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Abstract Owing to the good ability of sparsely approximating piece-wise smooth functions
like images, the (tight) wavelet frame has been widely investigated and applied for image
restoration and other image processing problems over the past few years. Most of the vari-
ational models based on wavelet frame proposed in the past utilize the l1 norm of frame
coefficients as a sparsity prior. Very recently, the variational model which penalizes the l0
“norm” of frame coefficients was proposed for image restoration, and proved to outperform
the commonly used l1 minimization methods in the quality of restored images. Though the
l0 “norm” has the ability of preserving sharp edges and smooth regions, textures and small
details may be mistakenly removed at the same time. Therefore, we introduce a l0 − l2 regu-
larization model which contains a nonlocal prior of frame coefficients to avoid this issue in
this paper. Meanwhile, a narrow-band technique is introduced to further improve the com-
putational efficiency of the proposed algorithm. Numerical experiments demonstrate that the
propose algorithm is superior to the recently proposed algorithm for l0 “norm” minimization
in both iterative time and recovery quality.
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1 Introduction

Image restoration is one of the most important research subjects in many areas of image
processing and computer vision. Its goal is to enhance the quality of a given image that is
contaminated in various ways during the imaging process, and enable us to observe crucial
details residing in the image. Restoration task can often be formulated as an ill-posed inverse
problem:

f = Ku + ε (1)

where u and f denote the original image and the observed image respectively, ε is the
Gaussian white noise with variance σ 2, and K is some linear operator, such as a convolution
operator for image deconvolution problems. The goal of image restoration is to recover a
sharp image from the degraded image f . due to the serious ill-condition of the operator K , the
results of using direct inverse filtering are poor due to severe noise amplification. Therefore,
proper regularization techniques, which contain variational models [1–3] and wavelet frame
based approaches [4–8], should be adopted to suppress the impact of noise and obtain a
satisfactory solution.

One of the most popular variational models is the Rudin–Osher–Fatemi (ROF) model [1]
which penalizes the total variation (TV) norm of the image. The ROF model is especially
effective for restoring images that are piece-wise constant, such as the binary image.However,
it is very known that the TV regularizer suffers from the so-called stair-case effect [9], which
may produce undesirable blocky images. In order to overcome the shortcoming, various
variational models were further proposed, cf. [10–14]. On the other hand, many of the current
PDE based methods with application to image denoising, deblurring and so on also utilize
TV regularizer or its variants due to the edge-preserving ability. For more details refer to
[2,15].

In recent years, the sparsity-inducing prior based onwavelet frames has been playing a very
important role in the development of effective image restorationmodels. Thebasic idea behind
it is that the interest image can be sparsely represented by properly designed wavelet frames,
that is, most of the important information including in the image can be kept by few wavelet
coefficients. Therefore, one commonly used regularization term for the wavelet frame based
models is the l1-norm of frame coefficients. The results in literature [5,16,17] demonstrate
that wavelet frame based approaches outperform the earlier variational models such as the
ROF model, due to the multi-resolution structure and redundancy of wavelet frames. In fact,
the recent research in [17] established the close connection between the variational model
and one of wavelet frame based approaches, called the analysis based approach. It has been
proved that the analysis based approach with different regularization parameters and tight
frame systems can be seen as different discrete approximations of general variational models.
Such connection also explains the advantage of the wavelet frame based approaches over the
past variational models, that is, they can adaptively choose proper differential operators in
different regions of a given image according to the order of the singularity of the underlying
solutions. The connection of PDE based methods, variational models and wavelet frame
based approaches was further investigated in [18,19].

Most of the wavelet frame based models, including synthesis based approach, analysis
based approach and balanced approach [4–7], utilize the l1-norm of frame coefficients as
the regularization term. Theories of compressed sensing developed by Candes and Donoho
[20–22] guarantee that the l1 minimization problem can produce a reliable recovery of the
unknown image as long as proper conditions for the linear operator K and the wavelet
transformmatrix are satisfied, and the transform coefficients of the unknown image are sparse
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enough. However, for practical problems such as image deblurring and magnetic resonance
image reconstruction, these conditions are not necessarily satisfied. Therefore, these l1-norm
based models cannot always produce high quality recovery results for these applications.
In order to place more emphasis on the sparsity of wavelet frame coefficients and produce
recovery image with more sharp edges, l p quasi-norm with 0 < p < 1 was used [23,24]
for the description of the sparsity instead. However, the proximal operator of the l p quasi-
norm does not have a closed solution in contrast to the l1-norm. Recently, Zhang et al. [25]
proposed to penalize the l0 “norm” ofwavelet frame coefficients. In order to solve the analysis
based approach with l0 minimization, an algorithm called the penalty decomposition (PD)
method, based on the earlier works [26], was proposed to solve this problem. However, the
computational cost of the PDmethod is a little high due to the non-convexity of the l0 “norm”.
In the recent paper [27], amore efficient algorithm, calledmean doubly augmented lagrangian
(MDAL) method, was proposed for this l0 minimization problem. Numerical experiments
in [27] demonstrate that the analysis based approach based on l0 minimization can generate
recovery images with higher quality than the counterpart based on l1 minimization, and the
MDAL method is more efficient than the PD method.

Though the analysis based models with l0 “norm” is able to preserve the sharpness of the
edges and features, and retain the smoothness of the recovered images, the textures and tiny
details which are included in the small frame coefficients may be mistakenly removed by the
hard thresholding operator related to the l0 “norm”. One difficult issue is how to preserve
these coefficients that represent the important textures and detail information. Note that this
drawback of frame based approaches is due to the fact that the elements of the wavelet frames
discussed above are all locally supported in the spatial domain, and the wavelet transform
is just equal to finite-difference operators defined in the neighborhood. In other words, the
sparse representation of images under certain wavelet frames only reveals the sparse nature
of local variations of image intensities. Therefore, the wavelet frame based models discussed
above are called local approaches. They work very well on strong edges and smooth regions
of images, but are not suitable for the description of textures regions.

Recently, a class of nonlocal image restoration techniques have attracted increasingly
more attention. It is started with the nonlocal means (NLM) filter proposed by Buades et
al. [28], which makes full use of the similarity of image pixels that may be far away in
spatial domain. In this method, the similarity of pixels is not computed from the pixels
themselves but from their neighboring patches. The NLM filter is suitable for exploring the
redundancy information in images and shown to be very efficient for textures. Such method
has been extended to solve various problems of image processing, see [29–31] for instance.
Very recently, the nonlocal idea is combined with patch-dictionary methods, and generate
various novel image restoration models [32–36,45,46]. These nonlocal methods were among
the current state-of-the-art approaches in the quality of recovered images. However, the
corresponding computational burden is too high due to the fact that a large number of image
patches need to be clustered and sparsely coded during the iteration.Very recently, data-driven
local or nonlocal wavelet frames [37,38]were also developed for image restoration. However,
the computational cost is even higher than some patch-dictionary methods. The experiments
in literature [38] demonstrate that the MATLAB implementation of their algorithm takes
about 9 min for an image with size 256 × 256.

