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Abstract In this paper, we propose and analyze a robust recovery-based error estimator for
the original discontinuous Galerkin method for nonlinear scalar conservation laws in one
space dimension. The proposed a posteriori error estimator of the recovery-type is easy to
implement, computationally simple, asymptotically exact, and is useful in adaptive compu-
tations. We use recent results (Meng et al. in SIAM J Numer Anal 50:2336–2356, 2012) to
prove that, for smooth solutions, our a posteriori error estimates at a fixed time converge to
the true spatial errors in the L2-norm under mesh refinement. The order of convergence is
proved to be p + 1, when p-degree piecewise polynomials with p ≥ 1 are used. We further
prove that the global effectivity index converges to unity atO(h) rate. Our proofs are valid for
arbitrary regular meshes using P p polynomials with p ≥ 1, under the condition that | f ′(u)|
possesses a uniform positive lower bound, where f (u) is the nonlinear flux function.We pro-
vide several numerical examples to support our theoretical results, to show the effectiveness
of our recovery-based a posteriori error estimates, and to demonstrate that our results hold
true for nonlinear conservation laws with general flux functions. These experiments indicate
that the restriction on f (u) is artificial.

Keywords DG method · Nonlinear scalar conservation laws · Postprocessing · Derivative
recovery technique · Recovery-based a posteriori error estimates

1 Introduction

In this paper, we propose and analyze a robust recovery-type a posteriori error estimator based
on a derivative recovery technique for the discontinuous Galerkin (DG) method applied to
the classical nonlinear scalar conservation law in one space dimension

ut + ( f (u))x = g(x, t), x ∈ [a, b], t ∈ [0, T ], (1.1a)
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subject to the initial condition

u(x, 0) = u0(x), x ∈ [a, b], (1.1b)

and appropriate boundary conditions described below. Here, g(x, t) and u0(x) are smooth
functions possessing all the necessary derivatives. The unknown function u is some scalar
conserved quantity and f (u) is a nonlinear flux function. In our analysis, we assume that f (u)

is a smooth function with respect to the variable u. We also assume that | f ′(u)| has a uniform
positive lower bound, i.e., either 0 < δ ≤ f ′(u(x, t)) or f ′(u(x, t)) ≤ −δ < 0, ∀ (x, t) ∈
[a, b] × [0, T ], where δ is a positive constant. We will consider both the periodic boundary
condition u(a, t) = u(b, t) and the Dirichlet boundary condition on the inflow boundary
which depends on the sign of f ′(u). If f ′(u) > 0, then we complete (1.1a) and (1.1b) with

u(a, t) = h(t), t ∈ [0, T ], (1.1c)

and if f ′(u) < 0, we complete (1.1a) and (1.1b) with

u(b, t) = g(t), t ∈ [0, T ]. (1.1d)

