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Abstract The augmented Lagrangian method (ALM) is a benchmark for solving convex
minimization problems with linear constraints. When the objective function of the model
under consideration is representable as the sum of some functions without coupled variables,
a Jacobian or Gauss–Seidel decomposition is often implemented to decompose the ALM
subproblems so that the functions’ properties could be used more effectively in algorithmic
design. The Gauss–Seidel decomposition of ALM has resulted in the very popular alternat-
ing direction method of multipliers (ADMM) for two-block separable convex minimization
models and recently it was shown in He et al. (Optimization Online, 2013) that the Jacobian
decomposition of ALM is not necessarily convergent. In this paper, we show that if each
subproblem of the Jacobian decomposition of ALM is regularized by a proximal term and
the proximal coefficient is sufficiently large, the resulting scheme to be called the proximal
Jacobian decomposition of ALM, is convergent. We also show that an interesting application
of the ADMM in Wang et al. (Pac J Optim, to appear), which reformulates a multiple-block
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separable convex minimization model as a two-block counterpart first and then applies the
original ADMM directly, is closely related to the proximal Jacobian decomposition of ALM.
Our analysis is conducted in the variational inequality context and is rooted in a good under-
standing of the proximal point algorithm.

Keywords Convex optimization · Alternating direction method of multipliers ·
Augmented Lagrangian method · Jacobian decomposition · Parallel computation · Proximal
point algorithm · Variational inequality problem

1 Introduction

We consider the following separable convex minimization problem with linear constraints
and its objective function is the sum of more than one functionn without coupled variables:

min

{
m∑
i=1

θi (xi )

∣∣∣∣
m∑
i=1

Ai xi = b, xi ∈ Xi , i = 1, . . . ,m

}
, (1.1)

where θi : �ni → � (i = 1, . . . ,m) are convex (not necessarily smooth) closed functions;
Ai ∈ �l×ni , b ∈ �l , and Xi ⊆ �ni (i = 1, . . . ,m) are convex sets. The solution set of (1.1)
is assumed to be nonempty throughout our discussions in this paper.

We are interested in the scenario where each function θi may have some special properties;
consequently, it is not suitable to treat (1.1) as a generic convex minimization model and
ignore the individual properties of the functions in its objective when attempting to design
an efficient algorithm for (1.1). Therefore, instead of applying the benchmark augmented
Lagrangian method (ALM) in [14,17] directly to (1.1), we are more interested in its splitting
versionswhich embed the Jacobian (i.e., parallel) orGauss–Seidel (i.e., serial) decomposition
into the ALM partially or fully, depending on the speciality of (1.1). These splitting versions
can treat the functions θi ’s individually; take advantage of their properties more effectively;
and thus generate significantly easier subproblems.

Let λ ∈ �l be the Lagrange multiplier associated with the linear equality constraint in
(1.1) and the Lagrangian function of (1.1) be

L(x1, x2, . . . , xm, λ) =
m∑
i=1

θi (xi ) − λT

(
m∑
i=1

Ai xi − b

)
, (1.2)

defined on � := X1 × X2 × · · · × Xm × �l . Then, the augmented Lagrangian function of
(1.1) is

Lβ(x1, x2, . . . , xm, λ) =
m∑
i=1

θi (xi ) − λT

(
m∑
i=1

Ai xi − b

)
+ β

2

∥∥∥∥∥
m∑
i=1

Ai xi − b

∥∥∥∥∥
2

, (1.3)

where β > 0 is a penalty parameter. The application of ALM to (1.1) with a Gauss–Seidel
decomposition results in the scheme
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{Lβ

(
x1, xk2 , x

k
3 , . . . , x

k
m−1, x

k
m, λk

) ∣∣ x1 ∈ X1
} ;

xk+1
2 = argmin

{
Lβ

(
xk+1
1 , x2, xk3 . . . , xkm−1, x

k
m, λk

) ∣∣x2 ∈ X2

}
;

. . .

xk+1
i = argmin

{
Lβ

(
xk+1
1 , xk+1

2 , . . . , xk+1
i−1 , xi , xki+1, . . . , x

k
m, λk

) ∣∣xi ∈ Xi

}
;

. . .

xk+1
m = argmin

{
Lβ

(
xk+1
1 , xk+1

2 , . . . , xk+1
m−1, xm, λk

) ∣∣xm ∈ Xm

}
;

λk+1 = λk − β
(∑m

j=1 A j x
k+1
j − b

)
.

