
J Sci Comput (2015) 65:1129–1144
DOI 10.1007/s10915-015-0002-y

A Splitting in Time Scheme and Augmented Lagrangian
Method for a Nematic Liquid Crystal Problem

F. Guillén-González · J. Koko

Received: 26 July 2013 / Revised: 12 January 2015 / Accepted: 24 February 2015
Published online: 19 March 2015
© Springer Science+Business Media New York 2015

Abstract We study the numerical approximation of nematic liquid crystal flows governed by
aEricksen–Leslie problem.This problemcouples the incompressibleNavier–Stokes dynamic
with a gradient flow system related to the orientation unitary vector of molecules. First, a two
sub-step viscosity-splitting time scheme is proposed. The first sub-step couples diffusion and
convection terms whereas the second one is concerned with diffusion terms and constraints
(divergence free and unit director field). Then, in the first sub-step we use a Gauss–Seidel
decoupling algorithm, and in the second sub-step, we use Uzawa type algorithms on aug-
mented Lagrangian functionals to overcome the divergence free and the unit director field
constraints. From the computational point of view, it is a fully decoupled linear scheme
(where all systems to solve are for scalar variables). Some numerical experiments in 2D
domains are carried out by using only linear finite elements in space, confirming at least
numerically the viability and the convergence of our scheme.

Keywords Ericksen–Leslie’s nematic model · Splitting in time schemes · Augmented
Lagrangian · Mixed formulation

F. Guillén-González is partially supported by the Spanish project MTM2012-32325 and also acknowledges
support by the University of Clermont-Ferrand II during his stay as a “Professeur invité”.

F. Guillén-González (B)
Departamento de Ecuaciones Diferenciales y Análisis Numérico and IMUS,
Universidad de Sevilla, Aptdo. 1160, 41080 Seville, Spain
e-mail: guillen@us.es

J. Koko
ISIMA/LIMOS, Université Blaise Pascal – CNRS UMR 6158, Campus des Cézeaux,
BP 10125, 63173 Aubière Cedex, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-015-0002-y&domain=pdf

1130 J Sci Comput (2015) 65:1129–1144

1 Introduction

1.1 The Liquid Crystal Model

We consider the following simplifiedEricksen–Leslie’s problem in Q = (0, T)×�modeling
a nematic liquid crystal fluid filling a bounded domain � ⊂ RN (N = 2 or 3 in practice)
with boundary ∂� and � = (0, T) × ∂�:

∂t d + (u · ∇) d − γ�d + q d = 0, (1)

|d| = 1, (2)

∂t u + (u · ∇)u − ν�u + ∇ p + λ(∇d)t�d = f, (3)

∇ · u = 0, (4)

u|� = 0, d|� = l, (5)

u|t=0 = u0, d|t=0 = d0. (6)

The unknowns of this problem are:

• d : Q → RN the orientation of liquid crystal molecules,
• q : Q → R the Lagrange multiplier associated with the unitary constraint (2),
• u : Q → RN the fluid velocity,
• p = p̃+λ|∇d|2/2 theLagrangemultiplier associatedwith the incompressibility constraint

(4), where p̃ : Q → R is the pressure.

The data are:

• f : Q → RN the external force,
• l : � → RN the Dirichlet boundary data for d , and
• u0, d0 : � → RN the initial data.

Finally, γ, ν, λ > 0 are given constants. Hereafter, |d| and |∇d| denotes the euclidean norm
of the vector d ∈ RN or the matrix ∇d ∈ RN×N , respectively. (∇d)t denotes the transpose
matrix of ∇d .

Eventually, theDirichlet condition d|� = l can be changed by the homogeneousNeumann
condition

(∇d)n|� = 0

where n is the unit outward normal to ∂�.
It is easy to deduce, multiplying (1) by d and applying (2), that q = −γ |∇d|2, hence

the Lagrange multiplier q has an explicit expression in function of d . Nevertheless, we are
going to keep the unknown q because in the fully-discrete numerical scheme this explicit
expression will be not maintained.

1.2 Known Results

First numerical results related to problem (1)–(6) are based on the discretization of a penalized
problem of (1)–(6) by means of a Ginzburg–Landau functional depending on the penalized
parameter ε (see for instance [5,9,10,14–16]). All these schemes suffer from the disadvantage
of being sensitive to the choice of the penalty parameter ε.