We refer the reader to [27] and the references therein for amore detailed description of related
theoretical results including stability analysis, a priori error estimates, and superconvergence
error analysis of the semi-discrete DG methods for conservation laws (1.1).
The DG method considered here is a class of finite element methods using completely dis-
continuous piecewise polynomials for the numerical solution and the test functions. DG
method combines many attractive features of the classical finite element and finite volume
methods. It is a powerful tool for approximating some differential equations which model
problems in physics, especially in fluid dynamics or electrodynamics. Comparing with the
standard finite element method, the DG method has a compact formulation, i.e., the solu-
tion within each element is weakly connected to neighboring elements. The DG method
was initially introduced by Reed and Hill in 1973 as a technique to solve neutron transport
problems [29]. Lesaint and Raviart [25] presented the first numerical analysis of the method
for a linear advection equation. Since then, DG methods have been used to solve ordinary
differential equations [5,20,24,25], hyperbolic [1–5,9–11,15,18,21,23,27,28,34] and dif-
fusion and convection-diffusion [13–15,19] partial differential equations, just to mention a
few citations. The proceedings of Cockburn et al. [17] an Shu [32] contain a more complete
and current survey of the DG method and its applications. In particular, Meng et al. [27]
analyzed the DG method applied to (1.1). They proved a priori optimal error estimates and
a superconvergence result toward a particular projection of the exact solution. The results in
the present paper depend heavily on the results from [27].
A posteriori error estimates play an essential role in assessing the reliability of numerical
solutions and in developing efficient adaptive algorithms. A posteriori error estimates are
traditionally used to guide adaptive enrichment by h- and p-refinement and to provide a
measure of solution reliability. Typically, a posteriori error estimators employ the known
numerical solution to derive estimates of the actual solution errors. There are several error
concepts available in the literature including (i) residual-type estimators that rely on the
appropriate evaluation of the residual in a dual norm, (ii) hierarchical type estimators where
the error equation is solved locally using higher order elements, (iii) error estimators that
are based on local averaging; the so-called goal oriented dual weighted approach where
information about the error is extracted from the solution of the dual problem, and (iv)
functional type error majorants that provide guaranteed sharp upper bounds for the error. For
an introduction to the subject of a posteriori error estimation see the monograph of Ainsworth
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and Oden [6]. The a posteriori error estimation of finite element approximations of elliptic,
parabolic, and hyperbolic problems has reached some state of maturity as documented by the
monographs [6,12,22,33] and the references therein. However, a posteriori error estimation
is much less developed for DGmethods applied to hyperbolic problems. Recently, the author
[10] presented and analyzed implicit residual-based a posteriori error estimates for a DG
formulation applied to nonlinear scalar conservation laws in one space dimension. We used
the superconvergence result of Meng et al. [27] to prove that the DG discretization error
estimates converge to the true spatial errors undermesh refinement atO(h p+3/2) rate. Finally,
we proved that the global effectivity index in the L2-norm converges to unity.
A posteriori error estimators for finite element are classified mainly into two families [6]:
residual-type error estimators and recovery-based error estimators. Although the a posteriori
implicit residual-type estimators have been the most commonly used techniques to provide
bounds of the error of the finite element method, the recovery-based estimates, based on
the ideas of Zienkiewicz and Zhu [35] and, in particular,those based on the superconvergent
patch recovery technique [36,37], are often preferred by practitioners due to their simple
implementation and robustness [7,8].
Here, we propose a posteriori error estimator based on derivatives recovery. Recovery-based
error estimators have been studied in [26] and the references therein. A much researched
recovery-based error estimator was proposed by Zienkiewicz and Zhu [35], who suggested
to post-process the discontinuous gradient in terms of some interpolation functions. The
underlying idea is to post-process the gradient and to find an estimate for the true error by
comparing the post-processed gradient and the nonpost-processed gradient of the approxima-
tion. A posteriori error estimators of the recovery-type possess a number of attractive features
for the engineering community, because they are easy to implement, computationally simple,
asymptotically exact, and produce quite accurate estimators on fine meshes. From a prac-
tical point of view, recovery-based error estimators are efficient compared to other implicit
residual-based a posteriori error estimates. Several recovery-type a posteriori error estimators
are known for elliptic problems. However, to author’s knowledge, no recovery-type a poste-
riori error estimator for DG methods applied to first-order hyperbolic problems is available
in the literature.
In this paper, we propose and analyze a new recovery-based a posteriori error estimator for the
DGmethod applied to one-dimensional nonlinear conservation laws. The proposed estimator
of the recovery-type is easy to implement, computationally simple, and is asymptotically
exact. We use recent results given in [27] to prove that these error estimates converge to the
true spatial errors at O(h p+1) rate. We also prove that the global effectivity indices in the
L2-norm converge to unity at O(h) rate. To the best knowledge of the author, this is the first
recovery-based error estimator for the DG method applied to nonlinear scalar conservation
laws. As in [27], our proofs are valid for any regular meshes and using piecewise polynomials
of degree p ≥ 1, provided that | f ′(u)| is lower bounded uniformly by a positive constant.
The proof of the general case involves several technical difficulties and will be investigated
in the future. For general flux functions, we expect that similar results of Meng et al. [27]
(see Theorem 2.1) will be needed.
This paper is organized as follows: In Sect. 2 we recall the semi-discrete DG method for
solving (1.1) andwe introduce some notation and definitions.We also present fewpreliminary
results, which will be needed in our a posteriori error analysis. In Sect. 3, we present our error
estimation procedures and prove that they converge to the true errors under mesh refinement
in L2-norm. In Sect. 4, we present several numerical examples to validate our theoretical
results. We conclude and discuss our results in Sect. 5.
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2 The Semi-Discrete DG Scheme

To obtain the semi-discrete DG scheme for (1.1), we first divide � = [a, b] into N intervals
Ii = [xi−1, xi ], i = 1, . . . , N , where a = x0 < x1 < · · · < xN = b. The length of each
Ii is denoted by hi = xi − xi−1. We denote h = max

1≤i≤N
hi and hmin = min

1≤i≤N
hi as the

length of the largest and smallest interval. In this paper, we consider regular meshes, that
is h ≤ Khmin, where K ≥ 1 is a constant during mesh refinement. If K = 1, then the
mesh is uniformly distributed. Throughout this paper, v

∣
∣
i denotes the value of the function

v = v(x, t) at x = xi . We also define v−∣
∣
i and v+∣

∣
i to be the left limit and the right limit of

the function v at the discontinuity point xi , i.e.,

v−∣
∣
i = v(x−

i , t) = lim
s→0− v(xi + s, t), v+∣

∣
i = v(x+

i , t) = lim
s→0+ v(xi + s, t).

