been carefully discussed. Simulation results show that the new proposed filter
is competitive compared to recently developed known algorithms. The notion of degree of
similarity is introduced to describe the influence of the proportion of similar patches in the
application of NL-means or PWMF. With the notion of degree of similarity and the conver-
gence theorem in law, we obtain a good estimation for PSNR values of denoised images by
NL-means or PWMF.
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Appendix

In this appendix we will prove Theorems 1 and 2.

Convergence Theorems for Random Weighted Means

Wefirst show aMarcinkiewicz law of large numbers (Theorem 3) and a convergence theorem
in distribution for random weighted means (Theorem 4) for l-dependent random variables,
which we will use to prove Theorems 1 and 2.

Theorem 3 Let {(ak, vk)} be a sequence of l-dependent identically distributed random vari-
ables, with E|a1|p < ∞ and E|a1v1|p < ∞ for some p ∈ [1, 2), and Ea1 
= 0. Then
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∑n
k=1 akvk∑n
k=1 ak

− Ea1v1
Ea1

= o(n−(1−1/p)) almost surely.

We need the following lemma to prove it.

Lemma 2 [24] If {Xn} are l-dependent and identically distributed random variables with
EX1 = 0 and E|X1|p < ∞ for some p ∈ [1, 2), then

lim
n→∞

X1 + · · · + Xn

n1/p
= 0 almost surely.

This lemma is a direct consequence of Marcinkiewicz law of large numbers for indepen-
dent randomvariables (see e.g. [9], p. 118), since for all k ∈ {1, . . . , l+1}, {Xi(l+1)+k : i ≥ 0}
is a sequence of i.i.d. random variables, and for each positive integer n, we have

X1 + · · · + Xn =
l+1∑
k=1

m−1∑
i=0

Xi(l+1)+k +
∑

1≤k≤k0

Xm(l+1)+k ,

where m, k0 are positive integers determined by n = m(l + 1) + k0, 0 ≤ k0 ≤ l.

Proof of Theorem 3 Notice that

n

(∑n
k=1 akvk∑n
k=1 ak

− Ea1v1
Ea1

)
= n

(
∑n

k=1 ak)

1

Ea1

n∑
k=1

akzk,

where

zk = vkEa1 − Ea1v1.

Since E|a1| ≤ (E|a1|p)1/p < ∞, by Lemma 2 with p = 1, we have

lim
n→∞

∑n
k=1 ak
n

= Ea1 almost surely.

Since Ea1z1 = 0, and E|a1z1|p < ∞, again by Lemma 2, we get

lim
n→∞

∑n
k=1 akzk
n1/p

= 0 almost surely.

Thus the conclusion follows. ��
Theorem 4 Let {(ak, vk)} be a stationary sequence of l-dependent and identically distributed
random variables with Ea1 
= 0,Ea21 < ∞, and E(a1v1)2 < ∞. Then

√
n

(∑n
k=1 akvk∑n
k=1 ak

− Ea1v1
Ea1

)
d→ N (0, c2),

that is,

lim
n→∞P

{√
n

c

(∑n
k=1 akvk∑n
k=1 ak

− Ea1v1
Ea1

)
≤ z

}
= Φ(z), z ∈ R,

where Φ(z) is the cumulative distribution function of the standard normal distribution,

Φ(z) = 1√
2π

∫ z

−∞
e− t2

2 dt,
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and

c = 1

(Ea1)2

√
E(a1z1)2 + 2λ (35)

with λ = ∑l
k=1 Ea1z1a1+k z1+k, zk = vkEa1 − Ea1v1.

We need the following lemma to prove the theorem.

Lemma 3 [36] Let {Xn} be a stationary sequence of l-dependent and identically distributed
random variables with EX1 = 0 and EX2

1 < ∞. Set Sn = X1 + · · · + Xn(n ≥ 1),

c1 = EX2
1 + 2

l∑
k=1

EX1X1+k, and c2 = 2
l∑

k=1

kEX1X1+k .

Then var(Sn) = c1n − c2 for n > l, and as n → ∞,

Sn√
c1n

d→ N (0, 1).

Proof of Theorem 4. As in the proof of Theorem 3, we have

√
n

(∑n
k=1 akvk∑n
k=1 ak

− Ea1v1
Ea1

)
= n

(
∑n

k=1 ak)

1

Ea1

∑n
k=1 akzk√

n
,

where

zk = vkEa1 − Ea1v1.

Notice that the l-dependence of {(ak, vk)} and the stationarity imply those of {(ak, zk)}.
Therefore by Lemma 3, we get ∑n

k=1 akzk√
nc0

→ N (0, 1),

where

c0 =
√
E(a1z1)2 + 2λ, with λ =

l∑
k=1

Ea1z1a1+k z1+k .