To balance the implementation time and the recovery quality, we propose a wavelet frame
based image restoration model with a l0 − l2 regularizer. In the proposed model, a nonlo-
cal prior of the frame coefficients, in the terms of l2 norm, is introduced in the variational
model. It plays an important role of estimating the coefficients that contain the textures and
finer details of images, which may be mistakenly removed by only utilizing the l0 regu-
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larizer. The numerical examples below demonstrate that the proposed method can not only
preserve the edges and smooth regions, but also recover the textures, which verify the effi-
ciency of the added l2 regularizer. Besides, from the experiments below we observe that
the iterative algorithm for the proposed model can achieve the same accuracy with much
less iteration number compared with the MDAL algorithm for l0 minimization problem.
To further accelerate the proposed algorithm, a technique called “narrow-band” is intro-
duced to reduce the computation burden related to the estimation of the nonlocal prior. In
the following experiments we find that the computational time of the iterative process of
the proposed algorithm is even less than that of the MDAL algorithm for l0 minimization
[27].

The rest of this paper is organized as follows. In the next section, we first review some
basic notions ofwavelet tight frames. Thenwe further discuss the currentwavelet frame based
image restoration models utilizing the l1 or l0 regularization term. In Sect. 3, we introduce
a nonlocal prior of frame coefficients in the form of the l2 norm into the recently proposed
model based on the l0 minimization problem, and propose a new restoration model utilizing
the l0 − l2 regularizer. In order to reduce the computational cost of the nonlocal estimation,
a new strategy called the narrow-band technique is also proposed. In Sect. 4, we provide
comprehensive tests of the performance of the proposed algorithm for image deblurring; and
compare it with the preconditioned Bregmanized operator splitting (PBOS) algorithm for
solving the nonlocal total variation (TV) model [30], the MDAL method for solving the l0
minimization problem [27], and the Iterative Decoupled Deblurring BM3D (IDD-BM3D)
algorithm [46]. The conclusion is given in Sect. 5.

2 Wavelet Frames and Previous Works

In this section, we briefly introduce some preliminaries of wavelet tight frames, and then
review some of the current frame based image restoration models.

Wavelet tight frames are the widely used frames in image processing. One wavelet frame
for L2(R) is a system generated by the shifts and dilations of a finite set of generators
Ψ = {Ψ1, . . . , Ψn}:

X (Ψ ) = {
Ψq, j,k, 1 ≤ q ≤ n, j ∈ Z, k ∈ Z

}
(2)

where Ψq, j,k = 2 j/2Ψq(2 j · −k). Such set X (Ψ ) is called a tight frame of L2(R) if

f =
∑

ψ∈Ψ

〈 f, ψ〉ψ, ∀ f ∈ L2(R). (3)

The construction of framelets can be obtained by the unitary extension principle (UEP). For
more details refer to [6,39,40]. One widely used framelet in image recovery is the linear
B-spline framelet, which has two generators and the associated masks {h0, h1, h2} are

h0 = 1

4
[1, 2, 1] ; h1 =

√
2

4
[1, 0,−1] ; h2 = 1

4
[−1, 2,−1] . (4)

Given the 1-dimensional wavelet tight frame, the framelets for L2(R
2) can be easily con-

structed by taking tensor products of 1-dimensional framelets.
In the discrete setting, assume thatW ∈ R

M×N (M > N ) denotes the transform matrix of
framelet decomposition. Then by the unitary extension principle we have WTW = I . The
matrix W is called the analysis (decomposition) operator, and its transpose WT is called the
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synthesis (reconstruction) operator. The L-level framelet decomposition of u will be further
denoted as

Wu = {
Wl, j u : 0 ≤ l ≤ L − 1, j ∈ I

}
(5)

where I denotes the index set of the framelet bands, and Wl, j u is the wavelet frame coef-
ficients of u in band j at level l. The frame coefficients Wl, j u can be constructed from
the masks associated with the framelets. For simplicity, we consider the L-level un-decimal
wavelet tight frame system without the down-sampling and up-sampling operators here. Let
h0 denote the mask associated with the scaling function and {h1, . . . , hn} denote the masks
associated with other framelets. Denote

h(l)
j = h0 ∗ h0 ∗ · · · ∗ h0︸ ︷︷ ︸

l−1

∗h j (6)

where ∗ denotes the discrete convolution operator. Then Wl, j corresponds to the Toeplitz-

plus-Hankel matrix that represents the convolution operator h(l)
j under Neumann boundary

condition. For the general definition of Wl, j refer to [17–19]. Besides, We can also use α to
denote the frame coefficients, i.e., α = Wu, where αl, j = Wl, j u.

In what follows, we further recall the recently proposed image restorationmodels based on
framelets. Due to the redundancy of the wavelet tight frames (WWT 	= I ), there are several
different frame-based models proposed in the literature, including the analysis model, the
synthesis model, and the balance model. Detailed description of these methods can be found
in [6,7]. Typically, the balanced model for framelet-based image restoration can be described
as

min
α

1

2
‖KWTα − f ‖22 + κ

2
‖
(
I − WWT

)
α‖22 +

∥
∥
∥
∥
∥
∥
∥

L−1∑

l=0

⎛

⎝
∑

j∈I
λl, j |αl, j |p

⎞

⎠

1/p
∥
∥
∥
∥
∥
∥
∥
1

(7)

where p = 1 or 2, 0 ≤ κ ≤ ∞, and λl, j > 0 is a scalar parameter. Note that the last two terms
in (7) balance the smoothness of the image and the sparsity of the transformed coefficients.
The synthesis and analysis models can be regarded as two extreme cases of (7). While κ = 0,
the balanced model (7) only penalizes the sparsity of framelet coefficients. This is called the
synthesis model. While κ = ∞, (7) can be reformulated as

min
u

1

2
‖Ku − f ‖22 +

∥
∥
∥
∥
∥
∥
∥

L−1∑

l=0

⎛

⎝
∑

j∈I
λl, j |Wl, j u|p

⎞

⎠

1/p
∥
∥
∥
∥
∥
∥
∥
1

. (8)

This is called the analysis model. Though the formulas of the three models are different from
each other, numerical experiments in [6] demonstrate that the quality of the recovered images
by these models is approximately comparable.

All the frame based models mentioned above utilize the l1-norm of frame coefficients as
the regularizer. In order to recover images with more sharp edges, the lq quasi-norm with
0 ≤ q < 1 was further investigated. Recently, the authors in [25] proposed to use the l0
“norm” instead of the l1 norm in the analysis model:

min
u

1

2
‖Ku − f ‖22 +

∑

i

λi ‖(Wu)i‖0 (9)

wheremulti-index i is used and (Wu)i denotes the value ofWu at a given pixel locationwithin
a certain level and bandofwavelet frame transform.λi > 0 is the corresponding regularization
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parameter. The l0 “norm” ‖w‖0 is defined to be the number of the non-zero elements of w.
Its proximity operator can be easily computed by the hard-thresholding operator.

