
J Sci Comput (2016) 66:67–90
DOI 10.1007/s10915-015-0013-8

A Reduced Radial Basis Function Method for Partial
Differential Equations on Irregular Domains

Yanlai Chen1 · Sigal Gottlieb1 · Alfa Heryudono1 ·
Akil Narayan1

Received: 7 October 2014 / Revised: 28 January 2015 / Accepted: 13 March 2015
Published online: 25 March 2015
© Springer Science+Business Media New York 2015

Abstract We propose and test the first Reduced Radial Basis Function Method for solving
parametric partial differential equations on irregular domains. The two major ingredients
are a stable Radial Basis Function (RBF) solver that has an optimized set of centers chosen
through a reduced-basis-type greedy algorithm, and a collocation-based model reduction
approach that systematically generates a reduced-order approximation whose dimension
is orders of magnitude smaller than the total number of RBF centers. The resulting algo-
rithm is efficient and accurate as demonstrated through two- and three-dimensional test
problems.

Keywords Reduced basis method · Radial basis function method · Pseudospectral
method · Model reduction

1 Introduction

Parameterized systems are common in science and engineering, and a common situation in
multi-query contexts is the need to accurately solve these systems for a variety of different
parameter values. This requires a large number of repeated and expensive simulations, fre-
quently rendering the total computational cost prohibitive. To overcome this obstacle while
maintaining accurate numerical solutions in real time, the reduced basis method (RBM) was
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developed [4,43,44,49]. RBMs split the solution procedure to two parts: an offline part where
a small number of judiciously-chosen solutions are precomputed via a greedy algorithm, and
an online part in which the solution for any new parameter value is efficiently approximated
by a projection onto the low-dimensional space spanned by the precomputed solutions. This
offline-online decomposition strategy is effective when one can afford an initial (offline)
investment of significant computational resources so that certifiably accurate solutions for
any other parameter value can be obtained in real-time (online).

The classical RBMwas originally developed for use with variational methods for approx-
imating solutions to partial differential equations (PDEs) with affine dependence on the
parameter. The most popular of these variational approaches is theGalerkinmethod, derived
by positing a solution ansatz in a subspace, and subsequently requiring that the projection of
the PDE residual onto the same functional subspace is zero. An alternative approach for the
solution of PDEs is to require that the PDE residual vanish at some predetermined collocation
points. These collocationmethods are attractive because they are frequently easier to imple-
ment compared to Galerkin methods, particularly for time-dependent nonlinear problems
[30,51,54]. In [12], two of the authors developed a RBM suitable for collocation methods,
and thus introduced a reduced collocation method (RCM). The RCM is extremely efficient
and provides a reduced basis strategy for practitioners who prefer a collocation approach for
solving PDEs, rather than a Galerkin approach. Indeed, one of the two approaches in [12],
the empirical reduced collocation method, eliminates a potentially costly online procedure
that is usually necessary for non-affine problems using a Galerkin approach. The RCM’s
efficiency matches (or, for non-affine problems, exceeds) that of traditional Galerkin-based
RBM approaches.

The RCM was developed for use with traditional collocation methods, particularly for
pseudospectral methods [30]. However, such collocation methods require a very structured
grid which may be inconvenient when the spatial domain associated with the PDE has an
irregular shape.When an irregular geometry is present, meshfree methods are a viable choice
when compared to traditional meshed methods. Meshfree methods eliminate the need for
finite-element-like meshes or adherence to symmetrical grid layouts, and have implementa-
tion costs that scale well with the spatial dimension; these properties are advantageous when
compared to more standard mesh-based discretization approaches.

One particular mesh-free collocation method that we explore here is based on radial basis
functions (RBFs). RBF methods have been widely used for scattered data interpolation and
approximation in high dimensions [9,19,58]. RBF collocation methods for elliptic PDEs,
based on global, non-polynomial interpolants, have been developed since the early 90s [33–
35]. RBFmethods are collocationmethods, implemented on scattered sets of collocation sites
(commonly called centers) and, unlike traditional pseudospectral methods, are not tied to a
particular geometric structure. We employ a spatially-local variant of more traditional global
RBF methods. RBF methods usually approximate differential operators with global stencils,
but we employ a local approach which, inspired by its relation to finite-difference (FD)
methods, is called RBF-FD methods [22,52,53,59]. The RBF-FD method has the advantage
of retaining high-order accuracywhile improving computational efficiency by forming sparse
operator matrices.

In this paper we extend the RBM strategy to include meshfree collocation methods, in
particular RBF and RBF-FD methods. We develop an algorithm that inherits the strengths
of model-order reduction and geometric flexibility from RBM/RCM and RBF methods,
respectively. This novel Reduced Radial Basis Function Method (R2BFM) is capable of
achieving orders-of-magnitude speedup for solving parameterized problems on irregular
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domains. Our numerical results demonstrate exponential convergence with respect to the
number of precomputed solutions.

The paper is organized as follows: In Sect. 2 we review both the RBM and RCM order-
reduction algorithms. In Sect. 3 we present the particular radial basis function method we
adopt (RBF-FD). The novel R2BFM algorithm is proposed in Sect. 4, and we present numer-
ical experiments that illustrate its performance for 2D- and 3D-problems.

2 The Least Squares Reduced Collocation Method

In this section, we briefly review the reduced basis and least-squares reduced collocation
methods originally introduced in [12]. RBMs aim to efficiently solve parameterized PDEs
with certifiable error bounds. Repeatedly solving the full PDE for several values of the
parameter is computationally onerous when the PDE itself is so complicated that a single
solve is expensive. The RBM framework mitigates this cost first by carefully choosing a
small set of parameter values at which the expensive PDE model is solved and stored. Once
this expensive “offline” procedure is completed, then the “online” RBM algorithm computes
the PDE solution at any new parameter value as a linear combination of the precomputed
and stored solutions. The offline-online decomposition details of the algorithm ensure (1)
that this procedure is accurate and (2) that the cost of the new parameter value solve is
orders-of-magnitude smaller than a standard PDE solve.