Since E|a1| ≤ (E|a1|p)1/p , by Lemma 2 with p = 1, we obtain

lim
n→∞

∑n
k=1 ak
n

= Ea1 almost surely.

Thus the conclusion follows with c = c0/(Ea1)2. ��
Proofs of Theorems 1 and 2

We now come to the proofs of Theorems 1 and 2, using Theorems 3 and 4.
For Theorem 1, we need to prove that for any ε ∈ (0, 1

2 ], as n → ∞,
∑n

k=1 w0(i, jk)v( jk)∑n
k=1 w0(i, jk)

− u(i) = o(n−( 12−ε)) almost surely,

where

w0(i, jk) = e
−‖v(N 0

i )−v(N 0
jk

)‖2/(2σ 2
r )

.
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We will apply Theorem 3 to prove this. Note that the sequence {w0(i, jk), v( jk)}
(k = 1, 2, . . . , n) is usually not l-dependent, since the central random variable v(N 0

i ) is
contained in all the terms. To make use of Theorem 3, we first take a fixed vector to replace
the central random variable.

Proof of Theorem 1 Fix x ∈ R
|N 0

i |. Let

ak = w0(x, jk) = e
−‖x−v(N 0

jk
)‖2/(2σ 2

r )
.

Then ak and v( jk) are independent since jk /∈ N 0
jk
, so that

Eakv( jk)

Eak
= Ev( jk) = u( jk) = u(i).

By Lemma 1, the sequence {v(N jk )} is l-dependent for l = (2d − 1)2 − 1; thus the sequence
{(ak, v( jk)

)} is also l-dependent. Since v = u + η, with the range of u being bounded and
η being Gaussian, we have E|v( jk)|p < ∞ for p ∈ [1, 2). (In fact, it holds for all p ≥ 1.)
Hence E|akv( jk)|p < ∞, as ak ≤ 1.

Applying Theorem 3, we have, for any fixed x = v(N 0
i ) ∈ R

|N 0
i | and any positive integer

k0, ∑n
k=k0 w0(x, jk)v( jk)∑n

k=k0 w0(x, jk)
− u(i) = o(n−(1−1/p) almost surely. (36)

Let k0 > l, so that v(N 0
i ) is independent of v(N 0

jk
) for all k ≥ k0. By Fubini’s theorem, we

can replace w0(x, jk) in (36) by

w0(i, jk) = e
−‖v(N 0

i )−v(N 0
jk

)‖2/(2σ 2
r )

.

That is, ∑n
k=k0 w0(i, jk)v( jk)∑n

k=k0 w0(i, jk)
− u(i) = o(n−(1−1/p)) almost surely. (37)

To prove the theorem, we need to estimate the difference between the left-hand sides of
(8) and (37). Let

A0 =
k0−1∑
k=1

w0(i, jk)v( jk), An =
n∑

k=k0

w0(i, jk)v( jk),

B0 =
k0−1∑
k=1

w0(i, jk), Bn =
n∑

k=k0

w0(i, jk).

Then as before, fixing x ∈ R
|N 0

i |, applying Theorem 3 with p = 1 and Fubini’s theorem,
and replacing x by v(N 0

i ), we obtain

lim
n→∞

An

n
= Ew0(i, jk)v( jk), and lim

n→∞
Bn

n
= Ew0(i, jk).

Using this and the fact that

A0 + An

B0 + Bn
− An

Bn
= A0Bn − AnB0

Bn(B0 + Bn)
,
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we see that∣∣∣∣
∑n

k=k0 w0(i, jk)v( jk)∑n
k=k0 w0(i, jk)

−
∑n

k=1 w0(i, jk)v( jk)∑n
k=1 w0(i, jk)

∣∣∣∣ = O

(
1

n

)
almost surely. (38)

Therefore, (37) implies that∑n
k=1 w0(i, jk)v( jk)∑n

k=1 w0(i, jk)
− u(i) = o(n−(1−1/p)) almost surely. (39)

As (39) holds for any p ∈ [1, 2), we see that (8) holds for all ε ∈ (0, 1
2 ]. ��

We will prove Theorem 2, which demonstrates that as n → ∞,

√
n

(∑n
k=1 w0(i, jk)v( jk)∑n

k=1 w0(i, jk)
− u(i)

)
d→ L,

where

w0(i, jk) = e
−‖v(N 0

i )−v(N 0
jk

)‖2/(2σ 2
r )

,

and L is a mixture of centered Gaussian laws in the sense that it has a density of the form
(15).

Proof of Theorem 2 The procedure of the proof is similar to that of the proof of Theorem
1. Fix x ∈ R

|N 0
i |, and set

ak = w0(x, jk) = e
−‖x−v(N 0

jk
)‖2/(2σ 2

r )
, k = 1, 2, . . . , n.

