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Abstract Finite element approximations of Dirichlet boundary control problems governed
by parabolic PDEs on convex polygonal domains are studied in this paper. The existence of
a unique solution to optimal control problems is guaranteed based on very weak solution of
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space discretization of the state, while a dG(0) scheme is used for time discretization. The
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1 Introduction

In this paper we study the following parabolic optimal control problem:

Ltrélli/I:d J(yv u) = %”)’ — Vd ”%,Z(O,T;LZ(Q)) + %||u||iZ(O,T;L2(F)) (11)
subject to
0 .
S —Ay=f ingr,
y=u on X, (1.2)
y(0) = yo in £2,

where 27 = 2 x (0, T], ¥ = 982 x (0, T] with £2 denoting an open bounded domain with
boundary I := 9£2, U,q is the admissible control set which is assumed to be of box type

Uaa := {u € L*(0, T; L*(I") : uy < u(x,t) < up, ae.on Y}, (1.3)

with u, < up denoting constants. For the convenience we make the following assumption on
the domain §2 and the given data which shall be valid throughout the paper without explicit
mentioning:

Assumption 1 We assume that §2 is an open bounded, convex polygonal domain in R>.
a >0, feL*0,T;L*(R)), yo € L*(2), yg € L*>(0,T; L>(£2)) and T > 0 are fixed
data.

Dirichlet boundary control is important in many practical applications such as the active
boundary control of flows, see e.g. [13,18,20]. If one is, e.g. interested in blowing and suction
as control on part of the boundary, controls with low regularity should be admissible, which
could have jumps and satisfy pointwise bounds. In the mathematical theory one has to use
the concept of very weak solutions in this situation, see [4] for a more detailed discussion of
this fact.

In the present work we consider a parabolic Dirichlet boundary control problem of track-
ing type, which may be regarded as prototype problem to study Dirichlet boundary control
for time-dependent PDEs. For parabolic optimal boundary control problems of Dirichlet
type, only few contributions can be found in the literature [2,3,23]. Kunisch and Vexler [23]
considered a semi-smooth Newton method for the numerical solution of parabolic Dirich-
let boundary control problems. A Robin penalization method using Robin-type boundary
conditions applied to parabolic Dirichlet boundary control problems is investigated in [3].
However, to the best of the authors’ knowledge no error analysis is available for the finite
element approximation of this kind of problems. With the present paper we intend to fill
this gap and derive a priori error estimates for parabolic Dirichlet boundary control prob-
lems. Compared to the elliptic case, parabolic Dirichlet boundary control problems are more
involved in both the definition of discrete schemes and the a priori error analysis, since the
regularity of the involved state variable is low.

Finite element approximations of optimal control problems are important for the numerical
treatment of optimal control problems related to practical applications, see e.g. [22, Ch. 4]. An
overview on the numerical a priori and a posteriori analysis for elliptic control problems can
be found in [22, Ch. 3] and [28], respectively. To the best of the authors’ knowledge the first
contribution to parabolic optimal control problems is given in [36]. The state of the art in the
numerical a priori analysis of distributed parabolic optimal control problems can be found in
[30,31]. More recent contributions with higher order in time Galerkin schemes can be found
in [1,32,35]. Residual-based a posteriori error estimates are presented in [26] and [27]. For
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boundary control problems with parabolic equations we refer to [15]. There is a long list
of contributions to boundary control of elliptic PDEs, see e.g. [7,8,10,11,14,16,21,29,34].
Further references can be found in [22, Ch. 3].

In this paper we use the very weak solution concept for the state equation and
L%(0, T; L*(I")) as control space to argue the existence of a unique solution to the optimal
control problems (1.1)—(1.2). For the numerical discretization of the optimal control problem
we discretize the state using standard piecewise linear and continuous finite elements in space
and dG(0) scheme in time. The Dirichlet boundary conditions are approximated based on the
space—time L2-projection. The control is discretized in space either by piecewise linear finite
elements or implicitly through the discretization of the adjoint state, the so-called variational
discretization (see [19]). For both cases we derive a priori error bounds for the state and
control in the L2-norm for problems posed on polygonal domains. As main result we obtain
the error bound

1
lu = Unillp22cryy + 1y = Yokl 2222y < Ch? (1.4)

under the coupling k = O (h?) with both full control discretisation and variational control
discretisation for the optimal solution (y, u) of (1.1), where Yx and Uy denote the optimal
discrete state and control, see also Corollary 1. We present several numerical examples which
support our theoretical findings.

The rest of our paper is organized as follows. In Sect. 2 we present the analytical setting of
the parabolic Dirichlet boundary control problem and argue the existence of a unique solution.
In Sect. 3 we establish the fully discrete finite element approximation to the state equation
and the corresponding stability results. Then we formulate the fully discrete approximation
for parabolic Dirichlet boundary control problems. The a priori error analysis for the finite
element approximation and the variational discretization of the optimal control problems
posed on convex, polygonal domains is studied in Sect. 4. Furthermore, we present some
numerical experiments in Sect. 5 to support our theoretical results.

2 Optimal Control Problem

Form > 0and1 < s < oo, we adopt the standard notation W"** (£2) for Sobolev spaces on £2
withnorm ||+ ln,s,2 and seminorm ||, 5, 2, where H™ (22) = W™2(2), [Illm,2 = II*llm.2.2
and | - [me = |- |mo2ge for s = 2. Note that H(2) = L?(2) and H}(2) =
{ve H(£2); v =0 on 8£2}. We denote by L"(0, T; W™%(£2)) the Banach space of
all L" integrable functions from [0, T'] into W™ *(£2) with norm |[v|zr0,7.:wms(2)) =

1
( fOT lvll7, th)' for 1 < r < oo, and with the standard modification for r = oo.

For a Banach space Y, we use the abbreviations L2(Y) = L%*0,T:Y), H'(Y) =
H5(0,T;Y), s = [0,00), and C(Y) = C([0, T]; Y). We denote the L2-inner products
on L2(£2), L%(27) and L%(I") by (-, ), (-, ), and (-, -), respectively. In addition ¢ and C
denote generic positive constants.

Let

a(y,w):/ Vy-Vw Vy,weHl(.Q).
Q

The standard weak form for the parabolic equation (1.2) is to find y € LZ(H'(£2)) N
H'(H1(£2)) with ylx =wuand y(-,0)|e = yo(-) such that
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(‘Z—f v) +a(y,v) = (f,v) aa.re(0,T], Vve Hy(2). 2.1
This setting requires u € L>(H 2 (I")). Motivated by practical considerations (see e.g. the
discussion in [4]) we are interested in controls u € U,4 defined in (1.3). For a proper treatment
of the state equation in this case we use the transposition technique introduced by Lions and
Magenes (see [24, Ch. 2, Sec. 5.2] and [25, Ch. 2]) to argue the existence of a unique solution
to the state equation (1.2) in the present paper. The very weak form of (1.2) that we shall
utilize reads: Find y € L?(L?(£2)) such that

/ y(—zr — Az)dxdt = —/ ud,zdsdt + fzdxdt +/ voz (-, 0)dx
Qr b Qr Qo

Vze L2(HXQ)NH (2)NH (L} (2) @2)

with z(-, T) = 0 holds, where d,v := Vv - n with n denoting the unit outward normal to
I'. Then the existence and uniqueness of a very weak solution of (2.2), which we denote by
y = G(u), is shown in the following lemma (see, e.g. [25])

Lemmal For each u € L2(L*(I")), there exists a unique very weak solution y
e L2(L%(2)) of (2.2) satisfying

Ivll2z2c2y < CIvollL2e2)y + 1F 22y + lull2azry)- (2.3)

Proof For yo € L*(2), f € L*(L*(£2)) and u = 0 it is straightforward to show that
(1.2) admits a unique solution y € L2(H01 (£2)) N H'(H~1(£2)) in the sense of (2.1), which
also satisfies (2.3). To prove the lemma in the case u # 0 it is sufficient to consider the case
f =0, yo =0, where we follow the constructive approach of [10]. Foreach g € L2(L%(2))
we denote by z € L2(H?(£2) N Hy (£2)) N H'(L?(£2)) the solution of

9z

—5 —Az=g inQr,
z=0 on X, 2.4)
z2(T)y=0 in £2.

