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1 Introduction

The spectral method has gained increasing popularity in scientific computations, see [2,8,
12–15,17–19,28] and the references therein. The standard spectral method is traditionally
confined to periodic problems and problems defined on rectangular domains. However, many
practical problems are set on complex domains. We usually use finite element methods for
such problems. For obtaining accurate numerical results, we may adopt spectral method and
other high order methods, see, e.g., [3,9,16,20,24,25]. We consider second-order problems
mostly. But, it is also interesting and important to study fourth-order problems, see [4,10,
23,26,27]. Some authors proposed the spectral method for fourth-order problems defined
on rectangular domains, see [5,6,11]. We also refer to the work of [1]. Whereas, there has
been few work in the spectral method for fourth-order problems defined on non-rectangular
domains.

In this paper, we investigate the spectral method for fourth-order problems defined on
quadrilaterals.We introduce the orthogonal approximation defined on quadrilaterals, by using
an orthogonal system of irrational functions. Then, we establish the basic results on such
approximation, which play important roles in the related spectral method. As example of
applications, we provide the spectral schemes for a model problem with Dirichlet boundary
condition and mixed boundary condition respectively, and prove their spectral accuracy.
Numerical results demonstrate the high effectiveness of proposed algorithms, and confirm
the analysis well. The approximation results and the techniques developed in this paper are
also applicable to other fourth-order problems defined on quadrilaterals.

The paper is organized as follows. The next section is for preliminaries. In Sect. 3, we
study the irrational orthogonal approximation on quadrilaterals. In Sect. 4, we provide the
spectral schemes for a model problems with the convergence analysis, and present some
numerical results. The last section is for concluding remarks. The appendix is devoted to the
lifting technique.

2 Preliminaries

We first recall some results on the one-dimensional Legendre orthogonal approximation. Let
Iξ = { ξ | − 1 < ξ < 1} and χ(ξ) be a certain weight function. For integer r ≥ 0, we define
the weighted Sobolev spaces Hr

χ (Iξ ) as usual, with the semi-norm |v|r,χ,Iξ and the norm
‖v‖r,χ,Iξ . In particular, H0

χ (Iξ ) = L2
χ (Iξ ) with the inner product (u, v)χ,Iξ and the norm

‖v‖χ,Iξ . We omit the subscript χ whenever χ(ξ) ≡ 1. We denote by Ll(ξ) the Legendre
polynomial of degree l. The set of all Legendre polynomials is a complete L2(Iξ )−orthogonal
system.

Let N be any positive integer. PN (Iξ ) stands for the set of all algebraic polynomials of
degree at most N , and P0

N (Iξ ) = PN (Iξ ) ∩ H2
0 (Iξ ). Throughout this paper, we denote by c

a generic positive constant independent of any function and the mode N .
The orthogonal projection P2,0

N ,Iξ
: H2

0 (Iξ ) → P0
N (Iξ ), is defined by

(∂2ξ (P2,0
N ,Iξ

v − v), ∂2ξ φ)Iξ = 0, ∀φ ∈ P0
N (Iξ ).

Let α, β > −1. The Jacobi weight function χ(α,β)(ξ) = (1 − ξ)α(1 + ξ)β . According
to Theorem 2.5 of [22], we know that if v ∈ H2

0 (Iξ ), ∂mξ v ∈ L2
χ(m−2,m−2) (Iξ ), integers

2 ≤ m ≤ N + 1 and N ≥ 2, then
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‖∂kξ (P2,0
N ,Iξ

v − v)‖Iξ ≤ cNk−m‖∂mξ v‖χ(m−2,m−2),Iξ , k = 0, 1, 2. (2.1)

In the numerical analysis of spectral method for mixed boundary value problems, we need
other orthogonal approximations. Let

0H
2(Iξ ) = {v ∈ H2(Iξ ) | v(±1) = ∂ξ v(−1) = 0}, 0PN (Iξ ) = PN (Iξ ) ∩ 0H

2(Iξ ).

The orthogonal projection 0P2
N ,Iξ

: 0H2(Iξ ) → 0PN (Iξ ), is defined by

(∂2ξ (0P
2
N ,Iξ v − v), ∂2ξ φ)Iξ = 0, ∀φ ∈ 0PN (Iξ ).

By a slight modification of proof of Theorem 2.5 of [22], we have that if v ∈ 0H2(Iξ ), ∂mξ v ∈
L2

χ(m−2,m−2) (Iξ ), integers 2 ≤ m ≤ N + 1 and N ≥ 2, then

‖∂kξ (0P
2
N ,Iξ v − v)‖Iξ ≤ cNk−m‖∂mξ v‖χ(m−2,m−2),Iξ , k = 0, 1, 2. (2.2)

We may also let

0H2(Iξ ) = {v ∈ H2(Iξ ) | v(±1) = ∂ξ v(1) = 0}, 0PN (Iξ ) = PN (Iξ ) ∩ 0H2(Iξ ).

The orthogonal projection 0P2
N ,Iξ

: 0H2(Iξ ) → 0PN (Iξ ), is defined by

(∂2ξ (0P2
N ,Iξ v − v), ∂2ξ φ)Iξ = 0, ∀φ ∈ 0PN (Iξ ).

If v ∈ 0H2(Iξ ), ∂mξ v ∈ L2
χ(m−2,m−2) (Iξ ), integers 2 ≤ m ≤ N + 1 and N ≥ 2, then

‖∂kξ (0P2
N ,Iξ v − v)‖Iξ ≤ cNk−m‖∂mξ v‖χ(m−2,m−2),Iξ , k = 0, 1, 2. (2.3)

We now turn to the Legendre approximation on the square. Let Iη = {η | − 1 < η < 1}
and S = Iξ ⊗ Iη. For integer r ≥ 0, we define the weighted Sobolev spaces Hr

χ (S) in the
usual way, with the semi-norm |v|r,χ,S and the norm ‖v‖r,χ,S . The inner product and the norm
of L2

χ (S) are denoted by (u, v)χ,S and ||v||χ,S , respectively. We also omit the subscript χ

whenever χ(ξ) ≡ 1. Moreover, PN (S) = PN (Iξ ) ⊗PN (Iη) and P0
N (S) = PN (S) ∩ H2

0 (S).
Let d be a non-negative constant. We introduce the bilinear form

ad(u, v) = (	u,	v)S + d(u, v)S, ∀u, v ∈ H2(S).

Indeed, ||	v||S = |v|2,S for any v ∈ H2
0 (S). Moreover,

ad(u, v) = (∂2ξ u, ∂2ξ v)S + 2(∂ξ ∂ηu, ∂ξ ∂ηv)S + (∂2ηu, ∂2ηv)S + d(u, v)S, ∀u, v ∈ H2
0 (S).

The orthogonal projection P2,0
N ,S : H2

0 (S) → P0
N (S), is defined by

ad(P
2,0
N ,Sv − v, φ) = 0, ∀φ ∈ P0

N (S), (2.4)

Let χ(α,β)
1 (ξ) = (1− ξ)α(1 + ξ)β and χ

(α,β)
2 (η) = (1 − η)α(1+ η)β . For description of

approximation errors, we introduce the quantity Dr,S(v). Dr,S(v) = ‖v‖r,S for r = 2, 3. For
r ≥ 4,

Dr,S(v) = ‖∂rξ v‖
χ

(r−2,r−2)
1 ,S

+ ‖∂r−1
ξ ∂ηv‖

χ
(r−3,r−3)
1 ,S

+ ‖∂r−2
ξ ∂2ηv‖

χ
(r−4,r−4)
1 ,S

+‖∂rηv‖
χ

(r−2,r−2)
2 ,S

+ ‖∂ξ ∂
r−1
η v‖

χ
(r−3,r−3)
2 ,S

+ ‖∂2ξ ∂r−2
η v‖

χ
(r−4,r−4)
2 ,S

.
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Theorem 2.1 If v ∈ H2
0 (S) and Dr,S(v) is finite for integers 2 ≤ r ≤ N + 1 and N ≥ 2,

then

‖P2,0
N ,Sv − v‖μ,S ≤ cNμ−r Dr,S(v), μ = 0, 1, 2. (2.5)

Proof Let φ = P2,0
N ,Iξ

(P2,0
N ,Iη

v) = P2,0
N ,Iη

(P2,0
N ,Iξ

v) ∈ P0
N (S). We use projection theorem to

obtain

|P2,0
N ,Sv − v|2,S + d||P2,0

N ,Sv − v||S ≤ |φ − v|2,S + d||φ − v||S . (2.6)

Clearly,

‖∂k1ξ ∂k2η (φ − v)‖S ≤ F1(v) + F2(v) + F3(v), (2.7)

with

F1(v) = ‖∂k1ξ (P2,0
N ,Iξ

∂k2η (P2,0
N ,Iη

v − v) − ∂k2η (P2,0
N ,Iη

v − v))‖S,
F2(v) = ‖∂k1ξ ∂k2η (P2,0

N ,Iξ
v − v)‖S, F3(v) = ‖∂k1ξ ∂k2η (P2,0

N ,Iη
v − v)‖S .

Also, we have

‖∂k1ξ ∂k2η (φ − v)‖S ≤ ˜F1(v) + F2(v) + F3(v),

with

˜F1(v) = ‖∂k2η (P2,0
N ,Iη

∂
k1
ξ (P2,0

N ,Iξ
v − v) − ∂

k1
ξ (P2,0

N ,Iξ
v − v))‖S .

We use (2.1) with k = k1 and m = 2, and (2.1) with k = k2 and m = r − 2 successively, to
derive that for r ≥ 4,

F1(v) ≤ cNk1−2‖∂2ξ ∂k2η (P2,0
N ,Iη

v − v)‖S ≤ cNk1+k2−r‖∂2ξ ∂r−2
η v‖

χ
(r−4,r−4)
2 ,S

.

Similarly,

˜F1(v) ≤ cNk1+k2−r‖∂r−2
ξ ∂2ηv‖

χ
(r−4,r−4)
1 ,S

.

Next, we use (2.1) with k = k1 and m = r − k2 to obtain

F2(v) ≤ cNk1+k2−r‖∂r−k2
ξ ∂k2η v‖

χ
(r−k2−2,r−k2−2)
1 ,S

.