Let us multiply (1.1a) by test a function v, integrate over Ii , and use integration by parts to
write ∫

Ii
utv dx −

∫

Ii
f (u)vx dx + f (u)v−∣

∣
i − f (u)v+∣

∣
i−1 =

∫

Ii
gv dx . (2.1)

Define the piecewise polynomial space V p
h as the space of polynomials of degree up to p in

Ii , i.e.,
V p
h = {v : v|Ii ∈ P p(Ii ), i = 1, . . . , N },

where P p(Ii ) is the space of polynomials of degree at most p on Ii . Note that polynomials
in the space V p

h are allowed to have discontinuities across element boundaries.
Next, we approximate the exact solution u(., t) by piecewise polynomial uh(., t) ∈ V p

h .
The semi-discrete DG method consists of finding uh ∈ V p

h such that, ∀ v ∈ V p
h and ∀ i =

1, . . . , N ,
∫

Ii
(uh)tv dx −

∫

Ii
f (uh)vx dx + f̂ v−∣

∣
i − f̂ v+∣

∣
i−1 =

∫

Ii
gv dx, (2.2a)

where, the numerical flux f̂ |i is a single-valued function defined at the nodes and in general
depends on the values of uh from both sides i.e., f̂ |i = f̂ (u−

h , u+
h )|i . The initial condition

uh(x, 0) = P−
h u(x, 0) ∈ V p

h is obtained using a special projection of the exact initial
condition u(x, 0) = u0(x). The projection P−

h is defined in (2.3). In order to complete the

definition of the scheme we need to select f̂ on the boundaries of Ii . In this paper, we choose
the upwind flux which depends on f ′(u). If f ′(u) > 0, the numerical flux associated with
the Dirichlet boundary condition, u(a, t) = h(t), can be taken as

f̂
∣
∣
0 = f (u(a, t)) = f (h(t)), f̂

∣
∣
i = f (u−

h )
∣
∣
i , i = 1, . . . , N . (2.2b)

and if f ′(u) < 0, the numerical flux associated with the boundary condition, u(b, t) = g(t),
can be taken as

f̂
∣
∣
i = f (u+

h )
∣
∣
i , i = 0, . . . , N − 1, f̂

∣
∣
i = f (u(b, t)) = f (g(t)). (2.2c)

Remark 2.1 Even though the proofs of our results are given using the numerical flux (2.2b),
the same results can be proved using the numerical flux (2.2c), with onlyminormodifications.

Remark 2.2 We shall consider here only the Dirichlet boundary conditions. This assumption
is for simplicity only and not essential. If other boundary conditions are chosen, the numerical
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flux f̂ can be easily designed. For instance, in the case f ′(u) > 0, the numerical flux
associated with the periodic boundary condition, u(a, t) = u(b, t), can be taken as

f̂
∣
∣
i =

{
f (u−

h )
∣
∣
N , i = 0,

f (u−
h )

∣
∣
i , i = 1, . . . , N ,

(2.2d)

and if f ′(u) < 0, we take

f̂
∣
∣
i =

{
f (u+

h )
∣
∣
i , i = 0, . . . , N − 1,

f (u+
h )

∣
∣
0, i = N .

(2.2e)

2.1 Discretization in Time

Expressing uh(., t), x ∈ Ii as a linear combination of orthogonal basis Lk,i (x), k =
0, . . . , p, where Lk,i denotes the kth-degree Legendre polynomial on Ii , i.e., uh =
∑p

k=0 ck,i (t)Lk,i (x), x ∈ Ii , and choosing the test functions v = L j,i (x), j = 0, . . . , p,
we obtain a system of ordinary differential equations which can be solved for the coefficients
ci = [c0,i , . . . , cp,i ]t . In what follows we assume that the system is integrated exactly. In
practice, the system can be solved using e.g., the classical fourth-order Runge–Kutta method.
A time step is chosen so that temporal errors are small relative to spatial errors. We do not
discuss the influence of the time discretization error in this paper.

2.2 Norms

We begin by defining some norms that will be used throughout the paper. We define the
standard L2-norm of an integrable function u = u(x, t) on the interval Ii = [xi−1, xi ] and
at a fixed time t as ‖u(·, t)‖0,Ii = (

∫

Ii
u2(x, t)dx)1/2. Let Hs(Ii ), where s = 0, 1, . . .,

denote the standard Sobolev space of square integrable functions on Ii with all derivatives

∂kx u = ∂ku
∂xk

, k = 0, 1, . . . , s being square integrable on Ii and equipped with the norm

‖u(·, t)‖s,Ii =
(
∑s

k=0

∥
∥∂kx u(·, t)∥∥20,Ii

)1/2
. The Hs(Ii )-seminorm of u on Ii is given by

|u(·, t)|s,Ii = ∥
∥∂sxu(·, t)∥∥0,Ii . We also define the norm and seminorm on the whole compu-

tational domain � as follows:

‖u(·, t)‖s,� =
(

N
∑

i=1

‖u‖2s,Ii
)1/2

, |u(·, t)|s,� =
(

N
∑

i=1

|u(·, t)|2s,Ii
)1/2

.