Then we have 9,z € H 1 (L3(IM)) according to [23, Th. 3.2]. Moreover, from the fact that

z € LE(H?(£2)) and z = 0 on X we obtain that 9,z € L2(H% (I")) according to Lemma A.2
in [6]. We denote by T : L2(L?(£2)) — L*(L*(I")) the continuous linear operator which is
defined by Tg := —9,z|» and denote its adjoint by 7*. Then with y = T*u we have

/ ygdxdt :/ y(—z; — Az)dxdt :/ T ugdxdt = —/ udyzdsdt,
Qr Qr Qr )

which verifies that y satisfies (2.2). The estimate (2.3) follows by observing that

|/ ygdxdt| < Cllullzz22ryllnzllz2ry) = Cllulli22ry g2 2))-
Q'[‘

O
Now we are ready to formulate the optimal control problem considered in the present
paper. It reads
. 1 2 a2
min J(y, u) = E”y - )’d”Lz(Lz(_Q)) + Ellu”Lz(Lz(F))

over (y,u) € LX(L2(2)) x L2 (LA(I")) (23)

subject to y = G(u) defined in (2.2) and u € Uy,y.
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By standard arguments (see, e.g. [24, Ch. 2, Sec. 1.2]), there exists a unique solution (y, u)
for problem (2.5). Let J (#) := J (y(u), u) denote the reduced cost functional, where for each
u € L2(L3(I")) the state y(u) is the unique very weak solution of (2.2). Then J is infinitely
often Fréchet differentiable. Moreover, the first order sufficient and necessary optimality
conditions for problem (2.5) are given by

Theorem 1 Assume thatu € L*(L*(I")) is the unique solution of problem (2.5) and let y be
the associated state. Then there exists a unique adjoint state 7 € L2(H01 @)NH'(H™(2))

such that
0z

-5 —Az=y—yq inS2r,
z=0 on X, (2.6)
z2(T)y=0 in $2,
and
J W —u) = / (qu — 9p2)(v —u)dsdt >0, Yv e Uyy. 2.7
xz

We note that (2.7) is equivalent to

J W) —u) = / au(v — u)dsdt +/ (y — ya)(y(v) — y)dxdt
x Q2r
>0, Yve Uy (2.3)

or
1
= P,y 002), (2.9)

where for each v € L2(L%(I")), y(v) is the solution of problem (2.2) with u replaced by v,
and Py,, : L>(L*(I")) — U,q denotes the orthogonal projection.

We now turn to the regularity properties of optimal controls # on X. The proof of the
following theorem can be found in, e.g. [23, Th. 3.4].

Theorem 2 Let (y,u,z) € L*(L*(£2)) x L>(L*(I")) x L*(H}(22)) N H'(H~1(£2)) be the
solution of optimal control problem (2.5)—(2.8). Then we have
we L2(H (M) NHILA)), ye L2(HY(2)NH? (LX), (2.10)
and
z e L*(H*(£2) N H} ($2)) N H' (L*(2)). (2.11)
Proof From f € L?>(L*(2)), yo € L*(2) and u € L*(L*(I")) we conclude that y €
L3(L%(2)) according to Lemma 1. Thus, y; € L2(L3(2)) implies z € L2(H%(2) N
HY(2)) N H'(L?(R2)), which in turn implies 8,z € L2(H (")) N H3 (LX(I")) (see [6,17,
23]). From (2.9) we obtain that u € L>(HZ (I')) N H# (L2(I")) and thus y € L2(H'(£2)) N
H? (L?(£2)) (see [25, Vol. II, p. 78]). This completes the proof. m}

In our analysis we frequently use results of the following backward in time parabolic
problem:

—w; — Aw =g in 27,
w=0 on X, (2.12)
w(T) =0 in £2.
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If g € L>(L*(R2)), then (2.12) has aunique solution w € L2(H?(2)NHJ (2))NH' (L?*(£2))
satisfying

lwll2m2 @) + lwellz22 @) < Clgliz w2 @) (2.13)
lwO)lhe < Cligh2w2 ey (2.14)

3 Finite Element Discretization of the State Equation and Optimal
Control Problems

At first let us consider the finite element approximation of the state Eq.(1.2). For the spatial
discretization we consider conforming Lagrange triangular elements.

Let 7" be a quasi-uniform partitioning of £2 into disjoint regular triangles , so that
Q= U;egn T. Associated with T" is a finite dimensional subspace Vh of C(£2), such that
for x € V" and r € T", x|, are piecewise linear polynomials. We set Voh =vhn HO1 (£2).

Let ’T[? be a partitioning of I” into disjoint regular segments s, so that I" = |J, T S.

Associated with Té’ is another finite dimensional subspace U” of L2(I"), such that for
x €U"ands € T, é’, X |s are piecewise linear polynomials. Here we suppose that Tlﬁ‘ is the
restriction of 7" on the boundary I" and U h — yvh(r), where V#(I") is the restriction of
V" on the boundary I.

For the standard Lagrange interpolation operator I, : C(£2) — V", we have the following
error estimate (see, e.g. [9, Sec. 3.1])

lw—hwlie < CA" ' wlne, 0<I<1<m<2. (3.1)

To define our discrete scheme, we need to introduce some projection operators. Here Qj :
L*(I') — V™(I') and Oy : L2(2) > V(fl denote the orthogonal projection operators.
Furthermore, Ry, : Ho1 (£2) —> Voh denotes the Ritz projection operator defined as

a(Ryw, vp) = a(w, vy), w e Hy(2), Vv, € V. 3.2)
It is well known that the Ritz projection satisfies (see, e.g. [9, Sec. 3.1])
lw — Rywlls.e < CR' ¥ lwlio. w e Hy(2) N H'(2),¥0<s <1<1<2. (33)

For the L%(I) projection operator Qj we also have (see [9] and [12, pp. 85-86, Eq.
(25) and (28)])

lw — Quwllo.r < Ch* 2 [lwlls.e forwe H'(Q), 5 <5 <2, 3.4
and
I = @ndwwllo.r < Ch? wliag forw e H(R). (3.5)
In our following analysis we need estimates for discrete harmonic functions.
Lemma 2 Ler v, € V(I"), and suppose that w € H'(2) is the solution of
a(w,¢) =0, Vo e HN(R), w=v,onl (3.6)
and wy, € V" is the solution of

a(wp, ¢p) =0, Yo eV, wy=v,onT. (3.7)
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Then
_1
lw —wrlle < Cllvally p < Ch™2|vpllo,r, (3.8)
1
lwillo,2 + A2 lwalli,2 < Cllvallo,r, (3.9)
lw— wh”%’g < Clvallo,r- (3.10)

Proof The proof of (3.8) and (3.9) can be found in [5, Lm. 3.2], [7, Th. 5.4] and [11, Lm.
1]. Here we provide a proof of (3.10). For each g € H_% (£2) let g € H% )N HO1 (£2) be
the solution of

(@, Yg) =(2.9), ) 40 V€ H (), (3.11)
Then we have ||/, | 30 < Cllgll_%’g. Note that from (3.6) and (3.7) we have

(g, w— wh>H_% uh = a(w — wy, Yg) = a(w — wy, Yg — ),

where 1,1, is the linear Lagrange interpolation of ¢ [9]. Then standard error estimates lead
to

(g, w—wp) _

B 1 =a(w —wp, Yy — Invy)

JH?