The reduced basis method was invented in the late 1970s for nonlinear structural analysis
[1,41,43], and more broadly developed therein [2,4,20,39,44,48]. Recently, it has been
systematically analyzed and applied to a wide variety of problems, see e.g. [15,28,29,42,49,
55,56,60,61], with [50] containing extensive references. The RBM algorithm is traditionally
applied to Galerkin discretizations of PDEs. However, recent work in [12,13] develops a
robust framework for applying the RBM algorithm to collocation discretizations of PDEs.
Since radial basis function discretization methods are collocative, we will later in the paper
apply the RCM developed in [12], in particular the Least Squares RCM. The other RCM, the
Empirical RCM [12,13], employs the idea of the Empirical Interpolation Method [3,27] to
identify a reduced set of points in the physical domain � on which to enforce the PDE. We
remark that our goal is not to facilitate the offline-online decomposition through a separable
form as is typically the case [3,17,27]. Indeed, in our setting we do not address the problem
of approximating the parametric operator by a linear combination of high-dimensional basis
functions with easily-computed parameter-dependent coefficients. However, EIM methods
together with least squares approaches have appeared in other model reduction settings, see
e.g. the recent paper [10].

To describe the Least Squares RCM (LSRCM) algorithm, we begin with a linear parame-
trized PDE of the form

L(μ) uμ(x) = f (x;μ), x ∈ � ⊂ R
d (1)

with appropriate boundary conditions. Here, x is the spatial variable, μ is the parameter, L
is the differential operator that depends on the parameter, f is a forcing function, and u is
the unknown solution. The dimension of the spatial variable obeys d ≤ 3 for most physical
problems of interest, and so we will adopt the notation x = (x, y, z)T for the components
of x . For any parameter μ = (μ1, . . . , μp) ∈ D ⊂ Rp , a prescribed p-dimensional real
parameter domain, we introduce a discrete differentiation operator LN (μ) approximating
L(μ) such that
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LN (μ) uNμ (x j ) = f (x j ;μ), (2)

is satisfied exactly on a given set of N collocation points CN = {x j }Nj=1. We assume that

this discretization is such that the resulting approximate solution uNμ is highly accurate for
all parameter valuesμ ∈ D, and refer to uNμ as the “truth approximation”.With such a robust
requirement on accuracy of the truth solution,N will be sufficiently large so that solving (2)
is a relatively expensive operation that we wish to avoid performing too many times.

With this setup, the RCM algorithm in [12] proceeds first with an offline stage where
the algorithm is sown with a small number of expensive truth solves of (2) along with some
preprocessing of reduced operators, followed by an online stagewhere computational savings
are reaped whenever the algorithm is queried for the solution at a new parameter value.

2.1 The Offline Stage: Choosing Parameter Values

The first main goal of the offline stage is to choose N parameter values μ1, . . . , μN with
N � N such that the corresponding truth solution ensemble uNμ1

, uNμ2
, . . . , uNμN

has a span
that accurately approximates uNμ for anyμ ∈ D. The truth solutions uNμ j

are frequently called
“snapshots”. That it is even possible to generate such a collection of snapshots has been
theoretically verified for several differential operators of interest [7,8,37]. The algorithmic
way in which this reduced set of parameters μ is chosen is via a greedy computation that
successively chooses parameter values maximizing an error estimate. The definition of this
error estimate hinges on the formulation of a reduced approximation: For any 1 ≤ n ≤ N ,
we seek the reduced solution u(n)

μ defined as

u(n)
μ (·) =

n∑

j=1

c j (μ)uNμ j
(·), (3)

where the coefficients c = {
c j (μ)

}n
j=1 are computed by solving a least-squares residual

problem on the truth solution nodes x = CN :

c(μ) = argmin
d∈Rn

Rn(μ;d), with (4a)

Rn(μ;d) =
∥∥∥∥∥∥
f (x;μ) −

n∑

j=1

d j (μ)LN (μ)uNμ j
(x)

∥∥∥∥∥∥
�2

. (4b)

The ultimate goal of the error estimate is to approximate the error u(n)
μ −uNμ without directly

forming the truth solution uNμ . We denote this error estimate by �n(μ) and define it as:

�n (μ; c(μ)) = Rn (μ; c(μ))√
βLB(μ)

. (5)

Above, βLB(μ) is a lower bound for the smallest eigenvalue ofLN (μ)TLN (μ), which effec-
tively translates residuals into a bound for the actual errors. The accurate, computationally
N -independent computation of βLB (and thus of �n) is in general one of the major diffi-
culties in RBM algorithms, see e.g. [14,31,32]. These ingredients and an N−independent
evaluation of Rn(μ; c) allow us finally to define how the parameter values are chosen through
a greedy approach, shown in Algorithm 1. If �n can be computed in a N -independent fash-
ion, then this greedy approach is computationally efficient. Algorithm 1 presumes the ability
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Algorithm 1 Outline of the offline RBM/RCM greedy algorithm

1. W1 = span
{
uN (μ1)

}
(with μ1 arbitrarily chosen).

2. For i = 2, . . . , N do:

a). μi = argmax
μ∈D �i−1(μ). b). Wi = span

{
uN (μ j ), j ∈ {1, . . . , i}}.

to extremize �n(μ) over the continuous parameter domain D. In practice, one instead dis-
cretizes the parameter space, and scans it to generate the “best” reduced solution space. The
first parameter value μ1 is randomly chosen, and the accurate truth solution uNμ1

is computed
and stored, forming the first iterate of the solution space, W1. Then for n ≥ 2, we select
the parameter value whose truth solution uNμ is worst approximated by the reduced solu-

tion u(n)
μ ; this is accomplished with the error estimator �n(μ). The formulation of �n(μ)

is rigorous, and so one can certify the maximum error over the parameter domain, stopping
the iteration whenever this error reaches a desired tolerance level. In practice, a variant of
the modified Gram-Schmidt transformation is applied to generate a more stable basis of
Wn . An acceptable, certifiable error tolerance is usually reached with only N � N truth
snapshots.

2.2 The Offline Stage: Formation of Reduced-Order Operators

Assume that the snapshots uNμn
for n = 1, . . . , N are precomputed and stored from the previ-

ous section. The computation of the reduced-order solution u(N )
μ and the residual RN (μ;d)

given by (3) and (4) clearly requires O(N ) operations as written because we must compute
LN (μ)uNμ j

for each new parameter value μ. One condition that breaks this N -dependence
is the assumption that the operator L(μ) and the forcing function f (x;μ) have affine depen-
dence on the parameter, i.e., that

L(μ) =
Qa∑

q=1

aLq (μ)Lq , f (·;μ) =
Q f∑

q=1

a f
q (μ) fq(·) (6)

where the functions aLq (μ) and a f
q (μ) are scalar-valued and x-independent, and the composite

operators Lq and fq are μ-independent. Many parameterized operators L(μ) of interest
do satisfy this assumption and there are effective strategies for approximating non-affine
operators and functions by affine ones [3,27]. We assume hereafter that the operator L(μ)

and the forcing function f (·;μ) have affine dependence on μ.
The affine dependence assumption allows us to precompute several quantities for use both

later in the online stage, and in the offline process of selecting the N snapshots. The discrete
truth operator LN and forcing function f

(
x;μ

)
likewise have an affine decomposition

LN (μ) =
Qa∑

q=1

aLq (μ)LN ,q , f (x;μ) =
Q f∑

q=1

a f
q (μ) fq(x).