(1.4)

When the special case where m = 2 in (1.1) is considered, the scheme (1.4) reduces to
the alternating direction method of multipliers (ADMM), a method originally proposed in
[5] and now a very popular method in various fields (see, e.g. [1,3,4] for review papers).
Recently, it was shown in [2] that the scheme (1.4) is not necessarily convergent whenm ≥ 3
if no further assumptions are made for (1.1). An efficient remedy is to correct the output
of (1.4) by some correction steps; some prediction–correction methods based on (1.4) were
thus proposed, see e.g. [11,13]. Notice that the variables xi ’s are not treated equally in (1.4),
because they are updated in serial order. The correction steps in [11,13] can be regarded
as a re-weighting among the variables; and thus compensate the asymmetry of variables
appearing in (1.4). As a result, this type of prediction–correction methods can preserve the
simplicity of subproblems by using (1.4) as the predictor, and simultaneously guarantee the
convergence by adopting an appropriate correction step.

The resulting subproblems by applying the ALM to (1.1) can also be decomposed in the
Jacobian fashion, and the scheme is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{Lβ

(
x1, xk2 , x

k
3 , . . . , x

k
m−1, x

k
m, λk

) ∣∣ x1 ∈ X1
} ;

xk+1
2 = argmin

{Lβ

(
xk1 , x2, x

k
3 . . . , xkm−1, x

k
m, λk

) ∣∣x2 ∈ X2
} ;

. . .

xk+1
i = argmin

{Lβ

(
xk1 , x

k
2 , . . . , x

k
i−1, xi , x

k
i+1, . . . , x

k
m, λk

) ∣∣xi ∈ Xi
} ;

. . .

xk+1
m = argmin

{Lβ

(
xk1 , x

k
2 , . . . , x

k
m−1, xm, λk

) ∣∣xm ∈ Xm
} ;

λk+1 = λk − β
(∑m

j=1 A j x
k+1
j − b

)
.

(1.5)

One advantage of (1.5) is that the decomposed subproblems are eligible for parallel computa-
tion; it thus has potential applications for large-scale or big-data scenarios of the model (1.1).
The subproblems in (1.4) must be solved sequentially while those in (1.5) could be solved in
parallel; but these subproblems are of the same level of difficulty as the objective function
of each of them consists of one θi (xi ) and a quadratic term of xi . Despite the eligibility
of parallel computation, the scheme (1.5), however, might be divergent even for the special
case of m = 2, as shown in [10]. This can be understood easily: the Jacobian decomposition
of ALM does not use the latest iterative information and it is a loose approximation to the
real objective function of the ALM. This can also explain intuitively why the Gauss–Seidel
decomposition ofALM for the special case of (1.1)withm = 2 (which is exactly theADMM)
is convergent, while the Jacobian decomposition of ALM is not.

In the literature, e.g., [8–10], it was also suggested to correct the output of (1.5) by some
correction steps so as to ensure the convergence. Some prediction–correction methods based
on (1.5) were thus proposed; and their efficiency has been verified in various contexts. For
prediction–correction methods based on (1.5), simple correction steps are preferred. For
example, for some special cases of (1.1) such as some low-rank optimization models, if the
correction steps are too complicated, then they may not be able to preserve well the low-rank
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structure of the iterates. Some numerical results of this kind of applications can be found in
[12,16,19]. It is thus interesting to know if it is possible to ensure the convergence of (1.5)
without any correction step. Again, by the intuition that the scheme (1.5) is divergent due
to the fact that the Jacobian decomposition in the augmented Lagrangian function sacrifices
too much accuracy to approximate the real ALM subproblem at each iteration, we consider
it too loose or aggressive to take the output (1.5) directly as a new iterate. Instead, we want to
keep the new iterate “close” to the last iterate to some extent. One way to do so is to apply the
very classical proximal point algorithm in [15,18] and regularize each subproblem in (1.5)
proximally. We thus propose the following proximal version of the Jacobian decomposition
of ALM for (1.1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{
Lβ

(
x1, xk2 , x

k
3 , . . . , x

k
m−1, x

k
m, λk

)+ sβ
2

∥∥A1
(
x1 − xk1

)∥∥2 ∣∣ x1 ∈ X1

}
;

xk+1
2 = argmin

{
Lβ

(
xk1 , x2, x

k
3 . . . , xkm−1, x

k
m, λk

)+ sβ
2

∥∥A1
(
x2 − xk2

)∥∥2 ∣∣x2 ∈ X2

}
;

. . .

xk+1
i = argmin

{
Lβ

(
xk1 , x

k
2 , . . . , x

k
i−1, xi , x

k
i+1, . . . , x

k
m, λk

)+ sβ
2

∥∥Ai
(
xi − xki

)∥∥2∣∣xi ∈ Xi
} ;

. . .

xk+1
m = argmin

{
Lβ

(
xk1 , x

k
2 , . . . , x

k
m−1, xm, λk

)+ sβ
2

∥∥Am
(
xm − xkm

)∥∥2 ∣∣xm ∈ Xm

}
;

λk+1 = λk − β
(∑m

j=1 A j x
k+1
j − b

)
.