For convenience, we use ‖u‖Ii , ‖u‖, ‖u‖s,Ii , and ‖u‖s to denote ‖u(·, t)‖0,Ii , ‖u(·, t)‖0,�,
‖u(·, t)‖s,Ii , and ‖u(·, t)‖s,�, respectively.
2.3 Projections

For p ≥ 1, we will consider two special projection operators, P±
h , which are defined as

follows [15]: For any smooth function u, P±
h u ∈ V p

h and the restrictions of P−
h u and P+

h u
to Ii are the unique polynomials in P p(Ii ) satisfying the conditions

∫

Ii

(

P−
h u − u

)

vdx = 0, ∀ v ∈ P p−1(Ii ), and
(

P−
h u − u

)− ∣
∣
i = 0, (2.3)

∫

Ii

(

P+
h u − u

)

vdx = 0, ∀ v ∈ P p−1(Ii ), and
(

P+
h u − u

)+ ∣
∣
i−1 = 0. (2.4)

123



464 J Sci Comput (2016) 66:459–476

These special projections were used in the error estimates of the DG methods to derive
optimal L2 error bounds as well as superconvergence in the literature, e.g., in [15]. In our
analysis, we need the following well-known results. Their proofs can be found in [16]. For
any u ∈ H p+1(Ii ) with i = 1, · · · , N , there exists a constant C independent of the mesh
size h such that

∥
∥u − P±

h u
∥
∥ + h

∥
∥(u − P±

h u)x
∥
∥ ≤ Chp+1 |u|p+1,� . (2.5)

Moreover, we recall the inverse properties of the finite element space V p
h that will be used

in our error analysis [27]: For any v ∈ V p
h , there exists a positive constant C independent of

v and h, such that

‖vx‖ ≤ Ch−1 ‖v‖ , ‖v‖∞ ≤ Ch−1/2 ‖v‖ ,

(
N

∑

i=1

(

v2
(

x+
i

) + v2
(

x−
i

))

)1/2

≤ Ch−1/2 ‖v‖ . (2.6)

From now on, the notation C, C1, C2, c, etc. will be used to denote positive constants that
are independent of h, but which may depend upon the exact smooth solution of (1.1a) and its
derivatives. Furthermore, all the constants will be generic, i.e., they may represent different
constant quantities in different occurrences.
We also need a special projection P∗

h which is defined element by element as follows: If
f ′(u) is positive, we take P∗

h = P−
h ; otherwise, we use P∗

h = P+
h . Throughout this paper,

e = u−uh denotes the error between the exact solution of (1.1a) and the numerical solutions
defined in (2.2). Let the projection error be defined as ε = u − P∗

h u and the error between
the numerical solution and the projection of the exact solution be defined as ē = P∗

h u − uh .
We note that, in the case f ′(u) > 0, ε = u − P−

h u and ē = P−
h u − uh . Similarly, in the case

f ′(u) < 0, ε = u − P+
h u and ē = P+

h u − uh . We note that the true error can be split as
e = (u − P∗

h u) + (P∗
h u − uh) = ε + ē.

2.4 Preliminaries Results

Here, we will only consider the case 0 < δ ≤ f ′(u(x, t)), ∀ (x, t) ∈ [a, b] × [0, T ], where
δ is a positive constant. In this case ε = u − P−

h u and ē = P−
h u − uh . We note that the other

case f ′(u(x, t)) ≤ −δ < 0 can be handled in a very similar way and hence we omit it; see
[27] for more details.
Recently, Meng et al. [27] analyzed the same DG scheme for solving the nonlinear conser-
vation laws. They selected the initial condition as uh(x, 0) = P−

h u(x, 0) and proved a priori
error estimates and a superconvergence result toward P−

h u. For the sake of completeness, we
summarize their results in the next theorem.

Theorem 2.1 Let u be the exact solution of (1.1), which is assumed to be sufficiently smooth
with bounded derivatives i.e., ‖u‖p+1,�, ‖ut‖p+1,�, and ‖utt‖p+1,� are bounded uniformly
for any t ∈ [0, T ].We further assume that f (u) ∈ C3(R)with0 < δ ≤ f ′(u(x, t)), ∀ (x, t) ∈
�×[0, T ], where δ is a positive constant. Let p ≥ 1 and uh is the solution of (2.2a) with the
numerical flux (2.2b) and subject to theapproximated initial conditionuh(x, 0) = P−

h u(x, 0),
then there exists a positive constant C depends on the exact solution u, the final time T , and
the maximum of | f (m)| (m = 1, 2, 3), but is independent of h, such that ∀ t ∈ [0, T ],

‖e‖ ≤ C hp+1, (2.7a)

‖et‖ ≤ C hp+1, (2.7b)
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‖ē‖ ≤ C hp+3/2. (2.7c)

Proof These results have been proved in [27].More precisely, (2.7c) is proved in its Theorem
3.2, (2.7a) is proved in its Corollary 3.5, and (2.7b) is proved in its Lemma 3.7.