=

< llw—wull,ell¥e — In¥gli,e
1
< Ch2||th|%,p|I1/fg||%,Q
< Cllvrllo,rligl_1 o» (3.12)

2>

where we have used the estimate (3.8). This implies
hwp —wll) o =< Cllvallo,r.
which proves (3.10). O

The semi-discrete finite element approximation of (1.2) reads: Find yj, (1) € Lz(Vh) such
that

— Gn (), By +aGn@), vz, = (fmar + (36 0, 0)) ¥or e H (),

Yh() = Qp(u) on X

(3.13)
with v, (-, T) = 0, y{)’ = O yo € V' an approximation of yo using the L?-projection,
and Qj, the projection operator from L3(I") to V"(I'"). Note that the above semi-discrete
scheme is well-defined and admits a unique solution yj, (1) € L2(H'(£2)), which we denote
by yn (1) = Gn(u), since Qp(u) € LZ(H% (I')), thus we use a standard bilinear form a(-, -)
compared to the very weak form (2.2).

The semi-discrete finite element approximation of (1.1)—(1.2) reads as follows:

. 1 2 o 2
uthh n;}H;LZ(Vh)Jh(yh’ Mh) = §||)’h - yd”LZ(LZ(_Q)) + §||Mh||L2(L2(1«))
ad>’h

subject to y, = Gy (up,) defined in (3.13),

(3.14)

where y(})’ € V" is an approximation of yg, and U ahd is an appropriate approximation to U,q
depending on the discretization scheme for the control.
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It follows that the control problem (3.14) has a unique solution (yy, uj;) and that a pair
(yn, up) is the solution of the problem (3.14) if and only if there is a co-state z;, € L2(V0h)
such that the triplet (yy, zp, up,) satisfies (3.13) and the following optimality conditions:

_(%h,%) +alqn, zn) = n — ya. qn), ¥ qn € V!, (3.15)
zn=0onX; z;(T) =0 in £2, ’

o (vn = ya)(yn(vn) — yp)dxdt +a/x up(vp — up)dsdt >0, Y, € ULy, (3.16)
T

where yj,(vy) € L2(Vh) is the solution of state equation (3.13) with Dirichlet boundary
condition Qy, (vy,).

We next consider the fully discrete approximation for above semi-discrete problem by
using the dG(0) scheme in time [33]. We note that the dG(0) scheme is equivalent to the
backward Euler method with the right hand side approximated by the averaged integral.

LetO =1 <t < --- <ty—1 <ty = T be a time domain partitioning with k, =

th —th—1,n=1,2,...,Nand k = 1maxN k,. We assume that the time partitioning is
<n<

quasi-uniform, i.e., there exist positive constants ¢; and ¢ such that c1k,, < k < 2k, holds
foreachn =1,2,..., N. We also set I, := (t,_1,t,]. Forn = 1,2,..., N, we construct
the finite element spaces V" ¢ H'(£2) with the mesh 7" . Similarly, we construct the finite
element spaces U" ¢ L2(I") with the mesh T(j’. In our case we have U" = V(I"). Then
we denote by V” and U" the finite element spaces defined on 7" and T[? on each time step.

Let Vi denote the space of piecewise constant functions on the time partition. We define
the L? projection operator Py : L%, T) - Vyon I, through

1
Plw := (Prw)(1)]y, = o w(s)ds fortel, n=1,...,N).
n J1I,
Then we have the following estimate
I = Powll 2,7, < Ckllwill20,7:m), Y w e H'O,T; H), (3.17)
where H denotes some separable Hilbert space .
We consider a dG(0) scheme for the time discretization and set

Vie = {6 : 2 x [0.T) > R, ¢C.0lg € V", ¢, ), €Pofor n=1,.... N},

ie. ¢ € Vpi is a piecewise constant polynomial w.r.t. time. We also set Vui (") as
the restriction of Vj on LZ(L2(I")). We set O = Q0,Pc = PyQj. Thus, we have
Q: L2(L2(I")) = V(). For Y, ® € Vi we set

N N
AY, @) = > ka(Y", ") + > (" =y o™ 4+ (¥), 2Y),

n=1 n=2

where @ := ®" =lim,_, o+ D(t, —s), @"T 1= @" =lim;_ o+ Pty + 5).
For each u € L2(L%(I")) the fully discrete dG(0)-cG(1) finite element approximation of
(3.13) now reads: Find Yy € Vj such that

[A(th, @) = (f, ®)ay + (o, D), Y& € VY,

(3.18)
Y = Q(u) on X,

where V;?k denotes the subspace of Vj; with functions vanishing on the boundary I".
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It is easy to see that on each time interval I,,, Y}, € Vv solves the following problem:

kn

Yn _ Ynfl
Ak Tk S V4 a(Y, wy) = (PP fowp), Ywp € VI, n=1,...,N G19)

Yo, =yt in2; Y, = Qu(Plu), n=1,...,N onT.
Here we use the L-projection to approximate the non-smooth Dirichlet boundary condition
in (3.18).
In the following we need to investigate the stability behavior of the fully discrete scheme

(3.18) with respect to the initial value yp, the right hand side f and the Dirichlet boundary
conditions u.

Lemma 3 There exists a constant C independent of h, k and the data (f, yo) such that

N
> (17 = Vi B+ Rall VI ) + 1Y

n=1

< Ch™" + hk™DlulFa g2y, (3.20)
and
N
> (05 = ¥ 1B + Rl VIR ) + 1V
n=1
<CA+RkYHu)> | (3.21)
L2(H2(I"))
hold in case f =0, yo = 0. In the case u = 0 the estimate
N
DY = Yi e < C(h2KlIwollg @ +KILF 1722 0)) (3.22)

n=1

is valid.

Proof Let us first assume that f = 0, yg = 0. The proof follows the idea of [12] completely
and here we give a sketch for the case with variable time steps. To begin with we introduce
the following problem: Find y, € Vj; with

n _ n—I
(%,wh)Jra(y;’,wh):O, Yuw,eVl, n=1,...,N,
n

YW =0in2; y' = QuPu), n=1,...,N onT.

