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Abstract We employ aKansa-radial basis function (RBF)method for the numerical solution
of elliptic boundary value problems in annular domains. This discretization leads, with an
appropriate selection of collocation points and for any choice of RBF, to linear systems in
which the matrices possess block circulant structures. These linear systems can be solved
efficiently using matrix decomposition algorithms and fast Fourier transforms. A suitable
value for the shape parameter in the various RBFs used is found using the leave-one-out
cross validation algorithm. In particular, we consider problems governed by the Poisson
equation, the inhomogeneous biharmonic equation and the inhomogeneous Cauchy–Navier
equations of elasticity. In addition to its simplicity, the proposed method can both achieve
high accuracy and solve large-scale problems. The feasibility of the proposed techniques is
illustrated by several numerical examples.
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1 Introduction

During the past decade, radial basis function (RBF) collocation methods have attracted great
attention in scientific computing and have been widely applied to solve a large class of
problems in science and engineering. Among the various types of RBF collocation methods,
theKansamethod [15], proposed in early 1990s is themost known.One of themain attractions
of this method is its simplicity, since in it neither a boundary nor a domain discretization are
required. This feature is especially useful for solving high dimensional problems in complex
geometries. Furthermore,wehave the freedomof choosing anRBFas the basis functionwhich
does not necessary satisfy the governing equation. Hence, the Kansa method is especially
attractive for solving nonhomogeneous equations. In general, themultiquadric (MQ) function
is the most commonly used RBF in the implementation of the Kansa method. Using the MQ,
an exponential convergence rate has been observed and thus high accuracy beyond the reach
of the traditional numerical methods such as finite element and finite difference methods can
be achieved. Despite all the advantages mentioned above, the Kansa method has a number
of unfavorable features. It is known that the determination of the optimal shape parameter of
various RBFs is still a challenge. Currently, there are a variety of techniques [5,11,16,26,32]
available for the determination of a suitable shape parameter. In this paper, we will use the
so called leave-one-out cross validation (LOOCV) proposed by Rippa [32] to find a sub-
optimal shape parameter. Another potential problem of the RBF collocation methods is the
ill-conditioning of the resultant matrix. On the one hand, when the number of interpolation
points is increased, the accuracy improves, while, on the other hand, the condition number
becomes larger. This phenomenon is referred to as the principle of uncertainty by Schaback
[33,34]. Eventually, when the number of interpolation points becomes too large, the condition
number becomes enormous and the solution breaks down. When using globally supported
RBFs such as the MQ, the resultant matrix of the Kansa method is dense and ill-conditioned.
Not only do we have a stability problem, but also the computational cost becomes very high.
The Kansa method is thus not suitable for the solution of large-scale problems which require
the use of a large number of interpolation points. In recent years, the localized Kansa method
[27] has been developed for handling large-scale problems. In this approach, a local influence
domain is established for each interpolation point and only a small number of neighbouring
points is used to approximate the solution. The resultant matrix is thus sparse allowing for
the use of a large number of collocation points. However, the accuracy of the localized Kansa
method is rather low because the local influence domain only contains a small number of
interpolation points.

In this paper, we couple the Kansa method and a matrix decomposition technique for solv-
ing problems using a large number of interpolation points. Since global RBFs are used as
basis functions, we can also achieve high accuracy in numerical results. To be more specific,
we consider the discretization of elliptic boundary value problems in annular domains using
the Kansa method. For any choice of RBF, such appropriate discretizations lead to linear sys-
tems in which the coefficient matrices possess block circulant structures andwhich are solved
efficiently using matrix decomposition algorithms (MDAs). An MDA [1] is a direct method
which reduces the solution of an algebraic problem to the solution of a set of independent
systems of lower dimension with, often, the use of fast Fourier Transforms (FFTs). MDAs
lead to considerable savings in computational cost and storage. This decomposition technique
not only allows us to handle large-scale matrices but also makes it possible to implement
the LOOCV technique to find the sub-optimal shape parameter of the RBFs used. It should
be noted that the LOOCV technique is not suitable when the size of the matrix is too large.
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Such MDAs have been used in the past in various applications of the method of fundamental
solutions (MFS) to boundary value problems in geometries possessing radial symmetry, see
e.g., [17,18]. A similar MDA was also applied for the approximation of functions and their
derivatives using RBFs in circular domains in [21], see also, [13]. Some preliminary results
for the Dirichlet Poisson problem have recently been presented in [20].

The paper is organized as follows. In Sect. 2we present theKansamethod and the proposed
MDA for both the Dirichlet and the mixed Dirichlet–Neumann Poisson problem. The Kansa-
RBF discretization for the first and second biharmonic problems is given in Sect. 3. The
corresponding discretization and MDA for the Dirichlet and the mixed Dirichlet–Neumann
boundary value problems for the more challenging Cauchy–Navier equations of elasticity
is described in Sect. 4. In Sect. 5 we present the results of three numerical experiments. In
the first example various RBFs are tested and the normalized MQ turns out to be the most
effective one. As a result, in the other examples, we focus on using the normalized MQ. We
also show that the LOOCV technique is very effective for finding a good shape parameter
of the RBFs. All three examples show that we can solve large-scale problems with high
accuracy. Finally, in Sect. 6 some conclusions and ideas for future work are outlined.

2 The Poisson Equation

2.1 The Problem

We first consider the Poisson equation

�u = f in �, (2.1a)

subject to the Dirichlet boundary conditions

u = g1 on ∂�1, (2.1b)

u = g2 on ∂�2, (2.1c)

in the annulus

� = {x ∈ R : �1 < |x| < �2} . (2.2)

The boundary ∂� = ∂�1 ∪ ∂�2, ∂�1 ∩ ∂�2 = ∅ where ∂�1 = {
x ∈ R

2 : |x| = �1
}

and ∂�2 = {
x ∈ R

2 : |x| = �2
}
.

2.2 Kansa’s Method

In Kansa’s method [15] we approximate the solution u of boundary value problem (2.1) by
a linear combination of RBFs [3,7]

uN(x, y) =
N∑

n=1

anφn(x, y), (x, y) ∈ �̄. (2.3)

The RBFs φn(x, y), n = 1, . . . , N can be expressed in the form

φn(x, y) = �(rn), where r2n = (x − xn)2 + (y − yn)2. (2.4)

Thus each RBF φn is associated with a point (xn, yn). These points {(xn, yn)}N
n=1 are usually

referred to as centers.
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The coefficients {an}N
n=1 in Eq. (2.3) are determined from the collocation equations

�u(xm, ym) = f (xm, ym), m = 1, . . . Mint, (2.5a)

u(xm, ym) = g1(xm, ym), m = Mint + 1, . . . , Mint + Mbry1 , (2.5b)

u(xm, ym) = g2(xm, ym), m = Mint + Mbry1 + 1, . . . , Mint + Mbry, (2.5c)

where Mint + Mbry = M and the points {(xm, ym)}M
m=1 ∈ �̄ are the collocation points. Note

that, in general, the collocation points are not the same as the centers and M ≥ N.
In this work, however, we shall assume that M = N and that the centres are the same as

the collocation points. In particular, we define the M angles

ϑm = 2π(m − 1)

M
, m = 1, . . . , M, (2.6)

and the N radii

rn = �1 + (�2 − �1)
n − 1

N − 1
, n = 1, . . . , N . (2.7)

The collocation points {(xmn, ymn)}M,N
m=1,n=1 are defined as follows:

xmn = rn cos
(

ϑm + 2παn

M

)
, ymn = rn sin

(
ϑm + 2παn

M

)
,

m = 1, . . . , M, n = 1, . . . , N .

(2.8)

In (2.8) the parameters {αn}Nn=1 ∈ [−1/2, 1/2] correspond to rotations of the collocation
points and may be used to produce more uniform distributions. Typical distributions of
collocation points without rotation (αn = 0, n = 1, . . . , n) and with rotation are given in
Fig. 1. In the current application of Kansa’s method, we take

uMN (x, y) =
M∑

m=1

N∑

n=1

amnφmn(x, y), (x, y) ∈ �̄, (2.9)

where the M = MN coefficients {(amn)}M,N
m=1,n=1 are unknown. These coefficients are

determined by collocating the differential equation (2.1a) and the boundary conditions (2.1b)–
(2.1c) in the following way:

a b

Fig. 1 Typical discretization of the domain with a no rotation of the collocation points and b with rotation of
the collocation points. The crosses (+) denote the collocation points
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�uMN (xmn, ymn) = f (xmn, ymn), m = 1, . . . , M, n = 2, . . . , N − 1,

uMN (xm1, ym1) = g1(xm1, ym1), uMN (xmN , ymN ) = g2(xmN , ymN ), m = 1, . . . , M,

(2.10)

yielding a total of M = MN equations.
By vectorizing the arrays of unknown coefficients and collocation points from

a(n−1)M+m = amn, x(n−1)M+m = xmn, y(n−1)M+m = ymn,

m = 1, . . . , M, n = 1, . . . , N , (2.11)

Equation (2.10) yield a linear system of the form

A a =

⎛

⎜
⎜
⎜
⎝

A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N
...

...
. . .

...

