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Abstract We develop a staggered discontinuous Galerkin method for linear elasticity prob-
lems and prove its a priori error estimates. In our variational formulation the symmetry of the
stress tensor is imposed weakly via Lagrange multipliers but the resulting numerical stress
tensor is strongly symmetric. Optimal a priori error estimates are obtained and the error
estimates are robust in nearly incompressible materials. Numerical experiments illustrating
our theoretical analysis are included.
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1 Introduction

Let Ω be a bounded domain in R
d , d = 2, 3, with a Lipschitz boundary ∂Ω . Let M, S,K

be the sets of all, symmetric, skew-symmetric d × d matrices, and V be the set of (column)
R

d -vectors. In (static) linear elasticity problems, we find mechanical quantities of a linearly
elastic body occupyingΩ for a given body force and a given boundary condition. The problem
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can be written as a system of equations seeking two unknowns σ and u, the stress tensor and
the displacement field, such that

Aσ = ε(u), − div σ = f in Ω. (1)

Here σ and u are S-valued and V-valued functions on Ω , respectively, A is the compliance
tensor determined by material parameters of the elastic medium, ε(u) is the symmetric part
of the gradient of u, f : Ω → V is a given body force, and div is the row-wise divergence.
If the elastic body is clamped on the boundary of Ω , then u = 0 on ∂Ω is imposed as a
boundary condition.

For the compliance tensor A, we assume that A(x) for each x ∈ Ω is a linear symmetric
positive definite map from S to S, and there exist uniform upper and lower bounds of A(x)

which are independent of x . For τ : Ω → S, Aτ naturally gives an S-valued function on Ω .
In a homogeneous isotropic elastic medium, A has the form

Aτ = 1

2μ

(
τ − λ

2μ + dλ
tr(τ )I

)
, (2)

in whichμ, λ are positive constants, called the Lamé parameters, tr(τ ) is the trace of function
τ : Ω → S, and I is the d ×d identity matrix. We refer to [20] for more details on properties
of compliance tensors.

A natural finite element approach for (1) is the mixed method [12]. However, this mixed
method turns out to be highly nontrivial due to the symmetry constraint of stress tensor, which
is originally from the law of conservation of angular momentum [20]. There are knownmixed
finite elements for the problem with symmetric stress tensor but those elements usually need
sophisticated high order polynomials for shape functions of the stress tensor [2,5,7,22,23].
An alternative approach for the problem, say weak symmetry approach, is to impose the
symmetry constraint weakly [36]. Various mixed finite elements have been developed based
on it [1,4,6,10,14,15,17,19,25,26,28,32,33] but numerical stress tensor in these methods
is only weakly symmetric. Mixed discontinuous Galerkin (DG) methods have also been
considered but it seems that there are only a few of such results [15,30].

In this paper, for the linear elasticity Eq. (1), we will develop a staggered discontinuous
Galerkin (SDG)methodwhich has been successfully developed and analyzed for the acoustic
wave equation and the Stokes Eq. [13,24]. In SDG methods, the flux condition across the
inter-element boundary can be naturally obtained by the staggered continuity property of
the finite element functions, whereas an artificial numerical flux needs to be introduced in
standard DG methods and other mixed DG methods [15,30].

In order to deal with the symmetry constraint of stress tensor, we establish our SDG
method using a variational formulation with the weak symmetry approach [36]. However,
the numerical stress tensor obtained in our SDG method becomes strongly symmetric. Poly-
nomials of the same degree are used for all the finite element spaces and the optimal order
of L2-error estimates are proved for the given order of polynomials. In contrast, most other
mixed andDGmethods, which use the variational formulation with weakly symmetric stress,
give only weakly symmetric numerical stress tensor and require more sophisticated shape
functions to achieve the stability and optimal order of L2-error estimates. We also prove that
our SDG method does not suffer from the volumetric locking [8]. More precisely, for A of
the form in (2), we show that the L2-errors of all the unknowns in our method do not grow
unboundedly as λ becomes arbitrarily large.We also point out that SDGmethods are relevant
for time-dependent problems [13], so it is reasonable to expect applications of our method
to time-dependent elasticity problems.
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We remark that another SDG method with symmetric stress tensor can also be developed
by imposing symmetry constraint a priori to all shape functions of stress tensor. This is a
reduced method in a sense because only two unknowns, stress tensor and displacement, are
used and the total number of degrees of freedom (DOFs) in this method is smaller than that
of our SDG method. However, there are prices to pay. In this reduced method, symmetric
functions with local H(div)-continuity are used as shape functions for stress tensor. For
error analysis, these symmetric shape functions require construction of new interpolation
operator having the symmetric shape functions as its range because a standard (locally)
H(div) interpolation operator does not have range of symmetric functions. The construction
of new interpolation operator is nontrivial and makes error analysis more complicated. In
contrast, no new interpolation operator is needed in our SDG method. We only use the
interpolation operators of standard finite elements [11] and of the SDG method for mixed
Poisson problem [13]. In addition to this drawback from new interpolation operator for
error analysis, there is a difficulty in implementation. In order to implement the reduced
method, we need local DOFs for the symmetric locally H(div) shape functions but finding
such local DOFs is by no means straightforward. These drawbacks seem to outweigh the
benefit from less number of DOFs, so we do not pursue the reduced method further. In our
case, finite element functions for stress tensor and the additional Lagrange multipliers for
the weak symmetry are discontinuous across the element boundaries and thus in practical
implementation those unknowns can be eliminated element-wise to obtain a reduced system
on the displacement.

This work is organized as follows. In Sect. 2, a variational formulation with weakly
symmetric stress is introduced. In Sect. 3, we introduce an SDG method for the problem,
prove its stability and a priori error estimates. In particular, robustness of the error estimates
in nearly incompressible materials is proved. In Sect. 4, we present numerical results for test
problems on structured/unstructured meshes and in nearly incompressible materials. Finally,
auxiliary results for the proof of stability are provided in Sect. 1.

2 Variational Form with Weak Symmetry

Suppose that there are two open subsetsΛD,ΛN of ∂Ω such thatΛD ∩ΛN = ∅,ΛD ∪ΛN =
∂Ω . Suppose that ΛD �= ∅ and a boundary condition of (1) is given by

u = gD on ΛD, σn = gN on ΛN , (3)

with gD : ΛD → V, gN : ΛN → V, in which n : ∂Ω → V is the unit outward normal
vector field on ∂Ω and σn stands for the matrix-vector multiplication. The problem (1) with
this boundary condition is well-posed under suitable regularity assumptions on gD and gN .

Here we introduce notation and some definitions. For a bounded open subset G ⊂ R
d of

Lipschitz boundary, we use L2(G) to denote the Hilbert space of real-valued functions on G
whose inner product and the corresponding norm are

(p, q)G :=
∫

G
pq dx, ‖p‖0,G := (p, p)

1
2
G , p, q ∈ L2(G).

When G = Ω or G is obvious in context, we will use (p, q) and ‖p‖0 for simplicity.
For r > 0, Hr (G) and ‖ · ‖r,G stand for the standard Sobolev space based on the L2(G)-
norm with differentiability of order r [16] and the corresponding norm. For a nonnegative
integer k,Pk(G) is the space of polynomials on G of order ≤ k. For a finite dimensional
inner product space X, all these function spaces are naturally extended to X-valued functions
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with counterparts L2(G;X), Hr (G;X), and Pk(G;X). We will use same notation for inner
products and norms in these extended function spaces, and the meaning will be clear in
context. Let

H(div, G) :=
{
v ∈ L2

(
G;Rd

)
: div v ∈ L2(G)

}
,

in which div v is the divergence of v in the sense of distributions. Recall that div is regarded
as row-wise divergence for M-valued functions. Now we define

H(div, G;M) := {
τ ∈ L2(G;M) : div τ ∈ L2(G;V)

}
.