(3.23)

For arbitrary y, € V" we have the splitting

Yo =y1 + Ruyn and yy = y2 + Qnya,

where Q), Yh € Voh and Ry, € Voh are the L2-projection and Ritz-projection of y,, respec-
tively. Then we have y>|r = yi, y1lr = y, and

(v2,v0) =0 and a(y;,vy) =0, Y, € V.
Let y" = y5 + Qu". Then (3.23) delivers

Oy — Ony™ 1 wp) + kna(Qnyl, wy) = —kna(ys, wp), Ywy € V. (3.24)
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Similar to the proof of Proposition 1 in [12, P. 88] we conclude from (3.24) that

N
Dy =y 5o + keaGi y) + 1w 15,0

n=1

N
< C (kna (3. ¥3) + 1¥5113.2)- (3.25)
n=1

n
u

Fory) € V" we also have the splitting y
3in [12, P. 87] that

= y{ + Ry, . It follows from the proof of Lemma

1¥4lo.e < ChEIIY} Iy o
Similarly, we also have

I¥3llo,2 < Chllyilh, -
We note that y}'|r =y, = On(Pu) € H%(I") and

a(yi, ¢n) =0, V€ Vy.
Let w" € H'(£2) be the solution of (3.6) with v, substituted by O, (P;'u). Then
lwlly o = ClCBfwllo,rs w2 < CICH(PLWI f

and y{ is the finite element approximation to w". So we deduce from Lemma 2 that

8l < 16 —wlly g + 0"l o

< CllOn(Piwllo,r

and

Iile < Iyf —w'lhe + lw'lh,e
< C”Qh(P/:lu)”%,[“v

which in turn give

1
I¥3llo.2 < Ch2IQn(P{Wlo.rs 1¥3llo.e < Ch“Qh(P]:lu)”%,F-

Inverse estimates also yield

1
131112 < Ch™2[1Qn (P w)llo,r-

With the help of above estimates and norm interpolation we are led to
1_ _
195 1ls.2 < CRZ* 1 Qn(Pfwllo.r.  [1¥51ls.0 < Ch' S”Qh(P]:Lu)”%J* (3.26)
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forall0 <s <landn =1,2,..., N. Thus, from the quasi-uniformality of time partioning
we have

N
DIy =Y 5.0 + kea(y, D) + 1y 15,0

n=1

M=

< C (kna(yy, ) + 19513 0)

n

<C

M=

(knh = 1 QR (PLWIG. - + Rl Qn (PP G )

3
Il

N
sco + Y [ 10wl -
n=1"1n

< C™ +hkHIQWTa 2 gpyy < CO™ + Rk D ullFs oy (B27)
This gives
N
> (e =y N5.e + kallyp T @) + 19215 ¢
n=1
< C™" + hk™Dlul a2y (3.28)

Similarly, we can derive from (3.26) and the W*4(I") (0 < s <l and 1 < g < o0) stability
of L2-projection operator Qj, (see [7, P. 1601]) that

M=

(I =y o + kally 13 ) + 19N 13 2
1

<CA+REHlul®> .
L2(HZ(I))

3
I

(3.29)

Combining (3.28) and (3.29) we prove the case of f =0 and yo = 0 with Y}, = y}.
For the case u = 0, let ys € LZ(H(} (£2)) N HY(H~1(£2)) be the solution of following
problem

dys 1
_, + , =(f,w), Ywe Hy(2), t €(0,T],
( ot w) +a(ys, w) = (f,w), Yw e Hy($2) 0, T] (3.30)
Yf =0 in £2; Yf =0 on X.
Then we have
9yy <C 331
1y lzzca oy + 17 lezw-1@) = (I 122y + lIyollo.g)- (3.31)
Let y;‘( e Vh n=1,2,..., N be the solutions of following problems:
yn _ yn—l
f f n n h
——————,wy | +a(y, wp) = (P f,wp),Ywy € Vg',n=1,..., N,
( ko ) ! ¢ (332)

}’?Z)’(})’7 in2; y;=0,n=1...,N, onTl.
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Then y" 't is the standard fully discrete approximation of ys. Let w, = k, ("} - y ) in
(3.32) we get

(7 =5 =) s (5 ) = D =k (REA Y =)
thus we have
15 =5 5.0 + kally} 15

= ka5 557+ [ (=

—

1 _
< Shallyf I o + Skally T o + 15 =¥ o [ 1fllo.cdr
. )
1 1 2 1 2 1 n n—1,2
= Sk 3R o + ko nllyy™ Ui+ Sk f 1A lo.edt + 5155 = y5 lo.q-

Summing the above equations over n from 1 to N we obtain

N N

DY =Y kv y VIR o < kil Qayoll} o + kZ/ 171,21
’ 1,

n=1 n

< k”thO”l 2 + k||f||L2(L2(.Q))
S Ckh_ ||)’O||(),_Q +k||f||L2(L2(Q))’ (333)

where we used the estimate ||th0||1 o < Ch™ 2IIthOII% o = Ch’zllyollg o- This proves
the case u = 0 with ¥}, = y;’c. O

We next consider the fully discrete approximation for above semi-discrete optimal control
problems by using the dG(0) scheme in time. The fully discrete approximation scheme of
(3.14) is to find (Yik, Upk) € Vi x UM such that

Unk UK Ve Vi

N
. 1 ; . o .
min  Juk(Yik, Une) =an[5 / (Vi = Piya)’dx+ 5 / (Uﬁ@"‘ds] (3.34)
i=1 §2 r

subject to

(3.35)

AW, @) = (f, D)oy + (0, DY), V& € V),
Yk = Q(Upi) on X.

Here U z%( is an appropriate approximation to U,q. We set U ‘f‘t’i‘ = Vi (I") N Uy for the
full discretization of the control problem (1.1)—(1.2) and U ﬂ‘ = U,y for its variational
discretization.

It follows from standard arguments (see [24]) that the above control problem has a unique
solution (Ynk, Unk), and that a pair (Ynk, Upk) € Vik X Uﬁ is the solution of (3.34)—
(3.35) if and only if there is a co-state Zp; € V}?k, such that the triplet (Yuk, Znk, Unk) €
Vik x V;?k x U ahfi‘ satisfies (3.35) and the following optimality conditions:

N ‘

A@, Zw) = 3. [, Vi = ya, ®)dt, ¥ & € V),
i=1

th =0 on E,

(3.36)
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Ynie — ya) Xni (vnk) — Yni)dxdt —l—oz/ Unik (Vpk — Upi)dsdt > 0, Yoy, € Uf,f,
2r b

(3.37)
where Yji (vpi) is the solution of problem (3.35) with Dirichlet boundary conditions Q (vik).-
To derive an expression for the derivative of Jpy : L*(L*(IN) > R analogous to the one
of J given by formula (2.7) we have to define a discrete normal derivative Bli’k Znk € V()
satisfying
/ N Zyddsdr = A(®, Zyy) — / (Ynk — ya)®dxdt, ¥ ® € Vyr.  (3.38)
xz Qr
It is easy to verify that the linear form

L(®) = A(D, Zpk) — /_(z Ynk — ya)®@dxdt
T

is well defined on Vj,; (I') and is also continuous. Thus from Riesz representation theorem the
equation (3.38) admits a unique solution 85‘1‘ Znk in Vi (I7). For an analogous reconstruction
of discrete normal derivatives for elliptic Dirichlet boundary control problems we refer to
[7]. With the help of (3.38) it is not difficult to show that

0 < J5 (Unk) (wnk — Unk)
= Ol/ Uni(vpk — Upi)dsdt —l—/ Yk — ya) Ynx (Vnk) — Yni)dxdt
x 2r
= Ot/ Unk(vpk — Upr)dsdt + A(Ynk (nk) — Ynrs Znk)
b))
—/ 3yillkzhk(th(Uhk) — Yui)dsdt
b
= Ol/ Uni(vpk — Upi)dsdt —/ I Zpk - O (vpk — Upi)dsdt
b b
= / (@Unk — 3™ Zp) (opk — Upi)dsdt
z
for vy € Uahzi‘, which in turn implies
Uni = Py Lomz (3.39)
nk = Py \ —0,"Znk ) .

where PU% cL2(LA(D)) - Ué’j denotes the orthogonal projection in L3(L*(I")) onto U(%‘.

4 Error Estimates for the Optimal Control Problems

As a preliminary result we first estimate the error introduced by the discretization of the state
equation, i.e., the error between the solutions of problems (2.2) and (3.18).