In literature [25], an algorithm called PD method was proposed to solve the l0 mini-
mization problem (9). Recently, a more efficient algorithm, called MDAL method [27], was
further developed for solving the same problem. It can be seen as an extension of the doubly
augmented Lagrangian (DAL) method [41,42] to handle the non-convex regularizer such as
l0 minimization. The minimization problem (9) can be rewritten as a constrained form:

min
u

1

2
‖Ku − f ‖22 + ‖λ · α‖0, s.t. α = Wu (10)

where ‖λ · α‖0 = ∑
i λi ‖(α)i‖0. The DAL method applied to (10) can be formulated as

⎧
⎪⎨

⎪⎩

uk+1 = argmin
u

1
2‖Ku − f ‖22 + μ

2 ‖Wu − αk + bk‖22 + γ
2 ‖u − uk‖22,

αk+1 = argmin
α

‖λ · α‖0 + μ
2 ‖α − (

Wuk+1 + bk
) ‖22 + γ

2 ‖α − αk‖22,
bk+1 = bk + Wuk+1 − αk+1

(11)

where μ > 0 is a penalty parameter, and the parameter γ > 0 controls the regularity of the
iterative sequence.

Although applying the DAL algorithm (11) to solve the minimization problem (10) seems
to be reasonable, numerical examples in literature [27] demonstrate that the iteration sequence
generated by (11) may be unstable, or the convergence speed is very slow. Therefore, the
authors there proposed to utilize the arithmetic means of the solution sequence, denoted by

ūk = 1

k + 1

k∑

j=0

uk, ᾱk = 1

k + 1

k∑

j=0

αk,

as the output, instead of the sequence (uk, αk) itself. Due to the fact that the arithmetic means
are treated as the actual output of the algorithm, it is called the mean doubly augmented
Lagrangian (MDAL) method. In literature [43], the convergence of the arithmetic means of
the sequence generated by DAL method has been investigated for the convex minimization
problems. However, these results cannot be applied for the MDAL method here due to the
non-convexity of the l0 “norm”. Fortunately, numerical experiments show that the sequence
(ūk, ᾱk) generated by the MDAL method is really convergent, and both the convergence
speed and the quality of recovery are superior to those of the PD method [27].

3 Proposed Model Based on l0 − l2 Regularizer

In the above section, we briefly review the notion of framelet and the l0-based optimization
model for image restoration. Note that the frame coefficients can be obtained by the discrete
convolution operator such as that defined in (6), which implies that they in fact represent the
results of different types of finite-difference operators defined in the neighborhood. Therefore,
the sparse prior of images under certain wavelet frame systems can only reflect the local
features of image information. In fact, some of the textures and finer details contained in the
small frame coefficients may be mistakenly removed by the l0-minimization problem with
respect to the frame coefficients (see the experiments below for details).

In order to estimate the frame coefficients that contain the textures and finer details more
exactly, one strategy is to obtain a reasonable prior of the non-zero coefficients. Inspired
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by the recent works [33,34] for patch-based sparse representation models, we propose the
following nonlocal estimation of the frame coefficients. Consider the frame coefficients of
the image u in band j at level l, which is denoted by αl, j = Wl, j u. By the definition of the
operator Wl, j shown in Sect. 2, we infer that the coefficients αl, j is obtained by convoluting

the image u with the operator h(l)
j . It is well known that the convolution is performed in the

local image regions. Therefore, for any indexes k and t, while the neighborhoods around the
pixels k and t of the image are similar, we have that

αl, j (k) ≈ αl, j (t). (12)

The relation in (12)means that the similarity of two frame coefficients can bemeasured by the
similarity of the corresponding image patches, and hence one frame coefficient corresponding
to a given patch can be estimated by the frame coefficients obtained by the similar patches.

Denote the image patch centered at the pixel k as uk, which is defined by uk = {uq, q ∈
N (k)}. Here N (k) denotes a neighborhood of the pixel k. Then from a collection of m
similar patches

{
uk1 , . . . ,ukm

}
, the nonlocal estimation of αl, j (k) can be given by

βl, j (k) =
m∑

i=1

wiαl, j (ki ) (13)

where wi is the weight based on patch similarity. Similarly to the nonlocal means filter [28],
we set the weight to be inversely proportional to the distance between the patches uk and
uki , i.e.,

wi = 1

C
exp

(−‖uki − uk‖22/h
)

where h is a filtering parameter and C is the normalizing factor.
Through combining the sparse prior and the nonlocal estimation of the frame coefficients,

we propose the following wavelet frame based image restoration model

min
u,β

1

2
‖Ku − f ‖22 +

∑

i

λi ‖(Wu)i‖0 + ν

2
‖Wu − β‖22 (14)

where β = [βl, j ]0≤l≤L−1, j∈I denotes the nonlocal estimation of Wu, and its optimal value
can be estimated by the formula (13). Here we use the l2 norm to measure the approximation
between Wu and its nonlocal estimation for the convenience of computation. The variables
u and β are alternatively updated in the proposed algorithm.

Since the optimal value of β is obtained by (13), we firstly fix the value of β, and hence
the minimization problem (14) can be rewritten as a constrained problem as follows:

min
u,α

1

2
‖Ku − f ‖22 +

∑

i

λi ‖(α)i‖0 + ν

2
‖α − β‖22, s.t. α = Wu. (15)

Similarly to literature [27], we can use the MDAL method to solve the proposed l0 − l2
minimization problem. The DAL method applied to (15) is reformulated as
⎧
⎪⎨

⎪⎩

uk+1 = argmin
u

1
2‖Ku − f ‖22 + μ

2 ‖Wu − αk + bk‖22 + γ1
2 ‖u − uk‖22,

αk+1 = argmin
α

‖λ · α‖0 + ν
2‖α − β‖22 + μ

2 ‖α − (
Wuk+1 + bk

) ‖22 + γ2
2 ‖α − αk‖22,

bk+1 = bk + Wuk+1 − αk+1.

(16)
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Each of the subproblems of (16) has a closed form solution. It is simple to show that (16)
can be rewritten as

⎧
⎨

⎩

uk+1 = (
KT K + (μ + γ1) I

)−1 (
KT f + γ1uk + μWT

(
αk − bk

))
,

αk+1 = Hλ,ν,μ,γ2

(
β,Wuk+1 + bk, αk

)
,

bk+1 = bk + Wuk+1 − αk+1
(17)

where the operatorH is a generalized hard-thresholding operator defined component-wisely
as

(
Hλ,ν,μ,γ (x, y, z)

)
i =

⎧
⎨

⎩
0, if

∣
∣
∣ νxi+μyi+γ zi

ν+μ+γ

∣
∣
∣ <

√
2λi

ν+μ+γ
,

νxi+μyi+γ zi
ν+μ+γ

, otherwise.

In what follows, we further discuss how to compute the nonlocal estimation β while the
variables u and α = Wu are fixed. From the formula (13) we observe that the values of β

rely on the frame coefficients α. In order to estimate the values of β, we use the the current
estimate αk to approximate α. Therefore, the values of β at the k+1th iteration of the iterative
method (17) can be updated by the following formula:

βl, j (k) =
m∑

i=1

wiα
k
l, j (ki ). (18)

The nonlocal estimation of each frame coefficient will bring an extra computational burden
for the iteration process. However, we only need the nonlocal prior of the coefficients that
contain the textures or finer structures, and hence the computation of the nonlocal estimation
of most frame coefficients may be unnecessary.