AN ,1 AN ,2 . . . AN ,N

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

a1
a2
...

aN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

b1
b2
...

bN

⎞

⎟
⎟
⎟
⎠

= b . (2.12)

The M × M submatrices An1,n2 , n1, n2 = 1, . . . , N are defined as follows:
(
An1,n2

)
m1,m2

= �φm2,n2(xm1,n1 , ym1,n1),

m1,m2 = 1, . . . , M, n1 = 2, . . . , N − 1, n2 = 1, . . . , N ,
(2.13a)(

A1,n
)
m1,m2

= φm2,n(xm1,1, ym1,1),

m1,m2 = 1, . . . , M, n = 1, . . . , N , (2.13b)
(
AN ,n

)
m1,m2

= φm2,n(xm1,N , ym1,N ), (2.13c)

while the M × 1 vectors an, bn, n = 1, . . . , N are defined as

(an)m = amn, m = 1, . . . , M, N = 1, . . . , N ,

(bn)m = f (xmn, ymn), m = 1, . . . , M, n = 2, . . . , N − 1,

(b1)m = g1(xm1, ym1), (bN )m = g2(xmN , ymN ), m = 1, . . . , M.

2.2.1 Neumann Boundary Conditions

Suppose that instead of boundary condition (2.1b) we had the Neumann boundary condition

∂u

∂n
= g1 on ∂�1, (2.14)

where n(x, y) = (nx , ny) denotes the outward normal vector to the boundary at the point
(x, y). The corresponding submatrices

(
A1,n

)
, n = 1, . . . , N , in (2.13b) are now defined

by

(
A1,n

)
m1,m2

= ∂φm2,n

∂n
(xm1,1, ym1,1), m1,m2 = 1, . . . , M. (2.15)

As proved in the “Appendix” (Lemma 1) each of the M × M submatrices An1,n2 , n1, n2 =
1, . . . , N , in the coefficient matrix in (2.12) is circulant [6]. Hence matrix A in system (2.12)
is block circulant.
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2.3 Matrix Decomposition Algorithm

First, we define the unitary M × M Fourier matrix

UM = 1√
M

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 · · · 1
1 ω̄ ω̄2 · · · ω̄M−1
1 ω̄2 ω̄4 · · · ω̄2(M−1)
...

...
...

...

1 ω̄M−1 ω̄2(M−1) · · · ω̄(M−1)(M−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, where ω = e2π i/M , i2 = −1.

(2.16)

If IN is the N ×N identity matrix, pre–multiplication of system (2.12) by IN ⊗UM yields

(IN ⊗UM ) A
(
IN ⊗U∗

M

)
(IN ⊗UM ) a = (IN ⊗UM ) b or Ãã = b̃, (2.17)

where

Ã = (IN ⊗UM ) A
(
IN ⊗U∗

M

)

=

⎛

⎜
⎜
⎜
⎝

UM A1,1U∗
M UM A1,2U∗

M · · · UM A1,NU∗
M

UM A2,1U∗
M UM A2,2U∗

M · · · UM A2,NU∗
M

...
...

...

UM AN ,1U∗
M UM AN ,2U∗

M · · · UM AN ,NU∗
M

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

D1,1 D1,2 · · · D1,N

D2,1 D2,2 · · · D2,N
...

...
...

DN ,1 DN ,2 · · · DN ,N

⎞

⎟
⎟
⎟
⎠

,

(2.18)

and

ã=(IN ⊗UM ) a=

⎛

⎜
⎜
⎜
⎝

UM a1
UM a2

...

UM aN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

ã1
ã2
...

ãN

⎞

⎟
⎟
⎟
⎠

, f̃ =(IN ⊗UM ) b=

⎛

⎜
⎜
⎜
⎝

UM b1
UM b2

...

UM bN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

b̃1
b̃2
...

b̃N

⎞

⎟
⎟
⎟
⎠

.

(2.19)

From the properties of circulant matrices [6], each of the M × M matrices Dn1,n2 , n1, n2 =
1, · · · , N , is diagonal. If, in particular

Dn1,n2 = diag
(
Dn1,n21

, Dn1,n22
, . . . , Dn1,n2M

)
and

An1,n2 = circ
(
An1,n21

, An1,n22
. . . , An1,n2M

)
,

we have, for n1, n2 = 1, · · · , N ,

Dn1,n2m =
M∑

k=1

An1,n2kω
(k−1)(m−1), m = 1, · · · , M. (2.20)

Since the matrix Ã consists of N 2 blocks of order M , each of which is diagonal, the solution
of system (2.17) can be decomposed into solving the M independent systems of order N

Em xm = ym, m = 1, · · · , M, (2.21)
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where

(Em)n1,n2 = Dn1,n2m , n1, n2 = 1, · · · , N ,

and

(xm)n = (ãn)m ,
(
ym

)
n =

(
b̃n

)

m
, n = 1, · · · , N . (2.22)

Having obtained the vectors xm, m = 1, · · · , M , we can recover the vectors ãn, n =
1, · · · , N and, subsequently, the vector a from (2.19), i.e.

a=

⎛

⎜
⎜
⎜
⎝

a1
a2
...

aN

⎞

⎟
⎟
⎟
⎠

=(
IN ⊗U∗

M

)
ã=

⎛

⎜
⎜
⎜
⎝

U∗
M ã1

U∗
M ã2
...

U∗
M ãN

⎞

⎟
⎟
⎟
⎠

. (2.23)

In conclusion, the MDA can be summarized as follows:

Algorithm 1
Step 1: Compute b̃n b̃n = UM bn, n = 1, · · · , N.
Step 2: Construct the diagonal matrices Dn1,n2 from

(2.20).
Step 3: Solve the M, N × N systems (2.21) to obtain

the {xm}Mm=1,
and subsequently the {ãm}Nm=1 from (2.22).

Step 4: Recover the vector of coefficients a from
(2.23).

In Steps 1, 2 and 4 FFTs are used while the most expensive part of the algorithm is the
solution ofM linear systems, each of order N . The FFTs are carried out using theMATLAB©

[35] commandsfft andifft. In addition to the savings in computational cost, considerable
savings in storage are achieved since only one row of the circulant matrices involved needs
to be stored.

3 The Biharmonic Equation

3.1 The Problem

We next consider the biharmonic equation

�2u = f in �, (3.1a)

subject to the boundary conditions

u = g1 and
∂u

∂n
= h1 on ∂�1, (3.1b)

u = g2 and
∂u

∂n
= h2 on ∂�2, (3.1c)

where � is the annulus (2.2). This problem is known as the first biharmonic problem.
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3.2 Kansa’s Method

We approximate the solution u of boundary value problem (3.1) by (2.9).
The coefficients are determined by collocating the differential equation (3.1a) and the

boundary conditions (3.1b)–(3.1c) in the following way:

�2uMN (xmn, ymn) = f (xmn, ymn), m = 1, . . . , M, n = 3, . . . , N − 2,

uMN (xm1, ym1) = g1(xm1, ym1) and
∂u

∂n
(xm1, ym1) = h1(xm1, ym1), m = 1, . . . , M,

uMN (xmN , ymN ) = g2(xmN , ymN ) and
∂u

∂n
uMN (xmN , ymN ) = h2(xmN , ymN ),

m = 1, . . . , M, (3.2)

yielding a total of MN equations.
By vectorizing the arrays of unknown coefficients and collocation points via (2.11),

Eq. (3.2) yield a system of the form (2.12). In this case, the M × M submatrices
An1,n2 , n1, n2 = 1, . . . , N are defined as follows:

(
An1,n2

)
m1,m2

= �2φm2,n2(xm1,n1 , ym1,n1),

m1,m2 = 1, . . . , M, n1 = 3, . . . , N − 2, n2 = 1, . . . , N ,

(
A1,n

)
m1,m2

= φm2,n(xm1,1, ym1,1),
(
A2,n

)
m1,m2

= ∂φm2,n

∂n
(xm1,1, ym1,1),

m1,m2 = 1, . . . , M, n = 1, . . . , N ,

(
AN ,n

)
m1,m2

= φm2,n(xm1,N , ym1,N ),
(
AN−1,n

)
m1,m2

= ∂φm2,n

∂n
(xm1,N , ym1,N ),

(3.3)

while the M × 1 vectors an, bn, n = 1, . . . , N are defined as

(an)m = amn, m = 1, . . . , M, N = 1, . . . , N ,

(bn)m = f (xmn, ymn), m = 1, . . . , M, n = 3, . . . , N − 2,

(b1)m = g1(xm1, ym1), (b2)m = h1(xm1, ym1), m = 1, . . . , M,

(bN )m = g2(xmN , ymN ), (bN−1)m = h2(xmN , ymN ), m = 1, . . . , M.