Theorem 3 Let y € L2(L%(2)) and Yni (1) € Vig with Y )|z = Q(u) be the solutions
of problems (2.2) and (3.18), respectively. Then for u € L*(L*(I")) we have

1 1 3 1 11 5
||y — th(“)||L2(L2(.Q)) < C (l’l7 +kZ ‘i‘]’ljk77 '{‘]’lijk7 +hjk71)

(||f||L2(L2(_Q)) + lyollo.2 + ||”||L2(L2(1“))) 4.1)
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and foru € LQ(H%(F)) N H%(LZ(F)) we have
1 1
Iy = Yne @)l 2200y < Ch+k2 +h*k~2 + Pk + h™'k)

+ llull (4.2)

i <L2<F)>) ’
Proof In view of the linearity of the problem it is sufficient to consider the problems with
either f =0, yo=0oru =0.

Let us first assume that f = 0, yo = 0 and u € L>(L*(I")). We first note that according
to[12]y € L2(H? (£2)) holds. Let w € L2(H*(2)N Hj (2))N H'(L*(£2)) be the solution
of problem (2.12) with right hand side g = y — Y, («). Since w(7T) = 0, we from (2.2) and
(3.18) deduce that

(||f||L2<L2(9)) + lyollo.2 + “u”L2(H%(F))

1y = Y1722y, = / (—wr — Aw)(y — Yy (u)dxdt
Qr

9
— [ (“wy — Awy)dxdr + / 0) 22 dsdr
2r x on

+/ (W, Y () — VwV Yy (u))dxdt
2r
= /(Q(u)—u)a—wdsdt

> on

+ / (we Vi) — VwV Y (u))dxdt
27
= E1 4+ Es. 4.3)

We treat E| by exploiting the properties of Pr and Qj:

E, :/(Q(u)—u)?)—wdsdt
¥ n

T Jw T w
:/0 ((Pc = Du, %)dt +/0 ((On = D Pu, a—n)dt

T d T w
=/ ((Pc = Du, 87(1 — Pow)dt +/ ((On = D Peu, (I — Qp)—)dt.
0 n 0 on

From the Young’s inequality, the trace inequality and a norm interpolation inequality we
derive (see, e.g. [12])
3 2
H — — PHw
on

LA(L2(I)

IA

C

IA

C
z”(l - Pk)wH%Z(HZ(_Q)) + 6”(1 - Pk)w”Lz(Hz(.Q))”(I - Pk)U)”LZ(LZ(_Q))

IA

¢ 2 3 2
?”(1 - Pk)w”LZ(HZ(Q)) +e€ ”(I - Pk)w||L2(L2(_Q))-

Setting € = k=7 and using the approximation property (3.17) of Py gives

2

< Ck'2(Jlwll7,

2
2 +llwell72p2 )
L2(12(1) (H=($2)) L=(L~(£2))

a(1 Py)
—( - w
on k
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We also have

< Ch' 2wl 2 m2@))-
L2(L2(I))

H(I - Qh)*

Using the Cauchy-Schwarz inequality and stability results for Q;, and P, we estimate

|E1| < Ckl/4||u||L2(L2(F)) (”u}“LZ(HZ(Q)) + ||wl ||L2(L2(Q)))
+ Ch' | el 2 a2y 10l 222
< C2 4+ kDl 220 181 2222 o

Next we estimate E,. Considering (3.18) and wN = w(., T) = 0 we calculate

E> :/ (weYne () — VwV Yy (u))dxdt
2r

N
= > (Y, w" = ") = ky (VY (), VP w)

n=1

N
= (@) = YT @) w4k (VYR ), V Pl w)
N

n=

=2 (i = Y ), w" ™ = Ry P w)

n=

+ ki (VY @), V(Pw = Ry Pl w)) ). 4.5)

By the Cauchy-Schwarz inequality we have
|E2| < Fi - Py,

where

Bl—=

N
b= (Z (I7f ) = YR @G o + ka (VY (0), VY,fk(u))))
n=1

and

N
F = (Z (lw"~' = Ry P w3 o + kn(V(I — Ry) P'w, V(I — Rh)Pk"w))) :
n=1

In view of the stability result (3.20) of Lemma 3 we have
1 11
[Fil < C(h™2 +h2k™2)|lull 2 2(ry)- (4.6)
It remains to estimate F,. To begin with we note that

n

w' ' = Ry Pfwlo.e < [w"™" = Plwlo.e + I — Ry Plwlo.e
< Jw"' = Pl'wllo.e + Ch?|| P wll. o, 4.7)

and

(VI = Ry P{w, V(I — Ry) P{w) < Ch*| P{wl} . (4.8)
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It is straightforward to show that
_ 1/2
™" = Plwllo,e < ki llwell 2, 1202 (4.9)
and
—-1/2
1P wllzge <k Plwli2a, m2@))- (4.10)

Combining (4.7)-(4.10) we get

N
Fo = (D2 (0 + ka1 PEwIB o + KallwilFag, 120y)) )

n=1

N 1
_1 1 2
= C(h + th 2+ kz)(z (||w||iZ(1n’H2(_Q)) + ”thiZ(ImLZ(_Q))) )
n=1

= C(h+nk7 k0 (

lwilp2m22)) + ||wt||L2(L2(_Q)))~ 4.11)
Using the stability estimate (3.20) of Lemma 3 we conclude
|Eayl < C(h™2 + h2k™2)(h+ W%k ™2 +k?)
(lwl 222y + lwell 22 ) el 22y
< CO* +h3k™3 +h7 k3 + Rk
(lwll 22y + lwell 22 Nl 22 ry)- (4.12)

From the estimates (4.3)—(4.12) we conclude the desired result in the case f = 0, yo =0
and u € L?(L*(I")) that

ly — th(”)”LZ(LZ(Q))
< CO +Kd + Rk + b2k 4+ Rk ) ull 22y 4.13)
Ifue LZ(H% (rn H% (L%(I')) we can estimate E; as
|E1| < CK'2lull (lwll 222y + lwell 22 2y)

H4(LX(I)

+ Chllul g o 12202y

< Clh+k"%)|jul Il 22y (4.14)

LZ(H% (F))WH%(LZ(F))
Combining the estimate (4.11) of F; and the stability result (3.21) in Lemma 3 we are led to
|Ey| < C(1+ hk™2)(h + h%k 7 + k7)

(||w||L2(1-12(9)) + ||wt||L2(L2(9)))||’4||

L2(HE(I))
< C(h+k? +h2%k~2 + 13k
(lwl 222y + ”wl||L2(L2(Q)))||M||L2(H%(1_,))~ (4.15)
This combining with (4.3) and (4.14) gives
Iy = Yok @)l L2222y
< Ch+k2 + %7 + B3k |ul (4.16)

L2(H Y (rynH L2
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Ifu=0, feL*L*))and yy € L?(2) we have y € L>2(H}(2)) N HY(H~1(2))
(see, e.g. [25]). Then similar to the above error estimate and using the stability estimate (3.22)
of Lemma 3, it is straightforward to prove that (see also [12])

1y = Y@l 222y < Ch+h 0O 2220 + Iyollo.2)- (4.17)
Actually, by using the duality argument it follows from (4.3) and (4.5) that
”y - Yh/( (M) ”iZ(LZ(Q))

— [ (—wi = Aw)(y — Yi(w)dxdi
27

= /9 (we Yn () — VwV Ype(w))dxdt + (yo — Y (u), w(-, 0))