Once the parameter valuesμ1, . . . , μN are chosen, the following quantitiesmay be computed
and stored in the offline stage:

123



72 J Sci Comput (2016) 66:67–90

(Mr,s) j,k �
(
LN ,r u

N
μ j

)T (
LN ,su

N
μk

)
, 1 ≤ j, k ≤ N , 1 ≤ r ≤ s ≤ Qa, (7a)

(gq,r ) j �
(
LN ,qu

N
μ j

)T
fr (x), j = 1, . . . , N , q = 1, . . . , Qa, r = 1, . . . , Q f .

(7b)

The resulting collection of matrices Mr,s are each N × N , and the vectors gq are N × 1.
Similar pre-computations are carried out to achieveN -independent evaluation of Rn(μ); see
[12] for details.

2.3 The Online Stage: Computing a Fast Solution at a New Parameter Location

All the operations that haveO(N ) complexitywere completed in the previous offline sections.
During the online stage, all operations areN -independent. Given a new parameter value μ∗,
we wish to compute the LSRCM approximation u(N )

μ∗ to the truth approximation uNμ∗ . This
approximation is given by the coefficients c j in (4a) with n = N . The formuluation (4a)
is a standard least-squares problem for the unknown coefficients. The coefficients c from
(4a) can be computed using the normal equations and (7); we need only solve the following
square, linear system:

K(μ)c = h(μ),

K(μ) =
Qa∑

r,s=1

aLr
(
μ∗) aLs

(
μ∗)Mr,s, h(μ) =

Qa∑

q=1

Q f∑

r=1

aLq
(
μ∗) a f

r
(
μ∗) gq,r . (8)

The linear system (8) is invertible and N × N so the coefficients c may be computed in
an efficient and straightforward manner. We emphasize that algorithmic methods to form
and solve the above system have computational complexities that are independent of the
truth discretization parameter N . In this way, for each new μ∗, we can use N -independent
operations to compute the LSRCM approximation u(N )

μ∗ . For several problems of interest

[12], the RCM solution u(N )
μ∗ converges spectrally to the truth solution uNμ∗ with respect to N .

3 The Local Radial Basis Function Method

The truth solution for the R2BF method will be a large-stencil finite difference solution
that is based on a meshfree radial basis function collocation method. Like finite difference
methods, this RBF analogue has the advantages of low computational cost due to relatively
sparse matrices. It also features flexibility in distributing collocation points for discretization
on an irregular domain. The method is widely known as RBF in finite difference mode
(RBF-FD) [53,59], or RBF differential quadrature (RBF-DQ) [52].

The essence of this approach consists in defining differentiation matrices to transform a
linear PDE operator L into a linear algebra problem LN . What differentiates one method
from the other is themethodology of discretization. The local RBF discretization step consists
of two ingredients: laying out points in the irregular domain and forming the differentiation
matrices via high order local interpolants. In the following subsections we will describe our
approach for each of these ingredients.
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3.1 Background

3.1.1 Global Approximation with Radial Basis Functions

One of the simplest scenarios in which RBFs are employed is in global approximation
methods. The basic idea is to form an interpolant that approximates a function u(x) based on

data values uk given at scattered nodes CN = {
xk

}N
k=1. The RBF interpolant has the form

s(x) =
N∑

k=1

λkφ
(
ε‖x − xk‖

)
, (9)

where x denotes a point in Rd , φ(r) is a radial basis function, ε is a shape parameter, and
‖ · ‖ is Euclidean distance. For the moment, we assume that the nodes xk (sometimes called
centers or grid points) are a priori prescribed.

The function φ(·) depends on the distance between points and not necessarily their orien-
tation; one may generalize this approach to non-radial kernel functions but we stick to radial
approximations in this paper. The choice of radial basis function φ(r) is clearly important
since it directly affects the actual reconstruction u(x). Common choices of φ(r) are:

• Infinitely smooth functions:Multiquadrics (MQ)φ(r) = √
1 + r2, InverseMultiquadrics

(IMQ) φ(r) = 1√
1+r2

, and Gaussian (GA) φ(r) = e−r2 ;

• Piecewise smooth: Cubic φ(r) = r3, thin plate splines φ(r) = r2 ln(r);
• Wendland’s compactly supported piecewise polynomials [57].

For a more comprehensive list, we refer to [9,19,58]. In this paper we use the inverse multi-
quadrics (IMQ).

In order to solve for the coefficients λ = {
λ j

}N
j=1, we collocate the interpolant s(x) to

satisfy the interpolation conditions s(xk) = uk , k = 1, . . . ,N . This results in a system of
linear equations

⎡

⎢⎣
φ(ε‖x1 − x1‖) · · · φ(ε‖x1 − xN ‖)

...
. . .

...

φ(ε‖xN − x1‖) · · · φ(ε‖xN − xN ‖)

⎤

⎥⎦

⎡

⎢⎣
λ1
...

λN

⎤

⎥⎦ =
⎡

⎢⎣
u1
...

uN

⎤

⎥⎦ 
⇒ �λ = u, (10)

where the matrix� is symmetric with entries	i j = φ(ε‖xi − x j‖) and u = [u1, . . . , uN ]T .
The interpolation matrix � is guaranteed to be non-singular for many choices of φ [40].