Also, thanks to (2.1) with k = k2 and m = r − k1, we have

F3(v) ≤ cNk1+k2−r‖∂k1ξ ∂r−k1
η v‖

χ
(r−k1−2,r−k1−2)
2 ,S

.

The previous statements, together with (2.7), lead to that

‖∂2ξ (P2,0
N ,Iξ

(P2,0
N ,Iη

v) − v)‖S ≤ cN 2−r
(

‖∂2ξ ∂r−2
η v‖

χ
(r−4,r−4)
2 ,S

+ ‖∂r−2
ξ ∂2ηv‖

χ
(r−4,r−4)
1 ,S

+‖∂rξ v‖
χ

(r−2,r−2)
1 ,S

+ ‖∂2ξ ∂r−2
η v‖

χ
(r−4,r−4)
2 ,S

)

,

‖∂2η (P2,0
N ,Iξ

(P2,0
N ,Iη

v) − v)‖S ≤ cN 2−r
(

‖∂2ξ ∂r−2
η v‖

χ
(r−4,r−4)
2 ,S

+ ‖∂r−2
ξ ∂2ηv‖

χ
(r−4,r−4)
1 ,S

+‖∂r−2
ξ ∂2ηv‖

χ
(r−4,r−4)
1 ,S

+ ‖∂rηv‖
χ

(r−2,r−2)
2 ,S

)

,
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‖∂ξ ∂η(P
2,0
N ,Iξ

(P2,0
N ,Iη

v) − v)‖S ≤ cN 2−r
(

‖∂2ξ ∂r−2
η v‖

χ
(r−4,r−4)
2 ,S

+ ‖∂r−2
ξ ∂2ηv‖

χ
(r−4,r−4)
1 ,S

+‖∂r−1
ξ ∂ηv‖

χ
(r−3,r−3)
1 ,S

+ ‖∂ξ ∂
r−1
η v‖

χ
(r−3,r−3)
2 ,S

)

,

‖P2,0
N ,Iξ

(P2,0
N ,Iη

v) − v‖S ≤ cN−r
(

‖∂2ξ ∂r−2
η v‖

χ
(r−4,r−4)
2 ,S

+ ‖∂r−2
ξ ∂2ηv‖

χ
(r−4,r−4)
1 ,S

+‖∂rξ v‖
χ

(r−2,r−2)
1 ,S

+ ‖∂rηv‖
χ

(r−2,r−2)
2 ,S

)

.

Then the result (2.5) with μ = 2 and r ≥ 4 comes from (2.6) and the Poincaré inequality.
In order to derive the result (2.5) withμ = 2 and r = 2, 3, we should use the interpolation

of operators, as described in Brenner and Scott [7]. To do this, we define the linear operator
L, which maps v to the error P2,0

N ,Sv − v. In other words, Lv = P2,0
N ,Sv − v. Clearly, L maps

H2
0 (S) to H2

0 (S), with the norm

‖L‖H2
0 (S)→H2

0 (S) ≤ c. (2.8)

On the other hand, by virtue of (2.5) with μ = 2 and r = 4, we obtain

‖P2,0
N ,Sv − v‖H2

0 (S) ≤ cN−2D4,S(v) ≤ cN−2||v||H4(S)∩H2
0 (S).

It means that L maps H4(S) ∩ H2
0 (S) to H2

0 (S), with the norm

||L||H4(S)∩H2
0 (S)→H2

0 (S) ≤ cN−2. (2.9)

As is well known, the space H3(S) ∩ H2
0 (S) is the interpolation between the spaces H2

0 (S)

and H4(S) ∩ H2
0 (S), see page 14 of [13]. Thus, the operator L mapping H3(S) ∩ H2

0 (S) to
H2
0 (S) could be regarded as an interpolation between the operator mapping H2

0 (S) to H2
0 (S)

and the operator mapping H4(S) ∩ H2
0 (S) to H2

0 (S). Accordingly, by virtue of Proposition
14.1.5 with θ = 1

2 and p = 2 of [7], we have

‖L‖H3(S)∩H2
0 (S)→H2

0 (S) ≤ ‖L‖
1
2

H2
0 (S)→H2

0 (S)
‖L||

1
2

H4(S)∩H2
0 (S)→H2

0 (S)
.

This, along with (2.8) and (2.9), leads to ‖L‖H3(S)∩H2
0 (S)→H2

0 (S) ≤ cN−1. A combination of
the previous statements implies the validity of the desired result (2.5) with μ = 2 and r ≥ 2.

We now derive the result (2.5) with μ = 0. Let g ∈ L2(S) and consider an auxiliary
problem. It is to find w ∈ H2

0 (S) such that

ad(w, z) = (g, z)S, ∀z ∈ H2
0 (S). (2.10)

Taking z = w in (2.10) and using the Poincaré inequality, we obtain ‖w‖2,S ≤ c‖g‖S . Due
to the property of elliptic equation, we have ‖w‖4,S ≤ c‖g‖S . Thereby, using (2.5) with
μ = 2 yields that

‖P2,0
N ,Sw − w‖2,S ≤ cN−2D4,S(w) ≤ cN−2‖w‖4,S ≤ cN−2‖g‖S . (2.11)

Now, by taking z = P2,0
N ,Sv − v in (2.10), we use (2.5) with μ = 2, (2.11) and the Poincaré

inequality to verify that

|(P2,0
N ,Sv − v, g)S | = |ad(P2,0

N ,Sv − v, P2,0
N ,Sw − w)|

≤ c|P2,0
N ,Sv − v|2,S |P2,0

N ,Sw − w|2,S ≤ cN−r Dr,S(v)||g||S .
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Consequently,

‖P2,0
N ,Sv − v‖S = sup

g∈L2(S),g �=0

|(P2,0
N ,Sv − v, g)S |

||g||S ≤ cN−r Dr,S(v).

Finally, we use the interpolation of spaces, together with the results (2.5) with μ = 0, 2, to
deduce that ‖P2,0

N ,Sv − v‖1,S ≤ cN 1−r Dr,S(v). The proof is completed. �

In the numerical analysis of spectral method formixed boundary value problems of fourth-
order, we need other orthogonal approximations. For instance, let ∂∗∗S = {(ξ, η) | ξ =
1 or η = −1}, and ∂nv(ξ, η) be the normal derivative of v(ξ, η) on the boundary of S. We
set

0H2(S) = H2(S) ∩ {v | v(−1, η) = v(ξ, 1) = 0}, 0PN (S) = 0H2(S) ∩ PN (S).

Let d, β ≥ 0, and

ad,β(u, v) = (	u,	v)S + d(u, v)S + β

∫

∂∗∗S
∂nu∂nvds, ∀u, v ∈ H2(S). (2.12)

It can be shown that ||	v||S = |v|2,S for any v ∈ 0H2(S). Moreover,

ad,β(u, v) = (∂2ξ u, ∂2ξ v)S + 2(∂ξ ∂ηu, ∂ξ ∂ηv)S + (∂2ηu, ∂2ηv)S

+ d(u, v)S + β

∫

∂∗∗S
∂nu∂nvds, ∀u, v ∈ 0H2(S).

The orthogonal projection 0P2
N ,S : 0H2(S) → 0PN (S), is defined by

ad,β(0P2
N ,Sv − v, φ) = 0, ∀φ ∈ 0PN (S). (2.13)

With the aid of (2.2) and (2.3), we could follow the same line as in the proof of Theorem 2.1
to reach the following result.

Theorem 2.2 If v ∈ 0H2(S) and Dr,S(v) is finite for integers 2 ≤ r ≤ N + 1 and N ≥ 2,
then

‖0P2
N ,Sv − v‖μ,S ≤ cNμ−r Dr,S(v), μ = 0, 1, 2. (2.14)

3 Legendre Orthogonal Approximation on Quadrilaterals

In this section, we consider the Legendre irrational quasi-orthogonal approximations on
quadrilaterals.

3.1 Some Praperations

Let � be a convex quadrilateral with the edges Li , the vertices Qi = (xi , yi ), and the angles
θi , 1 ≤ i ≤ 4, see Fig. 1. We make the following variable transformation

x = a0 + a1ξ + a2η + a3ξη, y = b0 + b1ξ + b2η + b3ξη (3.1)
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Fig. 1 Quadrilateral �
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where

a0 = 1

4
(x1 + x2 + x3 + x4), b0 = 1

4
(y1 + y2 + y3 + y4),

a1 = 1

4
(−x1 + x2 + x3 − x4), b1 = 1

4
(−y1 + y2 + y3 − y4),

a2 = 1

4
(−x1 − x2 + x3 + x4), b2 = 1

4
(−y1 − y2 + y3 + y4),

a3 = 1

4
(x1 − x2 + x3 − x4), b3 = 1

4
(y1 − y2 + y3 − y4). (3.2)

Then, the quadrilateral � is changed to the reference square S as in the last section. The
Jacobi matrix of transformation (3.1) is as follows,

M� =
(

∂ξ x ∂ξ y

∂ηx ∂ηy

)

=
(

a1 + a3η b1 + b3η

a2 + a3ξ b2 + b3ξ

)

. (3.3)

Its Jacobian determinant is

J�(ξ, η) =
∣

∣

∣

∣

∣

a1 + a3η b1 + b3η

a2 + a3ξ b2 + b3ξ

∣

∣

∣

∣

∣

= (a1 + a3η)(b2 + b3ξ) − (b1 + b3η)(a2 + a3ξ). (3.4)

Due to the convexity of �, there exist positive constants δ� and δ∗
�, such that

0 < δ� ≤ J�(ξ, η) ≤ δ∗
�. (3.5)

The inverse of transformation (3.1) is given by ξ = ξ(x, y) and η = η(x, y). Their explicit
expressions were given in Appendix of [16], which are irrational functions generally. The
Jacobi matrix of the above inverse transformation is

MS = M−1
� =

(

∂xξ ∂xη

∂yξ ∂yη

)

= 1

J�(ξ, η)

(

b2 + b3ξ −b1 − b3η

−a2 − a3ξ a1 + a3η

)

. (3.6)

Thanks to (3.5), we have

0 <
1

δ∗
�

≤ JS(x, y) = J−1
� (ξ, η) ≤ 1

δ�

. (3.7)
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Let x5 = x1 and y5 = y1. We set