For example, consider the Barbara image which is convolved by a 5 × 5 Gaussian blur
kernel with standard deviation σb = 2, and contaminated by Gaussian noise of standard
deviation σ = 3. We use the proposed model (14) to recover the blurred image. For the
setting of parameters of the DALmethod shown in (16), refer to the numerical experiments in
Sect. 4. Figure 1 shows the frame coefficients αk

l, j with l = 1, j = (3, 2) and k = 10, 11, 12.
In this figure, the values of frame coefficients are presented in gray scale where brightness
is measured in a range of [0, 1]. It is observed that the difference of the support sets of the
frame coefficients between two successive iteration values is very small. Specifically, we can
define the diversity function

χk
l, j =

|supp
(
αk
l, j

)
∪ supp

(
αk+1
l, j

)
| − |supp

(
αk
l, j

)
∩ supp

(
αk+1
l, j

)
|

m × n

to quantitatively measure the difference between two support sets. Here supp(·) denotes the
support set, | · | denotes the number of elements in the set, and m × n represents the size of
the image. Through direct computation we obtain that χ10

l, j = 2.6% (reflect the difference of

the support sets shown in Fig. 1a, b) and χ11
l, j = 2.57% (reflect the difference of the support

sets shown in Fig. 1b, c). These results demonstrate that the change between two successive
support sets is really small. Therefore, we can use the current support set of αk to define an
active set which provides a permissible range for the updating of the nonlocal estimation β.

Motivated by the above analysis, we introduce a new strategy to further accelerate the
proposed algorithm. Denote the active set

I k =
{

i :
∣
∣
∣
∣
∣
νβe

i + μ
(
Wuk + bk−1

)
i + γαk−1

i

ν + μ + γ

∣
∣
∣
∣
∣
> c ·

√
2λi

ν + μ + γ

}

(19)
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Fig. 1 The frame coefficients of band (3, 2) at level 1. a iter. num. = 10; b iter. num. = 11; c (a) iter.
num. = 12

where βe denote the current estimation value of β before the k +1th iteration, and c ∈ (0, 1)
is a scaling parameter used to restrict the range of the update of β in a small set. Then we only
need to update the values of β in the active setI k . Since this strategy limits the computation
of nonlocal estimation values in a small set of the framelet domain, we call it the narrow-
band technique in this paper. The numerical experiments in Sect. 4 will demonstrate that
the introduction of the narrow-band technique obviously accelerates the proposed algorithm.
The whole process of the proposed algorithm is summarized in Algorithm 1.

In the proposed algorithm, the parameter T represents the update interval of the nonlocal
estimation value β in the iteration process. For the initialization of the nonlocal estimation β,
we use the folowing the strategy. First, similarly to the literature [30,47], we use the standard
Tikhonov regularization method to obtain an initial image û, and the similarity weightw can
be computed according to û. Then the initial β0 is obtained by

β0
l, j (k) =

m∑

i=1

wi
(
Wl, j û

)
(ki ) .

Though the MDAL method is superior to the previous PD method, the convergence to a
local minimizer of the sequence generated from the MDAL method for the l0 minimization
problem is still an open problem. Fortunately, the numerical experiments in literature [27]
demonstrate that the algorithm is really convergent towards a stable solution. Though a extra
nonlocal prior is added in the model via the form of l2 norm, the convergence of our proposed
algorithm can still be guaranteed. In fact, it is observed that the iterative algorithm for the
l0− l2 minimization problem can achieve the same accuracy with much less iteration number
compared to that for the l0 minimization problem. For more details refer to the experiments
in the next section.

4 Numerical Experiments

In this section, we compare the proposed algorithm (shown as Algorithm 1) with the PBOS
algorithm for the non-local TV model [30], the MDAL method for the l0 minimization
problem [27] and the Iterative Decoupled Deblurring BM3D (IDD-BM3D) algorithm [46].
The specific image restoration task that we consider here is image deblurring. Both the quality
of the recovery images and the computational costs of these algorithms are compared.

The codes of the proposed algorithm and the MDAL method for the l0 minimization are
written entirely in Matlab. The code of the PBOS algorithm for the nonlocal TV model is
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Algorithm 1TheMeanDoubly Augmented LagrangianMethod Based on TheNarrow-Band
Technique (MDAL-NB) for Image Restoration

Given observation f ; regularization parameters λ and ν; parameters μ, γ1 and γ2; the update parameter
T ; the scaling parameter c; the number of similar patches m, the parameters setting of the computation of
nonlocal weights; the matrix of framelet W .
Initialization:
(a) Estimate an initial image û using a standard Tikhonov regularization method;
(b) compute the similarity weight w based on û;
(c) initialize β = β0 via Eq. (13); u0 = 0; b0 = α0 = W f .

Iteration:
(i) update u:
uk+1 = (KT K + (μ + γ1)I )

−1(KT f + γ1u
k + μWT (αk − bk ));

(ii) update α:
αk+1 = Hλ,ν,μ,γ2 (β,Wuk+1 + bk , αk );

(iii) update b:
bk+1 = bk + Wuk+1 − αk+1;

(iv) If mod(k, T ) == 0, define

I k =
{
i :

∣
∣
∣
∣
νβi+μ(Wuk+bk−1)i+γαk−1

i
ν+μ+γ

∣
∣
∣
∣ > c ·

√
2λi

ν+μ+γ

}
; and update β via Eq. (18);

(v) update ū:
ūk+1 = k+1

k+2 ū
k + 1

k+2 u
k+1;

(vi) k = k + 1;
until some stopping criterion is satisfied.
Output the recovered imageūk+1.

available at http://math.sjtu.edu.cn/faculty/xqzhang/html/code.html. Due to the fact that a
large scale linear equations need to be solved in each inner iteration of the PBOS algorithm,
the total computational costs are very high. Therefore, the main code of the PBOS algorithm
is written in C with MATLAB calling interfaces. The code of the IDD-BM3D algorithm
is available at http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D.zip. The computationally most
intensive parts have been written in C++ due to the high computational complex. All the
numerical examples are implemented under Windows XP and MATLAB 2009 running on a
laptop with an Intel Core i5 CPU (2.8 GHz) and 8 GBMemory. In the following experiments,
six standard natural images (see Fig. 2), which consist of complex components in different
scales and with different patterns, are used for our test.

4.1 The Setting of Parameters

In this sectionwe discuss the selection of parameters ofAlgorithm1 in details. The parameters
μ, γ1, γ2 are the penalty parameters of theMDAL algorithm. These parameters mainly affect
the speed of convergence of their corresponding algorithm. Empirically, these parameters are
not very sensitive to different types of images, blurs and noise levels. Optimal adjustments
of these parameters may improve the results which are presented here. However, it will also
reduce the practicality of the algorithm due to the estimation of the optimal parameters.
Therefore, based on the suggestion in literature [27], we fix the penalty parameters μ = 0.01
and γ1 = γ2 = 0.003 for Algorithm 1.