Computing derivatives of the RBF interpolant s(x) in (9) is a straightforward process,
which can be simply done by summing the weighted derivatives of the basis functions. For
example, with x the first component of the vector x ∈ Rd , then

∂

∂x
s(x) =

N∑

k=1

λk
∂

∂x
φ

(
ε‖x − xk‖

)
, (11)

computes the first derivative of s(x) with respect to x at any location x . Since λ = �−1u,
then (11) can be written more compactly as

∂

∂x
s(x) = �x�

−1u � Dxu, (12)

where �x = [
∂
∂x φ(ε‖x − x1‖), . . . , ∂

∂x φ(ε‖x − xN ‖)]. The matrix Dx = �x�
−1 has N

columns and is commonly called the RBF “differentiationmatrix”. The number of rows in Dx

123



74 J Sci Comput (2016) 66:67–90

depends on where the differentiated interpolant ∂
∂x s should be evaluated, and we commonly

want to evaluate on the same collocation pointsCN . Thus, thematrix�x isN×N with entries

�x =
⎡

⎢⎣
φx1(ε‖x1 − x1‖) · · · φx1(ε‖x1 − xN ‖)

...
. . .

...

φxN (ε‖xN − x1‖) · · · φxN (ε‖xN − xN ‖)

⎤

⎥⎦ , (13)

where, in a slight abuse of notation, φx j

(
ε

∥∥∥x j − xk

∥∥∥
)

= ∂
∂x j

φ
(
ε

∥∥∥x j − xk

∥∥∥
)
is the partial

derivative of the shape function with respect to the first component x j of x j = (x j , y j , z j ).
Higher order differentiation matrices or derivatives with respect to different variables (e.g
Dy , Dz , Dxx , etc) can be computed in the same manner.

Note that in general there are several theoretical and implementation aspects of global RBF
approximation that are important to consider in practice. As an example, in cases where data
values uk are sampled from smooth functions, the constructed interpolant s(x) can be highly
accurate if infinitely smooth basis function φ(r) with small values of shape parameters ε are
used. However, as ε becomes smaller, the basis functions becomes “flatter” [16], which leads
to an ill-conditioned matrix �. Techniques to mitigate these kinds of interpolation instability
issues include contour integration [25],QRDecomposition [18,21,24],Hilbert-Schmidt SVD
methods [11], and SVDmethods utilizing rational interpolants [26]. RBFmethods that do not
employ any of those techniques are usually called “RBF-Direct”. In this work, we only utilize
RBF-Direct approximation methods to form the RBM truth approximation for accurately
solving problems on irregular geometries. The use of more stable RBF interpolant algorithms
is not the central focus of this work and will be left for future study.

The interpolation instability issues result not only from linear algebraic considerations.
A judicious placement of nodes plays a crucial role through the classical problem of inter-
polation stability, as measured by Lebesgue constants and manifested through the Runge
phenomenon. In one-dimensional cases, oscillatory behavior near the boundaries do appear
when equally-spaced points are used asN becomes larger. This empirical observation is sup-
ported by potential-theoretic analysis [46,47]. A stable approximation scheme for analytic
functions on equally-spaced samples cannot converge exponentially [45]. For higher dimen-
sional cases, the precise distribution of scattered points is not yet well-understood although
some numerical evidence is shown in [21].

For this paper and for modest size N , we use an algorithm that is based on the power
function [38] to select optimal distribution of nodes. For this purpose, we will assume that
φ is a positive-definite function, meaning that for any collection of N distinct nodes xk , the
interpolation matrix � defined in (10) satisfies

vT�v > 0, ∀ v ∈ RN (14)

We make this assumption for two reasons: it ensures a unique solution to (10), and it allows
us to construct a well-defined discrete norm on vectors. The IMQ basis function that we use
here satisfies the positive-definite condition.

3.1.2 The Native Space Norm

Given a positive-definite function φ, we introduce the collection of functions φx centered at
every location in the physical domain:

V = {
φx (·) ∣∣ x ∈ �

}
, φx (y) � φ

(
ε

∥∥∥y − x
∥∥∥
)

(15)
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and define a proper norm on any function formed from a finite linear combination of elements
in V:

u(·) =
N∑

k=1

λkφ
xk (·), ‖u‖2H �

∑

1≤ j,k≤N
λ jλkφ

xk (x j ). (16)

Above, we have used xk to indicate any selection of distinct points from �. The native space
associated with the function φ is the ‖ · ‖H closure of finite linear combinations of elements
from V . The native space is a Hilbert space and we will denote it by H. This construction
is relatively abstract, but it is wholly defined by φ, and one can characterize H as being
equivalent to more standard L2 Sobolev spaces by considering the decay rate of the Fourier
transform of φ [58].

The inner product on H for u = ∑
k λkφ

xk and v = ∑
k ρkφ

xk is given by

〈u, v〉H �
∑

1≤ j,k≤N
λ jρkφ

xk (x j ). (17)

Given data u as in (10), we will use the notation ‖u‖H to denote the correspondingH-norm
of the global interpolant (9) and from (16) this norm is

‖u‖2H � λT�λ = uT�−1u = ∥∥S−1u
∥∥2 , (18)

with ‖v‖ the standard Euclidean norm on vectors v, and S is any matrix satisfying SST = �.
For concreteness, we will take S to be the positive-definite square root of �, i.e. since from
(14) � is diagonalizable with positive spectrum:

� = V�V T 
⇒ S = V
√

�V T

However this choice is not necessary and in what follows one can replace S by, e.g., the
Cholesky factor for �.

The norm on vectors ‖ ·‖H defined above will be the RBF-analogue of a continuous norm
in our RBM collocation framework.

3.1.3 Choosing Nodes: The Discrete Power Function Method

Traditional collocation methods, such as Fourier or Chebyshev pseudospectral methods,
require a particular grid structure. Avoiding this restriction on irregular geometries is one of
the major reasons why we turn to radial basis functions, which are mesh-free. However, it is
well known that the accuracy of RBF methods is heavily influenced by the location of the
centers xk . While some RBF nodal arrays are known to produce accurate reconstructions,
these are mainly restricted to canonical domains—tensor product or symmetric domains.

We are interested in computations on irregular domains, and therefore require a method
for selecting region-specific nodes that will enhance the accuracy of the reconstruction. This
is important since the inaccuracy of the RBF truth approximation will lead directly to that
of the LSRCM solution. To generate nodes we make use of the Power Function Method
applied on a discrete candidate set. We present a short discussion of this method in an effort
to keep our presentation self-contained. Simplistic and effective, it relates to the reduced
basis method by employing the same type of greedy algorithm. The interested reader may
refer to [38] for a thorough discussion of this method; we provide an alternate description
below in the context of the reduced basis framework.
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Fig. 1 RBF points resulting
from the Power Function method

Recall that � represents the physical domain, and that V from (15) is the collection of
RBF shape functions centered at every point in �. We consider this space as a collection of
parameterized functions; the parameter is the nodal center x .