σ� = max
(ξ,η)∈S(|b2 + b3ξ |, |b1 + b3η|, |a2 + a3ξ |, |a1 + a3η|)

= 1

2
max
1≤ j≤4

(|x j − x j+1|, |y j − y j+1|). (3.8)

Due to (3.2), we have (see [16])

γ� = max
1≤i≤3

(|ai |, |bi |) ≤ σ�. (3.9)

On the other hand, thanks to the Poincaré inequality, there exists a positive constant c�

such that

||v||� ≤ c�||v||1,�, ∀v ∈ H1
0 (�). (3.10)

Let d be a non-negative constant as before. By virtue of the property of elliptic equation,
there exists a positive constant η� such that

‖v‖4,� ≤ η�‖	2v + dv‖�. ∀v ∈ H2
0 (�). (3.11)

3.2 Legendre Irrational Orthogonal Approximation in H2
0 (�)

For any integer r ≥ 0, we define the weighted Sobolev spaces Hr
χ (�) as usual, with the

semi-norm |v|r,χ,� and the norm ‖v‖r,χ,�. The inner product and the norm of L2
χ (�) are

denoted by (u, v)χ,� and ||v||χ,�, respectively.We omit the subscript χ whenever χ(ξ) ≡ 1.
We shall use the following family of irrational functions given in [16],

ψl,m(x, y) = Ll
(

ξ(x, y)
)

Lm
(

η(x, y)
)

, l,m ≥ 0,

which are mutually orthogonal with the weight function J−1
� (ξ(x, y), η(x, y)). Moreover,

VN (�) = Span{ψl,m(x, y) | 0 ≤ l,m ≤ N }, V 0
N (�) = H2

0 (�) ∩ VN (�).

We introduce the bilinear form with d ≥ 0,

ad(u, v) = (	u,	v)� + d(u, v)�, ∀u, v ∈ H2(�). (3.12)

The orthogonal projection P2,0
N ,� : H2

0 (�) → V 0
N (�), is defined by

ad(P
2,0
N ,�v − v, φ) = 0, ∀φ ∈ V 0

N (�). (3.13)

For description of approximation error, we shall use the quantity Br,�(v). Br,�(v) =
δ
− 1

2
�

∑r
j=1 σ

j
�|v| j,� for r = 2, 3. Meanwhile Br,�(v) = ∑5

j=1 B
( j)
r,�(v) for r ≥ 4, with

B(1)
r,�(v) = δ

− 1
2

� σ r
�

r
∑

j=0

(||(1 − ξ2)
r−2
2 ∂

j
x ∂

r− j
y v||� + ||(1 − η2)

r−2
2 ∂

j
x ∂

r− j
y v||�),

B(2)
r,�(v) = δ

− 1
2

� σ r
�

r−1
∑

j=0

(||(1 − ξ2)
r−3
2 ∂

j+1
x ∂

r−1− j
y v||� + ||(1 − ξ2)

r−3
2 ∂

j
x ∂

r− j
y v||�)

+ δ
− 1

2
� σ r−1

�

r−2
∑

j=0

(||(1 − ξ2)
r−3
2 ∂

j+1
x ∂

r−2− j
y v||� + ||(1 − ξ2)

r−3
2 ∂

j
x ∂

r−1− j
y v||�),
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B(3)
r,�(v) = δ

− 1
2

� σ r
�

r−1
∑

j=0

(||(1 − η2)
r−3
2 ∂

j+1
x ∂

r−1− j
y v||� + ||(1 − η2)

r−3
2 ∂

j
x ∂

r− j
y u||�)

+ δ
− 1

2
� σ r−1

�

r−2
∑

j=0

(||(1 − η2)
r−3
2 ∂

j+1
x ∂

r−2− j
y v||� + ||(1 − η2)

r−3
2 ∂

j
x ∂

r−1− j
y v||�),

B(4)
r,�(v) = δ

− 1
2

� σ r
�

r−2
∑

j=0

(||(1 − ξ2)
r−4
2 ∂

j+2
x ∂

r−2− j
y v||� + ||(1 − ξ2)

r−4
2 ∂

j+1
x ∂

r−1− j
y v||�

+ ||(1 − ξ2)
r−4
2 ∂

j
x ∂

r− j
y v||�)

+ δ
− 1

2
� σ r−1

�

r−3
∑

j=0

(||(1 − ξ2)
r−4
2 ∂

j+2
x ∂

r−3− j
y v||� + ||(1 − ξ2)

r−4
2 ∂

j+1
x ∂

r−2− j
y v||�

+ ||(1 − ξ2)
r−4
2 ∂

j
x ∂

r−1− j
y v||�)

+ δ
− 1

2
� σ r−2

�

r−4
∑

j=0

(||(1 − ξ2)
r−4
2 ∂

j+2
x ∂

r−4− j
y v||� + ||(1 − ξ2)

r−4
2 ∂

j+1
x ∂

r−3− j
y v||�

+ ||(1 − ξ2)
r−4
2 ∂

j
x ∂

r−2− j
y v||�),

B(5)
r,�(v) = δ

− 1
2

� σ r
�

r−2
∑

j=0

(||(1 − η2)
r−4
2 ∂

j+2
x ∂

r−2− j
y v||� + ||(1 − η2)

r−4
2 ∂

j+1
x ∂

r−1− j
y v||�

+ ||(1 − η2)
r−4
2 ∂

j
x ∂

r− j
y v||�)

+ δ
− 1

2
� σ r−1

�

r−3
∑

j=0

(||(1 − η2)
r−4
2 ∂

j+2
x ∂

r−3− j
y v||� + ||(1 − η2)

r−4
2 ∂

j+1
x ∂

r−2− j
y v||�

+ ||(1 − η2)
r−4
2 ∂

j
x ∂

r−1− j
y v||�)

+ δ
− 1

2
� σ r−2

�

r−4
∑

j=0

(||(1 − η2)
r−4
2 ∂

j+2
x ∂

r−4− j
y v||� + ||(1 − η2)

r−4
2 ∂

j+1
x ∂

r−3− j
y v||�

+ ||(1 − η2)
r−4
2 ∂

j
x ∂

r−2− j
y v||�).

For notational convenience, we also set

C0,� = η�σ 4
�δ

− 7
2

� (1 + σ 2
�δ−1

� N−1)2(1 + dc2�)3(σ� + 1)4,

C1,� = η
1
2
�σ 3

�δ
− 5

2
� (1 + σ 2

�δ−1
� N−1)

3
2 (1 + dc2�)2(σ� + 1)2(1 + c�),

C2,� = σ 2
�δ

− 3
2

� (1 + σ 2
�δ−1

� N−1)(1 + dc2�)(1 + c�)2.

Theorem 3.1 If v ∈ H2
0 (�) and Br,�(v) is finite for integer 2 ≤ r ≤ N + 1 and N ≥ 2,

then

||P2,0
N ,�v − v||μ,� ≤ cCμ,�Nμ−r Br,�(v), μ = 0, 1, 2. (3.14)

Proof For any v ∈ H2
0 (�), we set u(ξ, η) = v(x(ξ, η), y(ξ, η)) ∈ H2

0 (S). Let

ψ(ξ, η) = P2,0
N ,Su(ξ, η), φ(x, y) = ψ(ξ(x, y), η(x, y)). (3.15)
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Since φ ∈ V 0
N (�), we use projection theorem and (3.10) to obtain that

|P2,0
N ,Sv − v|2,� + d||P2,0

N ,Sv − v||� ≤ |φ − v|2,� + d||φ − v||�
≤ (1 + dc2�)|φ − v|2,�. (3.16)

For estimating the right side of (3.16), we need some preparations. Firstly, a direct calcu-
lation shows that

∂xv = ∂ξu∂xξ + ∂ηu∂xη, ∂yv = ∂ξu∂yξ + ∂ηu∂yη,

∂2x v = ∂2ξ u(∂xξ)2 + 2∂ξ ∂ηu∂xξ∂xη + ∂2ηu(∂xη)2 + ∂ξu∂2x ξ + ∂ηu∂2x η,

∂2yv = ∂2ξ u(∂yξ)2 + 2∂ξ ∂ηu∂yξ∂yη + ∂2ηu(∂yη)2 + ∂ξu∂2y ξ + ∂ηu∂2yη, (3.17)

∂x∂yv = ∂2ξ u∂xξ∂yξ + ∂ξ ∂ηu∂xξ∂yη + ∂ξ ∂ηu∂yξ∂xη + ∂2ηu∂xη∂yη + ∂ξu∂x∂yξ

+ ∂ηu∂x∂yη.

Next, by virtue of (3.6), we have that

∂xξ = J−1
� (ξ, η)(b2 + b3ξ), ∂yξ = −J−1

� (ξ, η)(a2 + a3ξ),

∂xη = −J−1
� (ξ, η)(b1 + b3η), ∂yη = J−1

� (ξ, η)(a1 + a3η).
(3.18)

Thanks to (3.4), we have ∂ξ J�(ξ, η) = a1b3 − a3b1 and ∂η J�(ξ, η) = a3b2 − a2b3. Thus,

∂x J�(ξ, η) = J−1
� (ξ, η)((a1b3 − a3b1)(b2 + b3ξ) − (a3b2 − a2b3)(b1 + b3η)),

∂y J�(ξ, η) = −J−1
� (ξ, η)((a1b3 − a3b1)(a2 + a3ξ) − (a3b2 − a2b3)(a1 + a3η)).

The above facts lead to that

∂2x ξ = 2J−3
� (ξ, η)(b1 + b3η)(b2 + b3ξ)(a3b2 − a2b3),

∂2x η = 2J−3
� (ξ, η)(b1 + b3η)(b2 + b3ξ)(a1b3 − a3b1),

∂2y ξ = 2J−3
� (ξ, η)(a1 + a3η)(a2 + a3ξ)(a3b2 − a2b3),

∂2yη = 2J−3
� (ξ, η)(a1 + a3η)(a2 + a3ξ)(a1b3 − a3b1),

∂x∂yξ = J−3
� (ξ, η)((a1 + a3η)(b2 + b3ξ) + (b1 + b3η)(a2 + a3ξ))(a2b3 − a3b2),

∂x∂yη = J−3
� (ξ, η)((a1 + a3η)(b2 + b3ξ) + (b1 + b3η)(a2 + a3ξ))(a3b1 − a1b3).