Corollary 2.1 Under the assumptions of Theorem 2.1, there exists a constant C > 0 such
that

‖ēx‖ ≤ Chp+1/2, (2.8)

‖ex‖ ≤ Chp. (2.9)

Proof We apply the inverse inequality and the estimate (2.7c) to get

‖ēx‖ ≤ C1h
−1 ‖ē‖ ≤ C1h

−1C2 h
p+3/2 = C hp+1/2. (2.10)

Next, using the fact that ex = ēx + εx , applying the triangle inequality, the projection result
(2.5), and the estimate (2.10), we obtain

‖ex‖ ≤ ‖ēx‖ + ‖εx‖ ≤ C1h
p+1/2 + C2h

p ≤ Chp,

which establishes (2.9).

Remark 2.3 Wenote that the estimate (2.8) is not optimal.An improved result ‖ēx‖ ≤ Chp+1

can be easily obtained as follows: Let us define ē = ri+ x−x̄i
hi

Si on each Ii , where ri = ē(x̄i , t)

is a constant and Si (·, t) ∈ P p−1(Ii )with x̄i = (xi−1+xi )/2.We further define the piecewise
polynomial S whose restriction on Ii is Si . In [27], the authors have shown the following
estimates

‖ēx‖ ≤ Ch−1 ‖S‖ , ‖S‖ ≤ Ch ‖et‖ + Chp+2. (2.11)

More precisely, the second estimate is proved in its Lemma 3.6 and the first estimate can be
obtained by using ēx = x−x̄i

hi
(Si )x + 1

hi
Si and applying the inverse property.

Combining the estimates in (2.11) and using (2.7b), we obtain the improved estimate ‖ēx‖ ≤
Chp+1.

3 A Posteriori Error Estimation

A posteriori error estimates play a critical role in adaptive methods for solving hyperbolic
conservation laws. In this section, we propose a robust recovery-based a posteriori error
estimator for the DG method for nonlinear scalar conservation laws (1.1) and prove its
asymptotic exactness under mesh refinement. We first present a superconvergence result for
the approximation of the convection derivative using a derivative recovery formula where the
order is p + 1 which is one order higher that the optimal error estimate.

3.1 An Element-by-Element Postprocessing of the Derivative in the Direction of
the Flow

Here, we postprocess the numerical solution uh to get a superconvergent approximation of
( f (u))x .
Let gh ∈ V p

h be an approximation of the source function g obtained using the special
projection P−

h into V p
h i.e., gh = P−

h g. Then we define the recovered derivative Rh(( f (u))x )

by
Rh(( f (u))x ) = gh − (uh)t , (3.1)
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which is an approximation to ( f (u))x obtained by a postprocessing of uh . Next, we state
and prove the error estimate between Rh(( f (u))x ) and ( f (u))x which is the key ingredient
in proving the convergence of our a posteriori error estimate under mesh refinement.

Theorem 3.1 Assume that the conditions of Theorem 2.1 are satisfied. Let Rh(( f (u))x ) be
the recovered derivative defined by (3.1), then we have the following superconvergence result

‖( f (u))x − Rh(( f (u))x )‖ ≤ Chp+1. (3.2)

Proof Adding and subtracting g to Rh(( f (u))x ) and using g = ut + ( f (u))x by (1.1a), we
get

Rh(( f (u))x ) = gh −g+g−(uh)t = gh −g+ut +( f (u))x −(uh)t = gh −g+( f (u))x +et .

Next, we take the L2-norm, we apply the triangle inequality, and we use the projection result
(2.5) and the estimate (2.7b) to get

‖( f (u))x − Rh(( f (u))x )‖ = ‖g − gh − et‖ ≤ ‖g − gh‖ + ‖et‖
≤ C1h

p+1 + C2h
p+1 ≤ Chp+1,

which completes the proof of the theorem.

Remark 3.1 The choice gh ∈ V p
h is not unique. In fact, all results in this paper remain true

if we choose gh such that ‖g − gh‖ = O(h p+1). In particular, if we use the standard L2

projection of g instead of P−
h g, then we obtain similar results.

Remark 3.2 Obviously the estimate (3.2) is superconvergent since ‖( f (u))x − ( f (uh))x‖
is one order lower than that of ‖e‖ which is p + 1 [by (2.7a)]. To show this, we apply the
classical Taylor formula with integral remainder to write

f (u) − f (uh) = R0 (u − uh) = R0 e, where R0 =
∫ 1

0
f ′(u + s(uh − u))ds.