3.2.1 Second Biharmonic Problem

Suppose that instead of boundary conditions (3.1b)–(3.1c) we had the boundary conditions

u = g1 and �u = h1 on ∂�1, (3.4)

u = g2 and �u = h2 on ∂�2. (3.5)

This problem is known as the second biharmonic problem.
The corresponding submatrices

(
A2,n

)
,
(
AN−1,n

)
, n = 1, . . . , N , in (3.3) are now

defined by
(
A2,n

)
m1,m2

= �φm2,n(xm1,1, ym1,1),
(
AN−1,n

)
m1,m2

= �φm2,n(xm1,N , ym1,N ), m1,m2 = 1, . . . , M. (3.6)

As shown in the “Appendix” (Lemma 2), as in the case of the Poisson equation in Sect. 2.2,
each of the M×M submatrices An1,n2 , n1, n2 = 1, . . . , N , is circulant and hence the matrix
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A is block circulant. The resulting system can therefore be solved efficiently using the MDA
described in Sect. 2.3.

4 The Cauchy–Navier Equations of Elasticity

4.1 The Problem

We finally consider the Cauchy–Navier system for the displacements (u1, u2) in the form
(see, e.g. [12])

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1(u1, u2) ≡ μ�u1 + μ

1 − 2ν

(
∂2u1
∂x2

+ ∂2u2
∂x∂y

)
= f1,

in �,

L2(u1, u2) ≡ μ

1 − 2ν

(
∂2u1
∂x∂y

+ ∂2u2
∂y2

)
+ μ�u2 = f2,

(4.1a)

subject to the Dirichlet boundary conditions

u1 = g1 and u2 = h1 on ∂�1, (4.1b)

u1 = g2 and u2 = h2 on ∂�2, (4.1c)

where � in the annulus (2.2). In (4.1a) the constant ν ∈ [0, 1/2) is Poisson’s ratio and μ > 0
is the shear modulus.

4.2 Kansa’s Method

We approximate the solution (u1, u2) of boundary value problem (3.1) by (u(1)
MN , u(2)

MN )

where

u(
)
MN (x, y) =

M∑

m=1

N∑

n=1

a(
)
mnφmn(x, y), 
 = 1, 2, (x, y) ∈ �̄, (4.2)

and the 2MN coefficients
{
(a(
)

mn)
}M,N

m=1,n=1
, 
 = 1, 2, are unknown.

The unknown coefficients are determined by collocating the differential equations (4.1a)
and the boundary conditions (4.1b)–(4.1c) in the following way:

L
(u
(1)
MN , u(2)

MN )(xmn, ymn) = f
(xmn, ymn), 
 = 1, 2,

m = 1, . . . , M, n = 2, . . . , N − 1,

u(1)
MN (xm1, ym1) = g1(xm1, ym1) and u(2)

MN (xm1, ym1) = h1(xm1, ym1),

m = 1, . . . , M,

u(1)
MN (xmN , ymN ) = g2(xmN , ymN ) and u(2)

MN (xmN , ymN ) = h2(xmN , ymN ),

m = 1, . . . , M, (4.3)

yielding a total of 2MN equations.
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By vectorizing the arrays of unknown coefficients and collocation points as in (2.11),
Eq. (4.3) yield a 2MN × 2MN system of the form (2.12). The 2M × 2M submatrices
An1,n2 , n1, n2 = 1, . . . , N are now defined as follows: (note that we are now defining the
matrix and vector elements in (2.12) as 2 × 2 and 2 × 1 arrays, respectively)
(
An1 ,n2

)
m1 ,m2

=

⎛

⎜
⎜
⎜
⎝

μ�φm2 ,n2 (xm1 ,n1 , ym1 ,n1 ) + μ

1−2ν

∂2φm2 ,n2

∂x2
(xm1 ,n1 , ym1 ,n1 )

μ

1−2ν

∂2φm2 ,n2

∂x∂y
(xm1 ,n1 , ym1 ,n1 )

μ

1−2ν

∂2φm2 ,n2

∂x∂y
(xm1 ,n1 , ym1 ,n1 ) μ�φm2 ,n2 (xm1 ,n1 , ym1 ,n1 ) + μ

1−2ν

∂2φm2 ,n2

∂y2
(xm1 ,n1 , ym1 ,n1 )

⎞

⎟
⎟
⎟
⎠

,

m1,m2 = 1, . . . , M, n1 = 2, . . . , N − 1, n2 = 1, . . . , N , (4.4a)

(
A1,n

)
m1,m2

=
(

φm2,n(xm1,1, ym1,1) 0
0 φm2,n(xm1,1, ym1,1)

)
, (4.4b)

m1,m2 = 1, . . . , M, n = 1, . . . , N ,

(
AN ,n

)
m1,m2

=
(

φm2,n(xm1,N , ym1,N ) 0
0 φm2,n(xm1,N , ym1,N )

)
, (4.4c)

while the 2M × 1 vectors an, bn, n = 1, . . . , N are defined as

(an)m =
(
a(1)
mn

a(2)
mn

)

, m = 1, . . . , M, n = 1, . . . , N ,

(bn)m =
(

f1(xmn, ymn)

f2(xmn, ymn)

)
, m = 1, . . . , M, n = 2, . . . , N − 1,

(b1)m =
(
g1(xm1, ym1)

h1(xm1, ym1)

)
, (bN )m =

(
g2(xmN , ymN )

h2(xmN , ymN )

)
, m = 1, . . . , M.

4.2.1 Neumann Boundary Conditions

Suppose that instead of the Dirichlet boundary conditions (4.1b) we had the Neumann bound-
ary conditions

t1 = g1 and t2 = h1 on ∂�1, (4.5)

where (t1, t2) are the tractions defined by [12]

t1 = 2μ

[(
1 − ν

1 − 2ν

)
∂u1
∂x

+
(

ν

1 − 2ν

)
∂u2
∂y

]
nx + μ

[
∂u1
∂y

+ ∂u2
∂x

]
ny,

t2 = μ

[
∂u1
∂y

+ ∂u2
∂x

]
nx + 2μ

[(
ν

1 − 2ν

)
∂u1
∂x

+
(

1 − ν

1 − 2ν

)
∂u2
∂y

]
ny .

In this case, we have, instead of (4.4b), that the submatrices
(
A1,n

)
m1,m2

,m1,m2 =
1, . . . , M, n = 1, . . . , N , are defined by
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(
A1,n

)
m1,m2

= μ

⎛

⎜
⎜
⎝

2

(
1 − ν

1 − 2ν

)
∂φm2,n

∂x
nx + ∂φm2,n

∂y
ny

(
2ν

1 − 2ν

)
∂φm2,n

∂y
nx + ∂φm2,n

∂x
ny

∂φm2,n

∂y
nx +

(
2ν

1 − 2ν

)
∂φm2,n

∂x
ny

∂φm2,n

∂x
nx + 2

(
1 − ν

1 − 2ν

)
∂φm2,n

∂y
ny

⎞

⎟
⎟
⎠

= μ

(
∂φm2,n

∂x
nx + ∂φm2,n

∂y
ny

)
I2

+ μ

1 − 2ν

⎛

⎜
⎝

∂φm2,n

∂x
nx 2ν

∂φm2,n

∂y
nx + (1 − 2ν)

∂φm2,n

∂x
ny

(1 − 2ν)
∂φm2,n

∂y
nx + 2ν

∂φm2,n

∂x
ny

∂φm2,n

∂y
ny

⎞

⎟
⎠ ,

(4.6)

with all the quantities in (4.6) evaluated at the boundary point (xm1,1, ym1,1).
In contrast to the Poisson and biharmonic cases, matrix A in (2.12) does not possess a

block circulant structure. However, as described in the context of the MFS, in e.g., [23–25]
a block circulant structure can be obtained by means of a simple transformation.

4.3 Matrix Decomposition Algorithm

We introduce the 2M × 2M matrix

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Rϑ1 0 0 · · · 0 0
0 Rϑ2 0 · · · 0 0
...

...
. . .

...
...

...

0 0 0 · · · RϑM−1 0
0 0 0 · · · 0 RϑM

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.7)

where

Rϑk =
(
cosϑk sin ϑk

sin ϑk −cosϑk

)
, ϑk = 2π(k − 1)

M
.

Since clearly R2
ϑk

= I2 then R2 = I2N .
We premultiply the 2MN × 2MN system (2.12) (Aa = b) by the 2MN × 2MN matrix

IN ⊗ R to get

(IN ⊗ R) Aa = (IN ⊗ R) b or Ãã = b̃, (4.8)

where

Ã = (IN ⊗ R) A (IN ⊗ R) , ã = (IN ⊗ R) a, b̃ = (IN ⊗ R) b.

The 2MN × 2MN matrix Ã can be written as

Ã =

⎛

⎜
⎜
⎜
⎝

Ã1,1 Ã1,2 . . . Ã1,N

Ã2,1 Ã2,2 . . . Ã2,N
...

...
. . .

...

ÃN ,1 ÃN ,2 . . . ÃN ,N

⎞

⎟
⎟
⎟
⎠

, (4.9)

where each of the 2M × 2M submatrices Ãm,
 = RAm,
R.
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Moreover, keeping in mind that the elements
(
Ãn1,n2

)

m1,m2
=

((
Ãn1,n2

)

m1,m2

)2

i, j=1
are 2 × 2 arrays, we have
(
Ãn1,n2

)

m1,m2
= Rϑm1

(
An1,n2

)
m1,m2

Rϑm2
, m1,m2 = 1, . . . , M, n1, n2 = 1, . . . , N .