(3.19)

Accordingly, we use (3.15) and (3.17)–(3.19) to deduce that

∂2x (φ − v) = ∂2ξ (ψ − u)(∂xξ)2 + ∂2η (ψ − u)(∂xη)2 + 2∂ξ ∂η(ψ − u)∂xξ∂xη

+ ∂ξ (ψ − u)∂2x ξ + ∂η(ψ − u)∂2x η

= J−2
� (ξ, η)(b2 + b3ξ)2∂2ξ (ψ − u) + J−2

� (ξ, η)(b1 + b3η)2∂2η (ψ − u)

− 2J−2
� (ξ, η)(b2 + b3ξ)(b1 + b3η)∂ξ ∂η(ψ − u)

+ 2J−3
� (ξ, η)(b1 + b3η)(b2 + b3ξ)(a3b2 − a2b3)∂ξ (ψ − u)

+ 2J−3
� (ξ, η)(b1 + b3η)(b2 + b3ξ)(a1b3 − a3b1)∂η(ψ − u).

The above equality, together with (3.7)- (3.9), leads to

‖∂2x (φ − v)‖2� ≤ cσ 4
�δ−3

� (‖∂2ξ (ψ − u)‖2S + ‖∂2η (ψ − u)‖2S + ‖∂ξ ∂η(ψ − u)‖2S)
+ cσ 8

�δ−5
� (‖∂ξ (ψ − u)‖2S + ‖∂η(ψ − u)‖2S).
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We can estimate ‖∂2x (φ − v)‖2 and ‖∂x∂y(φ − v)‖2 in the same manner. Consequently, we
use (3.16) and Theorem 2.1 to reach that

|P2,0
N ,�v − v|2,� ≤ cσ 2

�δ
− 3

2
� (1 + dc2�)(|P2,0

N ,Su − u|2,S + σ 2
�δ−1

� |P2,0
N ,Su − u|1,S)

≤ cσ 2
�δ

− 3
2

� (1 + σ 2
�δ−1

� N−1)(1 + dc2�)N 2−r Dr,S(u). (3.20)

We next estimate the up-bound of Dr,S(v). By (3.13) and (3.14) of [24], we know that

∂rξ u =
r

∑

j=0

C j
r (a1 + a3η) j (b1 + b3η)r− j∂

j
x ∂

r− j
y v,

∂rηu =
r

∑

j=0

C j
r (a2 + a3ξ) j (b2 + b3ξ)r− j∂

j
x ∂

r− j
y v.

(3.21)

Furthermore, we have from (3.3) that

∂ξ x = a1 + a3η, ∂ηx = a2 + a3ξ, ∂ξ y = b1 + b3η, ∂ηy = b2 + b3ξ.

Thereby, we differentiate the two equalities of (3.21) to obtain that

∂r−1
ξ ∂ηu =

r−1
∑

j=0

C j
r−1(a1 + a3η) j (b1 + b3η)r−1− j ((a2 + a3ξ)∂

j+1
x ∂

r−1− j
y v

+ (b2 + b3ξ)∂
j
x ∂

r− j
y v)

+ (r − 1)
r−2
∑

j=0

C j
r−2(a1 + a3η) j (b1 + b3η)r−2− j (a3∂

j+1
x ∂

r−2− j
y v

+ b3∂
j
x ∂

r−1− j
y v),

∂ξ ∂
r−1
η u =

r−1
∑

j=0

C j
r−1(a2 + a3ξ) j (b2 + b3ξ)r−1− j ((a1 + a3η)∂

j+1
x ∂

r−1− j
y v

+ (b1 + b3η)∂
j
x ∂

r− j
y v)

+ (r−1)
r−2
∑

j=0

C j
r−2(a2+a3ξ) j (b2+b3ξ)r−2− j (a3∂

j+1
x ∂

r−2− j
y v+b3∂

j
x ∂

r−1− j
y v).

(3.22)

Similarly, we derive that

∂r−2
ξ ∂2ηu =

r−2
∑

j=0

C j
r−2(a1 + a3η) j (b1 + b3η)r−2− j ((a2 + a3ξ)2∂

j+2
x ∂

r−2− j
y v

+ 2(a2 + a3ξ)(b2 + b3ξ)∂
j+1
x ∂

r−1− j
y v + (b2 + b3ξ)2∂

j
x ∂

r− j
y v)

+ 2(r − 2)
r−3
∑

j=0

C j
r−3(a1 + a3η) j (b1 + b3η)r−3− j (a3(a2 + a3ξ)∂

j+2
x ∂

r−3− j
y v
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+ (a3b2 + a2b3 + 2a3b3ξ)∂
j+1
x ∂

r−2− j
y v + b3(b2 + b3ξ)∂

j
x ∂

r−1− j
y v)

+ (r − 2)(r − 3)
r−4
∑

j=0

C j
r−4(a1 + a3η) j (b1 + b3η)r−4− j

· (a23∂ j+2
x ∂

r−4− j
y v + 2a3b3∂

j+1
x ∂

r−3− j
y v + b23∂

j
x ∂

r−2− j
y v),

∂2ξ ∂r−2
η u =

r−2
∑

j=0

C j
r−2(a2 + a3ξ) j (b2 + b3ξ)r−2− j ((a1 + a3η)2∂

j+2
x ∂

r−2− j
y v

+ 2(a1 + a3η)(b1 + b3η)∂
j+1
x ∂

r−1− j
y v + (b1 + b3η)2∂

j
x ∂

r− j
y v)

+ 2(r − 2)
r−3
∑

j=0

C j
r−3(a2 + a3ξ) j (b2 + b3ξ)r−3− j (a3(a1 + a3η)∂

j+2
x ∂

r−3− j
y v

+ (a3b1 + a1b3 + 2a3b3η)∂
j+1
x ∂

r−2− j
y v + b3(b1 + b3η)∂

j
x ∂

r−1− j
y v)

+ (r − 2)(r − 3)
r−4
∑

j=0

C j
r−4(a2 + a3ξ) j (b2 + b3ξ)r−4− j

· (a23∂ j+2
x ∂

r−4− j
y v + a3b3∂

j+1
x ∂

r−3− j
y v + b23∂

j
x ∂

r−2− j
y v). (3.23)

Now, we use (3.21) and (3.7)–(3.9) to verify that

‖∂rξ u‖
χ

(r−2,r−2)
1 ,S

≤ cδ
− 1

2
� σ r

�

r
∑

j=0

||(1 − ξ2)
r−2
2 ∂

j
x ∂

r− j
y v||�,

‖∂rηu‖
χ

(r−2,r−2)
2 ,S

≤ cδ
− 1

2
� σ r

�

r
∑

j=0

||(1 − η2)
r−2
2 ∂

j
x ∂

r− j
y v||�.

(3.24)

Next, we use (3.22) and (3.7)–(3.9) to derive that

‖∂r−1
ξ ∂ηu‖

χ
(r−3,r−3)
1 ,S

≤ cδ
− 1

2
� σ r

�

r−1
∑

j=0

(||(1 − ξ2)
r−3
2 ∂

j+1
x ∂

r−1− j
y v||� + ||(1 − ξ2)

r−3
2 ∂

j
x ∂

r− j
y v||�)

+ cδ
− 1

2
� σ r−1

�

r−2
∑

j=0

(||(1 − ξ2)
r−3
2 ∂

j+1
x ∂

r−2− j
y v||� + ||(1 − ξ2)

r−3
2 ∂

j
x ∂

r−1− j
y v||�),

‖∂ξ ∂
r−1
η u‖

χ
(r−3,r−3)
2 ,S

≤ cδ
− 1

2
� σ r

�

r−1
∑

j=0

(||(1 − η2)
r−3
2 ∂

j+1
x ∂

r−1− j
y v||� + ||(1 − η2)

r−3
2 ∂

j
x ∂

r− j
y v||�)

+ cδ
− 1

2
� σ r−1

�

r−2
∑

j=0

(||(1 − η2)
r−3
2 ∂

j+1
x ∂

r−2− j
y v||� + ||(1 − η2)

r−3
2 ∂

j
x ∂

r−1− j
y v||�),

(3.25)
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Similarly, we use (3.23) and (3.7)–(3.9) to obtain that

‖∂r−2
ξ ∂2ηu‖

χ
(r−4,r−4)
1 ,S

≤ cδ
− 1

2
� σ r

�

r−2
∑

j=0

(||(1 − ξ2)
r−4
2 ∂

j+2
x ∂

r−2− j
y v||�

+ ||(1 − ξ2)
r−4
2 ∂

j+1
x ∂

r−1− j
y v||� + ||(1 − ξ2)

r−4
2 ∂

j
x ∂

r− j
y v||�)

+ cδ
− 1

2
� σ r−1

�

r−3
∑

j=0

(||(1 − ξ2)
r−4
2 ∂

j+2
x ∂

r−3− j
y v||�

+ ||(1 − ξ2)
r−4
2 ∂

j+1
x ∂

r−2− j
y v||� + ||(1 − ξ2)

r−4
2 ∂

j
x ∂

r−1− j
y v||�)

+ cδ
− 1

2
� σ r−2

�

r−4
∑

j=0

(||(1 − ξ2)
r−4
2 ∂

j+2
x ∂

r−4− j
y v||�

+ ||(1 − ξ2)
r−4
2 ∂

j+1
x ∂

r−3− j
y v||� + ||(1 − ξ2)

r−4
2 ∂

j
x ∂

r−2− j
y v||�),

‖∂2ξ ∂r−2
η u‖

χ
(r−4,r−4)
2 ,S

≤ cδ
− 1

2
� σ r

�

r−2
∑

j=0

(||(1 − η2)
r−4
2 ∂

j+2
x ∂

r−2− j
y v||�

+ ||(1 − η2)
r−4
2 ∂

j+1
x ∂

r−1− j
y v||� + ||(1 − η2)

r−4
2 ∂

j
x ∂

r− j
y v||�)

+ cδ
− 1

2
� σ r−1

�

r−3
∑

j=0

(||(1 − η2)
r−4
2 ∂

j+2
x ∂

r−3− j
y v||�

+ ||(1 − η2)
r−4
2 ∂

j+1
x ∂

r−2− j
y v||� + ||(1 − η2)

r−4
2 ∂

j
x ∂

r−1− j
y v||�)

+ cδ
− 1

2
� σ r−2

�

r−4
∑

j=0

(||(1 − η2)
r−4
2 ∂

j+2
x ∂

r−4− j
y v||�

+ ||(1 − η2)
r−4
2 ∂

j+1
x ∂

r−3− j
y v||� + ||(1 − η2)

r−4
2 ∂

j
x ∂

r−2− j
y v||�).