(1.6)

The proximal coefficient s > 0 in (1.6) plays the role of controlling the proximity of the new
iterate to the last one. We refer to [15,18] and many others in the PPA literature for deep
discussions on the proximal coefficient. In fact, how to choose the proximal coefficient s is
very tricky. An obvious fact is that the proximally regularized objective function reduces to
the original one when s = 0. Thus, given the divergence of (1.5) which corresponds to (1.6)
with s = 0, the value of s should not be too small; or it must be “sufficiently large” in order
to ensure the convergence of (1.6).

Later, wewill show that the scheme (1.6) is just an application of the PPA to themodel (1.1)
with a customized proximal coefficient in metric form. Therefore, from the PPA literature,
we can easily show that the convergence of (1.6) can be ensured if the proximal coefficient
s satisfies s ≥ m − 1. Moreover, the PPA illustration of (1.6) immediately implies the
convergence of (1.6) and itsworst-case convergence ratemeasured by the iteration complexity
in both the ergodic and nonergodice senses, by existing results in the literature (e.g. [6,7,15,
18]). Thus theoretical analysis for its convergence can be skipped. Studying the scheme (1.6)
in optimization form, its close relationship to the PPA is not clear. But we will show that their
close relationship can be very easily demonstrated via the variational inequality context; or
equivalently, via the first-order optimality conditions of the minimization problems in (1.6).
Therefore, our analysis will be essentially conducted in the variational inequality context.

Moreover, wewill show that the proximal Jacobian decomposition of ALM (1.6) is closely
related to the interesting application of the ADMM in [20]. In [20], it was suggested to
reformulate the model (1.1) as a convex minimization problem with two blocks of functions
and variables first, and then apply the original ADMM to the two-block reformulation. We
will show that the ADMM application in [20] differs from the special case of (1.6) with
s = m − 1 only in that its penalty parameter β is m time larger than that of (1.6).
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2 Preliminaries

In this section, we review some preliminaries that are useful in our analysis.

2.1 The Variational Inequality Reformulation of (1.1)

Let
(
x∗
1 , x

∗
2 , . . . , x

∗
m, λ∗) be a saddle point of the Lagrange function (1.2). Then we have the

following saddle-point inequalities

Lλ∈�l

(
x∗
1 , x

∗
2 , . . . , x

∗
m, λ

) ≤ L
(
x∗
1 , x

∗
2 , . . . , x

∗
m, λ∗)

≤ L( xi ∈ Xi
i = 1, . . . ,m

) (x1, x2, . . . , xm, λ∗) . (2.1)

Setting (x1, . . . , xi−1, xi , xi+1, . . . , xm, λ∗) = (x∗
1 , . . . , x

∗
i−1, xi , x

∗
i+1, . . . , x

∗
m, λ∗) in the

second inequality in (2.1) for i = 1, 2, . . . ,m, we get

x∗
i ∈ Xi , θi (xi ) − θi

(
x∗
i

)+ (
xi − x∗

i

)T (−AT
i λ∗) ≥ 0, ∀xi ∈ Xi , i = 1, . . . ,m.

On the other hand, the first inequality in (2.1) means

λ∗ ∈ �l , (λ − λ∗)T
(

m∑
i=1

Ai x
∗
i − b

)
≥ 0, ∀ λ ∈ �l .

Recall � = X1 ×X2 × · · · ×Xm × �l . Thus, finding a saddle point of L(x1, x2, . . . , xm, λ)

is equivalent to finding a vector w∗ = (x∗
1 , x

∗
2 , . . . , x

∗
m, λ∗) ∈ � such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1(x1) − θ1
(
x∗
1

)+ (
x1 − x∗

1

)T (−AT
1 λ∗) ≥ 0, ∀ x1 ∈ X1,

θ2(x2) − θ2
(
x∗
2

)+ (
x2 − x∗

2

)T (−AT
2 λ∗) ≥ 0, ∀ x2 ∈ X2,

. . . . . .

θi (xi ) − θi
(
x∗
i

)+ (
xi − x∗

i

)T (−AT
i λ∗) ≥ 0, ∀ xi ∈ Xi ,

. . . . . .