Thus,

‖( f (u))x − ( f (uh))x‖ = ‖(R0)x e + R0ex‖ ≤ ‖(R0)x‖ ‖e‖ + ‖R0‖ ‖ex‖ (3.3)

Using the smoothness of f , we have |R0| ≤ ∫ 1
0 | f ′(u + s(uh − u))|ds ≤ ∫ 1

0 C1ds = C1,

where C1 = maxx∈[a,b], t∈[0,T ] | f ′(u(x, t))|. Similarly, using the fact that (R0)x = ∫ 1
0 (ux −

sex ) f ′′(u + s(uh − u))ds and the smoothness of u and f , we obtain

∣
∣(R0)x

∣
∣ ≤

∫ 1

0

∣
∣ux − sex

∣
∣
∣
∣ f ′′(u + s(uh − u))

∣
∣ds ≤

∫ 1

0

(

C2 + C3
∣
∣ex

∣
∣
)

C4ds

≤ C5 + C6 ‖ex‖ ≤ C7,

where we used (2.9). Consequently,

‖R0‖ ≤ C1(b − a)1/2 = C8, ‖(R0)x‖ ≤ C7(b − a)1/2 = C9. (3.4)

Combining (3.3) and (3.4) and using the estimates (2.7a) and (2.9)yields

‖( f (u))x − ( f (uh))x‖ ≤ Chp. (3.5)

In the next section we use the recovered derivative Rh(( f (u))x ) to develop an a posteriori
error estimator.
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3.2 Recovery-Based a Posteriori Error Estimators

The main results of this section are stated in the following theorem. In particular, we
prove that the a posteriori error estimates ‖rh(uh)‖ converge to the true spatial errors
‖( f (u))x − ( f (uh))x‖ at O(h p+1) rate. Moreover, we prove an asymptotic result of our
a posteriori error estimator.

Theorem 3.2 Suppose that the assumptions of Theorem 2.1 are satisfied. Let rh(uh) be the
approximated local residual defined by

rh(uh) = gh−( f (uh))x−(uh)t = Rh(( f (u))x )−( f (uh))x , x ∈ Ii , i = 1, . . . , N , t ∈ [0, T ],
(3.6)

then there exists a positive constant C independent of h such that

‖( f (u))x − ( f (uh))x − rh(uh)‖ ≤ Chp+1, t ∈ [0, T ]. (3.7)

As a consequence,
∣
∣
∣
∣
‖( f (u))x − ( f (uh))x‖ − ‖rh(uh)‖

∣
∣
∣
∣
≤ Chp+1. (3.8)

Furthermore, if there exists a constant C = C(u) > 0 independent of h such that

‖ex‖ ≥ Chp, (3.9)

then, at a fixed time t, the global effectivity index in the L2 norm which is defined as �(t) =
‖rh(uh)‖‖( f (u))x−( f (uh))x‖ and is used to appraise the accuracy of the error estimate, converges to

unity at O(h) rate i.e.,
�(t) = 1 + O(h), t ∈ [0, T ]. (3.10)

Proof Using the estimate (3.2), we obtain

‖( f (u))x − ( f (uh))x − rh(uh)‖ = ‖( f (u))x − (( f (uh))x + rh(uh))‖
= ‖( f (u))x − Rh(( f (u))x )‖ ≤ Chp+1,

which completes the proof of (3.7)
Next, we will prove (3.8). For convenience, we let r(u) = ( f (u))x − ( f (uh))x . Using the
reverse triangle inequality

∣
∣||v|| − ||w||∣∣ ≤ ||v − w|| with v = r(u) and w = rh(uh) and

applying the estimate (3.7), we obtain
∣
∣ ‖r(u)‖ − ‖rh(uh)‖

∣
∣ ≤ ‖r(u) − rh(uh)‖ ≤ Chp+1,

which completes the proof of (3.8).
In order to show (3.10), we use the triangle inequality to have

∣
∣ ‖rh(uh)‖ − ‖r(u)‖ ∣

∣ ≤ ‖r(u) − rh(uh)‖ ,

which, after dividing by ‖r(u)‖, yields
∣
∣
∣
∣

‖rh(uh)‖
‖r(u)‖ − 1

∣
∣
∣
∣
≤ ‖r(u) − rh(uh)‖

‖r(u)‖ . (3.11)

Next, we need to derive a lower bound for ‖r(u)‖. Applying the first-order Taylor expansion
with respect to the variable u, we write
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r(u) = ( f (u) − f (uh))x = (R0(u − uh))x = (R0 e)x

= (R0)x e + R0ex , where R0 =
∫ 1

0
f ′(u + s(uh − u))ds.

Using the smoothness of f and the fact that 0 < δ ≤ f ′(u(x, t)), ∀ (x, t) ∈ [a, b] × [0, T ],
where δ a positive constant, we get

δ|ex | ≤ |R0ex | = |r(u) − (R0)x e| ≤ |r(u)| + |(R0)x ||e| ≤ |r(u)| + C1|e|,
where we used (3.4). Squaring both sides, using the inequality (u + v)2 ≤ 2u2 + 2v2, and
integrating over the domain [a, b], we obtain

δ2 ‖ex‖2 ≤ 2 ‖r(u)‖2 + 2C2
1 ‖e‖2 .