(3.26)

A combination of (3.24)–(3.26) implies

Dr,S(u) ≤ cBr,�(v), r ≥ 4. (3.27)

Moreover, according to the definitions of Dr,S(u) and Br,�(v), we use (3.21)–(3.23) to find
that the inequality (3.27) is also valid for r = 2, 3. Consequently, we use (3.20) and (3.10)
to reach that for r ≥ 2,

||P2,0
N ,�v − v||2,� ≤ (1 + c�)2|P2,0

N ,�v − v|2,�
≤ cσ 2

�δ
− 3

2
� (1 + σ 2

�δ−1
� N−1)(1 + dc2�)(1 + c�)2N 2−r Br,�(v). (3.28)

This is the desired result (3.14) with μ = 2.
We are now in position of deriving the optimal estimate for ||P2,0

N ,�v−v||�. Let g ∈ L2(�)

and consider an auxiliary problem. It is to find w ∈ H2
0 (�) such that

ad(w, z) = (g, z)�, ∀z ∈ H2
0 (�). (3.29)
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By taking z = P2,0
N ,�v − v in (3.29), we use (3.13), (3.10) and the second equality of (3.28)

successively to verify that

|(P2,0
N ,�v − v, g)| = |ad(w, P2,0

N ,�v − v)| = |ad(P2,0
N ,�w − w, P2,0

N ,�v − v)|
≤ |P2,0

N ,�v − v|2,�|P2,0
N ,�w − w|2,� + d||P2,0

N ,�v − v||�||P2,0
N ,�w − w||�

≤ c(1 + dc2�)|P2,0
N ,�v − v|2,�|P2,0

N ,�w − w|2,�
≤ cσ 4

�δ−3
� (1 + σ 2

�δ−1
� N−1)2(1 + dc2�)3N−r Br,�(v)B4,�(w). (3.30)

Furthermore, the Eq. (3.29) implies 	2w + dw = g in sense of distribution. Thus, due to
(3.11), we assert that

B4,�(w) ≤ cδ
− 1

2
� (σ� + 1)4‖w‖4,� ≤ cη�δ

− 1
2

� (σ� + 1)4‖g‖�. (3.31)

Consequently, we use (3.30) and (3.31) to deduce that for r ≥ 2,

‖P2,0
N ,�v − v‖� = sup

g∈L2(�),g �=0

|(P2,0
N ,�v − v, g)�|

‖g‖�

≤ cσ 4
�δ−3

� (1 + σ�δ−1
� N−1)2(1 + dc2�)3N−r Br,�(v)B4,�(w)

‖g‖�

≤ cη�σ 4
�δ

− 7
2

� (1 + σ 2
�δ−1

� N−1)2(1 + dc2�)3(σ� + 1)4N−r Br,�(v).

Finally, we use the interpolation of spaces to derive that

‖P2,0
N ,�v − v‖1,�

≤ ‖P2,0
N ,�v − v‖

1
2
�‖P2,0

N ,�v − v‖
1
2
2,�

≤ cη
1
2
�σ 3

�δ
− 5

2
� (1 + σ 2

�δ−1
� N−1)

3
2 (1 + dc2�)2(σ� + 1)2(1 + c�)N 1−r Br,�(v).

The proof is completed. �

Remark 3.1 In the norms involved in the error estimations (3.14), there are some weight
functions which tend to zero as the points go to the corners of domain. It is useful for covering
certain singularities of the approximated functions and their derivatives at the corners.

3.3 Other Legendre Irrational Orthogonal Approximations

We consider other Legendre irrational orthogonal approximations. For example, we set

0H2(�)=H2(�)∩{v | v=0 on ∂�, ∂nv=0 on L1∪L4}, 0VN (�)=0H2(�)∩VN (�).

According to the Poincaré inequality, there exists a positive constant, which is denoted by
c� also, such that

‖v‖� ≤ c�|v|1,�, ∀v ∈ H1(�) ∩ {v | v = 0 on L1 ∪ L4}. (3.32)

Let d, β ≥ 0, and

ad,β(u, v) = (	u,	v)� + d(u, v)� + β

∫

L2∪L3

∂nu∂nvds, ∀u, v ∈ H2(�). (3.33)
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We define the operator 0P2
N ,� : 0H2(�) → 0VN (�), by

ad,β(0P2
N ,�v − v, φ) = 0, ∀φ ∈ 0VN (�). (3.34)

It can be shown that

ad,β(0P2
N ,�v − v, 0P2

N ,�v − v) ≤ ad,β(φ − v, φ − v), ∀φ ∈ 0VN (�).

Let u(ξ, η) = v(x(ξ, η), y(ξ, η)), ψ(ξ, η) = P2,0
N ,Su(ξ, η) and φ(x, y) = ψ(ξ(x, y),

η(x, y)) in the above inequality. Then, with the aid of (3.32), the trace theorem and Theorem
2.2, we could follow the same line as in the proof of Theorem 3.1 to reach the following
result.

Theorem 3.2 If v ∈ 0H2(�) and Br,�(v) is finite for integer 2 ≤ r ≤ N + 1 and N ≥ 2,
then

||	(0P2
N ,�v − v)||� + β

1
2

(∫

L2∪L3

(∂n(
0P2

N ,�v − v))2ds

) 1
2

≤ c(1 + β)C2,�N 2−r Br,�(v). (3.35)

4 Spectral Method for Fourth-Order Problems

In this section, we propose the spectral method for fourth-order problems defined on quadri-
laterals.

Let ∂� = ∂∗� ∪ ∂∗∗�, ∂∗�∩∂∗∗� = ∅ and d, β be non-negative constants.We consider
the following model problem,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

	2U (x, y) + dU (x, y) = F(x, y), in�,

	U (x, y) + β∂nU (x, y) = G2(x, y), on ∂∗∗�,

∂nU (x, y) = G1(x, y), on ∂∗�,

U (x, y) = G0(x, y), on ∂�.

(4.1)

If ∂∗� = ∂�, then the above problem is a Dirichlet boundary value problem. Otherwise, it is
amixed inhomogeneous boundary value problem. In this case, if ∂∗∗� = ∂� and d = β = 0,
then we require the following additional condition for ensuring the existence of solution,

∫ ∫

�

F(x, y)dx1dx2 =
∫

∂�

∂nG2(x, y)ds.

4.1 Dirichlet Boundary Value Problems

We first consider the homogeneous Dirichlet boundary value problems, namely, ∂∗� = ∂�

and G0(x, y) = G1(x, y) ≡ 0. Let ad(u, v) be the same as in (3.12). The weak form of
problem (4.1) is to seek the solution U ∈ H2

0 (�) such that

ad(U, v) = ( f, v)�, ∀v ∈ H2
0 (�). (4.2)

The Legendre irrational spectral scheme for solving (4.2) is to find uN ∈ V 0
N (�) such that

ad(uN , φ) = ( f, φ)�, ∀φ ∈ V 0
N (�). (4.3)
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We now estimate the error of numerical solution. Let P2,0
N ,�U be the same as in (3.13).

Then

ad(P
2,0
N ,�U, φ) = ( f, φ)�, ∀φ ∈ V 0

N (�).

Subtracting the above equality from (4.3), we obtain

ad(uN − P2,0
N ,�U, φ) = 0, ∀φ ∈ V 0

N (�). (4.4)

Taking φ = uN − P2,0
N ,�U in (4.4), we find that 	(uN − P2,0

N ,�U ) ≡ 0 in �. Since uN −
P2,0
N ,�U = 0 on ∂�, we assert that uN − P2,0

N ,�U ≡ 0 on �̄, i.e., uN = P2,0
N ,�U . Finally, we

use Theorem 3.1 to conclude that

||U − uN ||μ,� ≤ cCμ,�Nμ−r Br,�(U ), μ = 0, 1, 2. (4.5)

Remark 4.1 In the norms involved in the above estimations, there are some weight functions
which tend to zero as the points go to the corners of domain. It is useful for covering certain
singularities of the exact solutions and their derivatives at the corners.

We next describe the numerical implementations and present some numerical results
confirming the analysis in the last section. To do this, let Ll(ξ)(−1 ≤ l ≤ 1) be the standard
Legendre polynomials as before, and

φl(ξ) = 1
√

2(2l + 3)2(2l + 5)

(

Ll(ξ) − 2(2l + 5)

2l + 7
Ll+2(ξ) + 2l + 3

2l + 7
Ll+4(ξ)

)

.

Obviously φl(±1) = ∂ξφl(±1) = 0. Therefore, all of the functions φl(ξ(x, y))φm(η(x, y))
(0 ≤ l,m ≤ N − 4) conform the basis of V 0

N (�). In actual computations, we expand the
numerical solution of (4.3) as

uN (x, y) =
N−4
∑

l=0

N−4
∑

m=0

al,mφl(ξ(x, y))φm(η(x, y)).

By inserting the above expression into (4.3), we obtain a linear system of algebraic equations
with the unknown coefficients al,m .

Let ξN ,l (0 ≤ l ≤ N ) be the zeros of the Legendre polynomial LN+1(ξ). Meanwhile,
ωN ,l (0 ≤ l ≤ N ) stand for the Christoffel numbers of the Legendre–Gauss interpolation.
Moreover, xN ,l,m = x(ξN ,l , ηN ,m) and yN ,l,m = y(ξN ,l , ηN ,m). We measure the errors of
numerical solutions by the discrete average norm

Eave,N =
(

N−4
∑

l=0

N−4
∑

m=0

(U (xN ,l,m, yN ,l,m) − uN (xN ,l,m, yN ,l,m))2ωN ,lωN ,m

)

1
2

,

and the discrete maximum norm

Emax,N = max
0≤l≤N−4

max
0≤m≤N−4

|U (xN ,l,m, yN ,l,m) − uN (xN ,l,m, yN ,l,m)|.