θm(xm) − θm
(
x∗
m

)+ (
xm − x∗

m

)T (−AT
mλ∗) ≥ 0, ∀ xm ∈ Xm,

(λ − λ∗)T
(∑m

i=1 Ai x∗
i − b

) ≥ 0, ∀λ ∈ �l .

(2.2)

More compactly, the inequalities in (2.2) can be written into the following mixed variational
inequality (MVI):

MVI (θ, F,�) θ(x) − θ(x∗) + (w − w∗)T F(w∗) ≥ 0, ∀ w ∈ �, (2.3)

with

x =

⎛
⎜⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎟⎠, θ(x) =

m∑
i=1

θi (xi ), w =

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xm
λ

⎞
⎟⎟⎟⎟⎟⎠, F(w) =

⎛
⎜⎜⎜⎜⎜⎝

−AT
1 λ

−AT
2 λ
...

−AT
mλ∑m

i=1 Ai xi − b

⎞
⎟⎟⎟⎟⎟⎠. (2.4)

It is trivial to verify that the mapping F(w) given in (2.4) is monotone under our assumptions
onto (1.1).

Aswe havementioned, our analysis will be conducted in the variational inequality context.
So, the MVI reformulation (2.3) is the starting point for further analysis.
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2.2 Proximal Point Algorithm

Applying the classical proximal point algorithm (PPA) in [15,18] to theMVI (2.3), we obtain
the scheme

wk+1 ∈ �, θ(x) − θ(xk+1) + (w − wk+1)T
(
F(wk+1) + G(wk+1 − wk)

) ≥ 0,

∀ w ∈ �, (2.5)

where G ∈ �(
∑m

i=1 ni+l)×(
∑m

i=1 ni+l) is the proximal coefficient in metric form and it is
required to be positive semi-definite. The most usual choice is to choose G as a diagonal
matrix with the same or different entries. In [6], some customized block-wise choices of the
matrix G were suggested in accordance with the special structure of the function θ(x) and
the mapping F(w) in (2.4) to yield some efficient splitting methods for convex minimization
and saddle-point models.

3 The Scheme (1.6) is a Customized Application of the PPA

Now, we show that the proximal Jacobian decomposition of ALM (1.6) is a special case of
the PPA (2.5) with a particular matrix G. The positive semi-definiteness condition of G thus
provides us a sufficient condition to ensure the convergence of (1.6).

Wefirst observe the first-order optimality conditions of theminimization problems in (1.6).
More specifically, the solution xk+1

i ∈ Xi of the xi -subproblem in (1.6) can be expressed as

xk+1
i = argmin

⎧⎪⎨
⎪⎩θi (xi ) − (λk)T Ai xi + β

2

∥∥∥∥∥∥Ai

(
xi − xki

)
+
⎛
⎝ m∑

j=1

A j x
k
j − b

⎞
⎠
∥∥∥∥∥∥
2

+ sβ

2

∥∥∥Ai

(
xi − xki

)∥∥∥2 ∣∣ xi ∈ Xi

}
, (3.1)

and the inequality

θi (xi ) − θi

(
xk+1
i

)
+
(
xi − xk+1

i

)T ⎧⎨
⎩−AT

i

⎡
⎣λk − β

⎛
⎝ m∑

j=1

A j x
k
j − b

⎞
⎠
⎤
⎦

+ (s + 1)βAT
i Ai

(
xk+1
i − xki

)}
≥ 0 (3.2)

holds for all xi ∈ Xi . Note that it follows from (1.6) that

λk = λk+1 + β

⎛
⎝ m∑

j=1

A j x
k+1
j − b

⎞
⎠ . (3.3)

Substituting (3.3) into (3.2), we have

θi (xi ) − θi

(
xk+1
i

)
+
(
xi − xk+1

i

)T {−AT
i λk+1 + (s + 1)βAT

i Ai

(
xk+1
i − xki

)

−βAT
i

⎛
⎝ m∑

j=1

A j

(
xk+1
j − xkj

)⎞⎠
⎫⎬
⎭ ≥ 0. (3.4)
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Moreover, the Eq. (3.3) can be written as⎛
⎝ m∑

j=1

A j x
k+1
j − b

⎞
⎠+ 1

β
(λk+1 − λk) = 0,

or further as

λk+1 ∈ �l , (λ − λk+1)T

⎧⎨
⎩
⎛
⎝ m∑

j=1

A j x
k+1
j − b

⎞
⎠+ 1

β
(λk+1 − λk)

⎫⎬
⎭ ≥ 0, ∀ λ ∈ �l .