For v ∈ H1(G;V), the grad operator stands for the row-wise gradient and thus grad v ∈
L2(G;M). For an M-valued function τ , the symmetric and skew-symmetric parts of τ are

sym τ = τ + τ T

2
, skw τ = τ − τ T

2
,

where τ T is the transpose of τ . Note that ε(u) = sym grad u by these definitions. Finally, for
a bounded subset G ⊂ R

d of codimension 1, L2(G) is the Hilbert space of square-integrable
functions on G with inner products

〈p, q〉G :=
∫

G
pq ds, p, q ∈ L2(G),

and other spaces Hr (G), L2(G;X), Hr (G;X),Pk(G),Pk(G,X) and norms ‖·‖0,G , ‖·‖r,G

are similarly defined.
In order to derive a variational form of (1) withweakly imposed symmetry of the stress, we

first extend the compliance tensor A(x) for x ∈ Ω to be a map fromM intoM by extending
A(x) to be a positive multiple of the identity map on K. For simplicity we again denote this
extended compliance tensor by A because we will not use the original compliance tensor.
Note that Aσ = ε(u) still holds because σ is symmetric. We then introduce a new unknown
γ ∈ L2(Ω;K) instead of skw grad u, and rewrite (1) as

Aσ = grad u − γ , − div σ = f, (4)

with symmetry constraint (σ , η) = 0,∀η ∈ L2(Ω;K). If the triple (σ , u, γ ) satisfies (4)
with the symmetry constraint, then one can check that the pair (σ , u) satisfies (1). To write
this system with (3) as a variational form, set

� = L2(Ω;M), Γ = L2(Ω;K),

UgD = {v ∈ H1(Ω;V) : v|ΛD = gD},
U0 = {v ∈ H1(Ω;V) : v|ΛD = 0}.

The first equation in (4) is simply (Aσ , τ ) = (grad u − γ , τ ) for all τ ∈ �. For v ∈ U0, by
the integration by parts, we have

( f, v) = −(div σ , v) = −〈σn, v〉∂Ω + (σ , grad v) = −〈gN , v〉ΛN + (σ , grad v),

where n is the outward unit normal vector field on ∂Ω . Combining it with the symmetry
constraint (σ , η) = 0 for all η ∈ Γ , we have

(η − grad v, σ ) = −( f, v) − 〈gN , v〉ΛN , ∀v ∈ U0.
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Rewriting u by u = u0 + ug with a fixed ug ∈ UgD , a variational form is to find (σ , u0, γ ) ∈
� × U0 × Γ such that

(Aσ , τ ) + (γ − grad u0, τ ) = (grad ug, τ ), ∀τ ∈ �, (5)

(η − grad v, σ ) = −( f, v) − 〈gN , v〉ΛN , ∀(v, η) ∈ U0 × Γ. (6)

For simplicity of presentation we will assume that gD = gN = 0 with ug = 0 in the rest of
the paper because it is straightforward to generalize our method, which will be described in
the next section, to more general boundary conditions.

3 A Staggered DG Method, Stability, and Error Analysis

In this section we develop a staggered DG method for (5)–(6), prove its stability, and show
a priori error estimates.

3.1 A Staggered DG Method and Stability

Let Mh be a shape-regular triangulation of Ω with parameter h, the largest diameter of
simplices in Mh , and assume that Mh is conforming to boundary subdomains ΛD,ΛN .
Throughout this work, c will denote a positive constant independent of h but it can be
different in each formula in order to avoid proliferation of constants in inequalities. Let Th

be the simplicial mesh obtained fromMh by refiningMh with barycentric subdivision, and
Fh be the set of subsimplices of Th with codimension one. The sets of subsimplices Fu,Fσ ,
and F◦

h are defined by

Fu = {e ∈ Fh : e ⊂ ∂ M, M ∈ Mh}, Fσ = Fh \ Fu, F◦
h = {e ∈ Fh : e �⊂ ∂Ω}.

For an illustration of a staggeredmesh and its subsimpliceswe refer to Fig. 1. Suppose that τ ∈
L2(Ω;M) and v ∈ L2(Ω;V), whose restrictions on each T ∈ Th are in Hr (T ;M), Hr (T ;V)

with r > 1/2. We now define the jumps �τn� and �v� on each e ∈ Fh . For e ∈ Fh with
e ⊂ ∂Ω , we define

�τn�|e := τ |en, �v�|e := v|e

Fig. 1 An illustration of a staggered mesh in two dimensions: M(νi ) are triangles inMh , νi is the barycenter
of M(νi ), solid lines are edges ofFu , dotted lines are edges ofFσ , andR(e) is the union of triangles sharing
an edge e in Fu
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where n is the unit outward normal vector on ∂Ω , and τ |e, v|e are the traces of τ and v on
e, respectively. To define the jumps on given e ∈ F◦

h , let T +, T − ∈ Th be the unique two
simplices such that e ⊂ ∂T + ∩ ∂T −, and we denote the unit normal vector on e pointing
outward from T +(T −) by n+(n−, respectively). We also denote by τ+ the trace of τ on e
given by τ |T + . The notations τ−, v+, v− are similarly defined. Then the jumps are defined
by

�τn�|e := τ+n+ + τ−n−, �v�|e := v+ − v−. (7)

Since the definition of �v�|e depends on the choice of T + and T −, it will need an additional
care in error analysis.

We are ready to define finite element spaces for the problem. The space �h is the set of
functions

�h = {τ ∈ � : τ |T ∈ Pk(T ;M) ∀T ∈ Th and �τn�|e = 0 ∀e ∈ Fσ }, k ≥ 1.

The vanishing jump condition of �h implies that the normal components of each row of
τ ∈ �h are single-valued on every e ∈ Fσ . The degrees of freedom of �h are

∫
e
τne · p ds, ∀p ∈ Pk(e;V), ∀e ∈ Fσ , (8)

∫
T

τ : φ dx, ∀φ ∈ Pk−1(T ;M), ∀T ∈ Th, (9)

for τ ∈ �h , where the dot and colon are inner products on V andM, and ne is a (chosen) unit
normal vector on e. The well-definedness of�h with respect to these DOFs is a consequence
of [13, Lemma 2.3]. Let

Ũh = {v ∈ L2(Ω;V) : v|T ∈ Pk(T ;V) ∀T ∈ Th and �v�|e = 0 ∀e ∈ Fu},

and the jump condition of Ũh implies that v ∈ Ũh is continuous on every e ∈ Fu . The degrees
of freedom of Ũh are

∫
e
v · p ds, ∀p ∈ Pk(e;V), ∀e ∈ Fu, (10)

∫
T

v · φ dx, ∀φ ∈ Pk−1(T ;V), ∀T ∈ Th, (11)

for v ∈ Ũh , and we refer to [13, Lemma2.2] for its well-definedness. We define Uh as the
subspace of Ũh such that all the DOFs associated to e ∈ Fu with e ⊂ ΛD vanish.

By the construction, τ in�h is locally H(div)-conforming in M(νi ) and v inUh is locally
H1-conforming inR(e) for e in Fσ , see Fig. 1. We observe that at least one of �τn� and �v�

vanishes on e for any e ∈ F◦
h . In other words, continuity of functions in the pair (�h, Uh) is

staggered on subsimplices in F◦
h . This property will give us the inter-element flux condition

in our Galerkin formulation without the need of carefully designed flux condition in other
DGmethods [3,15,30] while allowing partial discontinuity for the finite element spaces. The
space Γh is defined by

Γh = {η ∈ Γ : η|T ∈ Pk(T ;K), ∀T ∈ Th}.
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We now define norms for �h and Uh × Γh by

‖τ‖20,h = ‖τ‖20 +
∑

e∈Fσ

he‖τn‖20,e, (12)

‖(v, η)‖2h = ‖η − gradh v‖20 +
∑

e∈Fσ

h−1
e ‖�v�‖20,e, (13)

where gradh is the element-wise grad operator with respect to Th , and he is the diameter of
simplex e. To see that ‖(·, ·)‖h is a norm, suppose that ‖(v, η)‖h = 0 for v ∈ Uh, η ∈ Γh . This
is equivalent to η−gradh v = 0 and �v�|e = 0 for all e ∈ Fσ . Considering the symmetric and
skew-symmetric parts of η − gradh v, we have sym gradh v = 0 and η − skw gradh v = 0.
Then v is an element-wise rigid body motion because sym gradh v = 0. Furthermore, since
�v�|e = 0 for all e ∈ Fσ and v is continuous on all e ∈ Fu, v is a rigid body motion on
Ω . This implies that v = 0 because v = 0 on ΛD �= ∅. Then η = 0 as well because
η − skw gradh v = 0. The other conditions of ‖(·, ·)‖h to be a norm, are easy to check. For
pure traction boundary conditions (ΛD = ∅), a modified argument is needed and we will
discuss it later.