We first use (4.3) to solve (4.2) with d = 1 and β = 0. We take the domain� = �(1) with

the vertices Q1 = (−
√
2
2 ,−

√
2
2 ), Q2 = (

√
6
2 ,−

√
6
2 ), Q3 = (

√
2
2 ,

√
2
2 ) and Q4 = (−

√
2
2 ,

√
2
2 ).

The smallest angle θ2 = π
3 , and the two largest angles θ1 = θ3 = 7

12π . The equations of the
four edges of �(1) are as follows,

• L1 : l1(x, y) = x +
√
2
2 = 0,
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Table 1 The numerical errors of scheme (4.3) with domain �(1)

N = 4 N = 8 N = 12 N = 16 N = 20

Eave,N 2.6891e+00 1.0513e−03 2.8761e−08 1.6137e−13 1.4086e−13

Emax,N 6.5952e−01 2.4686e−04 4.2607e−09 2.2204e−14 1.1102e−14

Table 2 The numerical errors of scheme (4.3) with domain �(2)

N = 4 N = 8 N = 12 N = 16 N = 20

Eave,N 1.1812e+01 1.2541e−02 8.9147e−07 3.1938e−12 3.1035e−13

Emax,N 3.2399e+00 2.1495e−03 9.5680e−08 2.9354e−13 3.2863e−14

• L2 : l2(x, y) = (
√
3 − 2)x − y − 3

√
2

2 +
√
6
2 = 0,

• L3 : l3(x, y) = (
√
3 + 2)x + y − 3

√
2

2 −
√
6
2 = 0,

• L4 : l4(x, y) = y −
√
2
2 = 0.

We take the following test function,

U (x, y) = l21(x, y)l
2
2(x, y)l

2
3(x, y)l

2
4(x, y) cos(x + y). (4.6)

Clearly, U (x, y) ∈ H2
0 (�). In Table 1, we list the discrete errors Eave,N and Emax,N versus

the mode N . They demonstrate that the numerical errors decay rapidly as N increases. This
confirms the analysis.

We next use (4.3) to solve (4.2) with d = 1 and β = 0, defined on the domain � = �(2)

with the vertices Q1 = (−
√
2
2 ,−

√
2
2 ), Q2 = (

√
2 +

√
6
2 ,−√

2 −
√
6
2 ), Q3 = (

√
2
2 ,

√
2
2 ) and

Q4 = (−
√
2
2 ,

√
2
2 ). The smallest angle θ2 = π

6 , and the largest angles θ1 = θ3 = 2π
3 . The

equations of the four edges of �(2) are as follows,

• L1 : l1(x, y) = x +
√
2
2 = 0,

• L2 : l2(x, y) = −
√
3
3 x − y −

√
6
6 −

√
2
2 = 0,

• L3 : l3(x, y) = −√
3x − y +

√
6
2 +

√
2
2 = 0,

• L4 : l4(x, y) = y −
√
2
2 = 0.

The test function is given by (4.6)with the above new functions li (x, y), 1 ≤ i ≤ 4. InTable 2,
we list the discrete errors Eave,N and Emax,N versus the mode N . They also demonstrate
that the numerical errors decay rapidly as N increases. By comparing Table 1 with Table 2,
we find that the numerical errors depend on the quantity min1≤i≤4(θi , π − θi ). Indeed, the
bigger this quantity, the smaller the numerical errors.

4.2 Mixed Boundary Value Problems

In this subsection, we consider mixed boundary value problems. For fixedness, let ∂∗� =
L1 ∪ L4, and ∂∗∗� = L2 ∪ L3. Moreover, G0(x, y) ≡ 0 on �, and G1(x, y) ≡ 0 on ∂∗�.
The space 0H2(�) and the set 0VN (�) are the same as in Sect. 3.3. Let ad,β(u, v) be the
same as in (3.33). The weak formulation of (4.1) is to seek solution U ∈ 0H2(�) such that

ad,β(U, v) = ( f, v)� +
∫

∂∗∗�
G2∂nvds, ∀v ∈ 0H2(�). (4.7)
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The Legendre irrational spectral scheme for solving (4.7) is to find uN ∈ 0VN (�) such that

ad,β(uN , φ) = ( f, φ)� +
∫

∂∗∗�
G2∂nφds, ∀φ ∈ 0VN (�). (4.8)

Let 0P2
N ,�U be the same as in (3.34). Then

ad,β(0P2
N ,�U, φ) = ( f, φ)� +

∫

∂∗∗�
G2∂nφds, ∀φ ∈ 0VN (�).

By subtracting the above equality from (4.8), we obtain

ad(uN − 0P2
N ,�U, φ) = 0, ∀φ ∈ 0VN (�). (4.9)

Taking φ = uN − 0P2
N ,�U in (4.9), we find that 	(uN − 0P2

N ,�U ) ≡ 0 in �. Since

uN − 0P2
N ,�U = 0 on ∂�, we derive that uN = 0P2

N ,�U . Finally, we use Theorem 3.2 to
obtain

||	(U − uN )||� + β
1
2

(∫

∂∗∗�
(∂n(U − uN ))2ds

) 1
2 ≤ c(1 + β)C2,�N 2−r Br,�(v).

(4.10)

We now present some numerical results. Let φl(ξ) be the same as in the last subsection,
and

h−(x) = 1

4
(ξ3 − ξ2 − ξ + 1), h+(ξ) = 1

4
(ξ3 + ξ2 − ξ − 1).

It was shown in [21] that h−(±1) = h+(±1) = ∂ξh−(1) = ∂ξh+(−1) = 0. Thus, all
φl(ξ(x, y))φm(η(x, y)), φl(ξ(x, y))h−(η(x, y)), h+(ξ(x, y))φl(η(x, y)) (0 ≤ l,m ≤ N −
4) and h+(ξ(x, y))h−(η(x, y)) conform the basis of 0VN (�). In actual computations, we
expand the numerical solution of (4.8) as

uN (x, y) =
N−4
∑

l=0

N−4
∑

m=0

al,mφl(ξ(x, y))φm(η(x, y)) +
N−4
∑

l=0

blφl(ξ(x, y))h−(η(x, y))

+
N−4
∑

l=0

clh+(ξ(x, y))φl(η(x, y)) + qh+(ξ(x, y))h−(η(x, y)).

By inserting the above expression into (4.8), we obtain a linear system of algebraic equations
with the unknown coefficients al,m, bl , cl and q .

We now use (4.8) to solve (4.7) with d = 1 and β = 0, defined on the domain � = �(1).
The test function is

U (x, y) = l21(x, y)l2(x, y)l3(x, y)l
2
4(x, y) cos(x + y). (4.11)

Clearly, U ∈ 0H2(�). In Table 3, we list the discrete errors Eave,N and Emax,N versus the
mode N . They show the rapid convergence of scheme (4.8).

We next use (4.8) to solve (4.7) with d = 1 and β = 0, defined on the domain � = �(2).
The test function is given by (4.11), with the functions li (x, y), 1 ≤ i ≤ 4, which correspond
to the domain �(2) as before. In Table 4, we list the discrete errors Eave,N and Emax,N

versus the mode N . They also show the rapid convergence of scheme (4.8). By comparing
Table 3 with Table 4, we observe again that the numerical errors depend on the quantity
min1≤i≤4(θi , π − θi ).
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Table 3 The numerical errors of scheme (4.8) with domain �(1)

N = 4 N = 8 N = 12 N = 16 N = 20

Eave,N 5.7158e−01 1.0653e−04 1.4678e−09 3.7401e−14 8.0097e−14

Emax,N 1.5218e−01 1.6412e−05 1.7325e−10 4.2188e−15 5.5511e−15

Table 4 The numerical errors of scheme (4.8) with domain �(2)

N = 4 N = 8 N = 12 N = 16 N = 20

Eave,N 2.7703e+00 2.7126e−03 2.5186e−08 4.5284e−13 1.2291e−12

Emax,N 6.1198e−01 4.2986e−04 2.4788e−09 5.2403e−14 8.4488e−14

Table 5 The numerical errors of scheme (4.8) with domain �(1) and γ = 1

N = 4 N = 8 N = 12 N = 16 N = 20

Eave,N 1.2776e−00 1.0035e−02 8.3614e−04 1.3336e−04 3.1364e−05

Emax,N 2.4907e−01 2.6478e−03 2.3239e−04 3.8805e−05 9.7532e−06

In the error estimates (4.5) and (4.10), there exist the weights vanishing on some parts
of the edges. It would be useful to cover certain weak singular behaviors at the edges or
vertices. To show this, we use (4.8) to solve (4.7) with d = 1 and β = 0, defined on the
domain � = �(1) as before. We take the test function as

U (x, y) = ργ (x, y)l21(x, y)l2(x, y)l3(x, y)l
2
4(x, y) cos(x + y), (4.12)

where ρ(x, y) =
√

(

x −
√
6
2

)2 +
(

y +
√
6
2

)2
and γ > 0. Clearly, the singularities of

U (x, y) occur at the vertices Q2

(√
6
2 ,−

√
6
2

)

, except that γ is an even number. Also,

U ∈ 0H2(�) ∩ H3+γ−ω(�) with arbitrary ω > 0.
In Tables 5, 6 and 7, we list the discrete errors Eave,N and Emax,N versus the mode N

with γ = 1, 3, 5, respectively. We see that for the same modes N , the numerical results with
bigger γ are more accurate than those with smaller γ . More precisely, sinceU ∈ H2+γ (�),
we obtain from (4.10) that the numerical errors are of the order N−γ . Therefore, as indicated
by Tables 5, 6 and 7, the numerical errors with bigger γ decrease faster than those with small
γ .