Applying the inverse estimate (3.9) and the estimates (2.7a) and (2.9), we arrive at

C1h
2p ≤ ‖r(u)‖2 + C2h

2p+2.

Using the inequality
√
a + b ≤ √

a + √
b, we obtain

C3h
p ≤ ‖r(u)‖ + C4h

p+1.

Thus, for small h, we have

‖r(u)‖ ≥ C3h
p − C4h

p+1 ≥ C5h
p. (3.12)

Using the estimates (3.7) and (3.12), we get

‖r(u) − rh(uh)‖
‖r(u)‖ ≤ C1 h p+1

C5 h p
≤ C h. (3.13)

Combining (3.11) and (3.13), we arrive at
∣
∣
∣
∣

‖rh(uh)‖
‖r(u)‖ − 1

∣
∣
∣
∣
≤ C h.

Therefore, ‖rh(uh)‖‖r(u)‖ = 1 + O(h), which establishes (3.10). �

In the previous theorem, we proved that the a posteriori error estimates ‖rh(uh)‖ converge to
the true spatial errors ‖( f (u))x − ( f (uh))x‖ atO(h p+1) rate. We also proved that the global
effectivity index in the L2-norm converges to unity at O(h) rate.

Remark 3.3 The assumption (3.9) implies that terms of orderO(h p) are present in the error.
If this were not the case, the error estimate rh(uh)might not be such a good approximation of
the error ( f (u))x − ( f (uh))x . Even though the proof of (3.10) is valid under the assumption
(3.9), our computational results given in the next section suggest that the global effectivity
index in the L2-norm converge to unity at O(h2) rate. Thus, the proposed error estimation
technique is an excellent measure of the error.
We note that the a priori estimate (2.9) is optimal in the sense that the exponent of h is the
largest possible. In fact, one may show that provided that the pth-order derivatives of the
exact solution u do not vanish identically over the domain (u /∈ V p

h ), then an inverse estimate
of the form (3.9) is valid [6,30,31] for some positive constant C which depends on u but not
on h. Combining (2.9) with (3.9), we show that (uh)x approximates ux to O(h p) in the L2

norm.
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Remark 3.4 The performance of an error estimator is commonly measured by the effectivity
index which is the ratio of the estimated error to the actual error. In particular, we say that the
error estimator is asymptotically exact if the effectivity index approaches unity as the mesh
size goes to zero. Thus, (3.10) indicated that our a posteriori error estimator is asymptotically
exact.

Remark 3.5 We note that rh(uh) is a computable quantity since it only depends on the
numerical solution uh and the source term g. It provides an asymptotically exact a posteriori
estimator on the error ‖( f (u))x − ( f (uh))x‖. We would like to emphasize that our DG error
estimate of recovery type for the convection derivative approximation is computationally
simple which make it useful in adaptive computations. Finally, we would like to mention
that our estimator is more accurate than the classical residual error estimator since the later
requires solving a finite element formulation.

4 Numerical Examples

In this section, we present several numerical examples to validate our theoretical results.
The initial condition is determined by uh(x, 0) = P∗

h u(x, 0), where the projection P∗
h is

defined element by element as follows: Let x̄i = (xi + xi−1)/2 denote the center of each
subinterval Ii . If f ′(u(x̄i , 0)) is positive, then on Ii , we take P∗

h = P−
h ; otherwise, we take

P∗
h = P+

h . Temporal integration is performed by the fourth-order classical explicit Runge–
Kutta method. A time step �t is chosen so that temporal errors are small relative to spatial
errors. In all numerical experiments, the numerical order of convergence α is computed as
follows:

α = ln
(||eN1 ||/||eN2 ||)
ln(N2/N1)

,

where eN1 and eN2 denote the errors using N1 and N2 elements, respectively.
Let ρ, �, and δ� be defined as

ρ(t)=||( f (u))x − Rh(( f (u))x )||, �(t) = ‖rh(uh)‖
‖( f (u))x − ( f (uh))x‖ , δ�(t) = ∣

∣�(t) − 1
∣
∣.

Example 4.1 We consider the following nonlinear problem subject to the Dirichlet boundary
condition

⎧

⎨

⎩

ut + (u3 + u)x = −(2 + 3 cos2(x + t)) sin(x + t), x ∈ [0, 2π], t ∈ [0, 1],
u(x, 0) = cos(x), x ∈ [0, 2π ],
u(0, t) = cos(t), t ∈ [0, 1].