Recall that �v�|e in (7) and τn|e on e ∈ Fσ depend on the choice of T +, T −, and the
direction of unit normal vector n on e, respectively. To avoid this ambiguity in our analysis,
whenever we deal with a term of the form 〈�v�, τn〉e on e ∈ Fσ , we assume that n is chosen
to satisfy:

n = n+ for the simplices T + and T − such that �v� = v+ − v−.

Adopting this convention, let us define bilinear forms

a(φ, τ ) = (Aφ, τ ),

b(τ ; v, η) = (η − gradh v, τ ) +
∑

e∈Fσ

〈�v�, τn〉e,

b∗(v, η; τ ) = (v, divh τ ) −
∑

e∈Fu

〈v, �τn�〉e + (η, τ ), (14)

forφ, τ ∈ �h, v ∈ Uh, η ∈ Γh , in which divh is the element-wise div operator with respect to
Th . In fact, b(τ ; v, η) and b∗(v, η; τ ) arewell-defined for τ ∈ L2(Ω;M), v ∈ L2(Ω;V), η ∈
L2(Ω;K) when τ and v are regular enough that gradh v, divh τ are meaningful and the
integrations on e ∈ Fh in the definitions are well-defined.

Notice that∑
T ∈Th

〈v, τnT 〉∂T =
∑

e∈Fσ

〈�v�, τn〉e +
∑

e∈Fu

〈v, �τn�〉e, ∀v ∈ Uh,∀τ ∈ �h,

where nT is the outward unit normal vector field on ∂T . This fact and the integration by parts
give

b∗(v, η; τ ) = b(τ ; v, η), ∀(τ , v, η) ∈ �h × Uh × Γh . (15)

We now establish a discrete counterpart of the problem (5)–(6) in our numerical scheme:
Find (σ h, uh, γ h) ∈ �h × Uh × Γh such that

a(σ h, τ ) + b∗(uh, γ h; τ ) = 0, ∀τ ∈ �h, (16)

−b(σ h; v, η) = ( f, v), ∀v ∈ Uh,∀η ∈ Γh . (17)

123



632 J Sci Comput (2016) 66:625–649

We emphasize that in the above the flux condition on any e in Fh is naturally obtained by
the staggered continuity property of our finite element function spaces in contrast to other
standard DG methods. For the consistency of this discretization, we show that the solution
of (5)–(6) satisfies (16)–(17) under a suitable regularity assumption.

Lemma 1 For given f ∈ L2(Ω;V), suppose that (σ , u, γ ) is a solution of (5)–(6) with

σ ∈ Hr (Ω; S), u ∈ Hr (Ω;V), r > 1/2. (18)

Then (σ , u, γ ) satisfies (16)–(17).

Proof Under the regularity assumptions on σ and u, �σn�|e and �u�|e are well-defined and
vanish on every e ∈ F◦

h . Using Aσ = grad u − γ = gradh u − γ and the integration by
parts with boundary condition gN = gD = 0, we have

(Aσ , τ ) = (gradh u − γ , τ ) = −(u, divh τ ) +
∑

e∈Fu

〈u, �τn�〉e − (γ , τ ), ∀τ ∈ �h,

so (σ , u, γ ) satisfies (16). Similarly, if we use the fact (σ , η) = 0 for all η ∈ Γh , the equality
− div σ = f , and the integration by parts, then we have

( f, v) = −(div σ , v) − (σ , η) = (σ , gradh v) −
∑

e∈Fσ

〈σn, �v�〉e − (σ , η),

and it implies that (σ , u, γ ) satisfies (17). ��
The stability of discretization, i.e., well-posedness of the problem (16)–(17), is obtained by
the Babuška–Brezzi stability theory [12]. The following inf-sup condition, will be proved
using the mesh-dependent norm idea in [34], is crucial in the stability theory. An auxiliary
result Lemma 9, necessary in the inf-sup condition proof, is provided in the appendix.

Lemma 2 There exists α > 0 independent of h such that, for any (0, 0) �= (v, η) ∈ Uh ×Γh,
one can find 0 �= τ ∈ �h satisfying

b(τ ; v, η)

‖(v, η)‖h‖τ‖0,h ≥ α.

Proof For given v ∈ Uh and η ∈ Γh , suppose that b(τ ; v, η) = 0 for all τ ∈ �h . For each
M ∈ Mh , we set

FM
σ = {e ∈ Fσ : e ⊂ M}, (19)

�M = {τ ∈ �h : τ |T = 0 for all T ∈ Th such that T �⊂ M}, (20)

�M,0 = {τ ∈ �M : τn = 0 on ∂ M}, (21)

where n is the outward unit normal vector field on ∂ M . For τ ∈ �M , the assumption
b(τ ; v, η) = 0 and the integration by parts give

0 = b(τ ; v, η)

= (η − gradh v, τ )M +
∑

e∈FM
σ

〈�v�, τn〉e

= (divh τ , v)M + (τ , η)M −
∑

e⊂∂ M

〈v, �τn�〉e.
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The condition on τn in the definition of �M,0 implies that �τn� = 0 on ∂ M for τ ∈ �M,0,
so

(divh τ , v)M + (τ , η)M = 0, ∀τ ∈ �M,0.

Let η0 be the component of η|M such that each entry of η0 inK is mean-value zero on M . By
Lemma9 in the appendix, one can find τ 0 ∈ �M,0 such that divh τ 0 = 0 and skw τ 0|M = η0.
Noting that (τ 0, η)M = (skw τ 0, η)M = (η0, η)M = (η0, η0)M , the above equation implies
η0 = 0, and therefore η|M ∈ P0(M;K). Recall that general forms of rigid body motions in
R
2 and R

3 are

(
0 −s
s 0

) (
x1
x2

)
+

(
a1
a2

)
,

⎛
⎝ 0 s3 −s2

−s3 0 s1
s2 −s1 0

⎞
⎠

⎛
⎝x1

x2
x3

⎞
⎠ +

⎛
⎝a1

a2
a3

⎞
⎠ , (22)

with constants s, si , ai ∈ R, i = 1, 2, 3. Since η|M ∈ P0(M;K), there is a rigid body motion
rM on M such that η|M = grad rM . Then

b(τ ; v, η) = (gradh(rM − v), τ )M +
∑

e∈FM
σ

〈�v�, τn〉e = 0.

Due to the polynomial degree of v, we have gradh(rM − v)|T ∈ Pk−1(T ;M) for each
subsimplex T ⊂ M and �v�|e ∈ Pk(e;V) for e ∈ FM

σ . By (8) and (9), there is τ ∈ �M such
that

〈τn, �v�〉e = ‖�v�‖20,e, ∀e ∈ FM
σ ,∫

T
τ : gradh(rM − v) dx =

∫
T

| gradh(rM − v)|2 dx, ∀T ∈ Th with T ⊂ M.

Hence �v�|e = 0 for e ∈ FM
σ and gradh(rM − v) = η − gradh v = 0 on M .

If we do the same procedure for all M ∈ Mh , then we can conclude that b(τ ; v, η) = 0
for all τ ∈ �h implies ‖(v, η)‖h = 0 by the definition of ‖ · ‖h and the boundary condition
v = 0 on ΛD . By equivalence of norms on finite dimensional spaces and a standard scaling
argument, one can conclude that there is α > 0 independent of mesh sizes such that

‖τ‖0,h ≤ ‖(v, η)‖h, b(τ ; v, η) ≥ α‖(v, η)‖2h .

The assertion easily follows from this. ��

Theorem 1 The problem (16)–(17) is well-posed.