4.3 Inhomogeneous Boundary Value Problems

We now turn to problem (4.1) withG0(x, y) �≡ 0 andG1(x, y) �≡ 0. According to the lifting,
there exists the function ˜U (x, y) such that ˜U (x, y) = G0(x, y) on ∂�, and ∂n˜U (x, y) =
G1(x, y) on ∂∗�. We make the following variable transformation,

U (x, y) = W (x, y) + ˜U (x, y), f (x, y) = F(x, y) − 	2
˜U (x, y) − d˜U (x, y),

g2(x, y) = G2(x, y) − 	˜U (x, y) − β∂n˜U (x, y). (4.13)
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Table 6 The numerical errors of scheme (4.8) with domain �(1) and γ = 3

N = 4 N = 8 N = 12 N = 16 N = 20

Eave,N 1.7290e−00 1.0396e−02 3.3001e−05 1.8002e−06 1.7903e−07

Emax,N 5.7824e−01 1.7609e−03 7.1103e−06 3.8443e−07 3.8122e−08

Table 7 The numerical errors of scheme (4.8) with domain �(1) and γ = 5

N = 4 N = 8 N = 12 N = 16 N = 20

Eave,N 1.5000e+01 1.8753e−02 1.0367e−05 1.1557e−07 4.8731e−09

Emax,N 3.9229e+00 3.8470e−03 1.1576e−06 2.1431e−08 8.9957e−10

Table 8 The numerical errors of inhomogeneous problem with domain �(3)

N = 4 N = 8 N = 12 N = 16 N = 20

Eave,N 2.8109e−1 2.9246e−3 2.7695e−7 2.1506e−11 8.5767e−12

Emax,N 9.7307e−2 4.9174e−4 3.1609e−8 1.5555e−12 1.7496e−12

Then, the problem (4.1) is reformulated to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

	2W (x, y) + dW (x, y) = f (x, y), in�,

	W (x, y) + β∂nW (x, y) = g2(x, y), on ∂∗∗�,

∂nW (x, y) = 0, on ∂∗�,

W (x, y) = 0, on ∂�.

(4.14)

We can solve this alternative problem numerically by the methods proposed in Sects. 4.1 or
4.2. Its numerical solution is denoted by wN (x, y). The numerical solution of the original
problem is given by uN (x, y) = WN (x, y) + ˜U (x, y).

The key point is how to construct the lifting function ˜U (x, y). This is a difficult and open
problem for fourth-order problem. Fortunately, we solve this problem, see “Appendix” of
this paper.

We nowpresent some numerical results.We consider the inhomogeneousDirichlet bound-
ary value problem (4.1) with d = 1 and β = 0, define on the quadrilaterals � = �(3) with
the vertices Q1 = (0, 0), Q2 = (2, 0), Q3 = (1, 1) and Q4 = (0, 1). We take the following
test function,

U (x, y) = (x − 1)3(x − 2)3(y − 2)3sin(x − y). (4.15)

Clearly, U ∈ H2(�), and U possesses inhomogeneous boundary condition on ∂�. We list
the discrete errors Eave,N and Emax,N versus the mode N in Table 8. They show the rapid
convergence of spectral scheme.
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5 Concluding Remarks

In this paper, we proposed the spectral method for fourth-order problems defined on quadri-
laterals. We provided the spectral schemes for a model problem with Dirichlet boundary
condition and mixed boundary condition, and proved their spectral accuracy. We also devel-
oped the lifting technique, by which we could deal with inhomogeneous boundary value
problems reasonably. Numerical results demonstrated the high effectiveness of the suggested
algorithms. As the mathematical foundation of our new spectral method, we introduced
the orthogonal irrational approximation defined on quadrilaterals, and established the basic
approximation results, which plays an essential role in designing and analyzing the related
spectral method. The approximation results and techniques developed in this paper are also
applicable to other fourth-order problems defined on quadrilaterals.

As we know, Guo and Jia [16] first proposed the spectral element method for second-
order problems defined on quadrilateral arbitrary polygons with quadrilateral partition, while
Yu and Guo [29] investigated the spectral element method for fourth-order problems with
rectangle partition of domains.An important problem is how to generalize the approach of this
work to fourth-order problemswith quadrilateral partition of domains. Like conforming finite
element method, the main difficulty of designing such method is how to ensure the continuity
of the derivatives of numerical solutions at all common edges of adjacent elements. It seems
hopeful to solve this problem by using the quasi orthogonal approximation similar to the
work of [16], coupled with the lifting technique presented in “Appendix” of this paper. We
shall report the related results in the future.

Acknowledgments We thank professor Hu Jun of Peking University for helpful discussions.

Appendix

This appendix is devoted to the lifting technique. The edges Li of domain � are as follows
(see Fig. 1),

Li : li (x, y) = ai x + bi y + ci = 0, 1 ≤ i ≤ 4. (A.1)

Let li+4(x, y) = li (x, y), i = 1, 2, 3, 4. We could rewrite the equations corresponding to
the edges as x = xi (y) for Li , i = 1, 3, and y = yi (x) for Li , i = 2, 4. Clearly,

dxi
dy

= −bi
ai

for i = 1, 3,
dyi
dx

= −ai
bi

for i = 2, 4. (A.2)

We denote the normal vector of edges Li by ni = (cosαi , cosβi )
T , 1 ≤ i ≤ 4. Besides, Qi

stand for the four corners of domain � as in Fig. 1.
Our aim is to design the lifting function vb(x, y) such that

vb(x, y)|Li = vb(xi (y), y) = gi (y), ∂ni vb(x, y)|Li = hi (y), i = 1, 3,

vb(x, y)|Li = vb(x, yi (x)) = gi (x), ∂ni vb(x, y)|Li = hi (x), i = 2, 4, (A.3)

where gi (y), hi (y)(i = 1, 3) and gi (x), hi (x)(i = 2, 4) are given functions. In addition,
the functions gi (y) and gi (x) fulfill certain consistent conditions ensuring the continuity of
vb(x, y) at the corners of domain.
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In the forthcoming discussions, we introduce the following polynomials,

si (x, y) =
∏

1≤ j≤4, j �=i

(a j x + b j y + c j )
2 = l21(x, y)l

2
2(x, y)l

2
3(x, y)l

2
4(x, y)

l2i (x, y)
,

ti (x, y) = (ai x + bi y + ci )si (x, y) = li (x, y)si (x, y), i = 1, 2, 3, 4. (A.4)

It can be checked that

∂nsi (x, y) �= 0, si (x, y) �= 0, ∂nti (x, y) �= 0, ti (x, y) = 0, on Li , i = 1, 2, 3, 4,

∂nsi (x, y) = si (x, y) = ∂nti (x, y) = ti (x, y) = 0, on ∪4
j=1, j �=i L j , (A.5)

We also introduce the following polynomials,

σi1(x, y) = l2i+2(x, y)l
2
i+3(x, y), σi2(x, y) = li+1(x, y)σi1(x, y),

σi3(x, y) = li (x, y)σi1(x, y), σi4(x, y) = li (x, y)li+1(x, y)σi1(x, y),

i = 1, 2, 3, 4. (A.6)

It can be verified that

σ12(x, y)|L2 = σ13(x, y)|L1 = σ14(x, y)|L1∪L2 = 0,

∂nσ1 j (x, y)|L3∪L4 = σ1 j (x, y)|L3∪L4 = 0, 1 ≤ j ≤ 4. (A.7)

We can also verify that σi j (x, y), 2 ≤ i, j ≤ 4 have the same properties. Accordingly, we
design the desired lifting function vb(x, y) satisfying (A.3) as follows,

vb(x, y) = g̃1(y)s1(x, y) +˜h1(y)t1(x, y) + g̃2(x)s2(x, y) +˜h2(x)t2(x, y)

+ g̃3(y)s3(x, y) +˜h3(y)t3(x, y)

+ g̃4(x)s4(x, y) +˜h4(x)t4(x, y) +
4

∑

i, j=1

pi jσi j (x, y), (A.8)

where g̃i ,˜hi and pi j , 1 ≤ i, j ≤ 4 are undetermined functions and constants. We shall
construct those undetermined quantities properly in the following four steps.

Step 1 According to (A.3), we use (A.5) and (A.7) to derive that

vb(x, y)|L1 = g̃1(y)s1(x1(y), y) + p11σ11(x1(y), y) + p12σ12(x1(y), y)

+ p41σ41(x1(y), y) + p43σ43(x1(y), y) = g1(y),

vb(x, y)|L2 = g̃2(x)s2(x, y2(x)) + p21σ21(x, y2(x)) + p22σ22(x, y2(x))

+ p11σ11(x, y2(x)) + p13σ13(x, y2(x)) = g2(x), etc. (A.9)

Furthermore, the corner Q1 = L1 ∩ L2. Thus we know from (A.5) and (A.7) that

s1(x1(y), y) = s2(x, y2(x)) = σ12(x1(y), y) = σ13(x, y2(x))

= σ21(x, y2(x)) = σ22(x, y2(x)) = σ41(x1(y), y)

= σ43(x1(y), y) = 0, at Q1.

Therefore

vb(x, y)|Q1 = p11σ11(x, y)|Q1 = g1(y)|Q1 = g2(x)|Q1 .
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In other words,

p11 = g1(y)|Q1

σ11(x, y)|Q1

= g2(x)|Q1

σ11(x, y)|Q1

. (A.10)

Due to the continuity of vb(x, y), we have g1(y)|Q1 = g2(x)|Q1 . Thereby, the above expres-
sion is meaningful and so determines the constant p11. In the same manner, we can calculate
the constants pi1, i = 2, 3, 4.