(4.10)

Further, as proved in the “Appendix” (Lemma 3), each submatrix Ãn1,n2 , n1, n2 = 1, . . . , N ,
has a block 2 × 2 block circulant structure. The 2MN × 1 vectors ã, b̃ are written as

ã =

⎛

⎜
⎜
⎜
⎝

ã1
ã2
...

ãN

⎞

⎟
⎟
⎟
⎠

, b̃ =

⎛

⎜
⎜
⎜
⎝

b̃1
b̃2
...

b̃N

⎞

⎟
⎟
⎟
⎠

,

where the 2M ×1 subvectors ãn, b̃n, n = 1, . . . N , are defined by ãn = Ran, b̃n = Rbn and
the 2 × 1 subvectors ((ãn)m)2i=1, ((b̃n)m)2i=1, m = 1, . . . , M , are defined by

(ãn)m = Rϑm (an)m ,
(
b̃n

)

m
= Rϑm (bn)m .

We next rewrite system (4.8) in the form
(
B11 B12

B21 B22

) (
c1
c2

)
=

(
d1
d2

)
, (4.11)

where the MN × MN matrices Bi j , i, j = 1, 2, are expressed in the form

Bi j =

⎛

⎜
⎜
⎜
⎜
⎝

B̃i j
1,1 B̃i j

1,2 . . . B̃i j
1,N

B̃i j
2,1 B̃i j

2,2 . . . B̃i j
2,N

...
...

. . .
...

B̃i j
N ,1 B̃i j

N ,2 . . . B̃i j
N ,N

⎞

⎟
⎟
⎟
⎟
⎠

.

Each M × M submatrix B̃i j
n1,n2 , i, j = 1, 2, n1, n2 = 1, . . . , N , is circulant and defined

from
(
B̃i j
n1,n2

)

m1,m2
=

((
Ãn1,n2

)

m1,m2

)

i, j
, m1,m2 = 1, . . . , M. (4.12)

Also, the MN × 1 vectors ci , di , i = 1, 2, are defined from

ci =

⎛

⎜
⎜
⎜
⎝

c̃i1
c̃i2
...

c̃iN

⎞

⎟
⎟
⎟
⎠

, di =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d̃
i
1

d̃
i
2
...

d̃
i
N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where
(
c̃in

)

m
= (

(ãn)m
)
i ,

(
d̃ in

)

m
=

((
b̃n

)

m

)

i
, m = 1, . . . , M. (4.13)
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We premultiply system (4.11) by the matrix I2 ⊗ IN ⊗UM to get

(I2 ⊗ IN ⊗UM )

(
B11 B12

B21 B22

)
(
I2 ⊗ IN ⊗U∗

M

)
(I2 ⊗ IN ⊗UM )

(
c1
c2

)

= (I2 ⊗ IN ⊗UM )

(
d1
d2

)
, (4.14)

or
(
B̃11 B̃12

B̃21 B̃22

) (
p1
p2

)
=

(
q1
q2

)
, (4.15)

where
(
p1
p2

)
= (I2 ⊗ IN ⊗UM )

(
c1
c2

)
,

(
q1
q2

)
= (I2 ⊗ IN ⊗UM )

(
d1
d2

)
,

where for i = 1, 2

pi =

⎛

⎜
⎜
⎜
⎝

p̃i1
p̃i2
...

p̃iN

⎞

⎟
⎟
⎟
⎠

, qi =

⎛

⎜
⎜
⎜
⎝

q̃i1
q̃i2
...

q̃iN

⎞

⎟
⎟
⎟
⎠

, with p̃in = UM c̃in, q̃in = UM d̃
i
n, n = 1, . . . , N .

The matrices B̃i j , i, j = 1, 2 are given from

B̃i j = (IN ⊗UM ) Bi j
(
IN ⊗U∗

M

)
,

and since each of the matrices Bi j , i, j = 1, 2 is block circulant, from (2.18) it follows that

B̃i j =

⎛

⎜
⎜
⎜
⎜
⎝

Di j
1,1 Di j

1,2 · · · Di j
1,N

D2,1 Di j
2,2 · · · Di j

2,N
...

...
...

Di j
N ,1 Di j

N ,2 · · · Di j
N ,N

⎞

⎟
⎟
⎟
⎟
⎠

, (4.16)

where each M × M matrix Di j
n1,n2 , n1, n2 = 1, . . . , N , is diagonal.

More specifically, if

Di j
n1,n2 = diag

(
Di j
n1,n21 , D

i j
n1,n22 , . . . , D

i j
n1,n2M

)
and

B̃i j
n1,n2 = circ

(
B̃i j
n1,n21 , B̃

i j
n1,n2M . . . , B̃i j

n1,n2M

)
,

we have, for n1, n2 = 1, · · · , N ,

Di j
n1,n2m =

M∑

k=1

B̃i j
n1,n2kω

(k−1)(m−1), m = 1, · · · , M. (4.17)

Since each matrix B̃i j , i, j = 1, 2, consists of N 2 blocks of order M each of which is
diagonal, the solution of system (4.15) can be decomposed into solving the M systems of
order 2N

(
Em
11 Em

12
Em
21 Em

22

) (
xm1
xm2

)
=

(
ym1
ym2

)
, m = 1, · · · , M, (4.18)
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where
(
Em
i j

)

n1,n2
= Di j

n1,n2m , n1, n2 = 1, · · · , N

and
(
xmi

)
n =

(
p̃in

)

m
,

(
ymi

)
n =

(
q̃in

)

m
, n = 1, · · · , N . (4.19)

From the vectors xmi , i = 1, 2;m = 1, . . . , M we can obtain the vectors p1, p2 and the
vectors c1, c2, and subsequently the vector ã, before finally obtaining the vector a.

The MDA, in this case, can be summarized as follows:

Algorithm 2
Step 1: Compute b̃ = (IN ⊗ R)b.

Step 2: Calculate the 2 × 2 arrays
(
Ãn1,n2

)

1,m2
.

Step 3: Compute q̃in = UM d̃
i
n, n = 1, . . . , N and hence

ymi , m = 1, . . . , N from (4.19).

Step 4: Construct the diagonal matrices Di j
n1,n2 from

(4.17) and hence matrices Em
i j in (4.18).

Step 5: Solve the M, 2N × 2N systems (4.18) to
obtain the xmi , i = 1, 2;m = 1, . . . , M,

and subsequently the vectors pi , i = 1, 2.
Step 6: Recover the vectors ci , i = 1, 2 from

c̃in = U∗
M p̃in, n = 1, . . . , N.

Step 7: Reorder vectors ci , i = 1, 2 to obtain vector ã.
Step 8: Compute a = (IN ⊗ R)ã.

In Steps 3, 4 and 6 FFTs are used while the most expensive part of the algorithm is the
solution of M linear systems, each of order 2N . Again, substantial savings in storage are
obtained as only the first line of the circulant matrices involved needs to be constructed and
stored.

5 Numerical Examples

In all numerical examples considered, we took collocation points described by αn =
(−1)n/4, n = 1, . . . , N (cf. (2.8)). The inner and outer radii of the annular domain �

are �1 = 0.3, �2 = 1, respectively. We calculated the maximum relative error E over MN
test points in � defined by

rn (cosϑm, sin ϑm) , where ϑm = 2π(m − 1)

M , m = 1, . . . ,M, rn = �1

+ (�2 − �1)
n − 1

N − 1
, n = 1, . . . ,N . (5.1)

Unless otherwise stated, we choose N = 25,M = 50 so that the test points are different
than the collocation points. The maximum relative error E is defined as

E = ||u − uN ||∞,�

||u||∞,�

. (5.2)
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The proper selection of an RBF is crucial in obtaining good accuracy. In the first example,
we test various commonly used RBFs and then choose the best one to perform the tests for
the remaining examples. The determination of a suitable shape parameter remains a major
issue in the many applications of RBFs involving such parameters. As we have mentioned
earlier, numerous techniques have been proposed for the selection of an appropriate shape
parameter. In this work, we apply the so-called LOOCV (leave-one-out cross validation)
algorithm proposed by Rippa [32] for the identification of a suitable shape parameter. The
MATLAB© codes for LOOCV can be found in [9]. The MATLAB© function fminbnd is
used to find theminimumof a function of one variablewithin a fixed interval. Sincefminbnd
is a local minimizer, an initial guess of the lower and upper bounds denoted by min and max
needs to be provided so that the search takes place in the interval [min, max]. One of the
attractive features of using LOOCV is that we do not need to know the exact solution of the
given problem for the selection of a (sub-optimal) shape parameter. Typically, in the problems
considered, there are M systems of equations of order N to be solved, see, e.g., (2.21). It is
clearly not cost-effective to apply the LOOCV to each of the M systems and determine the
sub-optimal shape parameter for each. We therefore only apply the LOOCV to a randomly
chosen system among the M systems. This adds O(N 3) computational complexity to the
proposed technique. The sub-optimal shape parameter thus obtained is then used for all the
other systems. This technique, as shown by the results, appears to be working well.

All numerical computations were carried out on a MATLAB© 2010a platform in OS
Windows 7 (32 bit) with Intel Core(TM) i5 2.4GHz CPU and 4GB memory.

We have considered the following numerical examples.