Then ak and v( jk) are independent, Eakv( jk)/Eak = Ev( jk) = u(i), and {(ak, v( jk))} is a
sequence of l-dependent and identically distributed random vectors with l = (2d − 1)2 − 1,
and E|akv( jk)|2 ≤ E|v( jk)|2 < ∞. Hence applying Theorem 4, we get, for any fixed x and
any positive integer k0,

Zn(x) := √
n

(∑n
k=k0 w0(x, jk)v( jk)∑n

k=k0 w0(x, jk)
− u(i)

)
d→ N (0, c2x ),

where cx > 0 will be calculated by the end of the proof. This means that for any t ∈ R,

lim
n→∞P(Zn(x) ≤ t) =

∫ t

−∞
1√
2πcx

e
− z2

2c2x dz.

Let k0 > l be the positive integer such that v(N 0
i ) is independent of v(N 0

jk
) for all k ≥ k0.

Then by Fubini’s theorem and Lebesgue’s dominated convergence theorem, we have

lim
n→∞P

(
Zn

(
v(N 0

i )
) ≤ t

)
=

∫ t

−∞
f (z)dz,

where

f (z) =
∫
R

|N 0
i |

1√
2πcx

e
− z2

2c2x μ(dx),

with μ being the law of v(N 0
i ). In other words,

√
n

(∑n
k=k0 w0(i, jk)v( jk)∑n

k=k0 w0(i, jk)
− u(i)

)
d→ L,
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where L is the law with density f . This together with (38) prove the equation (15) of
Theorem 2.

We now turn to the calculation of cx . Let vk = v( jk) and zk = vkEa1 −E(a1v1). Because
of the independence of a1 and v1, we get zk = (vk − Ev1)Ea1. Then, it follows that

E(a1z1)
2 = E(a21(v1 − Ev1)

2)E2a1 = E(a21)E
2(a1)E(v1 − Ev1)

2,

and

E(a1z1akzk) = E(a1ak(v1 − Ev1)(vk − Ev1)E
2a1)

= E
2(a1)E(a1ak(v1 − Ev1)(vk − Evk)).

Note that if (a1, ak) is independent of (v1, vk), it holds that

E(a1z1akzk) = E
2(a1)E(a1ak)E(v1 − Ev1)E(vk − Evk) = 0, (40)

by the independence of v1 and vk . If v1 is not contained in v(N 0
jk
), then (a1, ak) is independent

of (v1, vk). Notice that according to the order of Ii defined in Sect. 2.2, when k > d2, v1 is
not contained in v(N 0

jk
), so that (40) holds; therefore by Theorem 4,

cx =
√
E(a1z1)2 + 2λ/(Ea1)

2

= 1

Ea1

√
E(a21)E(v1 − Ev1)2 + 2

∑d2

k=2
E(a1ak(v1 − Ev1)(vk − Evk)).

We finally give an approximation of cx . Recall that ak = e
−‖x−v(N 0

jk
)‖2/(2σ 2

r )
, and vk =

v( jk). Let T ( j) = j − j1 + jk be the translation mapping j1 to jk (thus mapping N 0
j1
onto

N 0
jk
).

If v( j1) is not contained in v(N 0
jk
), we have already seen that E(a1z1akzk) = 0. If v( j1)

is contained in v(N 0
jk
), to make (a1, ak) independent of (v1, vk), we can remove v( j1) from

v(N 0
jk
) and the corresponding term v(T −1( j1)) from v(N 0

j1
); remove v( jk) from v(N 0

j1
) and

the corresponding term v(T ( jk))from v(N 0
jk
). The obtained values of a1, ak are very close

to the initial values of a1, ak respectively. Hence, we can consider that E(a1z1akzk) ≈ 0.
Therefore

cx ≈
√
E(a1z1)2

E2a1
=

√
Ea21
Ea1

σ = σ

√∫
Rm e−‖x−v‖2/σ 2

r μ(dv)∫
Rm e−‖x−v‖2/2σ 2

r μ(dv)
,

where v = v(N 0
jk
) and m = |N 0

jk
|. Recall that μ(dv) is the law of v(N 0

i ), so it is also the

law of v(N 0
jk
). Let

ν = E(v(N 0
i )),

then v ∼ N (ν, σ 2 I dm), where I dm denotes the identity matrix of size m × m. Since∫
Rm

e−‖x−v‖2/aμ(dv) = 1

(
√
2/a + 1/σ 2σ)m

exp(−‖x − ν‖2/(a + 2σ 2)),

we get

cx = σm/2+1
(

(σ 2 + σ 2
r )2

σ 2σ 2
r (2σ 2 + σ 2

r )

)m/4

exp

(
σ 2

2(σ 2
r + σ 2)(σ 2

r + 2σ 2)
‖x − ν‖2

)
.

This ends the proof of Theorem 2. ��
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