The Power Functionmethod selects RBF nodal centers by forming a reduced basis approx-
imation to V . From Algorithm 1, we see that the reduced basis method greedily forms an
approximation space by computing parametric values that maximize an error criterion. This
error criterion is defined in terms of an error norm. For the space V , it is natural to choose
this norm to be ‖ · ‖H, the norm on the φ-native space H. Then applying an RBM offline
selection of parameter values fromV results in following optimization scheme, whichmirrors
Algorithm 1:

xn+1 = argmax
x∈�

distH
(
φx ,Vn

) = argmax
x∈�

∥∥φx − PVnφ
x
∥∥H , (19)

Vn+1 = span
{
φx1 , . . . , φxn+1

}
, (20)

where PVn is theH-orthogonal projector onto Vn . To start the iteration, V0 = {0} is the trivial
subspace. Since the inner product of H is (17) and φ is a radial kernel, then

〈
φx (·), φy(·)〉H = φx (y) = φy(x). (21)

Thus, all the inner products and norms for the optimization can be computed simply by
evaluating the shape function φ. The optimization (19) is the Power Function method of
[38].

We implement this method on finite candidate sets, e.g. substituting � with Y M ={
y
1
, . . . , y

M

}
⊂ � with large M . From (21), we need only form the interpolation matrix

� with entries (�)n,m = φ
y
n (y

m
) for m, n = 1, . . . , M . Then the first N points produced

by the iteration (19) can be computed by standard numerical linear algebra operations on
�. Either the first N iterations of a full-pivoting LU decomposition on �, or the first N
iterations of a pivoted Choleksy decomposition produce the first N points of the Power
Function method. In practice, we use the Cholesky decomposition method: because we only
need the pivoting indices, the required work can be completed in O(N 2 + MN ) time with
O(N 2 + M) storage, and we need only perform this operation once as part of setting up
the truth approximation. An example of the result of this algorithm for a two-dimensional
domain is given in Fig. 1.

123



J Sci Comput (2016) 66:67–90 77

Fig. 2 Left Collocation points on
a 2D irregular domain. White
nodes are points inside the
domain and grey nodes are
boundary points. Right An
example of a 10-point-stencil for
computing differentiation
weights at x1

⊕
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3.2 RBF-FD Method

3.2.1 Local RBF Finite Difference Differentiation Matrices

The differentiation matrices obtained by using a global RBF interpolant based on infinitely
smooth basis functions, such as IMQ, produce dense matrices. This is due to the fact that all
N nodes in the domain are used to generate the interpolant. The cost for inverting the dense
matrix �, though done only once, is manageable for modest sizeN but can be prohibitively
expensive as it grows.Oneway to avoid densematrix operations is to borrow ideas fromfinite-
difference approximations, whose differentiation matrices are sparse. However, weights (i.e.
entries of differentiation matrices) are difficult to compute when local stencils are scattered
and differ in number and distributions. In order tomitigate these issues, localRBF interpolants
and derivatives are used to compute stencil weights instead of using Taylor series, as in
finite-difference methods. This is a straightforward approach for computing flexible finite-
difference-like weights. As mentioned in the previous sections, this approach is known as a
generalized finite-difference method or as RBF-FD.

We will illustrate the process of generating differentiation matrices in 2D; the generaliza-
tion to higher dimensions is straightforward. The N nodal points in � chosen by the Power
Function method in Sect. 3.1.3 are denoted as CN = {x1, . . . , xN }. We remark that the
Power Function method is usually employed for global approximations and not necessarily
for local ones such as the RBF-FD. However, for the large-stencil-size situation in this paper,
the RBF approximation is closely related to the global problem. As such, we require a grid
that is well-behaved for near-global approximations. The Power Function method provides
an extremely simple and effective approach for such a purpose. Numerical tests (not reported
here) did demonstrate better numerical stability than other RBF grids, e.g. uniformly dis-
tributed ones. Let C( j) = {x jk : k = 1, . . . , n j

loc} ⊂ CN be the (local) set of neighboring
points of x j with x j1 = x j . C( j) will form a stencil for x j . We call the point x j the master

node of the set C( j). All other n
j
loc − 1 points in the set C( j) are slave nodes. As a sim-

ple example, Fig. 2 illustrates N = 101 collocation points on a irregular domain � with a
local stencil C(1) of 9 slave nodes. While one can vary the size of the local stencil n j

loc with

respect to the master location x j , we often set n j
loc to be the same in order to guarantee that

all local interpolants provide approximately the same accuracy. An approach with different
local stencil sizes is useful when there are local accuracy considerations (e.g., boundary
layers).

Following the global formulation provided in Sect. 3.1.1, the local interpolant s j (x) with
master node x j takes the form
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s( j)(x) =
n j
loc∑

k=1

λ jkφ(ε‖x − x jk‖), (22)

where x jk ∈ C( j). As in (12), it follows that the differentiation matrix or derivative weights
with respect to x (the first component of x) evaluated at the master node x j can be easily
obtained as

Dx( j) =
[
φx j (ε‖x j − x j1‖), . . . , φx j (ε‖x j − x j

n
j
loc

‖)
]

�−1
( j) = �x( j)�

−1
( j), (23)

where Dx( j) is of size 1× n j
loc and �( j) is the local interpolation matrix defined by the local

problem (22).Generating theN×N matrix D1 is done by computing Dx( j) for j = 1, . . . ,N
and placing these vectors in the corresponding rows and columns of D1. The pseudocode
for the process is shown in Algorithm 2. Higher order differentiation matrices or derivatives

Algorithm 2 RBF-FD first derivative matrix with respect to x

Input: CN = {x1, . . . , xN }, φ(r), ε, nloc.
Output: Dx
for j = 1 to N do
Find C( j) = {x jk

: k = 1, . . . , nloc} ⊂ CN , i.e nloc nearest-neighbors of x j .

Compute Dx( j) =
[
φx j (ε‖x j − x j1

‖), . . . , φx j (ε‖x j − x jnloc
‖)

]
�−1

( j) = �x( j)�
−1
( j)

Store elements of Dx( j) as entries of Dx ( j, j1), . . . , Dx ( j, jnloc ) accordingly.
end for

with respect to different variables can be computed in the same manner using the appropriate
partial derivatives of φ(r) inside the for-loop of Algorithm 2. This algorithm generates
N × N differentiation matrices with only nlocN non-zero entries. The computational cost
is O(n3locN ) dominated by N inversion processes of �( j). See [5,6,23,36,59] for stencil
weights for RBF-FD for Gaussian and Multiquadric with constant shape parameters.