5.1 Example 1

We consider the Poisson equation (2.1a) with a Neumann boundary condition prescribed
on ∂�1 and a Dirichlet boundary condition prescribed on ∂�2. The boundary conditions
correspond to the exact solution which is given by u = ex+y .

We first perform some tests with the normalized multiquadric (MQ) basis functions

φ j (x, y) = �(r j ) =
√

(cr j )2 + 1, r2j = (x − x j )
2 + (y − y j )

2,

where c is the shape parameter. In Fig. 2, we present the maximum relative error in u versus
the shape parameter c for the case when M = 128, N = 64 using the normalized MQ basis
functions. From this figure, we can observe that the optimal shape parameter is c = 5.208 and
the corresponding error is 2.940(−8). The results in Table 1 are obtained using the LOOCV
algorithm for various search intervals [min, max]. When comparing the results in Fig. 2

Fig. 2 Example 1: maximum
relative error versus shape
parameter with
M = 128, N = 64

4 5 6 7 8
10

−8

10
−7

10
−6

10
−5

c

E

c = 5.208, E = 2.940(−8)
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Table 1 Example 1: sub-optimal
shape parameters and the
corresponding maximum relative
errors for various search intervals
using fminbnd with
M = 128, N = 64

[min, max] Sub-optimal c E

[0,8] 5.013 8.790 (−8)

[0,10] 5.005 6.706 (−8)

[0,12] 5.078 3.432 (−8)

[0,14] 5.001 6.062 (−8)

[0,16] 5.002 8.902 (−8)

[0,18] 5.006 2.361 (−7)

[0,20] 5.007 6.516 (−8)

Table 2 Example 1: sub-optimal
shape parameter and the
maximum relative errors for
various M = N with initial
search interval [0, 20]

M = N Sub-optimal c E

80 4.714 9.316 (−7)

100 6.057 3.361 (−7)

120 7.499 2.247 (−7)

140 8.896 3.045 (−7)

160 10.445 1.949 (−7)

Fig. 3 Example 1: maximum
relative error versus shape
parameter with different numbers
of degrees of freedom

0 2 4 6 8
10

−8

10
−6

10
−4

10
−2

10
0

c

E

M=16,N=8
M=32,N=16
M=64,N=32
M=128,N=64

and Table 1, we can see that the (sub-optimal) shape parameter results obtained for various
search intervals are very stable and satisfactorily close to the optimal shape parameter. In
terms of accuracy, the errors obtained using the LOOCV algorithm are comparable to the
ones obtained using the optimal shape parameter. Moreover, in order to obtain the optimal
shape parameter in Fig. 2, one needs to know the exact solution. In contrast, to obtain the
sub-optimal shape parameter using the LOOCV algorithm in Table 1, it is not necessary to
know the exact solution a priori. The results obtained for the Dirichlet problem (2.1) are very
similar.

In Table 2, we present the results obtained using various numbers of collocation points
M = N . It can be seen that the sub-optimal shape parameter becomes larger when the density
of the collocation points increases.

In Fig. 3 we present the error convergence plots for (M, N ) = (16, 8), (32, 16), (64, 32)
and (128, 64) for varying c. From these plots we observe that as the number of degrees of
freedom increases, the accuracy improves.
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Table 3 Example 1: comparison of CPU times and E for full Kansa RBF and MDA Kansa RBF solutions
for various M = N with initial search interval [0, 8]

Full Kansa MDA Kansa

M = N E CPU (s) Condition # E CPU (s) Condition #

20 5.066 (−5) 1.062 1.37 (+19) 2.558 (−4) 0.143 6.65 (+5)

30 4.032 (−5) 5.410 6.94 (+19) 4.062 (−6) 0.309 1.03 (+13)

40 2.683 (−5) 19.124 2.53 (+20) 2.069 (−6) 0.638 1.75 (+15)

50 7.163 (−6) 55.684 4.29 (+21) 7.223 (−6) 0.947 8.24 (+13)

60 3.253 (−6) 214.481 8.21 (+20) 1.985 (−6) 1.608 7.93 (+15)

100 – – – 4.951 (−7) 6.087 1.40 (+17)

150 – – – 2.672 (−6) 21.053 1.03 (+18)

We also compared the performance of the proposed MDA Kansa-RBF versus the full
Kansa-RBF solution in which the full system (2.12) is solved. In Table 3, we present the
errors E , CPU times and condition numbers for the full Kansa-RBF and the corresponding
quantities using the proposed MDA Kansa-RBF for various numbers of degrees of freedom,
using LOOCV. The most time consuming part in both approaches is the search of a suitable
shape parameter using LOOCV, in which systems are solved repeatedly. This makes the
advantage of the MDA Kansa-RBF even more pronounced as, for example, the solution
of the full Kansa system for M = N = 50 once requires 2.82 s while with LOOCV the
method requires 55.68 s. Clearly, the use of LOOCVwith theMDAKansa approach does not
slow the process as considerably. Note that for M = N = 100 and 150 the size of the full
Kansa-RBF matrices becomes prohibitive. From the values of the condition numbers in the
two approaches we may infer that the Principle of Uncertainty [32,33] is more pronounced
for the full Kansa-RBF than the MDA Kansa-RBF. The sub-optimal shape parameters are
not given in Table 3 since the focus is on the CPU time and accuracy. Similar results were
observed for the other examples considered.

Next, we examine and compare the performance of different RBFs using the proposed
MDA. The Matérn RBF [30,31]

�(r) = (rc)nKn(rc),

where n ∈ Z, Kn is the modified Bessel function of second kind with order n and c is the
shape parameter, is known as a highly effective basis function. In [31], the Kansa method
using the Matérn RBF was applied to solve Poisson’s equation. For large-scale problems,
domain decomposition was applied to decompose the domain into smaller domains so that
the Kansa method can be applied. In this work, instead of domain decomposition, we use
matrix decomposition to handle large-scale problems. For (2.1a) with Dirichlet boundary
conditions, the profiles of the maximum relative error versus the shape parameter for the
Matérn RBF of orders n = 4, 5, 6, and 7, with M = 128, N = 64, are shown in Fig. 4. As
can be observed, as the order increases so does the value of the optimal shape parameter.
Furthermore, the stability of the curve deteriorates as the order becomes higher due to an
increase in the higher condition number. As shown in Table 4, when using the Matérn of
order 6, the results for various search intervals are compatible with the results in Table 1.
Since the value of the optimal shape parameter increases with the order of the Matérn RBF,
we use different search intervals for different orders. In Table 5, we present the sub-optimal
shape parameters and the corresponding errors for various orders of the Matérn RBF. The
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Fig. 4 Example 1: maximum
relative error versus shape
parameter for various orders of
the Matérn function with
M = 128, N = 64
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Table 4 Example 1: sub-optimal shape parameters and the correspondingmaximum relative errors for various
search intervals using the Matérn function of order 6 with M = 128, N = 64

[min, max] Sub-optimal c E

[0,12] 9.048 2.026 (−8)

[0,14] 9.055 2.246 (−8)

[0,16] 9.037 2.010 (−8)

[0,18] 9.020 2.335 (−8)

[0,20] 9.026 1.985 (−8)

[0,22] 8.979 2.046 (−8)

Table 5 Example 1: sub-optimal
shape parameter and the
maximum relative errors using
various orders of the Matérn
function with M = 128 and
N = 64

order Sub-optimal c E

4 1.006 8.123 (−7)

5 3.735 2.888 (−8)

6 9.049 2.300 (−8)

7 13.854 2.888 (−8)

8 18.466 4.953 (−8)

accuracy obtained using theMatérn RBF of various orders and the LOOCV algorithm is very
close to the results obtained using the actual optimal shape parameters as shown in Fig. 4.
Even though the results are highly accurate, the drawback of using the Matérn RBF is the
high cost of computation due to the presence of the special function Kn(cr).

The Gaussian RBF

�(r) = e−cr2 ,where c is the shape parameter,

is another popular and widely used RBF. As shown in Fig. 5, we see a very different profile
of the shape parameter versus the maximum relative error, for problem (2.1). The errors
are fluctuating between 10−4 and 10−6. Despite this irregularity, we obtain excellent results
using the LOOCV algorithm, as shown in Table 6. We note that all the local minima in Fig. 5
have similar accuracy. The MATLAB© function fminbnd is capable of finding the local
minima and, hence, as we can see in Table 6, for different search intervals wemay obtain quite
different sub-optimal shape parameters and yet the obtained accuracy is very satisfactory. In
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Fig. 5 Example 1: maximum
relative error versus shape
parameter for Gaussian RBF with
M = 128, N = 64

5 10 15 20 25 30

10
−6

10
−4

c

E

c=21.880, E=8.583(−7)

Table 6 Example 1: sub-optimal
shape parameters and the
corresponding maximum relative
errors for various search intervals
using the Gaussian RBF with
M = 128, N = 64

[min, max] Sub-optimal c E

[0,6] 5.657 2.319 (−6)

[0,8] 3.028 1.597 (−6)

[0,10] 6.176 2.340 (−6)

[0,12] 10.493 9.629 (−7)

[0,14] 9.076 9.728 (−7)

[0,16] 12.262 6.537 (−7)

[0,18] 12.480 1.000 (−6)

[0,20] 13.055 1.988 (−6)

[0,22] 11.603 1.103 (−6)

conclusion, however, it is preferable to use one of the previous two RBFs which are more
predictable in finding a suitable shape parameter.