Proof Since A(x) is positive definite on M uniformly in x ∈ Ω , the bilinear form a(·, ·) is
coercive on L2(Ω;M) × L2(Ω;M). By a standard scaling argument, ‖τ‖0 and ‖τ‖0,h for
τ ∈ �h are equivalent norms, so a(·, ·) is also coercive on�h ×�h . By the Cauchy–Schwarz
inequality, a(·, ·) is a bounded bilinear form on �h × �h . Again by the Cauchy–Schwarz
inequality,

b(τ ; v, η) ≤ ‖τ‖0,h‖(v, η)‖h, ∀(τ , v, η) ∈ �h × Uh × Γh, (23)

so b(·; ·, ·) is a bounded bilinear form on �h × (Uh ×Γh). Then the well-posedness of (16)–
(17) follows by the inf-sup condition in Lemma 2, the equality (15), and the Babuška–Brezzi
stability theory [12]. ��
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3.2 Error Analysis

Let (σ , u, γ ) and (σ h, uh, γ h) be the solutions of (5)–(6) and (16)–(17), respectively. Under
the regularity assumption of σ and u in (18), the Babuška–Brezzi stability theory immediately
gives

‖σ − σ h‖0,h + ‖(u − uh, γ − γ h)‖h

≤ c inf
(τ ,v,η)∈�h×Uh×Γh

(‖σ − τ‖0,h + ‖(u − v, γ − η)‖h). (24)

However, orders of all the errors in this estimate are O(hk) for sufficiently regular solutions,
so this estimate is not optimal because the optimal L2-error of σ is O(hk+1) with respect
to the full approximability of finite element spaces. Therefore, we present an error analysis
which gives optimal error bounds.

We first introduce some interpolation operators. For τ ∈ Hr (Ω;M), r > 1/2, let J be
the interpolation operator defined by (8)–(9), i.e.,∫

e
(Jτ )n · p ds =

∫
e
τn · p ds, ∀p ∈ Pk(e;V), ∀e ∈ Fσ ,

∫
T

Jτ : φ dx =
∫

T
τ : φ dx, ∀φ ∈ Pk−1(T ;M), ∀T ∈ Th .

For v ∈ Hr (Ω;Rd), r > 1/2, we define an interpolation Iv by∫
e

Iv · p ds =
∫

e
v · p ds, ∀p ∈ Pk(e;V), ∀e ∈ Fu, (25)

∫
T

Iv · φ dx =
∫

T
v · φ dx, ∀φ ∈ Pk−1(T ;V), ∀T ∈ Th . (26)

Let K be the L2 projection from L2(Ω;K) into Γh ,
let Pi , 0 ≤ i ≤ k, be the L2 projection from L2(Ω;V) into

{
v ∈ L2(Ω;V) : v|T ∈ Pi (T ;V), ∀T ∈ Th

}
.

For these interpolation operators and functions with suitable regularity, we have

‖τ − Jτ‖0,h ≤ chmin{k+1,r}‖τ‖r , r > 1/2, (27)

‖v − Iv‖0 ≤ chmin{k+1,r}‖v‖r , r > 1/2, (28)

‖η − Kη‖0 ≤ chmin{k+1,r}‖η‖r , r ≥ 0, (29)

‖(v − Iv, 0)‖h ≤ chmin{k,r−1}‖v‖r , r ≥ 1, (30)

‖v − Pk−1v‖0 ≤ chmin{k,r}‖v‖r , r ≥ 0. (31)

The estimates (29), (31) are obvious, and the estimates (27), (30), and (28) are consequences
of Theorem 3.5 and Theorem 3.4 in [13]. Finally, using the triangle inequality, (29), and (30),
one can get

‖(v − Iv, η − Kη)‖h ≤ c
(

hmin{k,r−1}‖v‖r + hmin{k+1,r̃}‖η‖r̃

)
, r ≥ 1, r̃ ≥ 0. (32)

Optimal convergence rates of the L2-errors of σ and γ are obtained by (27), (29), and the
following theorem.
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Theorem 2 Suppose that (σ , u, γ ), (σ h, uh, γ h) are solutions of (5)–(6) and (16)–(17),
respectively. Suppose also that σ , u satisfy (18). Then the following holds:

‖σ − σ h‖0 + ‖Pk−1(u − uh)‖0 + ‖γ − γ h‖0 ≤ c(‖σ − Jσ‖0 + ‖γ − Kγ ‖0). (33)

Error bounds up to regularity of (σ , γ ) are immediately obtained by (27) and (29).

Proof By Lemma 1, (σ , u, γ ) satisfies (16)–(17). The difference of (16)–(17) with (σ , u, γ )

and (σ h, uh, γ h) yields

(A(σ − σ h), τ ) + (u − uh, divh τ ) −
∑

e∈Fu

〈u − uh, �τn�〉e + (γ − γ h, τ ) = 0, (34)

(σ − σ h, η − gradh v) +
∑

e∈Fσ

〈(σ − σ h)n, �v�〉e = 0, (35)

for any τ ∈ �h, v ∈ Uh, η ∈ Γh .
We first prove an auxiliary estimate

‖Kγ − γ h‖0 ≤ c0(‖σ − Jσ‖0 + ‖Jσ − σ h‖0 + ‖γ − Kγ ‖0), (36)

with c0 > 0 independent of mesh sizes. To prove it, let P0(Kγ − γ h) be the L2 projection
of Kγ − γ h into the space

P0(Th;K) := {η ∈ Γ : η|T ∈ P0(T ;K) ∀T ∈ Th}.
It is known (e.g., [6,21]) that there is τ 0 ∈ H(div,Ω;M) such that

τ 0|T ∈ P1(T ;M), ∀T ∈ Th, (τ 0, η) = (P0(Kγ − γ h), η), ∀η ∈ P0(Th;K),

div τ 0 = 0, ‖τ 0‖0 ≤ c‖P0(Kγ − γ h)‖0.
By Lemma 9 there is τ 1 ∈ �h ∩ H(div,Ω;M) such that div τ 1 = 0, ‖τ 1‖0 ≤ c‖Kγ −
γ h − skw τ 0‖0 and skw τ 1 = Kγ − γ h − skw τ 0. Letting τ = τ 0 + τ 1, one can check that
div τ = 0, �τn�|e = 0 for e ∈ Fu, skw τ = Kγ − γ h , and

‖τ‖0 ≤ ‖τ 0‖0 + ‖τ 1‖0 ≤ c(‖Kγ − γ h‖0 + ‖τ 0‖0) ≤ c‖Kγ − γ h‖0.
If we put this τ in (34), then

0 = (A(σ − σ h), τ ) + (γ − γ h, τ ) (37)

= (A(σ − σ h), τ ) + (γ − Kγ , τ ) + ‖Kγ − γ h‖20,
where the second identity is obtained by

(γ − γ h, τ ) = (γ − Kγ , τ ) + (Kγ − γ h, τ )

combined with (Kγ −γ h, sym τ ) = 0 and skw τ = Kγ −γ h . The estimate (36) follows by
the above equation combined with the Cauchy–Schwarz inequality, ‖τ‖0 ≤ c‖Kγ − γ h‖0,
the triangle inequality, and ‖Aτ‖0 ≤ c‖τ‖0 for τ ∈ L2(Ω;M).

Now we remark two observations. First, the definition of Jσ and (35) with η = 0 give

0 = −(Jσ − σ h, gradh v) +
∑

e∈Fσ

〈(Jσ − σ h)n, �v�〉e, ∀v ∈ Uh . (38)

Second, the definition of I u and (34) give

(A(σ − σ h), τ ) + (I u − uh, divh τ ) −
∑

e∈Fu

〈I u − uh, �τn�〉e + (γ − γ h, τ ) = 0.
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Taking τ = Jσ − σ h in this equation, and considering (38) with v = I u − uh and (15), we
have

(A(σ − σ h), Jσ − σ h) + (γ − γ h, Jσ − σ h) = 0.

This is equivalent to

(A(Jσ − σ h), Jσ − σ h) = −(A(σ − Jσ ), Jσ − σ h)

− (γ − Kγ , Jσ − σ h) − (Kγ − γ h, Jσ − σ h)

= −(A(σ − Jσ ), Jσ − σ h)

− (γ − Kγ , Jσ − σ h) − (Kγ − γ h, Jσ − σ ), (39)

where the last equality is due to (Kγ −γ h, σ h) = (Kγ −γ h, σ )which is obtained from (35)
with v = 0, η = Kγ − γ h . With this observation, the coercivity of A, the Cauchy–Schwarz
inequality, and Young’s inequality, we have

‖Jσ − σ h‖20 ≤ Cε

(‖σ − Jσ‖20 + ‖γ − Kγ ‖20
) + ε

(‖Jσ − σ h‖20 + ‖Kγ − γ h‖20
)
,

for any ε > 0 with an ε-dependent constant Cε > 0. Using (36) and taking ε sufficiently
small, one can get

‖Jσ − σ h‖20 ≤ C ′
ε

(‖σ − Jσ‖20 + ‖γ − Kγ ‖20
) + 1

2
‖Jσ − σ h‖20,

with another constant C ′
ε , so ‖Jσ −σ h‖0 ≤ c(‖σ − Jσ‖0 +‖γ − Kγ ‖0). The combination

of this and the estimate (36) yields

‖Jσ − σ h‖0 + ‖Kγ − γ h‖0 ≤ c(‖σ − Jσ‖0 + ‖γ − Kγ ‖0),
and the assertion (33) for ‖σ − σ h‖0 and ‖γ − γ h‖0 follows by the triangle inequality.