The setting of the regularization parameter λ is the same as that in literature [27]. For the
regularization parameter ν which controls the goodness of fit of the nonlocal estimation β,
we adopt two selection strategy here. One is to use the fixed parameter, which is adjusted to
be a suitable value such as ν = 0.02 used in the following experiments, in the sense that after
many trials, this value gives the best restoration; the other is to use an adaptive parameter
which is given by
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Fig. 2 Original images. aBarbara (256×256),bLena (256×256), c house (256×256),dBaboon (256×256),
e Goldhill (256 × 256), f Zebra (250 × 167)

νl, j (k) = c0√
max

(∑m
i=1 |Wl, j u(ki ) − βe

l, j (k)|22, σ 2
) (20)

where βe
l, j denotes the current estimation of βl, j in the iteration process, and c0 is a constant.

Through many trials we choose c0 = 0.003 in our experiments. Note that the denominator
is a non-local approximation of the standard deviation of the coefficient Wl, j u(k). For the
texture-like image patch which has many repetition patterns, the non-local standard deviation
of the coefficient corresponding to this patch will be small, and hence the value of ν will
be large there, which means that the second regularization term ‖Wu − β‖22 of model (14)
plays the main role. Therefore, the values of ν defined by (20) changes according to the
image contents. However, the computation of the adaptive regularization parameter also
introduces extra computational cost and will reduce the efficiency of the proposed algorithm.
Acompromise choice is to compute the valueof the adaptive parameterν according to (20) just
several times, and use this fixed value in the remaining iteration process. In our experiments,
we observe that the recovery results of the compromise method which computes (20) for
ν just once are even worse than those obtained by the algorithm with the fixed parameter,
which maybe due to the reason that the estimation of the standard deviation of the coefficient
Wl, j u(k) shown in (20) is inexact in the first several iteration.

In what follows, we compare the performance of proposed algorithms with both selection
strategies of the regularization parameter ν, and the compromisemethod. For the computation
of the nonlocal weights, we adopt the similar setting which is widely used in many previous
literatures [33,34,36] related to this class of computation, i.e., the sizes of image patches and
the searchingwindow are fixed to be 5×5 and 11×11 respectively. The 15 nearest patches are
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used for the computation of the nonlocal prior, i.e., we setm = 15. In fact, the performance of
the proposed algorithm is unsensitive to the setting of these parameters. Similarly to previous
literature such as [5,7,8,27], linear B-spline framelet is adopted for our experiments. In order
to reduce the computational cost, we fix the level of framelet decomposition to be 1 here.
Two standard natural images called “Barbara” and “Zebra” are used for our comparison. We
consider two blur kernel cases: one is a Gaussian blur [generated by the Matlab function
“fspecial (‘gaussian’, 5, 2)”], the other is a 20 degree motion blur [generated by the Matlab
function “fspecial (‘motion’, 10, 20)”]. The blurred images are contaminated by noises with
the standard deviation σ = 3 and 4. The performance of these algorithms is quantitatively
measured bymeans of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
index [48]. The PSNR is expressed as

PSNR(u, u∗) = −20 lg

{‖u − u∗‖2
255N

}
(21)

where u and u∗ denote the original and restored images, respectively, and N is the total
number of pixels in the image u. Besides, we choose the following stopping criterion for the
MDAL method:

‖ūk+1 − ūk‖2
‖ f ‖2 < 5 × 10−4. (22)

Table 1 shows the PSNR, SSIM values and iteration time of the proposed algorithms with
different selection strategies of ν. In the compromise choice strategy, the value of the para-
meter ν is computed according to (20) just nine times, and it is observed that the recovery
results are more or less the same as those obtained by the algorithm with the adaptive para-
meter. Besides, we also observe from the results that though the performance of the algorithm
is improved by the adaptive parameter ν defined by (20), the corresponding iteration time
becomes longer than that with the fixed parameter due to the extra computation task of ν.

In what follows, we further discuss the selection of the update parameter T and the scaling
parameter c. We use three standard natural images called “Barbara”, “lena” and “House” for
our test. Two blur cases used in the above experiments are also tested here. First of all, we
consider the impact of the update parameter T on the proposed algorithm (we consider the
case of the fixed parameter ν, and the conclusion is also suitable for the adaptive parameter
cases). Here we fix c = 0.6 in Algorithm 1. Figure 3 shows the curves about the PSNR values
vs. the update parameter T . The results of the Barbara image with different blur kernels are
shown in Fig. 3a, and those of the House image are shown in Fig. 3b. It is observed that
the quality of recovery images is degraded very quickly while T > 2. Therefore, we choose
T = 2 in the following experiments, which means the value of the nonlocal estimation β is
recalculated every second iteration.

Second, we investigate the influence of the scaling parameter c of Algorithm 1 on both the
quality of the recovery images and the computational costs. Two images with different blur
kernels and noisy levels are considered here. We choose T = 2 in Algorithm 1. Table 2 lists
the PSNR values and CPU time of the iterative algorithmwith c varying from 0.0 to 1.0. From
the results we observe that it takes shorter computational time for bigger c due to the fact that
the corresponding active set I k become smaller. However, the corresponding PSNR values
decrease as the values of c increase. Considering both the quality of the recovery images and
the computational time, we choose c = 0.6 in the following experiments.
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Table 2 The PSNR (dB) and
CPU time (s) with different
scaling parameters c

c 0.0 0.2 0.4 0.6 0.8 1.0

Barbara, 5 × 5 Gaussian kernel, σ = 3.0

PSNR 27.16 27.15 27.15 27.14 27.10 27.05

Time 13.35 8.56 7.83 7.43 6.62 5.76

Lena, Motion kernel, σ = 4.0

PSNR 28.41 28.40 28.40 28.40 28.37 28.34

Time 19.78 12.21 10.12 9.14 8.00 6.75

4.2 The Analysis of the Role of the l2 Regularizer of the Proposed Model

Note that compared with the MDAL method for the l0 minimization [27], a nonlocal prior
of the frame coefficients in the form of the l2-norm regularizer has been introduced in the
proposed model. In this section we further discuss the role of the added l2 regularizer in
both the computational efficiency and recovery accuracy. For simplification we consider the
algorithm with the fixed ν, and the similar conclusion can be also obtained by the algorithm
with the adaptive parameter cases.

Firstly, we compare the computational efficiency of the MDAL methods for the l0 min-
imization [27] and the l0 − l2 minimization problems (Algorithm 1). Figure 4 shows the

evolution curves of the log error ln ‖ūk+1−ūk‖2‖ f ‖2 for both algorithms. Here the error is shown
in log scale for better visualization. From the plots we observe that Algorithm 1 converges
faster than the MDAL method for the l0 minimization problem (especially for the Barbara
image which is rich in textures). This phenomenon can be explained as follows. Assume that
part of the frame coefficients, such as those corresponding to the textures or finer details, are
mainly recovered by the nonlocal estimator β, which is updated by

β = Sαk

where S is the similarly matrix composed by the normalized weights. It is obvious that S
is a stochastic matrices with nonnegative entries. By Perron-Frobenius theory of nonneg-
ative matrices [44], e1 = 1 is the unique eigenvalue of S with maximum modulus, and
the convergence rate of Sk is determined by the subdominant eigenvalue e2 < 1. There-
fore, if the coefficients α on the index set J is determined by the nonlocal estimation, i.e.,
(α2k)J ≈ (Skα0)J , then αk converges very quickly on the set J due to the fast con-
vergence rate of the operator Sk . This may lead to the acceleration of the whole iterative
algorithm. It is worth noticing that the acceleration is more obvious for the Barbara image.
The reason is that more textures, corresponding to the larger index set J where (αk)J
converges very fast, need to be recovered by the nonlocal estimation.