Finally, we tested the performance of the inverse multiquadric (IMQ) RBF

�(r) = 1
√
1 + (cr)2

, where c is the shape parameter,

for the same example. The results obtained were very similar to those obtained using the
normalized MQ RBF but the best accuracy recorder in this case was slightly worse at around
10−7.

Among all the RBFs tested in this example, we conclude that the normalized MQ is the
best in terms of efficiency, stability, and accuracy. As a result, we will only consider the
normalized MQ as an RBF for the next two examples.

Remark 1 We also considered a distribution of the collocation points which renders their
concentration near the boundaries denser (see, e.g., [10]). In particular, instead the of the N
uniformly distributed radii defined by (2.7) we used the N Chebyshev–Gauss–Lobatto points
on the interval [�1, �2], defined by

rn = 1

2

(
�1 + �2 + (�1 − �2) cos

(nπ

N

))
, n = 1, . . . , N , (5.3)

while the angles are still defined by (2.6) and the collocation points by (2.8). Extensive
experimentation revealed no significant difference in the accuracy of the results with the
uniform distribution and the Chebyshev–Gauss–Lobatto point distribution. Moreover, it was
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observed that there was no significant difference between the size of the errors near the
boundaries and the interior of the domain.

5.2 Example 2

Wenext consider thefirst biharmonic boundaryvalueproblem (3.1) corresponding to the exact
solution u = sin(πx) cos(πy/2). In Table 7 we present the sub-optimal shape parameters
and their corresponding errors using the LOOCV algorithm with various search intervals
for the case M = 128, N = 64. As in Example 1, the results we obtained are very stable
irrespective to the initial search interval. Without prior knowledge of the exact solution, we
can find a good shape parameter and obtain accuracy which is fairly close to the optimal
accuracy, as shown in Fig. 6.

In Table 8 we present the sub-optimal shape parameters and errors in u for various values
of M = N using the LOOCV algorithm for the case of Dirichlet and Neumann boundary
conditions. The initial search internal is set to [0, 20] and obtain stable and accurate results.
We also run a similar test for the corresponding second biharmonic boundary value problem
(3.1a), (3.4) and (3.5) in which the initial search interval was set to [0, 10]. The results are
shown in Table 9.

5.3 Example 3

We finally consider a mixed boundary value problem for the Cauchy–Navier equations of
elasticity given by (4.1), (4.5) and (4.1c) and corresponding to the exact solution u1 = ex+y ,
u2 = sin(x + y). We take Poisson’s ratio and the shear modulus to be ν = 0.3 and μ = 1,
respectively. In Fig. 7 we present the errors in u1 and u2 for various numbers of degrees

Table 7 Example 2: sub-optimal
shape parameters and the
corresponding maximum relative
errors for various initial search
interval using fminbnd for
M = 128, N = 64

[min, max] Sub-optimal c E

[0,8] 4.433 1.713 (−6)

[0,10] 4.351 1.422 (−6)

[0,12] 4.590 1.066 (−6)

[0,14] 4.211 4.485 (−6)

[0,16] 4.272 4.184 (−6)

[0,18] 4.242 2.411 (−6)

[0,20] 4.235 1.801 (−6)

Fig. 6 Example 2: maximum
relative error versus the shape
parameter for M = 128, N = 64
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c = 4.5833, E = 6.277(−7)
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Table 8 Example 2: sub-optimal
shape parameters and the
maximum relative errors for
various M = N

M = N Sub-optimal c E

80 4.003 1.351 (−5)

100 5.429 5.353 (−6)

120 7.311 3.583 (−6)

140 7.857 5.250 (−6)

160 9.219 9.647 (−6)

Table 9 Example 2: sub-optimal
shape parameters and the
maximum relative errors for
various M = N for the second
biharmonic problem

M = N Sub-optimal c E

80 3.678 1.651 (−5)

100 4.991 4,172 (−5)

120 6.774 1.839 (−4)

140 7.329 8.462 (−5)

160 8.451 9.012 (−5)

Fig. 7 Example 3: maximum
relative error versus the shape
parameter with
M = 128, N = 64
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 c  = 5.216
E

1
 = 3.530(−8)

E
2
 = 1.059(−7)

of freedom versus the shape parameter c when the tractions are prescribed on ∂�1 (cf.
Sect. 4.2.1). In this case, the optimal shape parameter is c = 5.216 and the corresponding
errors in u1 and u2 are 3.530(−8) and 1.059(−7), respectively. Note that the errors E1 and
E2 in u1 and u2 are defined using (5.2).

In Table 10 we present results obtained when applying the LOOCV algorithm to find the
sub-optimal shape parameter and the corresponding errors in u1 and u2. Overall, accurate
results are obtained for various initial search intervals. If we choose the interval properly,
the accuracy can be very close to the optimal one as shown in Fig. 7. In Table 11 we present
results obtained using various M = N for a search interval of [0,20]. We also considered
the corresponding Dirichlet boundary value problem (4.1) and in Table 12 we present results
obtained using various M = N for a search interval of [0,20] which are very similar to those
in Table 11. Moreover, these results are consistent with the corresponding results obtained
in Examples 1 and 2.
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Table 10 Example 3:
sub-optimal shape parameters
and the corresponding maximum
relative errors for various initial
search intervals using fminbnd
with M = 128, N = 64

[min, max] Sub-optimal c E1 E2

[2, 8] 6.791 3.647 (−7) 9.501 (−7)

[3, 8] 5.631 7.482 (−8) 1.732 (−7)

[0, 8] 4.944 1.654 (−7) 3.806 (−7)

[0,10] 8.439 1.487 (−6) 4.767 (−6)

[0,12] 8.440 1.488 (−6) 4.771 (−6)

[0,14] 8.427 1.472 (−6) 4.722 (−6)

[0,16] 8.421 1.464 (−6) 4.697 (−6)

[0,18] 8.443 1.491 (−6) 4.778 (−6)

[0,20] 8.432 1.477 (−6) 4.738 (−6)

Table 11 Example 3:
sub-optimal shape parameters
and the maximum relative errors
for various M = N

M = N Sub-optimal c E1 E2

80 6.391 5.987 (−6) 2.484 (−5)

100 7.585 4.755 (−6) 6.914 (−6)

120 9.202 1.728 (−6) 5.171 (−6)

140 12.071 4.045 (−6) 1.431 (−5)

160 12.121 1.966 (−6) 2.943 (−6)

Table 12 Example 3:
sub-optimal shape parameters
and the maximum relative errors
for various M = N for Dirichlet
boundary value problem

M = N Sub-optimal c E1 E2

80 7.227 1.368 (−5) 5.191 (−5)

100 8.741 1.212 (−5) 1.736 (−5)

120 9.905 2.877 (−6) 8.399 (−6)

140 11.695 3.262 (−6) 1.173 (−5)

160 13.471 4.089 (−6) 6.032 (−6)

6 Conclusions

We have applied a Kansa-RBF method for the solution of elliptic boundary value problems
in annular domains. With an appropriate choice of collocation points, the discretization of
such problems governed by the Poisson, inhomogeneous biharmonic or the Cauchy–Navier
equations of elasticity leads to linear systems inwhich the coefficientmatrices are either block
circulant or can be easily transformed into block circulant matrices. Thus these systems may
be solved efficiently using MDAs leading to substantial savings in computational cost and
storage. In addition, a major advantage of the proposed technique, other than its simplicity,
is that it is applicable for any RBF and, as shown in our numerical tests, it is applicable to
large-scale problems achieving high accuracy. Moreover, the use of the LOOCV algorithm
enables us to select a good shape parameter which is critical to ensure appropriate numerical
accuracy. We would like to indicate that the proposed method can be extended to solving
a large class of partial differential equations without difficulty. The algorithm proposed in
this paper can be easily applied to other RBF collocation methods [4,8,29]. In the spirit of
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reproducible research and for the convenience of interested readers the MATLAB© code for
Example 1, as described by Algorithm 1 in Sect. 2.3, maybe accessed at [14].

Possible areas of future research include

• The application of the method using compactly supported RBF, see, e.g., [2].
• The application of the method using a localized RBF collocation, see, e.g., [28].
• The extension of the current method for the solution of three-dimensional axisymmetric

elliptic boundary value problems, see, e.g., [22].
• The extension of the currentmethod to problems inwhich the type of boundary conditions

alternates on the circular segments of the boundary, see, e.g., [19].

Acknowledgments The authors wish to thank the referees for their helpful comments and suggestions which
resulted in an improved manuscript.