N
-3 ((Y,;'k(u) — ¥ ), w — Ry Pk”w)
n=1

+ (o — Y ), w(-, 0)) (4.18)

where we used the fact that the second term in (4.5) vanishes because of ¥}, (u) € Voh. Note
that

o — Y ), w(-,0)) < llyo — Onyoll-1.2llwC, 0.0
=< Chllyollo,2 gl z2(z2(2y)- (4.19)
It follows from (3.22), (4.7), (4.9), (4.10) that

N

=22 (Y@ = ¥ @, v = RuPEw))
n=1
N % N %
- -1
= (X = RePEwld o) (20 1Y = Vi @l o )
n=1 n=1
v :
f C(Z (h4kn_l ||w||iZ(1'“H2(Q)) + k””wt”iz(ln,Lz(.Q))))
n=1

2 2 2 2
(h?kllyollg. +k||f||L2(L2(S2)))2
TR , 5 3
< COPKE + kD (W2, iz + 100, 122)))

n=1
1
(h2k1015 2 + K11 F 172120
< Clh+ ™08l 22y (Iyollo.2 + 1f122@)-

this together with (4.18), (4.19) gives (4.17). Combining both cases we complete the proof.
O

Now we are in a position to derive our main result of this section: the a priori error
estimates for optimal control problems. At first we consider the fully discrete case, i.e.,
UM = Uyy O Vi ().
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Theorem 4 Let (y,u,z) € LE2(L3(£2)) x LA(L*(I")) x L>(H*(2)) N H'(L*(R2)) and
Y, Unie, Znk) € Vi X U:é‘ X V}?k be the solutions of problem (2.5)—(2.8) and (3.34)-
(3.35) with U;’all‘ = Uyq N Vi (IN), respectively. Then we have the a priori error estimate

lu = Unillz22cry + 1y = Yarll 222y

1 1 3 1 1 5
< C(h? +k +h2k™2 +h™2k2 + h2kh
(||f||L2(L2(Q)) + Iyvollo.2 + lya ||L2(L2(_Q)) + ||M||L2(L2(r)))

with a constant C > 0 independent of h and k.

Proof Let us recall the continuous and discrete optimality conditions

/ (v — ya)(y(v) — y)dxdt +a/ u(v —u)dsdt >0, Yve Uy
Qr xz
and

Y — ya) Ynx (vrk) — Ypi)dxdt + 06/ Uni (vpk — Upk)dsdt
Qr X

>0, Voo € U;’g

Setting v = Upg € Uyqg and v = Q(u) € Uﬂ‘ we have

allu = Unill ooy = @ / (u — Upe)*dsdt
X
= Oé/ u(u — Upp)dsdt — O{/ Uni(u — Upr)dsdt
P P
= [ 0= y00Un) — y)dxdt —« / Uni(u — Qu))dsdt
2r X

—05/2 Uni(Q(u) — Upg)dsdt

< [ 0= y)OWi) — y)dxdr + / (Yt — va) (Vi (Qu) — Y)dxdt

Qr Qr

—01/ Unk(u — Q(u))dsdt,
z

where y(Upp) € L2(L%(£2)) with y(Upp)|s = Upk solves

(4.20)

421

(4.22)

(4.23)

/ y(Upk)(—v; — Av)dxdt = —/ Upro,vdsdt + fudxdt +/ yov(-, 0)dx
Q2r ) 27 2

Vv e L2(H*(2) N HL(£2)) N H (L*(2))
with v(-, T) = 0, and Y, (Qu) € Vpi solves

[A(th(Qu), D) = (f. ®P)o, + (0. PL), VP eV,
Yni(Qu) = Q(u) on X.

@ Springer

(4.24)

(4.25)



J Sci Comput (2016) 66:941-967 959

With Young’s inequality we deduce

O = ya)(y(Unx) — y)dxdt +/ Yk — ya) Yk (Qu) — Ypx)dxdt
27 2r

= = yd, YUnk) = Mar + Ynk — Ya, Yne(Qu) — Yni) 2r
= = Yd, YUni) = Yoy + Yk — .y — Yuk) 2r
+ Yk — ¥, Yk (Qu) — )or + (v — ya, Yk (Qu) — Ynr) or
= Iy = Ykl 202y, + Yk = ¥, Y (Qu) — ¥y
+(y = Ya, YUnk) =y — Yk — th(QM)))_QT
<-ly—- thlliz(Lz(Q)) + (v = ya. YUnk) =y — Ynk — th(Qu)))QT
+0lly = Yikl 722 + COIYi(Qu) = ¥l72 20 (4.26)

Taking o > 0 small enough, we from (4.23)—(4.26) obtain

allu = Ukl oy, + 1y = Yikl 220,

< -a / Une(u = Q)dsdt + Cl[¥ie(Qu) = Y1212
X

+ (v = Ya: YUni) =y — Yok — Yk (Qu))) 27
=L+ L+ 1. 4.27)

Note that from the standard error estimates for the L2-projection and the regularity of u we
have

1

2
llull® ) 1
LXH2 (T H* (L2(I"))

Thus we are led to

1= _“/x Uni(u — Q(u))dsdi]
= |a/ u(Q(u) — u)dsdt +a/ (Unk — w)(Q(u) — w)dsdt|
) )
= | /E(M — Q))(Qu) — u)dsdt +05/E(Uhk —u)(Qu) — u)dsdt|
< ollu = Unell 22y + Cllt = Q@722

N 1 ) . (429)

2 1 2
< ollu = Unkll3 a2y + Ch+k2) (Ilulle(m(m) HE L2

Since Yjx (Qu) is the fully discrete finite element approximation of y, the error estimate (4.2)
of Theorem 3 gives

L = 1Y (Qu) = Y1722y < Ch* +k+ %" + 1% 2 + h =2k

2 2 2
(”f”LZ(LZ(Q)) + ”yO”(),Q + ||u||L2(H%(F))ﬂH%(LZ(I"))) . (430)
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Then it remains to estimate /3. From (2.2), (2.6), (4.24) and (4.25) we have

L= =y, yUn) =y — Y — Yk (Qu))) 24

d
= / (y(Une) — ¥) (—B—Z - Az) dxdt
Q2r t

—/ Yk — Yni(Qu)) (—% - Az) dxdt
Q2r dt

= / (= W) — Mz — (y(Unk) — y)Az)dxdt

27

+/-QT (ze(Ynk — Ynk(Qu)) — V (Ynk — Yni(Qu))Vz)dxdt
+/E(Uhk — Q(u))d,zdsdt

= _/E(Uhk — u)dyzdsdt +/2(Uhk — Q(u))d,zdsdt
+/-QT (ze(Ynk — Ynk (Qu)) — V (Ynk — Yni(Qu))Vz)dxdt

= H; + H, + H3. (4.31)

Note that
Hy + Hy = —/ (Unk — u)dpzdsdt +/ (Unk — Q())d,zdsdt
x x
= / (u — Qu)d,zdsdt
=
= / (u — Qu)(anz - Q(anZ))deI.
=
It is straightforward to estimate

1
|H1 + H2| S C(/’l + kz)(”Z”LZ(HZ(_Q)) + ”Zt“LZ(Lz(_Q)))

(lael + lull ). (4.32)

LZ(H%(F)) H%(LZ(F))

Define Epr = Ynr — Ynx(Qu). Using the proof technique of Theorem 3 we from (3.35),
(4.25) obtain
H3 = / (2 Enk — VEnVz)dxdt
27

N
= (B~ ) — ka(VE}. VE)

n=1

N
=—> ((Em —Ep ' ") + ke (VEf, VP2))
n=1

N
=D (Ep— Epc ' 2" = RuPP2) + kn(VER, V(P2 — Ry P['2)).

n=1
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With the help of projection error estimate and proceeding as in the estimate of (4.5) we have

_1 1
|H3| < C(h + I’lzk 2 +k2)(”Z”L2(H2(.(Z)) + ||Z||H1(L2(Q))) .