To complete the proof, we need to show (33) for ‖Pk−1(u − uh)‖0. Note that d-tuples
of the Brezzi–Douglas–Marini (BDM) element of order k is nothing but �B DM

h := �h ∩
H(div,Ω;M), and it is known that there is τ ∈ �B DM

h such that div τ = Pk−1(u − uh) and
‖τ‖0 ≤ c‖Pk−1(u − uh)‖0 (see [11,12]). Inserting this τ in (34) we have

(A(σ − σ h, τ ) + ‖Pk−1(u − uh)‖20 + (γ − γ h, τ ) = 0.

By the Cauchy–Schwarz inequality and ‖τ‖0 ≤ c‖Pk−1(u − uh)‖0, one can get

‖Pk−1(u − uh)‖0 ≤ c(‖σ − σ h‖0 + ‖γ − γ h‖0).
Combining this with the previous result of ‖σ − σ h‖0 +‖γ − γ h‖0, the assertion follows. ��
The estimate (33) does not give an optimal L2-error bound of u with respect to the full
approximability of Uh . Now we show that the optimal order of L2-error of u is obtained by
the Aubin–Nitsche’s trick when the domain Ω satisfies the elliptic regularity assumption,
namely, if the triple σ̃ ∈ L2(Ω;M), ũ ∈ H1

0 (Ω;V), γ̃ ∈ L2(Ω;K) is a solution of the
problem

(Aσ̃ , τ ) + (γ̃ − grad ũ, τ ) = 0, τ ∈ L2(Ω;M), (40)

−(η − grad v, σ̃ ) = (g, v), (v, η) ∈ H1
0 (Ω;V) × L2(Ω;K), (41)

for g ∈ L2(Ω;V), then

‖σ̃‖1 + ‖ũ‖2 + ‖γ̃ ‖1 ≤ c‖g‖0 (42)
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holds with c > 0 depending only on Ω and A. Here H1
0 (Ω;V) is the subspace of H1(Ω;V)

with vanishing traces [16]. There are several known results on domains satisfying this regu-
larity assumption. For example, it is known that convex polygonal domain in two dimensions
[9] and a domainwithC2 boundary inRd , d = 2, 3, satisfy the assumption [35, Theorem7.1].

Theorem 3 Suppose that (σ , u, γ ) and (σ h, uh, γ h) are given as in Theorem 2 and Ω

satisfies the elliptic regularity assumption. Then

‖u − uh‖0 ≤ ch(‖σ − σ h‖0,h + ‖(u − uh, γ − γ h)‖h)

holds with c > 0 independent of h. In particular, assuming that the solution (σ , u, γ ) is
sufficiently regular, this estimate with (24) will give the optimal O(hk+1) error bound for
‖u − uh‖0.

Proof Let (σ̃ , ũ, γ̃ ) be the solution of (40)–(41) for g = u − uh . Recalling the definition of
b(τ ; v, η) in (14), we have

(γ̃ − gradh ũ, τ ) = b(τ ; ũ, γ̃ ), ∀τ ∈ �h, (43)

because ũ is in H1(Ω;V). Since the variational Eq. (41) implies that − div σ̃ = u − uh , and
(σ̃ , γ − γ h) = 0 by choosing η = γ − γ h and v = 0, the integration by parts gives

‖u − uh‖20 = (− div σ̃ , u − uh) − (σ̃ , γ − γ h)

= (σ̃ , gradh(u − uh) − (γ − γ h)) −
∑

e∈Fσ

〈σ̃n, �u − uh�〉e

= −b(σ̃ ; u − uh, γ − γ h).

If we take τ = σ − σ h in (40), add it with the above equation, and use the identity (43), then
we have

−a(σ̃ , σ − σ h) − b(σ − σ h; ũ, γ̃ ) − b(σ̃ ; u − uh, γ − γ h) = ‖u − uh‖20.
By the Galerkin orthogonality, see (34) and (35), we have

−a(σ̃ − J σ̃ , σ − σ h) − b(σ − σ h; ũ − I ũ, γ̃ − K γ̃ )

−b(σ̃ − J σ̃ ; u − uh, γ − γ h) = ‖u − uh‖20. (44)

By (23) and the Cauchy–Schwarz inequality, one can have

|a(σ̃ − J σ̃ , σ − σ h)| ≤ ch‖σ̃‖1‖σ − σ h‖0 ≤ ch‖σ̃‖1‖σ − σ h‖0,h,

|b(σ − σ h; ũ − I ũ, γ̃ − K γ̃ )| ≤ ‖σ − σ h‖0,h‖(ũ − I ũ, γ̃ − K γ̃ )‖h

≤ ch‖σ − σ h‖0,h(‖γ̃ ‖1 + ‖ũ‖2), (by(32))

|b(σ̃ − J σ̃ ; u − uh, γ − γ h)| ≤ ‖σ̃ − J σ̃‖0,h‖(u − uh, γ − γ h)‖h

≤ ch‖σ̃‖1‖(u − uh, γ − γ h)‖h . (by (27))

The conclusion follows by (44), the above three estimates, and (42) with g = u − uh . ��

Finally, we remark that the numerical solution σ h is indeed symmetric. This symmetry
follows from the orthogonality between σ h and Γh , and the fact that �h and Γh are spaces
of polynomials of same degree on each element T ∈ Th .
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3.3 Robustness in Nearly Incompressible Materials and Pure Traction Boundary
Conditions

In finite element methods for linear elasticity it is known that the energy minimization
approach with standard continuous finite elements suffers from the volumetric locking for
nearly incompressible materials [8]. When the volumetric locking occurs, the constants in
error estimates may grow unboundedly as the incompressibility of the material increases. It is
known that mixed methods based on the Hellinger–Reissner formulation of linear elasticity
are locking-free [5]. We will prove that our method, which uses a variant of the Hellinger–
Reissner formulation, is locking-free as well. For the compliance tensor of the form in (2),
nearly incompressible materials have very large λ and the incompressible limit corresponds
to λ = +∞. Therefore, in order to show that a numerical scheme is free from the locking,
we need to obtain error estimates such that their involved constants are uniformly bounded
for unboundedly growing λ. Note that the error analysis in the proof of Theorem 2 is not
enough because the coercivity constant of A on L2(Ω;M) converges to 0 as λ → +∞. The
key idea of our proof is originally from [5] but there is an additional technical difficulty due
to the nonconformity of numerical stress with respect to H(div,Ω;M) because the proof in
[5] requires that numerical stresses are in H(div,Ω;M).

In the rest of this section, we assume that compliance tensors have the form in (2) and
ΛD = ∂Ω , as in [5]. Recall that we have extended compliance tensor, originally defined
only on symmetric tensors, to be defined on general tensors. This extension is not necessarily
unique. However, for simplicity, we will assume that the extended compliance tensor is of
the form (2) for τ ∈ L2(Ω;M). Before we state the main result let us introduce preliminary
results for the proof. For τ ∈ L2(Ω;M) let τ D := τ − (1/d) tr(τ )I with d , the dimension
of Euclidean space Rd . The following lemma is proved in [5].

Lemma 3 For τ ∈ L2(Ω;M) and A of the form in (2), the inequality

‖τ D‖0 ≤ c‖τ‖A (45)

holds with c depending only on μ and d, where ‖τ‖A = (Aτ , τ )1/2.

We remark that the interpolation I : H1(Ω;V) → Uh defined by (25) and (26), satisfies

−(v − Iv, divh τ ) +
∑

e∈Fu

〈v − Iv, �τn�〉e = 0, ∀τ ∈ �h, (46)

‖v − Iv‖0 ≤ ch‖v‖1. (47)

Here is the main result of the subsection.