Appendix

We consider the RBFs φmn, m = 1, . . . , M, n = 1, . . . , N . These satisfy, see, e.g., [7,
Appendix D],

φmn(x, y) = �(rmn), r2mn(x, y) = (x − xmn)
2 + (y − ymn)

2. (6.1)

It can be easily seen that

∂φmn

∂x
(x, y) = �′(rmn)

rmn
(x − xmn),

∂φmn

∂y
(x, y) = �′(rmn)

rmn
(y − ymn), (6.2)

∂2φmn

∂x2
(x, y) = �′(rmn)

rmn
+

(
rmn�

′′(rmn) − �′(rmn)

r3mn

)
(x − xmn)

2, (6.3)

∂2φmn

∂y2
(x, y) = �′(rmn)

rmn
+

(
rmn�

′′(rmn) − �′(rmn)

r3mn

)
(y − ymn)

2, (6.4)

and

∂2φmn

∂x∂y
(x, y) =

(
rmn�

′′(rmn) − �′(rmn)

r3mn

)
(x − xmn)(y − ymn). (6.5)

Also,

�φmn(x, y) = �′′(rmn) + �′(rmn)

rmn
(6.6)

and

�2φmn(x, y) = �′′′′(rmn) + 2�′′′(rmn)

rmn
− �′′(rmn)

r2mn
+ �′(rmn)

r3mn
. (6.7)

In the sequel, we shall be using the notation (cf. (2.8))

δm1,m2 x = xm1,n1 − xm2,n2 = rn1 cos(ϑm1 + 2παn1

N
) − rn2 cos(ϑm2 + 2παn2

N
),

δm1,m2 y = ym1,n1 − ym2,n2 = rn1 sin(ϑm1 + 2παn1

N
) − rn2 sin(ϑm2 + 2παn2

N
). (6.8)

We shall also need the normal derivatives on the boundary ∂�1 which are given by

(nx , ny)(xm1,1, ym1,1) = −
(
cos(ϑm1 + 2πα1

N
), sin(ϑm1 + 2πα1

N
)

)
. (6.9)
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We next state and prove the following lemmata:

Lemma 1 For any radial function, each submatrix
(
An1,n2

)
in (2.12) possesses a circulant

structure.

Proof We first consider the submatrices
(
An1,n2

)
, n1 = 2, . . . , N − 1, n2 = 1, . . . , N ,

which are defined by (2.13a). From (6.6), �φm2,n2 is an RBF, i.e. it is a function of rm2,n2
(cf. (6.1)). Moreover,

r2m2,n2(xm1,n1 , ym1,n1) = (δm1,m2 x)
2 + (δm1,m2 y)

2 = r2n1 + r2n2

−2rn1 rn2 cos
(

ϑm1 − ϑm2 + 2π(αn1 − αn2)

N

)
,

shows that for fixed n1, n2, the quantity rm2,n2(xm1,n1 , ym1,n1) only depends on (ϑm1 −ϑm2),
i.e. (m1 − m2) and therefore the submatrices are circulant.

The proof that the submatrices
(
An1,n2

)
, n1 = 1, N , n2 = 1, . . . , N , defined by (2.13b)–

(2.13c), are circulant in the case of Dirichlet boundary conditions is identical since their
elements involve the RBFs φm2,n2 , which only depend on rm2,n2 .

In the case of a Neumann boundary condition on ∂�1, however, we have that the subma-
trices

(
A1,n

)
, n = 1, . . . , N , are defined by (2.15), or

(
A1,n2

)
m1,m2

= ∂φm2,n2

∂x
(xm1,1, ym1,1)nx (xm1,1, ym1,1)

+ ∂φm2,n2

∂y
(xm1,1, ym1,1)ny(xm1,1, ym1,1),

and from (6.2) and (6.9) we obtain

= −�′(rm2n2)(xm1,1, ym1,1)

rm2n2(xm1,1, ym1,1))

[
(xm1,1 − xm2,n2) cos

(
ϑm1 + 2πα1

N

)

+ (ym1,1 − ym2,n2) sin

(
ϑm1 + 2πα1

N

)]
.

Ignoring the radial part, we examine

(xm1,1 − xm2,n2) cos

(
ϑm1 + 2πα1

N

)
+ (ym1,1 − ym2,n2) sin

(
ϑm1 + 2πα1

N

)

=
(

r1 cos
(

ϑm1 + 2πα1

N

)
− rn2 cos

(
ϑm2 + 2παn2

N

))
cos

(
ϑm1 + 2πα1

N

)

+
(

r1 sin
(

ϑm1 + 2πα1

N

)
− rn2 sin

(
ϑm2 + 2παn2

N

))
sin

(
ϑm1 + 2πα1

N

)

= r1 − rn2 cos

(

ϑm2 − ϑm1 + 2π
(
αn2 − α1

)

N

)

, (6.10)

which, again, only depends on (m2−m1). Hence, this part is also radial and the corresponding
submatrices are circulant. 
�

Following identical argumentswe also arrive at the corresponding result for the biharmonic
case.

Lemma 2 For any radial function, each submatrix
(
An1,n2

)
in (2.12) corresponding to col-

location scheme (3.2), for both the first and the second biharmonic problem, possesses a
circulant structure.
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Finally, we consider the corresponding result for the Cauchy–Navier equations of elastic-
ity.

Lemma 3 For any radial function, each submatrix
(
Ãn1,n2

)
in (4.9) possesses a 2×2 block

circulant structure.

Proof In order to prove the lemma we need to show that, see, e.g. [23],

Rϑm1

(
An1,n2

)
m1,m2

Rϑm2
= Rϑm1+m

(
An1,n2

)
m1+m,m2+m Rϑm2+m ,

m1,m2 = 1, . . . , M, n1, n2 = 1, . . . , N , (6.11)

provided m1 +m,m2 +m ≤ M . In case m1 +m > M , m1 +m is replaced by m1 +m − M
and in case m2 + m > M , m2 + m is replaced by m2 + m − M .

Since R2
ϑk

= I2 proving (6.11) is equivalent to proving

Rϑm1+m Rϑm1

(
An1,n2

)
m1,m2

Rϑm2
Rϑm1+m = (

An1,n2

)
m1+m,m2+m ,

m1,m2 = 1, . . . , M, n1, n2 = 1, . . . , N . (6.12)

However,

Rϑm1+m Rϑm1
=

(
cosϑm1+m sin ϑm1+m

sin ϑm1+m −cosϑm1+m

)(
cosϑm1 sin ϑm1

sin ϑm1 −cosϑm1

)

=
(
cosϑm − sin ϑm

sin ϑm cosϑm

)
= Wϑm ,

and

Rϑm1
Rϑm1+m =

(
cosϑm1 sin ϑm1

sin ϑm1 −cosϑm1

)(
cosϑm1+m sin ϑm1+m

sin ϑm1+m −cosϑm1+m

)

=
(

cosϑm sin ϑm

− sin ϑm cosϑm

)
= W−1

ϑm
.

Hence proving (6.12) is equivalent to proving that

Wϑm

(
An1,n2

)
m1,m2

W−1
ϑm

= (
An1,n2

)
m1+m,m2+m . (6.13)

From (4.4a), form1,m2 = 1, . . . , M, n1 = 2, . . . , N −1, n2 = 1, . . . , N , we can write
(
An1,n2

)
m1,m2

= μ�φm2,n2(xm1,n1 , ym1,n1)I2

+ μ

1 − 2ν

⎛

⎜
⎜
⎝

∂2φm2,n2

∂x2
(xm1,n1 , ym1,n1)

∂2φm2,n2

∂x∂y
(xm1,n1 , ym1,n1)

∂2φm2,n2

∂x∂y
(xm1,n1 , ym1,n1)

∂2φm2,n2

∂y2
(xm1,n1 , ym1,n1)

⎞

⎟
⎟
⎠ . (6.14)

We first consider the first term in (6.14), namely μ�φm2,n2(xm1,n1 , ym1,n1)I2.
We clearly have that

μ�φm2,n2(xm1,n1 , ym1,n1)Wϑm I2W
−1
ϑm

= μ�φm2,n2(xm1,n1 , ym1,n1)I2

= μ�φm2+m,n2(xm1+m,n1 , ym1+m,n1)I2,

since the Laplacian of φm2,n2(x, y) is radial from (6.6) and

123



J Sci Comput (2015) 65:1240–1269 1265

(δm1,m2 x)
2 + (δm1,m2 y)

2 = r2n1 + r2n2 − 2rn1 rn2 cos
(

ϑm1 − ϑm2 + 2π(αn1 − αn2)

N

)

= (δm1+m,m2+mx)
2 + (δm1+m,m2+m y)

2. (6.15)

Therefore, the first term in (6.14) satisfies (6.13).
For the second term in (6.14), from (6.3)–(6.5) and ignoring the radial parts we only need

show that
(
cosϑm − sin ϑm

sin ϑm cosϑm

)(
(δm1,m2 x)

2 (δm1,m2 x)(δm1,m2 y)
(δm1,m2 x)(δm1,m2 y) (δm1,m2 y)

2

)(
cosϑm sin ϑm

− sin ϑm cosϑm

)

=
(

(δm1+m,m2+mx)2 (δm1+m,m2+mx)(δm1+m,m2+m y)
(δm1+m,m2+mx)(δm1+m,m2+m y) (δm1+m,m2+m y)2

)
. (6.16)

By performing the multiplications on the left hand side of (6.16) we obtain that it is equal to
(

(cosϑmδm1 ,m2 x − sin ϑmδm1 ,m2 y)
2 (cosϑmδm1 ,m2 x − sin ϑmδm1 ,m2 y)(sin ϑmδm1 ,m2 x + cosϑmδm1 ,m2 y)

(cosϑmδm1 ,m2 x − sin ϑmδm1 ,m2 y)(sin ϑmδm1 ,m2 x + cosϑmδm1 ,m2 y) (sin ϑmδm1 ,m2 x + cosϑmδm1 ,m2 y)
2

)
.