N 2
(Z IEfm — Ene 15,0 + kall Efy nig) :

n=1

From Lemma 3 we conclude
_1 1
|H3| < C(h+h*k2 + kz)(”Z”LZ(HZ(_Q)) + ||Zt||L2(L2(Q))) .
_1 11
(h™2+ h2k™ )1 QW) — Unkll 221y
< C(hT +h2k™3 +h™ k2 +hikY)
(Izll 22y + Nzl z2c2eon) e = Unill22cry- (4.33)

Since the projection operator Py, is continuous on LZ(H% (I')) and H% (L3(IN)) (see, e.g.
[23, Lm. 3.3]), we have from Theorem 2 that

llaell + llull 1 = Cllizllz2m2 2y + Nzl L2 22(2))- (4.34)

L2(H? (1)) HELA) ~
From standard regularity result for parabolic equation [25] and Lemma 1 we have
Izl L2cm2 2y + 1zel 222y < CUIYIL222y) + 1Yall 22 2))
= CUfll2ecey + 1yvallzaz@y + Iyollo,.e + llullp22ry))- (4.35)

Combining above results and using the Cauchy-Schwarz inequality and Young’s inequality
completes the proof. O

If we use variational discretization concept introduced in [19], i.e., U z%( = Ug4, We can
prove the following error estimates in a similar way.

Theorem 5 Let (y,u,z) € L*(L%2(2)) x L>(L*(I")) x L*(H*(2)) N H'(L*(2)) and
Yhies Unies Zink) € Vg X Uga % V}?k be the solutions of problem (2.5)—(2.8), and (3.34)—
(3.35) withU :’ZE = Uy, respectively. Then we have following a priori error estimate

l — Unillr22ry) + 1y = Yakll 2020y
< C? 4k +hik? +h7 2k +h3kY)
(If 22y + Ivollo,e + Ivall 222y + lull 22y (4.36)
with a constant C > 0 independent of h and k.

Proof In the proof of Theorem 4 it suffices to set v = Uy in (4.21) and vy = u in (4.22)
and add the corresponding inequalities. This directly gives

allu = Unillaairy < O = Yas YU = Mep + Vi = yas Yaew) = Yiw)2r
< =y = Yukll22 20y + O = Yok ¥y = Yok @)
+ = ya, yUnk) =y = Yk = Yni () 27
Thus
allu = Unll7 + Iy = Yl
W L2L2(ry) W L2(L2(02))

< C”y - th(”)l'iZ(LZ(Q)) + (y — Vd» y(Uhk) -y (th - th(”))).QT-
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The rest of proof is along the lines of the estimation of the terms I and /3 in the proof of
Theorem 4. O

As the final result, we can conclude from Theorems 4 and 5 the explicit convergence rate
with respect to & and k for the fully discrete finite element approximation of the optimal
control problems under the assumption k = O (h?).

Corollary 1 Assume that the spatial mesh size h and time step k satisfy the coupling k
= O(h?). Then we have the following a priori error estimate

1
lu — Unillr2c2cryy + 11y = Yokl 220y < Ch? (4.37)

for both full control discretization and variational control discretization with a constant
C > 0 independent of h and k.

Remark 1 The error estimates we obtained in Theorems 4, 5 and Corollary 1 reflect the worst
cases we can expect for parabolic Dirichlet boundary control problems defined on convex
polygonal domains.

Since the regularity of parabolic equations depends on the maximum interior angle of the
domain, the state admits the improved regularity y € LZ(W'?(2)) for2 < p < p, with
Ds = zjfn depending on the maximum interior angle @ of the polygonal domain §2 and
also the data (see [29] for more details). Moreover, for problems defined on curved domains
with smooth boundary, we have higher regularity for the optimal control problems as stated
in Theorem 3.4 of [23]. Improved space regularity leads to better approximation properties
of the state and thus to better convergence rates for space discretization, as is reported in our
numerical results. For the elliptic case with polygonal boundaries we refer to [7] where an

approximation order for the controls of O(hl_%) is derived for some 2 < p < p, with p,
depending on the data and the maximum interior angle of the domain. For the error estimates
of elliptic Dirichlet boundary control problems defined on curved domains we refer to [8],
[10] and [16] for more details.

Note that y € L2(H'(£2)) N H3 (L2(£2)), if in addition y; € L2(H'(2)) N H? (L2(£2))
we may derive that z € LE(H3(2)N H% (L2(£2)) and 8,z € H% (L3(I")) under appropriate
assumption on the domain £2, and thusu € H 3 (L%2(IN)) (see the proof of Theorem 2 and [23]).
This improved time regularity may deliver higher order convergence for time discretization,
compared to the estimates (4.29) and (4.32). This may explain the higher order convergence
for the time discretization observed in the numerical experiments.

S Numerical Experiments

In this section we will carry out some numerical experiments to support our theoretical
findings. We consider the optimal control problems (1.1)—(1.2) of tracking type with control
set U,y defined as follows

Ua :={u € L*O, T: L*(I") : 0 <u(x,r) <1, aa. (t,x)€[0,T] x I'}.

In the numerical experiments we illustrate the convergence orders with respect to the spatial
and time discretizations separately by setting 4 and k small enough respectively, although
we derived a priori error estimate with coupling k = O (h%). The numerical tests indicate
that such a coupling of k and & seems not to be needed. We expect that an according analysis
is possible with adapting the techniques of [30] and [31] to the present setting.
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Table 1 Error of control u, state y and adjoint state z for Example 1 with fixed time step N = 8192

Dof llu — Unillf2 Order ly = Yngll g2 Order lz = Znklif2 Order

31 0.028782014118 \ 0.008430762122 \ 0.001829667132 \

105 0.010849673318 1.4075 0.002136393772 1.9805 0.000467553402 1.9684
385 0.004042069175 1.4245 0.000553164133 1.9494 0.000117011926 1.9985
1473 0.001462083061 1.4671 0.000139259530 1.9899 0.000029815477 1.9725
5761 0.000522887919 1.4835 0.000034996583 1.9925 0.000010623328 1.4888

Although we do not consider problems defined on curved domains in our numerical analy-
sis, we include some numerical examples on both polygonal and curved domains using full
discretization and variational discretisation of the control. For the numerical approximations
of Dirichlet boundary control problems defined on curved domains we refer to [8,10] and
[16]. We use || - ||;2 to denote the L>(L?(I"))-norm error for the optimal control « and the
L?(L%(£2))-norm errors for the state y and adjoint state z.

Example 1 The first example is a unconstrained problem defined on the unit square 2
=10, 1] x [0, 1], T = 1. The data is chosen as
4.0 . b4
f=——sin(xt) — —(x1(1 — x1) +x2(1 — x2)) cos(rrt),
o o
va = —2+1.0/a)(x1(1 — x1) + x2(1 — x2)) sin(;wt) + wx1x2(1 — x1)(1 — x2) cos(rwt),

with o = 1, so that the optimal solution is given by
1
u= —a(m(l —x1) +x2(1 — x2)) sin(rr 1),

1
y = —a(xl(l —x1) +x2(1 — x2)) sin(rwt),

z = x1x2(1 — x1)(1 — xp) sin(rt).