Theorem 4 Suppose that A is of the form in (2) with positive constants λ,μ, and suppose
also that (σ , u, γ ), (σ h, uh, γ h) are solutions of (5)–(6) and (16)–(17), satisfying (18). Then

‖σ − σ h‖0 + ‖Pk−1(u − uh)‖0 + ‖γ − γ h‖0 ≤ chmin{r,k+1}(‖σ‖r + ‖γ ‖r )

for r > 1/2, holds with a constant c which is uniformly bounded as λ → +∞.

The proof of this theorem is lengthy, so we split it into two lemmas.

Lemma 4 Under the assumptions same as Theorem 4 we have

‖(σ − σ h)D‖0 + ‖Pk−1(u − uh)‖0 + ‖γ − γ h‖0 ≤ c(‖σ − Jσ‖0 + ‖γ − Kγ ‖0),
with c uniformly bounded as λ → +∞.
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Proof We begin with deriving a necessary result for the estimate of ‖(σ − σ h)D‖0. Clearly,
‖τ D‖0 ≤ c‖τ‖0 holds. Then by the triangle inequality and Lemma 3,

‖(σ − σ h)D‖0 ≤ ‖(σ − Jσ )D‖0 + ‖(Jσ − σ h)D‖0
≤ c(‖σ − Jσ‖0 + ‖Jσ − σ h‖A).

By (27) there is nothing to do for ‖σ − Jσ‖0 and the desired estimate of ‖(σ − σ h)D‖0
follows from a suitable estimate of ‖Jσ − σ h‖A.

To complete the proof we repeat the proof of Theorem 2 with some changes, and we only
explain the necessary changes because most of the steps are same. To estimate ‖Jσ − σ h‖A

we first note that

(Aτ , η) = (2μ)−1(τ , η) and (τ , η) = (τ D, η), (48)

for τ ∈ L2(Ω;M) and η ∈ L2(Ω;K), due to skew-symmetry of η. Note also that ‖ · ‖A ≤
c‖ · ‖0 holds with c > 0 independent of λ. We then claim that

‖Kγ − γ h‖0 ≤ c0(‖σ − Jσ‖0 + ‖Jσ − σ h‖A + ‖γ − Kγ ‖0), (49)

which is an analogue of (36) but with c0 independent of λ. This estimate follows easily from
(37) with the same τ by

‖Kγ − γ h‖20 = −(A(σ − σ h), τ ) − (γ − Kγ , τ )

≤ ‖σ − σ h‖A‖τ‖A + ‖γ − Kγ ‖0‖τ‖0
≤ c(‖σ − Jσ‖0 + ‖Jσ − σ h‖A + ‖γ − Kγ ‖0)‖Kγ − γ h‖0,

in whichwe used the Cauchy–Schwarz inequality with ‖·‖A and ‖·‖0, the triangle inequality,
and two facts, ‖ · ‖A ≤ c‖ · ‖0 and ‖τ‖0 ≤ c‖Kγ − γ h‖0. The equalities (39) and (48) give

‖Jσ − σ h‖2A = −(A(σ − Jσ ), Jσ − σ h)

− 2μ(γ − Kγ , A(Jσ − σ h)) − 2μ(Kγ − γ h, A(Jσ − σ )).

Young’s inequality with ‖ · ‖A norm gives

‖Jσ − σ h‖2A ≤ Cε

(‖σ − Jσ‖2A + ‖γ − Kγ ‖2A
) + ε

(‖Jσ − σ h‖2A + ‖Kγ − γ h‖2A
)
.

Using ‖ · ‖A ≤ c‖ · ‖0 and the estimate (49), and taking ε sufficiently small,

‖Jσ − σ h‖2A ≤ C ′
ε

(‖σ − Jσ‖20 + ‖γ − Kγ ‖20
) + 1

2
‖Jσ − σ h‖2A.

This leads to the desired estimate of ‖Jσ − σ h‖A. The rest of the proof is completely
analogous to that of Theorem 2, so we omit details. ��

Lemma 4 gives the L2-error estimates of u and γ in Theorem 4. We now prove the estimate
of ‖σ − σ h‖0 in Theorem 4.

Lemma 5 Under the assumptions same as Theorem 4 we have

‖σ − σ h‖0 ≤ chmin{r,k+1}(‖σ‖r + ‖γ ‖r ), r >
1

2
,

with c uniformly bounded as λ → +∞.
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Proof By the triangle inequality ‖σ − σ h‖0 ≤ ‖(σ − σ h)D‖0 + ‖ tr(σ − σ h)I‖0 and by
Lemma 4, it is enough to estimate ‖ tr(σ − σ h)‖0. If we take τ = I in (34), then

(A(σ − σ h), I) = 1

2μ + dλ

∫
Ω

tr(σ − σ h) dx = 0,

so tr(σ − σ h) is mean-value zero. It is known (see, e.g., [18]) that there is w ∈ H1
0 (Ω;V)

such that

div∗ w = tr(σ − σ h), ‖w‖1 ≤ c‖ tr(σ − σ h)‖0, (50)

where div∗ stands for the column-wise divergence for the V-valued function w. Then

‖ tr(σ − σ h)‖20 = (tr(σ − σ h), div∗ w)

= (tr(σ − σ h)I, grad w)

= d((σ − σ h) − (σ − σ h)D, grad w). (51)

By the Cauchy–Schwarz inequality and the inequality in (50),(
(σ − σ h)D, grad w

)
≤ c‖(σ − σ h)D‖0‖ tr(σ − σ h)‖0. (52)

We now claim that

(σ − σ h, grad w) ≤ chmin{r,k+1}‖σ‖r‖ tr(σ − σ h)‖0, r >
1

2
, (53)

and the proof will be completed by combining this, (52), and Lemma 4.
To prove (53), notice first that we can obtain the following from (35) using the integration

by parts and taking η = 0:

(divh(σ − σ h), v) −
∑

e∈Fu

〈�(σ − σ h)n�, v〉e = 0, ∀v ∈ Uh . (54)

By the integration by parts and (54),

(σ − σ h, grad w) = −(divh(σ − σ h), w) +
∑

e∈Fu

〈�(σ − σ h)n�, w〉e

= −(divh(σ − σ h), w − Iw) +
∑

e∈Fu

〈�(σ − σ h)n�, w − Iw〉e.

Let σ ′
h ∈ �B DM

h be the object obtained from σ by the canonical interpolation of the BDM
element of order k. Then, in the last form of the above, σ h can be replaced by σ ′

h due to (46),
and we get

(σ − σ h, grad w) = (divh(σ − σ ′
h), w − Iw). (55)

Here the jump terms disappeared because σ ′
h has no normal jump. By the integration by

parts,

(divh(σ − σ ′
h), w − Iw) = −((σ − σ ′

h), gradh(w − Iw))

+
∑

e∈Fσ

〈(σ − σ ′
h)n, �w − Iw�〉e

≤ ‖σ − σ ′
h‖0,h‖(w − Iw, 0)‖h

≤ chmin{r,k+1}‖σ‖r‖w‖1,
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where the last inequality follows by an approximation estimate of BDM interpolation [11]
and (30). Now (53) follows by (55), the above inequality, and (50). ��

As the final topic in this section, we discuss necessary modifications of our numerical
scheme for the problems with pure traction boundary conditions. For these boundary condi-
tions the space of rigid bodymotions onΩ , denoted by RM(Ω), is the kernel of the problem,
so it needs to be ruled out in the finite element spaces. More precisely, we define

�̂h = {τ ∈ �h : τn = 0 on ∂Ω},
Ûh =

{
v ∈ Uh :

∫
Ω

v · w dx = 0 for w ∈ RM(Ω)

}
.

It is easy to see that ‖ · ‖0,h in (12) is a norm on �̂h . To see that ‖(·, ·)‖h in (13) is a
norm on Ûh × Γ̂h , we only need to check that ‖(v, η)‖h = 0 for (v, η) ∈ Ûh × Γ̂h implies
that v = η = 0. If ‖(v, η)‖h = 0, then (η − gradh v)|T = 0 for all T ∈ Th , and thus
sym gradh v = 0. In other words, v|T is a rigid bodymotion on each T ∈ Th . Since �v�|e = 0
for all e ∈ Fσ due to ‖(v, η)‖h = 0, v is a rigid body motion on Ω and therefore v = 0 by
the definition of Ûh . Then η = 0 holds because ‖(0, η)‖h = 0.