Moreover, it can be easily shown that

cosϑmδm1,m2 x − sin ϑmδm1,m2 y = rn1 cos
(

ϑm1+m + 2παn1

N

)

−rn2 cos
(

ϑm2+m + 2παn2

N

)

and

sin ϑmδm1,m2 x+cosϑmδm1,m2 y= rn1 sin
(

ϑm1+m+ 2παn1

N

)
−rn2 sin

(
ϑm2+m+ 2παn2

N

)
,

from which (6.16) follows. Hence, the second term in (6.14) also satisfies (6.13).
We next need to prove that

Wϑm

(
A1,n2

)
m1,m2

W−1
ϑm

= (
A1,n2

)
m1+m,m2+m and

Wϑm

(
AN ,n2

)
m1,m2

W−1
ϑm

= (
AN ,n2

)
m1+m,m2+m . (6.17)

Since from (4.4b) we can write
(
A1,n2

)
m1,m2

= φm2,n2(xm1,1, ym1,1)I2 and
(
AN ,n2

)
m1,m2

= φm2,n2(xm1,N , ym1,N )I2,

from (6.15), following a similar argument to the one used for the first term of (6.14), (6.17)
follows.

Finally, we show that if instead of the displacements u1, u2 we have that the tractions t1, t2
are prescribed on, say, the boundary ∂�1, cf. Sect. 4.2.1, then

Wϑm

(
A1,n2

)
m1,m2

W−1
ϑm

= (
A1,n2

)
m1+m,m2+m (6.18)

is still true.
We write

(
A1,n

)
m1,m2

=
(
T11 T12
T21 T22

)
, (6.19)

where Ti j , i, j = 1, 2, are the appropriate quantities in (4.6).
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We can easily show that

Wϑm

⎛

⎝
T11 T12

T21 T22

⎞

⎠W−1
ϑm

=
⎛

⎝
cos2 ϑmT11 − cosϑm sin ϑm (T21 + T12) + sin2 ϑmT22 cos2 ϑmT12 + cosϑm sin ϑm (T11 − T22) − sin2 ϑmT21

cos2 ϑmT21 + cosϑm sin ϑm (T11 − T22) − sin2 ϑmT12 sin2 ϑmT11 + cosϑm sin ϑm (T21 + T12) + cos2 ϑmT22

⎞

⎠ .

We shall first show that the first term in (4.6) is radial. Using the notation of (6.8) with
n1 = 1, we have from (6.2) that

∂φm2,n

∂x
(xm1,1, ym1,1)nx (xm1,1, ym1,1) + ∂φm2,n

∂y
(xm1,1, ym1,1)ny(xm1,1, ym1,1)

= �′(rm2n)

rm2n

[
δm1,m2 x nx (xm1,1, ym1,1) + δm1,m2 y ny(xm1,1, ym1,1)

]
,

and ignoring the radial factor, we have, using (6.10) that

δm1,m2 x nx (xm1,1, ym1,1) + δm1,m2 y ny(xm1,1, ym1,1)

= r1 − rn2 cos(ϑm2 − ϑm1 + 2π(αn2 − α1)

N
),

which only depends on (m2 − m1), hence it is radial.
We next consider the second term in (4.6). Dropping the multiplying constants and the

obviously radial parts, and with the appropriate notation, we consider the quantities

T̃11(m1,m2) = δm1,m2 x nx (xm1,1, ym1,1) = r1 cos2
(

ϑm1 + 2πα1

N

)

− rn2 cos
(

ϑm2 + 2παn2

N

)
cos

(
ϑm1 + 2πα1

N

)
,

T̃12(m1,m2) = 2νδm1,m2 y nx (xm1,1, ym1,1) + (1 − 2ν)δm1,m2 x ny(xm1,1, ym1,1)

= r1 sin
(

ϑm1 + 2πα1

N

)
cos

(
ϑm1 + 2πα1

N

)

− rn2

(
2ν cos

(
ϑm1 + 2πα1

N

)
sin

(
ϑm2 + 2παn2

N

)

+ (1 − 2ν) sin

(
ϑm1 + 2πα1

N

)
cos

(
ϑm2 + 2παn2

N

))

= r1 sin
(

ϑm1 + 2πα1

N

)
cos

(
ϑm1 + 2πα1

N

)

− rn2

(
2ν sin

(
ϑm2 − ϑm1 + 2π(αn2 − α1)

N

)

+ sin

(
ϑm1 + 2πα1

N

)
cos

(
ϑm2 + 2παn2

N

))
,

T̃21(m1,m2) = (1 − 2ν)δm1,m2 y nx (xm1,1, ym1,1)

+ 2νδm1,m2 x ny(xm1,1, ym1,1)
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= r1 sin
(

ϑm1 + 2πα1

N

)
cos

(
ϑm1 + 2πα1

N

)

− rn2

(
(1 − 2ν) cos

(
ϑm1 + 2πα1

N

)
sin

(
ϑm2 + 2παn2

N

)

+ 2ν sin

(
ϑm1 + 2πα1

N

)
cos(ϑm2 + 2παn2

N
)

)

= r1 sin
(

ϑm1 + 2πα1

N

)
cos

(
ϑm1 + 2πα1

N

)

− rn2

(
2ν sin

(
ϑm1 − ϑm2 + 2π(α1 − αn2)

N

)

+ cos

(
ϑm1 + 2πα1

N

)
sin

(
ϑm2 + 2παn2

N

))
,

T̃22(m1,m2) = δm1,m2 y ny(xm1,1, ym1,1) = r1 sin2
(

ϑm1 + 2πα1

N

)

− rn2 sin
(

ϑm2 + 2παn2

N

)
sin

(
ϑm1 + 2πα1

N

)
.

By using (6.9), we first consider the term

cos2 ϑmT̃11 − cosϑm sin ϑm(T̃21 + T̃12) + sin2 ϑmT̃22

= cos2 ϑmδm1,m2 x nx − cosϑm sin ϑm
(
δm1,m2 y nx + δm1,m2 x ny

) + sin2 ϑmδm1,m2 y ny

= r1 cos2
(

ϑm1 +ϑm+ 2πα1

N

)
− rn2 cos

(
ϑm2 + ϑm+ 2παn2

N

)
cos

(
ϑm1 + ϑm+ 2πα1

N

)

= T̃11(m1 + m,m2 + m).

We next consider

cos2 ϑmT̃12 + cosϑm sin ϑm(T̃11 − T̃22) − sin2 ϑmT̃21

= cos2 ϑm
(
2νδm1,m2 y nx+(1−2ν)δm1,m2 x ny

)+cosϑm sin ϑm(δm1,m2 x nx−δm1,m2 y ny)

− sin2 ϑm
(
(1 − 2ν)δm1,m2 y nx + 2νδm1,m2 x ny

) = −2νrn2 sin(ϑm2 − ϑm1

+2π(αn2 − α1)

N
) + r1 sin

(
ϑm1 + ϑm + 2πα1

N

)
cos

(
ϑm1 + ϑm + 2πα1

N

)

−rn2 sin
(

ϑm1 + ϑm + 2πα1

N

)
cos

(
ϑm2 + ϑm + 2παn2

N

)
= T̃12(m1 + m,m2 + m).

Similarly, we have that

cos2 ϑmT̃21 + cosϑm sin ϑm(T̃11 − T̃22) − sin2 ϑmT̃12 = cos2 ϑm

× (
(1 − 2ν)δm1,m2 y nx + 2νδm1,m2 x ny

) + cosϑm sin ϑm(δm1,m2 x nx − δm1,m2 y ny)

− sin2 ϑm
(
2νδm1,m2 y nx + (1 − 2ν)δm1,m2 x ny

) = −2νrn2 sin
(

ϑm1 − ϑm2

+ 2π(α1 − αn2)

N

)
+ r1 sin

(
ϑm1 + ϑm + 2πα1

N

)
cos

(
ϑm1 + ϑm + 2πα1

N

)

− rn2 cos
(

ϑm1 + ϑm + 2πα1

N

)
sin

(
ϑm2 + ϑm + 2παn2

N

)
= T̃21(m1 + m,m2 + m).
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Finally,

sin2 ϑmT̃11 + cosϑm sin ϑm(T̃21 + T̃12) + cos2 ϑmT̃22

= sin2 ϑmδm1,m2 x nx + cosϑm sin ϑm
(
δm1,m2 y nx + δm1,m2 x ny

) + cos2 ϑmδm1,m2 y ny .

= r1 sin2
(

ϑm1 +ϑm+ 2πα1

N

)
−rn2 sin

(
ϑm2 + ϑm+ 2παn2

N

)
sin

(
ϑm1 +ϑm+ 2πα1

N

)

= T̃22(m1 + m,m2 + m).

Therefore (6.18) is satisfied and the proof is complete. 
�
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