(3.5)

Combining (3.4) and (3.5) together, we get wk+1 = (xk+1
1 , . . . , xk+1

m , λk+1) ∈ � such that

θ(x) − θ(xk+1) +

⎛
⎜⎜⎜⎝

x1 − xk+1
1

...

xm − xk+1
m

λ − λk+1

⎞
⎟⎟⎟⎠

T ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

−AT
1 λk+1

...

−Amλk+1∑m
j=1 A j x

k+1
j − b

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

(s + 1)βAT
1 A1

(
xk+1
1 − xk1

)
− βAT

1

∑m
j=1 A j

(
xk+1
j − xkj

)
...

(s + 1)βAT
m Am

(
xk+1
m − xkm

)− βAT
m
∑m

j=1 A j

(
xk+1
j − xkj

)
1
β
(λk+1 − λk)

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≥ 0, ∀ w ∈ �.

(3.6)

Therefore, recalling the notation in (2.4), the inequality (3.6) shows that the scheme (1.6)
can be written as the PPA scheme (2.5) where the matrix G is given by

G =

⎛
⎜⎜⎜⎜⎜⎝

(s + 1)βAT
1 A1 0 · · · 0

0
. . .

. . .
...

...
. . . (s + 1)βAT

m Am 0
0 · · · 0 1

β
Il

⎞
⎟⎟⎟⎟⎟⎠− β

⎛
⎜⎜⎜⎝

AT
1 A1 · · · AT

1 Am 0
...

. . .
...

...

AT
m A1 · · · AT

m Am 0
0 · · · 0 0

⎞
⎟⎟⎟⎠ . (3.7)

Thus, proving the convergence of the scheme (1.6) reduces to ensuring the convergence of
the PPA (2.5) with the specific matrix G given in (3.7). As analyzed in [6], the convergence
of the PPA (2.5) is ensured if the proximal coefficient G is positive semi-definite. Note that
the matrix G given in (3.7) can be written as

G = PT

⎛
⎜⎜⎜⎜⎜⎜⎝

s I −I · · · −I 0

−I s I
. . .

...
...

...
. . .

. . . −I 0
−I · · · −I s I 0
0 · · · 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

P

with

P = diag

(√
βA1, . . . ,

√
βAm,

√
1

β
Il

)
.
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Therefore, G is positive semi-definite if s ≥ m − 1. We thus have the following theorem
immediately.

Theorem 3.1 The proximal Jacobian decomposition of ALM (1.6) is convergent if s ≥ m−1.

Remark 3.2 As long as the convergence of (1.6) can be ensured, we prefer smaller values of
s in order to render “larger” step sizes to accelerate its convergence (see more explanation in
the conclusions). Hence, we recommend to take s = m − 1 to implement the scheme (1.6).
When s = m − 1, the matrix G in (3.7) becomes

G =

⎛
⎜⎜⎜⎜⎜⎝

mβAT
1 A1 0 · · · 0

0
. . .

. . .
...

...
. . . mβAT

m Am 0
0 · · · 0 1

β
Il

⎞
⎟⎟⎟⎟⎟⎠− β

⎛
⎜⎜⎜⎝

AT
1 A1 · · · AT

1 Am 0
...

. . .
...

...

AT
m A1 · · · AT

m Am 0
0 · · · 0 0

⎞
⎟⎟⎟⎠ . (3.8)

In addition, the xi -subproblem in (1.6) is reduced to [see the optimal condition of (3.2)]

xk+1
i = argmin

⎧⎪⎨
⎪⎩θi (xi ) + β

2m

∥∥∥∥∥∥mAi

(
xi − xki

)
+
⎡
⎣
⎛
⎝ m∑

j=1

A j x
k
j − b

⎞
⎠− 1

β
λk

⎤
⎦
∥∥∥∥∥∥
2 ∣∣ xi ∈ Xi

⎫⎪⎬
⎪⎭.

Then, it is easy to see that scheme (1.6) with s = m − 1 is just a special case of Algorithm
8.1 in [6].

Remark 3.3 For the special case of (1.1) wherem = 1, it follows from s = m−1 that s = 0.
Then, the scheme (1.6) recovers the original ALM in [14,17]. In this sense, the scheme (1.6)
can also be regarded as a generalized version of the ALM for the multiple-block separable
convex minimization model (1.1).