In the next, the recovery accuracy of the MDAL method for the l0 minimization [27] and
Algorithm1 is compared. Figure 5 presents efficiency curves, i.e. plotting relative log errors to

ground-truth (denoted by ln ‖ūk−u∗‖2‖u∗‖2 ) versus computational time for both algorithms. From
the plots we observe that the results obtained by Algorithm 1 are closer to the original image.
This is due to the more accurate recovery of frame coefficients that correspond to textures or
details through the nonlocal estimation β of coefficient values.

In order to see this point more clearly, we also show the values of frame coefficients in
Fig. 6. Figure 6a, d present certain sub-bands of the original Zebra and Barbara images. The
light gray regions refer to large values of coefficients, whereas dark gray represents zones
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Fig. 6 a The frame coefficients of band (1, 3) at level 1 of the original Barbara image, b the corresponding
coefficients of the recovered image by the l0 minimization [27], c the corresponding coefficients of the
recovered image by Algorithm 1, d the frame coefficients of band (3, 3) at level 1 of the original Zebra image,
e the corresponding coefficients of the recovered image by the l0 minimization [27], f the corresponding
coefficients of the recovered image by Algorithm 1

where coefficients is small. The Zebra image is blurred by Gaussian kernel and added with
noises of σ = 4, and the Barbara image is blurred by motion kernel and added with noises
of σ = 3. The corresponding sub-bands of the recovered images by the l0 minimization
are shown in Fig. 6b, e; and those by Algorithm 1 are presented in Fig. 6c, f. It is observed
that though the sub-bands generated by the l0 minimization is sparser than those produced
by Algorithm 1, they are farther away from the ground-truth. This is due to the fact that a
transformed image of a framelet transform is not truly sparse, but approximated sparse.

4.3 Comparison with Other Methods

In this subsection, we report the experimental results, comparing the proposed algorithmwith
the MDAL method for the l0 minimization problem, the PBOS algorithm for the nonlocal
TV model and the IDD-BM3D algorithm.

First of all, we test the performance of the three algorithms including the l0 minimization
algorithm, the PBOS algorithm and Algorithm 1 with fixed ν. Table 3 lists the PSNR, SSIM
values and CPU time of the iterative process of different algorithms for images with different
blur kernels and noise levels. Note that the PBOS algorithm for the nonlocal TV model
is running in C with MATLAB calling interfaces due to the large computational burden.
Besides, we also find that the PBOS algorithm cannot satisfy the stopping criterion based on
the error between two successive iteration values such as ‖uk+1−uk‖2/‖ f ‖2 < 5×10−4 for
many iterations, and hence the stopping criterion of ‖Kuk − f ‖2 < σ which were adopted
in literature [30] is also demanded here, i.e., the iterative process stops while one of the two
criterions is satisfied. In this experiments we fix the level of framelet decomposition to be
L = 2 for the MDAL for l0 minimization [27], and consider two cases of L = 1 and 2
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Original image (b) Blurry and noisy image

(c) Non-local TV (d) MDAL forl0

(e) Algorithm 1, L=1 (f) Algorithm 1, L=2

(a)

Fig. 7 a The original Barbara image, b the blurry and noisy image: Motion blur with noise of σ = 3.0,
c the image restored by nonlocal TV model, d the image restored by MDAL for l0 minimization problem,
e the image restored by Algorithm 1 with L = 1, f the image restored by Algorithm 1 with L = 2 (Color
figure online)
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(a) Non-local TV (b) MDAL for l0 (c) Algorithm 1, L=1 (d) Algorithm 1, L=2

Fig. 8 a The detail in the ramp region (red) corresponding to Fig. 7c, b the detail in the ramp region (red)
corresponding to Fig. 7d, c the detail in the ramp region (red) corresponding to Fig. 7e, d the detail in the
ramp region (red) corresponding to Fig. 7f

(a) Non-local TV (b) MDAL for l0 (c) Algorithm 1,
L=1

(d) Algorithm 1,
L=2

Fig. 9 a The detail in the ramp region (blue) corresponding to Fig. 7c, b the detail in the ramp region (blue)
corresponding to Fig. 7d, c the detail in the ramp region (blue) corresponding to Fig. 7e, d the detail in the
ramp region (blue) corresponding to Fig. 7f

for Algorithm 1. We observe that the proposed algorithm has an overall better performance
than the other two methods in terms of implementation time, SSIM and PSNR values. The
iteration time of Algorithm 1 with L = 1 is even less than that of the PBOS algorithm, which
is implemented in C code. On the other hand, it is also noted that Algorithm 1 with L = 2 can
improve the quality of recovery images in most cases, but the corresponding computational
time is also longer.

In what follows, we further analyze the advantage of the proposed algorithm through the
image “Barbara”. The recovered results of the Barbara image are shown in Fig. 7. Figure 7a
is the original Barbara image. The image is convoluted by 20-degree motion kernel and
contaminated by noise with σ = 3.0 is presented in Fig. 7b. Figure 7c–f show the recovered
images by these algorithms. It is observed that the proposed algorithm has the potential to
recover the piecewise smooth regions and the textures simultaneously. In order to make the
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(a) Original image (b) Blurry and noisy image

(c) Non-local TV (d) MDAL for l0

(e) Algorithm 1, L=1 (f) Algorithm 1, L=2

Fig. 10 a The original House image, b the blurry and noisy image: Motion blur with noise of σ = 4.0,
c the image restored by nonlocal TV model, d the image restored by MDAL for l0 minimization problem,
e the image restored by Algorithm 1 with L = 1, f the image restored by Algorithm 1 with L = 2 (Color
figure online)
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(a) Non-local TV (b) MDAL forl0

(c) Algorithm 1, L=1 (d) Algorithm 1, L=2

Fig. 11 a The detail in the ramp region (red) corresponding to Fig. 10c, b the detail in the ramp region (red)
corresponding to Fig. 10d, c the detail in the ramp region (red) corresponding to Fig. 10e, d the detail in the
ramp region (red) corresponding to Fig. 10f

comparison more clear, we zoom into two classical regions of the Barbara image, which
represent the smooth regions and textures, in Figs. 8 and 9 respectively.

From the results in Fig. 8, we observe that the texture details on the scarf are sharper in
Fig. 8a, c, d. The reason is that nonlocal priors are introduced in the nonlocal TV model,
and the proposed method through the l2 norm. It is well known that the nonlocal methods
have the ability of recovering the textures. However, the wavelet frame coefficients have the
better capability of sparsely approximating piecewise smooth regions than the nonlocal filter.
Therefore, it is noticed from Fig. 9 that the smooth regions can be better recovered by the
frame-based image restoration methods than the nonlocal TV model. Specifically, we find
that many artifacts or outliers appear in Fig. 9a, rather than in Fig. 9b–d.