Once we have computed the RBF-FD differentiation matrices, we can use them to numer-
ically solve boundary value problems or initial boundary value problems. As a motivating
example, we consider the following 2D boundary value problem

−uxx − μ1uyy − μ2u = f (x, y), (x, y) ∈ �, (24a)

with boundary conditions

u(x, y) = g(x, y), (x, y) ∈ ∂�. (24b)

The parameters μ1 and μ2 are constants.
We then discretize � withNi nodes and ∂� withNb boundary nodes with a total number

of nodes N = Ni + Nb. We order the indices so that Ni interior points are followed by Nb

boundary nodes. The discretized version of Eq. (24a) becomes

−Dxxu − μ1Dyyu − μ2Iiu = f , (25)

or equivalently L(μ)u = f , with μ = (
μ1, μ2

)
. The matrices Dxx , Dyy , which can be

obtained from Algorithm 2, and consequently L(μ) are of size Ni × N . Ii is an Ni × N
matrix with values 1 at entries ( j, j) for j = 1 . . .Ni and zeros everywhere else.
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For Dirichlet boundary conditions, the discretized version of the Eq. (24b) becomes

Ibu = g, (26)

where Ib is an Nb × Nb matrix with values 1 at entries ( j, j) for j = Ni + 1, . . . ,N and
zeros everywhere else. The systems (25) and (26) are then augmented to form an N × N
linear system as shown in (27).

L(μ)

0 Ib

u =

f

g

(27)

3.3 Numerical Validation of the RBF-FD as Truth Solver

Putting all the above pieces together, we have a radial basis function finite difference (RBF-
FD) method. This section considers convergence studies to validate the accuracy of the
method. To that end, we run two kinds of convergence tests on four Eqs. (28a)–(29b), emu-
lating h-adaptive and p-adaptive refinement convergence studies from classical finite element
approaches:

(1) “nloc convergence” – Refinement in the RBF-FD stencil size nloc while holdingN fixed
is akin to p-refinement and so we expect exponential convergence in this case.

(2) “N convergence” – Refinement in the truth parameterN for a fixed RBF-FD stencil size
nloc is akin to h-refinement and so we expect algebraic convergence as a result.
{

−uxx − μ1uyy − μ2u = f (x), x ∈ �

u = g, x ∈ ∂�
μ ∈ D = [0.1, 4] × [0, 2]

(28a)
{

(1 + μ1x)uxx + (1 + μ2y)uyy = f (x), x ∈ �

u = g, x ∈ ∂�
μ ∈ D = [−0.99, 0.99]2,

(28b)

{
−uxx − μ1uyy − uzz − μ2u= f (x), x ∈�

u = g, x ∈ ∂�
μ∈D=[0.1, 4] × [0, 2]

(29a)
{

(1 + μ1x)uxx + (1 + μ2y)uyy + zuzz = f (x), x ∈�

u = g, x ∈ ∂�
μ∈D=[−0.99, 0.99]2.

(29b)

These four equations are elliptic partial differential equations with a two-dimensional para-
meterμ = (

μ1, μ2
)
. Among them, Eq. (28) are spatially two-dimensional problems, and Eq.

(29) are spatially three-dimensional problems. The problems (28a) and (29a) are examples
of the Helmholtz equation, describing frequency-domain solutions to Maxwell’s equations
of electromagnetics. Examples (28b) and (29b) are steady-state diffusion equations with
anisotropic diffusivity coefficients. Finally, we choose the inverse multiquadric (IMQ) shape
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Table 1 Parameter-independent exact solutions for the validation of the solver

2D 3D

Test 1 u(x, y) = sin(πx) sin(πy) u(x, y, z) = sin(πx) sin(πy) sin(π z)

Test 2 u(x, y) = e−20(x2+y2) − x2 + y3 u(x, y, z) = e−20(x2+y2+z2) − x2 + y3 − z2

Fig. 3 Plot of the exact solutions: shown from left to right are 2D Test 1, 2D Test 2, 3D Test 1, 3D Test 2

Fig. 4 Convergence of the worst case error maxμ∈�

∥∥∥u(μ) − uN (μ)

∥∥∥
�2

for Eqs. (28a)–(29b) (left to right)

as N increases and nloc is fixed at 50 for 2D and 105 for 3D

function with shape parameter ε = 3 for 2D and 0.75 for 3D. To showcase the functionality
of the method, we choose the computational domain � to be irregular: for the 2D problems,
the domain � is centered at the origin with boundary ∂� given by the parametric equation
in polar coordinates r(θ) = 0.8+ 0.1(sin(6θ) + sin(3θ)), 0 ≤ θ ≤ 2π (see Fig. 1); for 3D
ones, � is the closed interior of a solid object defined by the following parametric surface:

x2 + y2 + z2 − sin(2x)2 sin(2y)2 sin(2z)2 = 1. (30)

These same four equations will be used again to test the reduced solver later where we will
have a fixed forcing function f (x) and boundary data g(x) (and thus parametric solution).
For the purpose of validating the RBF-FD solver in this section, we choose f (x) and g(x)
such that the exact solution u is known. They are listed in Table 1 and depicted in Fig. 3.

Accuracy of the truth solver. TheN−history of convergence results are shown in Fig. 4, and
that for nloc is shown in Fig. 5. The error shown in these figures is the μ-maximum spatial
�2 norm over a candidate set � of 10, 000 equi-spaced parameters in D.
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Fig. 5 Convergence of the worst case error maxμ∈�

∥∥∥u(μ) − uN (μ)

∥∥∥
�2

for Eqs. (28a)–(29b) (left to right)

as nloc increases and N is fixed at 1000 for 2D and 2046 for 3D

We observe that these numerical results indicate that the RBF-FD solver is robust and
provides solutions that converge to the exact solution algebraically with respect to N , and
exponentially with respect to nloc. We note, however, that the error for the nloc convergence
does level off with large number of local stencil points. This issue is a result of the ill
conditioning observed in traditional RBFmethods as the centers become closer. It is partially
mitigated by the use of greedily-selected optimal nodes obtained by using the discrete power
function method described in Sect. 3.1.3. Without it, the errors may eventually grow instead
of flattening out due to ill-conditioning.