4 The Relationship of (1.6) to the ADMM in [20]

In [20], by introducing the notations:

θ(x) =
m∑
i=1

θi (xi ), A = diag(A1, A2, . . . , Am),

x =

⎛
⎜⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎟⎠ (xi ∈ Xi , i = 1, . . . ,m), y =

⎛
⎜⎜⎜⎝

y1
y2
...

ym

⎞
⎟⎟⎟⎠ (yi ∈ �l , i = 1, . . . ,m),

X = X1 × X2 × . . .Xm, and Y =
{
y = (y1, . . . , ym)

∣∣ m∑
i=1

yi = b

}
,

the model (1.1) is reformulated as the following two-block separable convex minimization
model:

min θ(x)
Ax − y = 0,
x ∈ X , y ∈ Y.

(4.1)
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Thus, the original ADMM is applicable.
For the reformulation (4.1), we denote by z = (z1, z2, . . . , zm) the Lagrangian multiplier

(each zi ∈ �l is associated with the linear constraint Ai xi − yi = 0); and by α > 0 the
penalty parameter. Then the augmented Lagrangian function of (4.1) is

Lα(x, y, z) = θ(x) − zT (Ax − y) + α

2
‖Ax − y‖2,

which is defined on X × Y × Rml . Applying the original ADMM to (4.1), we obtain the
scheme

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argmin
{
θ(x) − (zk)T (Ax − yk) + α

2
‖Ax − yk‖2 ∣∣ x ∈ X

}
(4.2a)

yk+1 = argmin
{
−(zk)T (Axk+1 − y) + α

2
‖Axk+1 − y‖2 ∣∣ y ∈ Y

}
(4.2b)

zk+1 = zk − α
(Axk+1 − yk+1). (4.2c)

In the next, we will show that the ADMMapplication (4.2) is closely related to the scheme
(1.6) with s = m − 1. The bridge connecting these two schemes which seem completely
different is again the MVI (2.2). More specifically, we will show the ADMM application
(4.2) is also a special case of the PPA (2.5); and by comparing it with the PPA illustration of
(1.6), we find that it coincides with the scheme (1.6) with s = m − 1 if we take α = mβ in
(4.2).

4.1 A Simpler Representation of (4.2)

Let us take a deeper look at the subproblems in (4.2) and derive a simpler representation of
(4.2). First, using the structure of the matrixA, the variables xk+1 = (xk+1

1 , xk+1
2 , . . . , xk+1

m )

are obtained by solving the following subproblems which are eligible for parallel computa-
tion:

xk+1
i = argmin

{
θi (xi ) − (zki )

T
(
Ai xi − yki

)
+ α

2

∥∥∥Ai xi − yki

∥∥∥2 ∣∣ xi ∈ Xi

}
,

i = 1, . . . ,m. (4.3)

Note that the first-order optimality condition of (4.3) is characterized by

xk+1
i ∈ Xi , θi (xi ) − θi

(
xk+1
i

)
+
(
xi − xk+1

i

)T (−AT
i z

k
i + αAT

i

(
Ai x

k+1
i − yki

))
≥ 0,

∀ xi ∈ Xi . (4.4)

Second, for the y-subproblem in (4.2), we have

yk+1 = argmin
{
−(zk)T (Axk+1 − y) + α

2
‖Axk+1 − y‖2 ∣∣ y ∈ Y

}

= argmin

{
α

2

∥∥∥∥Axk+1 − y − 1

α
zk
∥∥∥∥
2 ∣∣ y ∈ Y

}

= argmin

{
α

2

∥∥∥∥y −
(
Axk+1 − 1

α
zk
)∥∥∥∥

2 ∣∣ y ∈ Y
}

. (4.5)
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Let η ∈ �l be the Lagrangian multiplier for the linear constraint
∑m

i=1 yi = b in the
minimization problem

min

{
1

2
‖y −

(
Axk+1 − 1

α
zk
)

‖2 ∣∣ m∑
i=1

yi = b

}
.

Based on the optimality condition of the above subproblem, we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

yk+1
1
yk+1
2
...

yk+1
m

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

A1x
k+1
1 − zk1/α

A2x
k+1
2 − zk2/α

...

Am yk+1
m − zkm/α

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

η

η
...

η

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
0
0
...

0

⎞
⎟⎟⎟⎠ ,

yk+1
1 + yk+1

2 + · · · + yk+1
m = b.

(4.6)

From the above system of linear equations, we get{∑m
i=1 y

k+1
i −∑m

i=1 Ai x
k+1
i + 1

α

∑m
i=1 z

k
i = mη,∑m

i=1 y
k+1
i = b.

and thus

η = 1

mα

m∑
j=1

zkj − 1

m

⎛
⎝ m∑

j=1

A j x
k+1
j − b

⎞
⎠ .