Figure 10 presents the recovered results of the House image that is degraded by 20-degree
motion kernel and Gaussian noise of σ = 4.0. It is observed that many false contouring or
artifacts appear in Fig. 10c, and not in Fig. 10d–f. For a better visualization, we also zoom
parts of the results in Fig. 11. it can be seen clearly from the results that some artifacts also
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(a) Original image (b) Blurry and noisy image

(c) Non-local TV (d) MDAL forl0

(e) Algorithm 1, L=1 (f) Algorithm 1, L=2

Fig. 12 a The original Zebra image, b the blurry and noisy image: 11 × 11 Gaussian blur with noise of
σ = 3.0, c the image restored by nonlocal TV model, d the image restored by MDAL for l0 minimization
problem, e the image restored by Algorithm 1 with L = 1, f the image restored by Algorithm 1 with L = 2
(Color figure online)

appear in Fig. 11b due to the over-sparsity of the frame coefficients based on the only l0
minimization. This shortcoming is overcome by our proposed algorithm.

The results of the Zebra image are shown in Fig. 12. The image is degraded by 11 × 11
Gaussian kernel and contaminated by noise of σ = 3.0. To illustrate the advantage of the
proposed algorithm,we compare one smooth-like and one texture-like regions of the recovery
images obtained by different algorithms. The corresponding zooming versions are presented
in Fig. 13. For the smooth-like regions, it is noted that several artifacts (bright spots) appear
in Fig. 13b, but not in Fig. 13c–e; for the texture-like regions, we observe that the stripes
on the neck of the zebra can be recovered better by our method than by the l0 minimization
algorithm.
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(a) Original (b) Non-local TV (c) MDAL for l0 (d) Algorithm 1, L=1 (e) Algorithm 1, L=2

(f) Original (g) Non-local TV (h) MDAL for l0 (i) Algorithm 1, L=1 (j) Algorithm 1, L=2

Fig. 13 a The detail of original image (red), b the detail in the ramp region (red) corresponding to Fig. 12c,
c that corresponding to Fig. 12d, d that corresponding to Fig. 12e, e that corresponding to Fig. 12f, f the detail
of original image (red), g the detail in the ramp region (blue) corresponding to Fig. 12c, h that corresponding
to Fig. 12d, i that corresponding to Fig. 12e, j that corresponding to Fig. 12f

Finally,we compare the proposed algorithmwith the nonlocal patch-wise imagedeblurring
method–IDD-BM3D algorithm [46], which is one of the state of the art in this field. Due to the
high computational complex of the patch-wise methods, the code of IDD-BM3D algorithm
is written in C++ and called as a preparsed version in the form of p-file. To guarantee
the performance of IDD-BM3D algorithm, an two-stage approach of BM3DDEB [45] is
used as an initial estimation. Two blur kernel cases are considered here. One is a Gaussian
blur generated by fspecial(gaussian,9,2), the other is a 30 degree motion blur generated by
fspecial(motion,15,30). Table 4 lists the PSNR, SSIM values and CPU time of the iterative
process of different algorithms for several types of images, blurs and noise levels. In this
table, “Algorithm 1, fixed” and “Algorithm 1, adaptive” represent Algorithm 1 with fixed
and adaptive ν respectively. From the results we observe that the recovery quality of IDD-
BM3D algorithm overall outperform the proposed algorithm. However, it requires much
more computational time due to the high computational complex.

5 Conclusion

In this paper, we propose a new wavelet frame based image restoration model (14) which
combines the the sparsity and nonlocal prior of frame coefficients. In the proposed model,
the penalization of the l0 “norm” of frame coefficients plays the role of recovering both the
smoothness of homogeneous regions and the sharpness of edges, and the penalization of
the l2 norm related to the nonlocal estimator is used to preserve the coefficients that contain
textures andfiner details. TheMDALmethod is adopted to solve the l0−l2 minimization prob-
lem. Besides, a narrow-band technique is introduced to further improve the computational
efficiency of the proposed algorithm. Numerical examples demonstrate that the proposed
algorithm outperforms the recently proposed MDAL method for l0 minimization problem
in terms of both efficiency and the quality of the restored images. In addition, it is also
superior to the nonlocal TV model especially in the field of preserving the homogeneous
regions.

123



222 J Sci Comput (2016) 66:196–224

Ta
bl
e
4

T
he

co
m
pa
ri
so
n
of

th
e
pe
rf
or
m
an
ce

of
di
ff
er
en
ta
lg
or
ith

m
s
un

de
r
m
ild

bl
ur

co
nd

iti
on

:t
he

gi
ve
n
va
lu
es

ar
e
PS

N
R
(d
B
)/
C
PU

tim
e(
se
co
nd

)

Im
ag
e

N
oi
se

PS
N
R

SS
IM

PS
N
R

SS
IM

T
im

e
PS

N
R

SS
IM

T
im

e
PS

N
R

SS
IM

T
im

e

“f
sp
ec
ia
l(
ga
us
si
an
,9

,2
)”

ID
D
-B
M
3D

:i
nt
ia
le
st
im

at
e

ID
D
-B
M
3D

:fi
na
le
st
im

at
e
[4
6]

A
lg
or
ith

m
1,
fix

ed
A
lg
or
ith

m
1,
ad
ap
tiv

e

B
ab
oo

n
σ

=
3.
0

20
.2
9

0.
43

6
20

.3
2

0.
44

3
27

.6
20

.2
9

0.
45

0
3.
56

20
.3
0

0.
45

1
4.
84

σ
=

4.
0

20
.2
1

0.
42

3
20

.2
3

0.
42

6
27

.6
20

.1
1

0.
42

8
3.
85

20
.1
3

0.
43

0
5.
97

G
ol
dh
ill

σ
=

3.
0

26
.2
2

0.
67

8
26

.6
6

0.
69

7
28

.2
26

.1
6

0.
69

0
10

.0
8

26
.3
3

0.
69

3
18

.8
1

σ
=

4.
0

26
.0
1

0.
66

9
26

.4
3

0.
68

4
27

.6
26

.0
9

0.
67

9
12

.5
6

26
.2
5

0.
68

0
20

.8
4

“f
sp
ec
ia
l(
m
ot
io
n,

15
,3

0)
”

B
ab
oo

n
σ

=
3.
0

21
.1
3

0.
51

1
21

.5
6

0.
58

8
28

.2
21

.5
6

0.
60

0
7.
84

21
.5
0

0.
59

2
12

.4
2

σ
=

4.
0

20
.7
4

0.
46

7
21

.0
1

0.
52

6
27

.6
21

.0
5

0.
55

6
10

.4
6

21
.1
0

0.
55

5
15

.1
2

G
ol
dh
ill

σ
=

3.
0

26
.7
8

0.
68

9
27

.5
4

0.
73

2
27

.6
27

.2
9

0.
73

0
9.
66

27
.2
6

0.
72

5
14

.0
6

σ
=

4.
0

26
.3
0

0.
66

3
26

.9
4

0.
70

2
27

.6
26

.7
2

0.
69

8
11

.5
5

26
.7
0

0.
69

6
16

.9
3

B
ol
d
va
lu
es

de
no
te
th
e
hi
gh
es
tP

SN
R
or

SS
IM

va
lu
es

123



J Sci Comput (2016) 66:196–224 223

Acknowledgments The work was supported in part by the National Natural Science Foundation of China
under Grant 61401473 and 61271014. We appreciate the constructive comments of the anonymous reviewers,
which led to great improvements in this manuscript.