Once the a priori expectation of hp−type of convergence is confirmed, we have a reliable
truth solver in RBF-FD. Moreover, these studies provide a reference for the accuracy of the
truth approximations underlying the reduced solver in the next section. This accuracy will
then provide a rough guideline for selecting the total number of reduced bases.

4 The Reduced Radial Basis Function Method

The novel contribution of this paper is the Reduced Radial Basis Function Method (R2BFM)
that we describe in this section. The R2BFM algorithm uses the local RBF-FD method
described in Sect. 3.2 as the truth solver for a parameterized PDE of the general form (1).
We mainly consider irregular geometries, where this truth solver is advantageous compared
to other solution methods. The tests run in Sect. 3.3 show that this truth solver is highly
accurate, featuring h-adaptivity in the parameter N , and p-adaptivity in the parameter nloc.
The R2BFM algorithm then uses the LSRCM introduced in [12] and described in Sect. 2 to
define the offline-online decomposition, defining the low-rank approximation space and the
reduced-order operators.

4.1 The R2BFM Algorithm

In this section we outline the greedy algorithm for the (least squares) Reduced Radial Basis
Function Method. Our truth approximation is given by the local RBF method outlined in
Sect. 3. The LSRCM method from Sect. 2 is naturally applicable to this solver because the
local RBF method is a collocation method. However, we are left to specify the error estimate
�n given by (5). To do this, we adapt the Chebyshev pseudospectral arguments from [12]
to our local RBF case. In our RBF setting, we have a natural specification for the norm: the
native space norm ‖·‖H defined through � = SST . To state our result, we define
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αS
U B = max

w∈RN
wT S−T S−1 w

wTw
,

which relates the native space norm of a function to the standard Euclidian norm ‖·‖ of the
corresponding vector by

‖v‖2H ≤ αS
U B‖v‖2, (31)

where v is a vector of collocation evaluations of the truth approximation PDE solution. In this
context, we can define two types of error estimators, one that works on residuals measured
in the native space norm, and the second that is measured in the Euclidean norm:

�1
n(μ) �

√
αS
U B

∥∥∥S−1
(
fN − LN (μ)u(n)

μ

)∥∥∥
√

βS
LB(μ)

, (32a)

�2
n(μ) �

√
αS
U B

∥∥∥
(
fN − LN (μ)u(n)

μ

)∥∥∥
√

βLB(μ)
. (32b)

The β factors that translate these residuals into (native-space-norm or Euclidean-norm) errors
are given by

βS
LB(μ) � min

w∈RN
wT

L
T
N (μ)S−T S−1

LN (μ)w
wTw

, (33a)

βLB(μ) � min
w∈RN

wT
L
T
N (μ)LN (μ)w

wTw
. (33b)

The estimators �i
n for i = 1, 2 are computable, and they form rigorous error estimators in

the native space.

Theorem 4.1 For any μ, let uNμ (μ) be the truth approximation solving (2) and u(n)
μ (μ) be

the reduced basis solution (3) solving (4). Then we have ‖uNμ −u(n)
μ ‖H ≤ �i

n(μ) for i = 1, 2.

Proof We have the following error equations on the N -dependent fine domain RBF grid
thanks to the equation satisfied by the truth approximation (2):

LN (μ)
(
uNμ − u(n)

μ

)
= f −LN (μ)u(n)

μ , S−1
LN (μ)

(
uNμ − u(n)

μ

)
= S−1( f −LN (μ)u(n)

μ ).

Taking the the standard Euclidian norm and using basic properties of eigenvalues gives

∥∥∥uNμ − u(n)
μ

∥∥∥ ≤
∥∥∥ f − LN (μ)u(n)

μ

∥∥∥
√

βLB(μ)
,

∥∥∥uNμ − u(n)
μ

∥∥∥ ≤
∥∥∥S−1( f − LN (μ)u(n)

μ )

∥∥∥
√

βS
LB(μ)

respectively. We then apply the inequality (31) to finish the proof. ��
These error bounds can then be used to perform the offline LSRCM computations in

Sect. 2.1: determination of the parameter values μ1, . . . , μN and the subsequent snapshots
uμ1 , . . . , uμN . We have used the second estimate �2

n in our experiments below. The two
estimators perform very similarly with the reduced solution defined by (4). However, we
expect them to be different if the reduced solution is sought differently, e.g. under the ana-
lytically preconditioned setting as in [13]. In that setting, S would have to be replaced by
a suitably-defined parameter-dependent pre-conditioner; however, the investigation of the
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Fig. 6 Surface plots of the sample solutions for the 2D test problems (28a) (left) and (28b) (right) at μ1 = 1
and μ2 = 0.5

effect of different estimators on a reduced solution is outside the scope of this paper. The
remaining LSRCM steps in Sects. 2.2 and 2.3 are as described in those sections. We outline
the entire offline algorithm in Algorithm 3.

Remark The estimates above work in the “global” native space defined by the shape function
φ and width parameter ε. However, our RBF approximation is a local approximation and
so it is perhaps more appropriate to use a “local” native space norm in order to compute
these estimates. However, our tests have shown that this distinction does not affect the result
much in practice, although it does make a difference for very small local stencil sizes (e.g.,
n1/dloc ≤ 3). In order to keep the method simple, we have therefore used the global native space
norm as presented above for the RCM error estimate.

Algorithm 3 Least Squares R2BFM: Offline Procedure
1. Discretize the parameter domain D by �, and denote the center of D by μc .

2. Randomly select μ1 and solve the RBF problem LN (μ1) u
N
μ1

(x) = f (x;μ1) for x ∈ CN .

3. For n = 2, . . . , N do

1). Form An−1 =
(
LN uNμ1

,LN uNμ2
, . . . , LN uNμn−1

)
.

2). For all μ ∈ �, solve AT
n−1 An−1 c = A

T
n−1 f

N to obtain u(n−1)
μ = ∑n−1

j=1 c j u
N
μ j

.

3). For all μ ∈ �, calculate �2
n−1(μ). Then set μn = argmaxμ �n−1(μ).

4). Solve the RBF problem LN (μn) uNμn (x) = f (x; μn) for x ∈ CN .
5). Apply a modified Gram-Schmidt transformation, with inner product defined by (u, v) ≡(

LN (μc)u,LN (μc)v
)
L2(�)

, on the basis
{
uNμ1

, uNμ2
, . . . , uNμn

}
to obtain a more stable basis

{
ξN1 , ξN2 , . . . , ξNn

}
to use as terms in the expansion (3) for the least squares reduced collocation

method.