Substituting it into (4.6), we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yk+1
i = Ai x

k+1
i − 1

α
zki + η, i = 1, . . . ,m, (4.7a)

η = 1

mα

m∑
j=1

zkj − 1

m

(∑m

j=1
A j x

k+1
j − b

)
. (4.7b)

Last, for the updating formula for the multiplier zk+1 in (4.2), by using the structure ofA,
it can be written as

zk+1
i = zki − α

(
Ai x

k+1
i − yk+1

i

)
, i = 1, . . . ,m. (4.8)

It follows from (4.7a) that

Ai x
k+1
i − yk+1

i = 1

α
zki − η, i = 1, . . . ,m.

Substituting it into (4.8), we obtain

zk+1
i = zki − α

(
1

α
zki − η

)
= αη, i = 1, . . . ,m. (4.9)

Thus, for k > 0, every entry of the vector zk is equal, i. e.,

zk1 = zk2 = · · · = zkm . (4.10)

Using this fact in (4.7), we get

yk+1
i = Ai x

k+1
i − 1

m

⎛
⎝ m∑

j=1

A j x
k+1
j − b

⎞
⎠ , i = 1, . . . ,m. (4.11)
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Substituting it into (4.8), it becomes

zk+1
i = zki − α

m

⎛
⎝ m∑

j=1

A j x
k+1
j − b

⎞
⎠ , i = 1, . . . ,m. (4.12)

Using (4.3), (4.11) and (4.12), the procedure (4.2) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
i = argmin

{
θi (xi ) −

(
zki

)T
Ai xi + α

2

∥∥∥Ai xi − yki

∥∥∥2 ∣∣ xi ∈ Xi

}
, i = 1, . . . ,m.

(4.13a)

yk+1
i = Ai x

k+1
i − 1

m

(∑m

j=1
A j x

k+1
j − b

)
, i = 1, . . . ,m. (4.13b)

zk+1
i = zki − α

m

(∑m

j=1
A j x

k+1
j − b

)
, i = 1, . . . ,m. (4.13c)

Recall (4.11), we have

yki = Ai x
k
i − 1

m

⎛
⎝ m∑

j=1

A j x
k
j − b

⎞
⎠ .

Substituting it into (4.13a), and each zi ∈ �l in (4.13) by λ ∈ �l (because each zki is equal),
the scheme (4.2) can be written as the following simpler form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
i = argmin

{
θi (xi ) − (λk)T Ai xi + α

2

∥∥∥∥Ai

(
xi − xki

)
+ 1

m

(∑m

j=1
A j x

k
j − b

)∥∥∥∥
2

,

(4.14a)∣∣ xi ∈ Xi
}
i = 1, . . . ,m.

λk+1 = λk − α

m

(∑m

j=1
A j x

k+1
j − b

)
. (4.14b)

4.2 The ADMM (4.2) is an Application of PPA

Now, we show that the scheme (4.14) is also an application of the PPA (2.5). Hence, we
show the close relationship between the ADMM scheme (4.2) and the proximal Jacobian
decomposition scheme (1.6).

The solution of the xi -subproblem in (4.14a) is characterized by

θi (xi ) − θi (x
k+1
i ) +

(
xi − xk+1

i

)T {−AT
i λk + αAT

i

[
Ai

(
xk+1
i − xki

)

+ 1

m

⎛
⎝ m∑

j=1

A j x
k
j − b

⎞
⎠
⎤
⎦
⎫⎬
⎭ ≥ 0, ∀ xi ∈ Xi .

By using (4.14b), the above inequality can be rewritten as

θi (xi ) − θi

(
xk+1
i

)
+
(
xi − xk+1

i

)T {−AT
i λk+1 + αAT

i

[
Ai

(
xk+1
i − xki

)

− 1

m

m∑
j=1

A j

(
xk+1
j − xkj

)⎤⎦
⎫⎬
⎭ ≥ 0. (4.15)
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In addition, (4.14b) can be written as

λk+1 ∈ �l , (λ − λk+1)T

⎧⎨
⎩
⎛
⎝ m∑

j=1

A j x
k+1
j − b

⎞
⎠+ m

α
(λk+1 − λk)

⎫⎬
⎭ ≥ 0,

∀λ ∈ �l . (4.16)

Combining (4.15) and (4.16) yields

wk+1 ∈ �, θ(x) − θ(xk+1) +

⎛
⎜⎜⎜⎝

x1 − xk+1
1

...

xm − xk+1
m

λ − λk+1

⎞
⎟⎟⎟⎠

T ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

−AT
1 λk+1

...