References

1. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D
60(1), 259–268 (1992)

2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations
and the Calculus of Variations. Springer, Berlin (2006)

3. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci.
2(2), 323–343 (2009)

4. Chan, R.H., Chan, T.F., Shen, L., et al.: Wavelet algorithms for high-resolution image reconstruction.
SIAM J. Sci. Comput. 24(4), 1408–1432 (2003)

5. Cai, J.F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale
Model. Simul. 8(2), 337–369 (2009)

6. Dong, B., Shen, Z.: MRA based wavelet frames and applications. IAS Lecture Notes Series, Summer
Program on The Mathematics of Image Processing, Park City Mathematics Institute (2010)

7. Shen,Z., Toh,K.C.,Yun, S.:Anacceleratedproximal gradient algorithm for frame-based image restoration
via the balanced approach. SIAM J. Imaging Sci. 4(2), 573–596 (2011)

8. Chen, D.Q.: Regularized generalized inverse accelerating linearized alternating minimization algorithm
for frame-based poissonian image deblurring. SIAM J. Imaging Sci. 7(2), 716–739 (2014)

9. Durand, S., Nikolova, M.: Denoising of frame coefficients using l1 data-fidelity term and edge-preserving
regularization. Multiscale Model. Simul. 6(2), 547–576 (2007)

10. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci.
Comput. 22(2), 503–516 (2000)

11. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526
(2010)

12. Chen, D.Q., Cheng, L.Z., Su, F.: A new TV-stokes model with augmented Lagrangian method for image
denoising and deconvolution. J. Sci. Comput. 51(3), 505–526 (2012)

13. Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order TV methods-enhancement via Bregman
iteration. J. Sci. Comput. 54(2–3), 269–310 (2013)

14. Lefkimmiatis, S.,Ward, J.P., Unser,M.: Hessian Schatten-norm regularization for linear inverse problems.
IEEE Trans. Image Process. 22(5), 1873 (2013)

15. Chan, T.F., Shen, J.J.: Image processing and analysis: variational, PDE, wavelet, and stochastic methods.
SIAM (2005)

16. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring. SIAM J.
Imaging Sci. 2(1), 226–252 (2009)

17. Cai, J.F., Dong, B., Osher, S., Shen, Z.: Image restoration: total variation, wavelet frames, and beyond. J.
Am. Math. Soc. 25(4), 1033–1089 (2012)

18. CaI, J.F., Dong, B., Shen, Z.: Image restoration: a wavelet frame based model for piecewise smooth
functions and beyond. UCLA CAM Report, pp. 14–28 (2014)

19. Dong, B., Jiang, Q., Shen, Z.: Image restoration: wavelet frame shrinkage, nonlinear evolution pdes, and
beyond. UCLA CAM Report, pp. 13–78 (2013)

20. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
21. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly

incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
22. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2),

21–30 (2008)
23. Chartrand, R.: Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few

data. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 262–265 (2009)
24. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 33rd International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3869–3872 (2008)
25. Zhang, Y., Dong, B., Lu, Z.: l0 Minimization for wavelet frame based image restoration. Math. Comput.

82(282), 995–1015 (2013)
26. Lu, Z., Zhang, Y.: Penalty decomposition methods for l0-norm minimization. Preprint (2010)
27. Dong, B., Zhang, Y.: An efficient algorithm for l0 minimization in wavelet frame based image restoration.

J. Sci. Comput. 54(2–3), 350–368 (2013)

123



224 J Sci Comput (2016) 66:196–224

28. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale
Model. Simul. 4(2), 490–530 (2005)

29. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals.
Multiscale Model. Simul. 4(4), 1091–1115 (2005)

30. Zhang, X., Burger, M., Bresson, X., et al.: Bregmanized nonlocal regularization for deconvolution and
sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

31. Deledalle, C.A., Denis, L., Tupin, F.: Iterative weighted maximum likelihood denoising with probabilistic
patch-based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009)

32. Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3-D transform-domain collaborative
filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

33. Dong, W., Li, X., Zhang, D., et al.: Sparsity-based image denoising via dictionary learning and structural
clustering. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 457–464 (2011)

34. Dong, W., Zhang, L., Shi, G., et al.: Nonlocally centralized sparse representation for image restoration.
IEEE Trans. Image Process. 22(4), 1620–1630 (2013)

35. Mairal, J., Bach, F., Ponce, J., et al.: Non-local sparse models for image restoration. IEEE International
Conference on Computer Vision (ICCV), pp. 2272–2279 (2009)

36. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank
approach. Image Process. IEEE Trans. 22(2), 700–711 (2013)

37. Cai, J.F., Ji, H., Shen, Z., et al.: Data-driven tight frame construction and image denoising. Appl. Comput.
Harmonic Anal. 37(1), 89–105 (2014)

38. Quan, Y., Ji, H., Shen, Z.: Data-Driven Multi-scale Non-local Wavelet Frame Construction and Image
Recovery. J. Sci. Comput. (2014). doi:10.1007/s10915-014-9893-2

39. Daubechies, I., Han, B., Ron, A., et al.: Framelets: MRA-based constructions of wavelet frames. Appl.
Comput. Harmonic Anal. 14(1), 1–46 (2003)

40. Dong,B., Shen, Z.: Pseudo-splines,wavelets and framelets. Appl. Comput.HarmonicAnal. 22(1), 78–104
(2007)

41. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex
programming. Math. Oper. Res. 1(2), 97–116 (1976)

42. Zhang, X., Burger,M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration.
J. Sci. Comput. 46(1), 20–46 (2011)

43. Tao, M., Yuan, X.: On the O(1/t) convergence rate of alternating direction method with logarithmic-
quadratic proximal regularization. SIAM J. Optim. 22(4), 1431–1448 (2012)

44. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)
45. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3D transform-domain

collaborative filtering. International Society for Optics and Photonics, 681207-681207-12 (2008)
46. Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE

Trans. Image Process. 21(4), 1715–1728 (2012)
47. Lou,Y., Zhang,X., Osher, S., et al.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197

(2010)
48. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural

similarity. Image Process. IEEE Trans. 13(4), 600–612 (2004)

123

http://dx.doi.org/10.1007/s10915-014-9893-2

	Wavelet Frame Based Image Restoration via Combined Sparsity and Nonlocal Prior of Coefficients
	Abstract
	1 Introduction
	2 Wavelet Frames and Previous Works
	3 Proposed Model Based on l0-l2 Regularizer
	4 Numerical Experiments
	4.1 The Setting of Parameters
	4.2 The Analysis of the Role of the l2 Regularizer of the Proposed Model
	4.3 Comparison with Other Methods

	5 Conclusion
	Acknowledgments
	References