The exact solution is given by u(x, t) = cos(x+ t).Note that f ′(u) = 3u2+1 ≥ 1 ≥ δ > 0.
Since f ′(u) = 3u2 + 1 > 0, we take the numerical flux (2.2b). We solve this problem
using the DG method on uniform meshes having N = 5, 10, . . . , 80 elements and using the
spaces P p with p = 0− 4. The results shown in Table 1 indicate that the derivative recovery
formula Rh(( f (u))x ) at t = 1 is O(h p+1) superconvergent approximation to the derivative
( f (u))x . These results show that the order of convergence given by Theorem 3.1 is optimal.
This is in full agreement with the theory. In Table 2 we present the true L2 errors and the
global effectivity indices at time t = 1. We observe that � is near unity and converge to one
under h-refinement. Numerical results further indicate that the effectivity indices stay close
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to unity for all times and converge under h-refinement. These results are not included to save
space. Thus, our a posteriori error estimates are asymptotically exact. Finally, the errors δ�

and their orders of convergence shown in Table 3 suggest that the convergence rate for δ� is
O(h2) except for p = 0 which is due to the fact that the results in Theorem 2.1 hold under
the assumption p ≥ 1. We note that the observed numerical convergence rate is higher than
theoretical rate established in (3.10) which is proved to be O(h).

Example 4.2 In this example, we solve the following problem
⎧

⎨

⎩

ut + (u3)x = −(1 + 3 cos2(x + t)) sin(x + t), x ∈ [0, 2π], t ∈ [0, 1],
u(x, 0) = cos(x), x ∈ [0, 2π ],
u(−1, t) = cos(t), t ∈ [0, 1].

The exact solution is given by u(x, t) = cos(x + t). Since f ′(u) = 3u2 ≥ 0, we can
still use the upwind fluxes. We solve this problem using the same parameters and meshes
as for Example 4.1. We present the errors ||( f (u))x − Rh(( f (u))x )|| and their orders of
convergence at t = 1 in Table 4. These results indicate that the derivative recovery formula
Rh(( f (u))x ) at t = 1 is O(h p+1) superconvergent approximation to the derivative ( f (u))x .
We note that the order of convergence given by Theorem3.1 is optimal. The true L2 errors and
the global effectivity indices shown in Table 5 indicate that our a posteriori error estimates are
asymptotically exact under mesh refinement. The results shown in Table 6 indicate that the
convergence rate at t = 1 for δθ is O(h2) which is higher than the theoretical rate proved in
Theorem 3.2. Even though the assumption 0 < δ ≤ f ′(u(x, t)), ∀ (x, t) ∈ [0, 2π] × [0, T ]
does not always hold true, the same results are observed.

Example 4.3 In this example, we test our theoretical results using the flux function f (u) =
u2/2

⎧

⎨

⎩

ut + (u2/2)x = −(1 + cos(x + t)) sin(x + t), x ∈ [0, 2π], t ∈ [0, 1],
u(x, 0) = cos(x), x ∈ [0, 2π ],
u(−1, t) = cos(t), t ∈ [0, 1].

The exact solution is given by u(x, t) = cos(x + t). In this case, since f ′(u) = u which
changes sign in the computational domain, we use theGodunov flux, which is an upwind flux.
The initial condition, uh(x, 0), is taken as uh(x, 0) = P∗

h u(x, 0), where the projection P∗
h

is defined element by element as follows: If u(x̄i , t), where x̄i = (xi−1 + xi )/2, is positive,
then on Ii , we choose P−

h ; otherwise, we choose P+
h . We solve this problem using the DG

method on uniform meshes having N = 5, 10, . . . , 80 elements and using the space P p

with p = 0 − 4. The L2 errors ||( f (u))x − Rh(( f (u))x )|| and their orders of convergence
at t = 1 shown Table 7 suggest O(h p+1) convergence rate which is in full agreement with
the theory. In Table 8, we present the true L2 errors and the global effectivity indices at time
t = 1. We observe that � is near unity and converge to one under h-refinement. Numerical
results further indicate that the effectivity indices stay close to unity for all times and converge
under h-refinement.We also usedwith general flux functions such as f (u) = eu and observed
similar results. These results are not included to save space.

5 Concluding Remarks

In this paper, we proposed and analyzed a robust recovery-based a posteriori error estimator
for the DG method for nonlinear scalar conservation laws in one space dimension. The
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proposed estimator is easy to implement, computationally simple, and is asymptotically exact.
Furthermore, it is useful in adaptive computations. We first proved that the a posteriori error
estimates at a fixed time converge to the true spatial errors in the L2-norm at O(h p+1) rate,
when p-degree piecewise polynomials with p ≥ 1 are used. Then we proved that the global
effectivity index converges to unity at O(h) rate. Our proofs are valid for arbitrary regular
meshes using P p polynomials with p ≥ 1, under the condition that nonlinear flux function,
f ′(u) possesses a uniform positive lower bound. As in [27], our numerical experiments
demonstrate that the results in this paper hold true for nonlinear conservation laws with
general flux functions, indicating that the restriction on f (u) is artificial. The generalization
of our proofs to nonlinear equations with general flux functions involves several technical
difficulties and will be investigated in the future. For general flux functions, we expect
that similar superconvergence results of Meng et al. [27] will be needed. We are currently
investigating the superconvergence properties of the DGmethods applied to two-dimensional
conservation laws on rectangular and triangular meshes.
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