−AT
mλk+1∑m

j=1 A j x
k+1
j − b

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

αAT
1 A1

(
xk+1
1 − xk1

)
− α

m AT
1

∑m
j=1 A j

(
xk+1
j − xkj

)
...

αAT
m Am

(
xk+1
m − xkm

)− α
m AT

m
∑m

j=1 A j

(
xk+1
j − xkj

)
m
α
(λk+1 − λk)

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≥ 0, ∀ w ∈ �.

(4.17)

Recall the notations in (2.4). The following theorem follows from the inequality (4.17)
immediately.

Theorem 4.1 The scheme (4.14) is an application of the PPA (2.5) with the matrix G given
by

G =

⎛
⎜⎜⎜⎜⎝

αAT
1 A1 0 · · · 0

0
. . .

. . .
...

...
. . . αAT

m Am 0
0 · · · 0 m

α
Il

⎞
⎟⎟⎟⎟⎠− α

m

⎛
⎜⎜⎜⎝

AT
1 A1 · · · AT

1 Am 0
...

. . .
...

...

AT
m A1 · · · AT

m Am 0
0 · · · 0 0

⎞
⎟⎟⎟⎠ . (4.18)

4.3 The Relationship of (1.6) to the ADMM (4.2)

Based on our previous analysis, it is clear to see that the matrix G in (4.18) with α = βm
coincides with that defined in (3.8). We summarize the relationship between the schemes
(1.6) and (4.2) in the following theorem.

Theorem 4.2 The ADMM scheme (4.2) proposed in [20] for solving the model (1.1) with
α = mβ is the same as the proximal Jacobian decomposition of ALM scheme (1.6) with
s = m − 1.

5 Conclusions

In this paper, we further studied the convergence when a full Jacobian decomposition is
implemented to the augmented Lagrangian method (ALM) for solving a multiple-block sep-
arable convex minimization model with linear constraints; and showed that the full Jacobian
decomposition of ALM without any correction step can be convergent if each decomposed
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subproblem is regularized by a proximal term. It was shown via the variational inequality
context that the proximal version of the Jacobian decomposition of ALM is an application
of the proximal point algorithm (PPA); and this fact easily indicates its convergence under
the condition that the proximal coefficient is greater than or equal to m − 1 where m is the
number of function blocks used in the decomposition. We also showed that an interesting
application of the alternating direction of multipliers (ADMM) in [20] is closely related to
the proximal version of the Jacobian decomposition of ALM where the proximal coefficient
is taken as m − 1.

In the PPA literature, it is commonly known that the proximal coefficient can not be
too large. For the specific application of PPA (1.6), if s is too large, the quadratic term
sβ
2 ‖Ai (xi − xki )‖2 plays a too heavy weight in the objective of the xi -subproblem and thus

the new iterate xk+1
i is forced to be too “close” to xki —as a result the “too-small-step-size”

phenomenon which is doomed to lead to slow convergence will occur. Therefore, under the
condition that the convergence of (1.6) is ensured, smaller values of s are preferred. Since
we have shown that the condition s ≥ m − 1 is sufficient to ensure the convergence of (1.6)
and the ADMM in [20] can be regarded as an application of (1.6) with s = m − 1, in this
sense the ADMM in [20] is the best choice when implementing the scheme (1.6) to solve the
model (1.1).

On the other hand, for the cases of (1.1) where the value ofm is large, the valuem−1 still
might be too large to be the proximal coefficient for (1.6). Slower convergence is inevitable
due to the resulting small or even tiny step sizes. It thus deserves an intensive research to
investigate whether it is possible to ensure the convergence of the scheme (1.6) while the
proximal coefficient can be much smaller than m − 1. Meanwhile, for such a case of (1.1)
where m is large, we may still need to resort to prediction–correction type methods that take
the output of the decomposed ALM scheme (1.4) or (1.5) as a predictor and then correct
the predictor appropriately. The reason is that for such a prediction–correction method, the
decomposed subproblems via either the Jacobian or Gauss–Seidel decomposition do not need
to be proximally regularized, because of the “make-up” of the correction steps; thus too small
step sizes could be avoided. Of course, the correction steps should be as simple as possible
to yield satisfactory numerical performance, as we have mentioned. Some numerical results
showing the superiority of prediction–correction type methods based on (1.5) for (1.1) with
large values ofm can be found in [10]. Moreover, the numerical results in [11,13,16,20] have
shown the efficiency of prediction–correction type methods based on (1.4) for (1.1) even for
the case where m is very small, e.g. m = 3.
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