At first we consider the error with respect to spatial mesh size 4. We fix the time step to
k = ﬁ and present the errors of optimal control u, state y and adjoint state z in Table 1.
Then we consider the convergence order of error with respect to time step size k. We fixed
the space mesh with DO F = 22785 and present the errors of optimal control u, state y and
adjoint state z in Table2. We observe an order of convergence % for the control and order 2
for the state and adjoint state for spatial discretization, and order 1 convergence for both of
them for the time discretization. This is the best result we can expect for linear finite elements
and dG(0) approximations.

Example 2 The second example is an unconstrained problem defined in a polygonal domain
with maxminum interior angle w,,x = %n(see [29]), so that the optimal solution may have
only reduced regularity. The data is chosen as

?g(x) 0 <1 <05,
| =g 05 <t <1

with f =1, g =

—_— .
(3 +x3)3
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Table 2 Error of control u, state y and adjoint state z for Example 1 with fixed mesh DO F = 22785

N lu — Unill 2 Order Iy = Yngll 2 Order Iz = Znkll g2 Order
0.030398571028 \ 0.025518889725 \ 0.030398678795 \
4 0.018595263504 0.7091 0.015608671639 0.7092 0.016205193500 0.9076

0.011269239439 0.7225 0.008709737707 0.8416 0.008295451927 0.9661
16 0.006647997579 0.7614 0.004633730272 0.9105 0.004196415068 0.9832
32 0.003745029192 0.8279 0.002392405119 0.9537 0.002112281353 0.9904
64 0.002021680314 0.8894 0.001213660252 0.9791 0.001060211691 0.9944
128 0.001064326895 0.9256 0.000610081508 0.9923 0.000531194879 0.9970
256 0.000563475024 0.9175 0.000305197979 0.9993 0.000265839733 0.9987
512 0.000320272343 0.8151 0.000152181075 1.0040 0.000132937121 0.9998

Table 3 Error of control u, state y and adjoint state z for Example 2 with fixed time step N = 4096

Dof llu — Unilif2 Order Iy = Ynell 2 Order lz = Zpili g2 Order
53 0.021578034106 \ 0.006632500684 \ 0.002058710969 \

182 0.013947673670 0.7074 0.002850064176 1.3693 0.000543409130 2.1593
671 0.010619549501 0.4179 0.001537497778 0.9460 0.000141300731 2.0647
2573 0.008212461016 0.3825 0.000866946011 0.8525 0.000036700709 2.0060
10073 0.006098931924 0.4360 0.000467699526 0.9044 0.000009388603 1.9978
Average  \ 04859  \ 10180\ 2.0570

There is no exact solution for this example. We take the solution with k = 401—96 and
Dof = 158561 in the spatial discretization as reference solution. Similarly as in the pre-
vious example, we investigate the convergence order with respect to the spatial and time
discretization separately. Although the assumption k = O (h?) is not satisfied in this exam-
ple, the analysis and numerical results in [30] and [31] suggest O (h 3 ) convergence for spatial
discretization and O(k%) convergence for time discretization in our case. We can observe
in Table 3 nearly O (h 2 )-order convergence for the spatial discretization of the control. The

convergence order for the time discretization reported in Table 4 is higher than O (k%) which
might be caused by a higher regularity of the control w.r.t time, compare Remark 1 and
[23, Th. 3.4]. Caused by y; we may expect a regularity loss w.r.t. time at ¢t = 0.5, which
in our opinion might only have a mild influence on the convergence order of the numerical
computations.

Example 3 This example is a control constrained problem defined in a smooth domain (see
[10]). The domain is the unit circle 2 = B(0, 1) with center at zero and radius 1, T = 1.
The data is presented in polar coordinates. We set

f(r,0;t) = —6r max(0, cosf sin3(m)) — % sin(m)r3 max (0, cos’ 0),
ya(r, 0: 1) = (7r2 cos® 6 + 6r> — 6r) cos O sin® (1) + y(r, 0)

T 3. 3
> sin(zwt)r’(r — 1) max (0, cos’ 0),
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Table 4 Error of control u, state y and adjoint state z for Example 2 with fixed mesh DO F = 158561

N llu — Unilif2 Order Iy = Ynell 2 Order lz = Zpili 2 Order
4 0.167327134403  \ 0.088804542387  \ 0.020552016247  \
0.107460725354  0.6389  0.051579167598  0.7838  0.013212388713  0.6374
16 0.070415333055  0.6098  0.030045232355  0.7797  0.007759076126  0.7679
32 0.044502497910  0.6620  0.016906812048  0.8295  0.004258097400  0.8657
64 0.026671216305  0.7386  0.009227011579  0.8737  0.002231368045  0.9323
Average  \ 0.6623  \ 08167 \ 0.8008

Table 5 Error of control u, state y and adjoint state z for Example 3 with fixed time step N = 4096 and full

discretisation

Dof lu — Unillf2 Order ly = Yngllz2 Order lz = Znkllf 2 Order
25 0.080438933409 \ 0.050499450897 \ 0.027537485412 \

81 0.052462945814 0.6166 0.018390173000 1.4573 0.009386608073 1.5527
289 0.025693482841 1.0299 0.005955737135 1.6266 0.002546961550 1.8818
1089 0.010836772478 1.2455 0.001775580269 1.7460 0.000654383533 1.9606
4225 0.004214559039 1.3625 0.000499943184 1.8285 0.000180980668 1.8543

Table 6 Error of control u, state y and adjoint state z for Example 3 with fixed time step N = 4096 and

variational discretisation

Dof lu — Unillf2 Order ly = Yngllz2 Order lz = Znkllf2 Order
25 0.080080823101 \ 0.050452860374  \ 0.027529915188  \

81 0.052889327427  0.5985  0.018972070528 14111 0.009398192721 1.5506
289 0.025433412568 1.0563  0.005947170731 1.6736  0.002550336513 1.8817
1089 0.010686498089 12509  0.001738641208 17742 0.000652324545 1.9670
4225 0.004164564394 13596  0.000485052340 1.8417  0.000167939460 1.9576

Table 7 Error of control u, state y and adjoint state z for Example 3 with fixed mesh DO F = 16641 and

full discretization

N lu = Upllz2 Order Iy = Ynill 2 Order lz = Znillz2 Order
0.018744907559 \ 0.027982932366 \ 0.071397322443 \
0.024808047492 —0.4043 0.020226462340 0.4683 0.034454664183 1.0512
0.013491456808 0.8788 0.012915023887 0.6472 0.019032557741 0.8562

16 0.006930734029 0.9610 0.007288727815 0.8253 0.009953295271 0.9352

32 0.003529211695 0.9737 0.003870945517 0.9130 0.005085050476 0.9689

64 0.001839283189 0.9402 0.001994283984 0.9568 0.002569466386 0.9848

128 0.001046515255 0.8136 0.001012041776 0.9786 0.001291388317 0.9925

256 0.000720808717 0.5379 0.000510064738 0.9885 0.000647313735 0.9964
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so that the optimal solution is given by
u(r,0;t) = max(0, cos> 0 sin3(nt)),
y(r,0;t) = r max (0, cos® 6 sin’ (1)),
z(r,0;1) = r3(r —1) cos’ 0 sin3(nt).
Weseta = 1.

First we consider the error with respect to spatial mesh size . We fix the time step k = ﬁ
and present the error of the optimal control u, the state y and the adjoint state z in Table 5
with full discretisation, and in Table 6 with variational discretisation. We as expected observe
that both approaches deliver similar results. Then we consider the convergence order of the
time error. We fix the space mesh with DO F = 16641 and present the error of the optimal
control , the state y and the adjoint state z in Table 7. We observe higher order convergence
w.r.t. the spatial discretization for both the control u# and the state y.
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