4.2 Numerical Results

We test our reduced solver on the four Eqs. (28a)–(29b) listed in Sect. 3.3. In all cases,
we employ the error estimator �2

n from (32b) to select snapshots and construct the reduced
approximation space.
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Fig. 7 Selected parameter values to build the reduced solution spaces (left), and the history of convergence
of the RB approximations (right). Shown on top is for 2D problem (28a), and at the bottom is for (28b)

4.2.1 R2BFM: Two Dimensional Cases

In this section, we test our reduced solver R2BFM, taking f = −10 sin(8x(y−1)) for (28a)
and f = e4xy for (28b), both with homogeneous boundary conditions. We discretize the
2D domain � with N = 1000 RBF nodes with stencil of size nloc = 50. These N RBF
nodes (see Fig. 1) are selected by a greedy Cholesky algorithm out of 2984 candidate points
that are uniformly distributed on �. In the following numerical experiments we use inverse
multiquadric RBFs with shape parameter ε = 3.

In Fig. 6 we show the surface plots of the solutions to (28a) and (28b) at a particular
parameter value μ1 = 1 and μ2 = 0.5. These images show the irregular domain shape and
the complexity of the solution profile resulting from it. In Fig. 7 we see that the R2BFM
solution is converging exponentially to the RBF solution. Compared to the full RBF truth
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Fig. 8 Sample solutions at μ1 = 1 and μ2 = 0.5 for the 3D problems (29a) (left) and (29b) (right)

simulation with N = 1000 centers and local stencils of size 50, the R2BFM algorithm
achieves comparable accuracy with much less than n = 50 basis elements. We leave the
details of the comparison for Sect. 4.2.3.

4.2.2 R2BFM: Three Dimensional Cases

In this section we test our reduced solver R2BFM on three-dimensional problems by taking
f = −10 sin(8x(y − 1)z) for (29a) and f = e4xyz for (29b) with homogeneous Dirichlet
boundary conditions. Truth approximation simulations were carried out using the inverse
multiquadric RBF with ε = 0.75, and local stencils of size nloc = 125 on a mesh comprised
of a total of 2046 points from the Power Function method. Figure 8 shows the solutions
corresponding to μ1 = 1 and μ2 = 0.5. Again, the reduced basis method converges expo-
nentially (Fig. 9) and provides accurate surrogate solutions with a very small number of basis
functions. See Sect. 4.2.3 for the details of the comparison.

4.2.3 R2BFM Efficiency: Computational Time

In this section, we report, in Table 2, the computational time for the different stages of
the method and the speedup of the R2BFM. All computations are carried out using MAT-
LAB2013.b on a Mac Pro workstation with 12 GB ECC memory and an eight core 2.8 GHz
Intel Xeon processor. In Table 2, n is the number of snapshots we use for the comparison
between the reduced solver and the full solver (with a particularN and nloc). They are deter-
mined by having the accuracy of the two solvers roughly comparable (around 10−4). The
former is located by referring to Figs. 7 and 9, and the latter by Figs. 4 and 5 with the specific
values of N and nloc.

τoffline represents the offline computational time (in seconds) to compute n basis snapshots
along with associated reduced-order operators. We point out that τoffline does not include the
time spent on the calculation of the stability constant (33). In this paper, we calculate directly
these constants which takes time that is comparable (2D) or more than (3D) τoffline. However,
we have tested locating a lower bound of the stability constant by the natural-norm successive
constraint method [31]. This algorithm cuts the time for the stability constant calculation by
at least 75% in all cases.
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Fig. 9 Selected parameter values for the RB space generation (left), and the convergence of the R2BFM
solutions (right). Plotted on top is for the 3D problem (29a) and at the bottom is for (29b)

τ̄ts is the average computational time to solve the PDE with the truth RBF-FD solver.
τ̄rb is that by using the R2BFM solver with n basis functions. We observe that, in all cases,
the R2BFM provides speedup factors of more than 55. We note that the moderate speedup
(compared to the usually-reported RBM speedups of O(100)) is due to the specific imple-
mentation of our MATLAB code. In particular, the online assembling time is in the order
of Qan2 which should be negligible in comparison to the time devoted to solving for the
reduced solution which is O(n3).

Unfortunately, this is not the case in our implementation due to the use of the cell data
structures and multi-dimentional arrays in MATLAB. In fact, if we exclude the assembling
time in our calculation, we recover the usual speedup of 2 to 3 orders of magnitude for
these type of problems. This speedup calculation (where online computational time does not
include operator assembly time) is shown in Fig. 10 for a large number of different n andN .
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Table 2 Computational time and
the corresponding speedup:

Problem n τoffline
(s)

τ̄ts (s) τ̄rb (s) Speed up(
τ̄ts
τ̄rb

)

1 (2D) 12 190.28 0.0603576 0.00108305 55.7290

2 (2D) 12 111.65 0.0690138 0.00125392 55.0836

1 (3D) 6 145.89 0.1513660 0.00168018 90.0895

2 (3D) 12 221.38 0.1463470 0.00183657 79.6850

Fig. 10 Computational speedup excluding the online assembling time: shown on top are for the 2D problem
(28a) (left) and (28b) (right), on the bottom are (29a) (left) and (29b) (right)

5 Conclusion

Partial differential equations that have parametric dependence are challenging problems in
scientific computing. The reduced-basis method efficiently handles these problems, even
in the collocation setting for pseudospectral approximations. However, when the problem
has difficulty compounded by an irregular geometry, standard pseudospectral collocation
methods (e.g. Chebyshev, Fourier) cannot be directly applied.

We have addressed this problem by applying a local radial basis function approxima-
tion method to this situation. Due to their ability to approximate on irregular geometries,
RBF methods provide excellent candidates for a collocation approximation. In particular we
have employed a finite-difference version of RBF methods that uses local stencils to form
differential operator approximations. The result is an hp-adaptive-like method on irregular
geometries with local, hence efficient, operators.
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We use the RBF-FD method as the truth approximation in a reduced basis collocation
method, resulting in the Reduced Radial Basis Function Method. We have shown via exten-
sive tests that this R2BFM algorithm can efficiently solve parametric problems on irregular
geometries, effectively combining the strengths of both RBM and RBF algorithms.
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