4 Numerical Results

For our staggered DG method, we test a simple model problem in two dimensions with the
exact solution,

u(x, y) =
(

sin(πx) sin(πy)

x(1 − x) y(1 − y)

)
, ∀(x, y) ∈ Ω, (56)

where the computational domain Ω is the unit square, [0 1] × [0 1] ⊂ R
2.

The computational domain is divided into a conforming triangulation Mh and then each
triangle M inMh is subdivided into three small triangles to form the resulting triangulation
Th . All the finite element functions are piecewise polynomials in the triangulation Th with
partial continuity across the edges of the triangulation as described in Sect. 3.1. The order of
polynomials of approximation spaces is taken to be k = 1 in the following experiments for
simplicity.

In our experiment we test our algorithm for both structured and unstructured meshes by
decreasing the mesh size. We consider the exact solution in (56) with the material parameters
μ = 1 and λ = 1. In the structured mesh, the computational domain is divided into N × N
uniform squares and then each square is divided into two triangles to obtain the triangulation
Mh . The triangles M in Mh are then divided into three subtriangles to form the resulting
triangulation Th , see Fig. 2 for an example. In the unstructured mesh, the initial triangulation
Mh0 is refined intoMh1 by connecting the mid points of edges of each triangles M inMh0 ,
see Fig. 3. The refinement is done successively to get more refined mesh up to the level
5, Mh5 . Similarly as in Fig. 2, each triangles in Mhl are then subdivided into three small
triangles to form the resulting triangulation Thl . In the following experiments, the Dirichlet
boundary condition is imposed on the whole boundary of the computational domain.

In Table 1, errors are presented by increasing N , i.e., by decreasing themesh size h = 1/N .
We use the notations E(u) := u − uh, E(σ ) := σ − σ h, E(η) := η − ηh , and E(u, η) :=
(u − uh, η − ηh). We observe that L2-errors for u − uh, σ − σ h , and η − ηh follow the order
2 and the error ‖(u − uh, η − ηh)‖h follows the order 1, which are optimal with respect to
the given polynomial order k = 1.
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Fig. 2 Structured mesh: triangulation Mh (left) and Th (right) when N = 2
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Fig. 3 Unstructured mesh: level 0 mesh, Mh0 (left) and level 1 mesh, Mh1 (right)

Table 1 Structured mesh: convergence of errors for the approximation using P1 elements, E(u) := u −
uh , E(σ ) := σ − σ h , E(η) := η − ηh , and E(u, η) := (u − uh , η − ηh)

N ‖E(u)‖0 Order ‖E(σ )‖0 Order ‖E(η)‖0 Order ‖E(u, η)‖h Order

2 2.66e−02 – 5.62e−01 – 1.71e−01 – 1.50e−00 –

4 6.00e−03 2.14 1.60e−01 1.81 6.74e−02 1.34 7.94e−01 0.91

8 1.30e−03 2.20 4.35e−02 1.87 2.42e−02 1.47 4.02e−01 0.98

16 2.71e−04 2.26 1.15e−02 1.91 7.80e−03 1.63 2.01e−01 1.00

32 6.11e−05 2.14 2.90e−03 1.98 2.20e−03 1.82 1.00e−01 1.00

64 1.46e−05 2.06 7.42e−04 1.96 5.74e−04 1.93 5.03e−02 0.99

In Table 2, errors are presented by increasing the refinement level l in the unstructured
meshes. We also observe that L2-errors for u − uhl , σ − σ hl , and η − ηhl

follow the order
k + 1 and the errors for (u − uhl , η − ηhl

) in the discrete energy norm follow the order k.
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Table 2 Unstructured mesh: convergence of errors for the approximation using P1 elements, E(u) := u −
uhl , E(σ ) := σ − σ hl , E(η) := η − ηhl

, and E(u, η) := (u − uhl , η − ηhl
)

Level l ‖E(u)‖0 Order ‖E(σ )‖0 Order ‖E(η)‖0 Order ‖E(u, η)‖hl Order

0 2.55e−02 – 6.06e−01 – 2.03e−01 – 1.36e−00 –

1 5.40e−03 2.25 1.61e−01 1.90 6.97e−02 1.54 7.44e−01 0.87

2 1.10e−03 2.26 4.32e−02 1.89 2.31e−02 1.58 3.75e−01 0.98

3 2.43e−04 2.18 1.14e−02 1.92 7.39e−03 1.64 1.87e−01 1.00

4 5.65e−05 2.10 2.95e−03 1.94 2.16e−03 1.76 9.38e−02 1.00

5 1.36e−05 2.04 7.54e−04 1.97 5.87e−04 1.88 4.68e−02 1.00
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Fig. 4 Plot of errors with respect to the number of triangles in one direction as ν approaches the limit value
0.5

To show locking-free property of our numerical scheme,we consider amodel problemwith
the same exact solution in (56) and with the shear modulusμ = 1 and the material parameter
λ, which is determined by the given Poisson ratio ν and equation λ = 2μν/(1 − 2ν). We
compare errors for the various values of ν = 0.3, 0.49, 0.499 and the errors are plotted
in Fig. 4 with respect to the number of triangles in one direction. For the stress tensor, the
relative L2-error is calculated by using ‖σ h − σ‖0/‖ f ‖0, where f is the right hand side of
(1) for the exact solution in (56) with the given μ and λ, see also (2). The uniform meshes as
in Fig. 2 are used in our experiment. The relative L2-errors for the stress tensor follow the
growth of the second order to the size of meshes and they seem to approach the same value
as ν gets closer to the limit value 0.5. For L2-errors of displacement, as the mesh size gets
closer to zero, we can observe more reduction in the ratio of errors when ν approaches the
limit value 0.5. In other words, the slope of errors is getting steeper for decreasing the mesh
size h as ν gets closer to 0.5. Though the ‖(·, ·)‖h-norm for (uh, ηh) is not covered by our
theory, we can numerically observe the locking-free property for that case (Fig. 4).

We now consider an example with a singular solution in a non-convex domain. The
computational domain is an L-shaped domain Ω = [−1 1] × [−1 1] \ (0 1) × (0 1) ⊂ R

2

(see Fig. 5), where a model problem with the following exact solution is considered

u(x, y) = (
x2 + y2

)α
(
1
1

)
, α ≥ 0.
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Fig. 5 L-shaped domain: initial mesh Mh0 (left) and level2 mesh Mh2 (right)

Table 3 L-shaped domain with a singular solution: convergence of errors for the approximation using P1
elements, E(u) := u − uhl , E(σ ) := σ − σ hl , E(η) := η − ηhl

, and E(u, η) := (u − uhl , η − ηhl
)

Level l ‖E(u)‖0 Order ‖E(σ )‖0 Order ‖E(η)‖0 Order ‖E(u, η)‖hl Order

0 1.15e−01 – 1.45e−00 – 4.51e−01 – 1.01e−00 –

1 5.12e−02 1.77 8.93e−02 0.70 4.03e−01 0.16 8.53e−01 0.25

2 1.89e−02 1.43 5.55e−02 0.68 2.75e−01 0.55 5.87e−01 0.54

3 6.64e−03 1.51 3.48e−02 0.67 1.75e−01 0.64 3.80e−01 0.63

4 2.35e−03 1.49 2.19e−02 0.66 1.10e−01 0.66 2.42e−01 0.65

5 8.44e−04 1.46 1.38e−02 0.66 6.98e−02 0.66 1.53e−01 0.66

Here α is chosen as 1/3. With this choice of α, u is in Hr (Ω;V) for any 0 ≤ r < 2α + 1(�
1.67). Starting from the initial uniform mesh Mh0 , the refined meshes Mhl are obtained as
in Fig. 5. Numerical results are presented in Table 3 and again here the Dirichlet boundary
condition is enforced on the whole boundary of the L-shaped domain. From the results, we
observe that the errors except the L2 errors of u follow the order about 0.66 determined by
the regularity of the model problem. In addition, the L2-errors of u are observed to be about
1.4 which is affected by the limited regularity of the L-shaped domain.