Step 2 For simplicity, let ∂x s1(x1(y), y) = ∂x s1(x, y)|x=x1(y), etc. By differentiating the two
equations of (A.9), we derive that

∂y(vb(x1(y), y)) = ∂y g̃1(y)s1(x1(y), y) + g̃1(y)(∂x s1(x1(y), y)
dx1
dy

+ ∂ys1(x1(y), y))

+ p11(∂xσ11(x1(y), y)
dx1
dy

+ ∂yσ11(x1(y), y))

+ p12(∂xσ12(x1(y), y)
dx1
dy

+ ∂yσ12(x1(y), y))

+ p41(∂xσ41(x1(y), y)
dx1
dy

+ ∂yσ41(x1(y), y))

+ p43(∂xσ43(x1(y), y)
dx1
dy

+ ∂yσ43(x1(y), y)) = ∂yg1(y),

∂x (vb(x, y2(x))) = ∂x g̃2(x)s2(x, y2(x)) + g̃2(x)

(

∂x s2(x, y2(x)) + ∂ys2(x, y2(x))
dy2
dx

)

+ p21

(

∂xσ21(x, y2(x)) + ∂yσ21(x, y2(x))
dy2
dx

)

+ p22

(

∂xσ22(x, y2(x)) + ∂yσ22(x, y2(x))
dy2
dx

)

+ p11

(

∂xσ11(x, y2(x)) + ∂yσ11(x, y2(x))
dy2
dx

)

+ p13

(

∂xσ13(x, y2(x)) + ∂yσ13(x, y2(x))
dy2
dx

)

= ∂x g2(x). (A.11)

Moreover, we know from (A.5) and (A.7) that at the corner Q1,

s1(x1(y), y) = ∂x s1(x1(y), y) = ∂ys1(x1(y), y) = 0

s2(x, y2(x)) = ∂x s2(x, y2(x)) = ∂ys2(x, y2(x)) = 0,

∂xσ41(x1(y), y) = ∂yσ41(x1(y), y) = ∂xσ43(x1(y), y) = ∂yσ43(x1(y), y) = 0,

∂xσ21(x, y2(x)) = ∂yσ21(x, y2(x)) = ∂xσ22(x, y2(x)) = ∂yσ22(x, y2(x)) = 0.

Therefore

∂yvb(x1(y), y)|Q1 = p11(∂xσ11(x1(y), y)
dx1
dy

+ ∂yσ11(x1(y), y))|Q1

+ p12(∂xσ12(x1(y), y)
dx1
dy

+ ∂yσ12(x1(y), y))|Q1 = ∂yg1(y)|Q1 ,
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∂xvb(x, y2(x))|Q1 = p11(∂xσ11(x, y2(x)) + ∂yσ11(x, y2(x))
dy2
dx

)|Q1

+ p13(∂xσ13(x, y2(x)) + ∂yσ13(x, y2(x))
dy2
dx

)|Q1

= ∂x g2(x)|Q1 . (A.12)

Consequently,

p12 = ∂yg1(y)|Q1 − p11(∂xσ11(x1(y), y)
dx1
dy + ∂yσ11(x1(y), y))|Q1

(∂xσ12(x1(y), y)
dx1
dy + ∂yσ12(x1(y), y))|Q1

,

p13 = ∂x g2(x)|Q1 − p11(∂xσ11(x, y2(x)) + ∂yσ11(x, y2(x))
dy2
dx )|Q1

(∂xσ13(x, y2(x)) + ∂yσ13(x, y2(x))
dy2
dx )|Q1

. (A.13)

These expressions with (A.10) determine the constants p12 and p13. We can calculate the
pi2 and pi3, i = 2, 3, 4 in the same way.

Furthermore, we obtain from the first equation of (A.9) that

g̃1(y)

= g1(y)− p11σ11(x1(y), y)− p12σ12(x1(y), y)− p41σ41(x1(y), y)− p43σ43(x1(y), y)

s1(x1(y), y)
.

(A.14)

Since pi j , 1 ≤ i ≤ 4, 1 ≤ j ≤ 3 are given already by (A.10) and (A.13), the above
expressions determine the functions g̃1(y). We also can determine the functions g̃2(x), g̃3(y)
and g̃4(x).

Step 3 According to (A.3), we use (A.5) and (A.7) to derive that

h1(y) = ∂n1u(x, y)|L1 = ∂xu(x1(y), y) cosα1 + ∂yu(x1(y), y) cosβ1,

h2(x) = ∂n2u(x, y)|L2 = ∂xu(x, y2(x)) cosα2 + ∂yu(x, y2(x)) cosβ2.

Then, we have

∂yh1(y)|Q1 = (∂2x u(x, y)
dx1
dy

+ ∂xyu(x, y))|Q1 cosα1 + (∂xyu(x, y)
dx1
dy

+ ∂2y u(x, y))|Q1 cosβ1,

∂xh2(x)|Q1 =
(

∂2x u(x, y) + ∂xyu(x, y)
dy2
dx

)

|Q1 cosα2

+
(

∂xyu(x, y) + ∂2y u(x, y)
dy2
dx

)

|Q1 cosβ2. (A.15)

Moreover, due to g1(y) = u(x1(y), y), g4 = u(x, y4(x)) and (A.4), we find that

∂2y g1(y)|Q1 = ∂2x u(x, y)|Q1

(

dx1
dy

)2

+ 2∂xyu(x, y)|Q1

dx1
dy

+ ∂2y u(x, y)|Q1 ,

∂2x g2(x)|Q1 = ∂2x u(x, y)|Q1 + 2∂xyu(x, y)|Q1

dy2
dx

+ ∂2y u(x, y)|Q1

(

dy2
dx

)2

. (A.16)
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From the first equation of (A.15) and (A.16), we have

AQ1 =
(

(

dx1
dy

)2 (

dy4
dx

)2

− 1

)

∂yh1(y)|Q1

+
(

cosβ1 − dx1
dy

(

dy4
dx

)2

cosα1

)

∂2y g1(y)|Q1

+
(

dx1
dy

cosα1 −
(

dx1
dy

)2

cosβ1

)

∂2x g4(x)|Q1 ,

BQ1 =
(

cosα1 + dx1
dy

cosβ1

)

(

(

dx1
dy

)2 (

dy4
dx

)2

− 1

)

+ 2
dx1
dy

dy4
dx

cosα1 + 2
dx1
dy

cosβ1

− 2

(

dx1
dy

)2 (

dy4
dx

)2

cosα1 − 2

(

dx1
dy

)2 dy4
dx

cosβ1.

∂xyu(x, y)|Q1 = AQ1

BQ1

. (A.17)

From the second equation of (A.15) and (A.16), we have

CQ1 =
(

(

dx1
dy

)2 (

dy4
dx

)2

− 1

)

∂yh4(y)|Q1

+
(

dy4
dx

cosβ4 −
(

dy4
dx

)2

cosα4

)

∂2y g1(y)|Q1

+
(

cosα4 −
(

dx1
dy

)2 dy4
dx

cosβ4

)

∂2x g4(x)|Q1 ,

DQ1 =
(

dy4
dx

cosα4 + cosβ4

)

(

(

dx1
dy

)2 (

dy4
dx

)2

− 1

)

+ 2
dy4
dx

cosα4 + 2
dx1
dy

dy4
dx

cosβ4

− 2
dx1
dy

(

dy4
dx

)2

cosα4 − 2

(

dx1
dy

)2 (

dy4
dx

)2

cosβ4.

∂xyu(x, y)|Q1 = CQ1

DQ1

. (A.18)

Then, we obtain the compatibility conditions as ∂xyu(x, y)|Q1 = AQ1
BQ1

= CQ1
DQ1

.

Next, by differentiating the (A.8) twice, we derive that

∂xyv(x, y) = ∂y g̃1(y)∂x s1(x, y) + g̃1(y)∂xys1(x, y) + ∂y˜h1(y)∂x t1(x, y)

+˜h1(y)∂xy t1(x, y) + ∂x g̃2(x)∂ys2(x, y) + g̃2(x)∂xys2(x, y)

+ ∂x˜h2(x)∂y t2(x, y) +˜h2(x)∂xy t2(x, y) + ∂y g̃3(y)∂x s3(x, y)

+ g̃3(y)∂xys3(x, y) + ∂y˜h3(y)∂x t3(x, y) +˜h3(y)∂xyt3(x, y)
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+ ∂x g̃4(x)∂ys4(x, y) + g̃4(x)∂xys4(x, y) + ∂x˜h4(x)∂y t4(x, y)

+˜h4(x)∂xy t4(x, y) +
4

∑

i, j=1

pi j∂xyσi j (x, y).

Moreover, we know form (A.5) and (A.7) that

∂x si (x, y)|Q1 = ∂x ti (x, y)|Q1 = ∂xyti (x, y)|Q1 = ∂xyσi4(x, y)|Q1 = 0, 1 ≤ i ≤ 4,

∂xys3(x, y)|Q1 = ∂xys4(x, y)|Q1 = 0.

Therefore,

∂xyu(x, y)|Q1 = ∂xyv(x, y)|Q1

= g̃1(y)∂xys1(x, y)|Q1 + g̃2(x)∂xys2(x, y)|Q1 +
4

∑

i=1

3
∑

j=1

pi j∂xyσi j (x, y)|Q1 .

Consequently,

p14= ∂xyu(x, y)|Q1 −(g̃1(y)∂xys1(x, y)+ g̃2(x)∂xys2(x, y)+∑4
i=1

∑3
j=1 pi j∂xyσi j (x, y))|Q1

∂xyσ4(x, y)|Q1

.

(A.19)

In the same manner, we can determine the constants pi4, 1 ≤ i ≤ 4.

Step 4 According to (A.3), we use (A.5) and (A.7) to derive that

∂nvb(x, y)|L1 = ∂n(g̃1(y)s1(x, y) +˜h1(y)t1(x, y) +
4

∑

i, j=1

pi j∂xyσi j (x, y))|L1

= h1(y). (A.20)

Moreover, with the aid of (A.5), we deduce that

∂n(˜h1(y)t1(x, y))|L1 = (˜h1(y)∂x t1(x, y) cosα1 + ∂y˜h1(y)t1(x, y) cosβ1

+˜h1(y)∂y t1(x, y) cosβ1)|L1

= ˜h1(y)(∂x t1(x, y) cosα1 + ∂yt1(x, y) cosβ1)|L1

= ˜h1(y)∂nt1(x, y)|L1 .

By substituting the above equality into (A.20), we obtain

˜h1(y) =
h1(y) − ∂n(g̃1(y)s1(x, y))|L1 −

(

∑4

i, j=1
pi j∂xyσi j (x, y)

)

|L1

∂nt1(x, y)|L1

, (A.21)

which determines the function˜h1(y).
In the same way, we can determine the functions˜h2(x), ˜h3(y) and˜h4(x).
Finally, a combination of (A.10), (A.13), (A.14), (A.19) and (A.21) leads to the desired

lifting function (A.8).

Remark 5.1 We can construct the lifting function for the boundary condition corresponding
to the mixed inhomogeneous boundary value problems of fourth order.
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