As the last numerical experiment, we consider Cook’s membrane problem with the geom-
etry in Fig. 6. The left part of the boundary is clammed on the wall, a surface load in vertical
direction is enforced on the opposite right part of the boundary, and the zero surface load on
the rest part of the boundary. The body force f is zero and the Young modulus E = 2900 and
Poisson ratio ν = 0.3 are given. The deformed mesh from the Cook’s membrane problem is
plotted in Fig. 6.
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Fig. 6 Cook’s membrane problem: staggered mesh on the geometry (left) and deformed mesh (right)

Acknowledgments We are indebted to the anonymous referees for their helpful comments which signifi-
cantly improved the presentation and quality of this paper.

Appendix

In this appendix we provide some lemmas which are used in the proof of our main results.
Let Mh be a shape regular triangulation of a bounded domain Ω .
For simplicity, we use ‖ · ‖r for norms instead of ‖ · ‖r,M when it is clear that functions

are clearly defined on M .

Lemma 6 Let Ti , i = 1, ldots, d +1, be subsimplices of M ∈ Mh obtained by the barycen-
tric subdivision. For a given k ≥ 1, let

VM,k = {v ∈ H1
(

M;Rd
)

: v|Ti ∈ Pk

(
Ti ;Rd

)
for 1 ≤ i ≤ d + 1, v|∂ M = 0}, (57)

QM,k =
{

p ∈ L2(M) : p|Ti ∈ Pk(Ti ),

∫
M

p dx = 0

}
. (58)

Then there exists β > 0 independent of M ∈ Mh such that

inf
0 �=p∈QM,k

sup
0 �=w∈VM,k+1

(div w, p)

‖w‖1‖p‖0 ≥ β. (59)

Proof Note that (59) is the inf-sup condition ofmixed finite elementmethod (VM,k+1, QM,k)

for the Stokes equation, so we simply refer to appropriate literature. When d = 2 with k ≥ 3,
(59) is obtained from the stability of Scott–Vogelius elements for the Stokes equation [29].
For d = 2 with k = 1, 2, it is reported in [27]. When d = 3, it is proved in [37]. ��
Lemma 7 Suppose VM,k and QM,k are defined as in (57) and (58). Then there exists c > 0
which only depends on the shape regularity of Mh and k ≥ 1 such that, for any given
p ∈ QM,k , there exists w ∈ VM,k+1 satisfying div w = p and ‖w‖1 ≤ c‖p‖0.
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Proof Let M ∈ Mh be fixed. Note that div w ∈ QM,k for w ∈ VM,k+1, so we can regard
div as a linear map from VM,k+1 to QM,k . This div is surjective because, if not, then there
exists 0 �= p ∈ QM,k such that (div w, p) = 0 for all w ∈ VM,k+1, but it contradicts (59).
Suppose that {pi }m

i=1 is an orthonormal basis of QM,k in L2(M) and define

αi := inf
w∈VM,k+1,div w=pi

(div w, pi )

‖w‖1 , αM := min
1≤i≤m

αi . (60)

By finite dimensionality of the polynomial spaces VM,k+1 and QM,k , there exists wi ∈
VM,k+1 such that div wi = pi and ‖wi‖1 = α−1

i . Suppose that a given 0 �= p ∈ QM,k can
be expressed as p = ∑m

i=1 ci pi with coefficients ci ∈ R, 1 ≤ i ≤ m. Then ‖p‖20 = ∑m
i=1 c2i .

If we take w = ∑m
i=1 ciwi , then div w = p and

‖w‖1 ≤
m∑

i=1

|ci |‖wi‖1 =
m∑

i=1

|ci |
αi

≤
(

m∑
i=1

c2i

) 1
2
(

m∑
i=1

α−2
i

) 1
2

≤ ‖p‖0α−1
M

√
m,

by the triangle inequality, the fact ‖wi‖1 = α−1
i for 1 ≤ i ≤ m, the Cauchy-Schwarz

inequality, and the definition of αM in (60). To complete proof, note that the αi ’s in (60)
are independent of the diameter of M by standard scaling argument. By shape regularity
assumption of Mh and standard compactness argument (see, e.g., [31, Lemma3.1]), there
exists α > 0 depending only on the shape regularity ofMh and k such that α ≤ αM for any
M ∈ Mh . The proof is completed. ��

Let L = V if d = 2 and L = M if d = 3. For given k ≥ 1, we define ΞM,0 as

ΞM,0 = {
ξ ∈ H1(M;L) : ξ |Ti ∈ Pk+1(Ti ;L), 1 ≤ i ≤ d + 1, ξ |∂ M = 0

}
. (61)

We also define S and χ as

S

(
ξ1
ξ2

)
= 1

2

(
ξ1 ξ2

)
for ξ ∈ ΞM,0, χ(r) =

(
0 r

−r 0

)
for r ∈ R if d = 2,

Sξ = 1

2

(
ξ T − (tr ξ)I

)
for ξ ∈ ΞM,0, χ

⎛
⎝r1

r2
r3

⎞
⎠ =

⎛
⎝ 0 −r3 r2

r3 0 −r1
−r2 r1 0

⎞
⎠ if d = 3,

where ξ T is the transpose of ξ and I is the identity 3 × 3 matrix. Note that S and χ are
algebraic isomorphisms. One can verify by a direct computation that

skw curl ξ = χ div Sξ, ξ ∈ ΞM,0. (62)

Lemma 8 Assume that ΞM,0 is defined as in (61) for some k ≥ 1. If ζ ∈ ΞM,0, then
(curl ζ )n|∂ M = 0 for the unit normal vector field n on ∂ M.

Proof If d = 2, then curl ζ is the π/2-rotation of grad ζ . Denoting by t , the tangent vector
obtained by π/2-rotation of the normal vector n on ∂ M, (grad ζ )t = 0 on ∂ M because ζ is
vanishing on ∂ M . Then we can see that (curl ζ )n = (grad ζ )t = 0 on ∂ M .
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When d = 3, let ζi , i = 1, 2, 3, be the i-th row of ζ . It suffices to show that curl ζi · n ≡ 0
on ∂ M . By the Stokes’ theorem, for any φ ∈ C1(M),

0 =
∫

M
div (curl ζi )φ dx =

∫
∂ M

(curl ζi · n)φ ds −
∫

M
(curl ζi ) · grad φ dx

=
∫

∂ M
(curl ζi · n)φ ds +

∫
∂ M

(ζi × n) · grad φ ds −
∫

M
ζi · curl(grad φ) dx

=
∫

∂ M
(curl ζi · n)φ ds +

∫
∂ M

(ζi × n) · grad φ ds.

Since ζi ≡ 0 on ∂ M,
∫
∂ M (ζi × n) · grad φ ds = 0 and then curl ζi · n ≡ 0 on ∂ M because

φ ∈ C1(M) is arbitrary. ��
Lemma 9 For a given k ≥ 1, define ΓM,0 as

ΓM,0 =
{
η ∈ L2(M;K) : η|Ti ∈ Pk(Ti ;K), 1 ≤ i ≤ d + 1,

∫
M

η dx = 0

}
,

and recall the definition of �M,0 in (21) with same k. For any η ∈ ΓM,0 there is τ ∈ �M,0

such that div τ = 0, skw τ = η, and ‖τ‖0 ≤ c‖η‖0 with c > 0 independent of M ∈ Mh.

Proof We only prove the three dimensional case because the two dimensional one can be
proved similarly. For the given k, we consider VM,k+1, QM,k as in (57), (58), and ΞM,0

as in (61). By the definition of χ , note that χ−1η ∈ L2(M;V) for η ∈ ΓM,0 and each
component of χ−1η is in QM,k . Applying Lemma 7 to each component of χ−1η, one can
find ξ ∈ H1(M;M) such that div ξ = χ−1η, ‖ξ‖1 ≤ c‖η‖0, and each row can be identified
with an element in VM,k+1. If we set τ = curl S−1ξ , then div τ = 0 and also τ ∈ �M,0 by
Lemma 8 because S−1ξ ∈ ΞM,0. Furthermore, by (62) and the assumptions on ξ ,

skw τ = skw curl S−1ξ = χ div ξ = η,

‖τ‖0 = ‖ curl S−1ξ‖0 ≤ c‖ξ‖1 ≤ c‖η‖0.
The proof is completed. ��
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