Becker et al. [3] considered two nonlinear fully discrete C0-finite element methods. The
first scheme discretizes the Ginzburg–Landau penalized problem and it is unconditionally
energy-stable (conserving decreasing the energy associatedwith the continuous problem) and

123

J Sci Comput (2015) 65:1129–1144 1131

converges towards the penalized problem. The second algorithm in [3] discretizes directly
(1)–(6) and is unconditionally energy-stable, although the convergence when the discrete
time and space parameters go to zero remains as an open problem. This second algorithm is
based on a reformulation of the d-system (1) by using vectorial products, arriving at a non-
linear and fully coupled scheme, which is implemented in practice via the iterative Newton’s
method.

On the other hand, a finite element scheme based on a saddle-point formulation of the
director vector is proposed in [1], allowing to consider the limit problem (1)–(6) and the
penalized problem (via a Ginzburg–Landau functional) in a unified way. In this case, a
linear time semi-implicit algorithm is introduced which is unconditionally stable (satisfying
a discrete energy inequality), although the resulting scheme is fully coupled.

Finally, for the director vector only problem [i.e. problem (1)–(2) with u = 0], Glowinski
et al. describe in [5], a splitting in time scheme based on the Chorin–Temam projection
method for fluids. Moreover, a scheme is given for the limit problem (1)–(2) and another one
for the corresponding penalized version.

1.3 Novelty of the Paper

In this paperwe design a new fully discrete algorithm approximating directly the problem (1)–
(6), which is completely different from the second scheme presented in [3] and the schemes
given in [1,5]. This new scheme will be based on a viscosity-splitting scheme in time, an
iterative fixed-point method for the coupled non-symmetric problem without constraints
and the augmented Lagrangian algorithm in space associated with two symmetric mixed
problems:

• a Stokes type problem for the fluid part;
• a director vector problem with the unitary constraint |d| = 1, introducing the Lagrange

multiplier associated to this non-convex constraint.

Then, our scheme decouples the Lagrange multipliers from the primal variables velocity
and director vector. Moreover, the vectorial systems for the velocity and director vector
will be decoupled by components. To our knowledge, this is the first fully decoupled linear
scheme applied to the Ericksen–Leslie’s problem (1)–(6). Some numerical computations are
presented performing the convergence and viability of this new scheme.

1.4 Organization of the Paper

The rest of the paper is organized as follows. In Sect. 2 a time scheme is presented, splitting
the convection nonlinear terms from the constraints (incompressibility and director vector in
the unit sphere). Then, fully decoupled strategies for the three different problems appearing
in the previous time-splitting scheme will be described in Sects. 3, 4 and 5, respectively.
Finally, the numerical results are presented in Sect. 6, by using only linear finite elements in
space.

2 A Viscosity-Splitting Time Discrete Scheme

The time interval [0, T] is divided into M subintervals of equal length k = T/M (by sim-
plicity), considering the partition {tn = n k}Mn=1. We would like to compute {un, pn, dn, qn}
as approximations of {u(tn), p(tn), d(tn), q(tn)}.

123

1132 J Sci Comput (2015) 65:1129–1144

For this, let us start with the following time discrete scheme, which is related to the
so-called viscosity-splitting algorithm, see [2,11,12] for the Navier–Stokes case:

Initialization: Let u0 = u0 and d0 = d0.

Step n ≥ 1: Given (un−1, dn−1), we compute (un, pn, dn, qn) via the following two sub-step
scheme.

Sub-step 1. Given (un−1, dn−1), compute (̃un, ˜dn) as the solution of the coupled linear
system

1

k
(˜dn − dn−1) + (̃un · ∇)dn−1 − γ�˜dn = 0, (7)

1

k
(̃un− un−1) + (un−1 · ∇)̃un+ 1

2
(∇ · un−1)̃un− ν�ũn+ λ(∇dn−1)t�˜dn = f n . (8)

Sub-step 2. Given (̃un, ˜dn), compute (un, pn) and (dn, qn) as the solution of the following
two uncoupled systems

(un, pn) s.t.
1

k
(un − ũn) − ν �(un − ũn) + ∇ pn = 0, ∇ · un = 0, (9)

(dn, qn) s.t.
1

k
(dn − ˜dn) − γ �(dn − ˜dn) + qndn = 0, |dn | = 1, (10)

Obviously, systems (7)–(8), (9) and (10) must be endowed with the exact boundary con-
ditions related to (5):

ũn |∂� = 0 = un |∂� and ˜dn |∂� = l(tn) = dn |∂�.

In order to describe a fully decoupled the above time discretization scheme, we will
analyze separately the three different previous subproblems: the coupled problem (7)–(8) of
sub-step 1, and the two decoupled problems (9) and (10) of sub-step 2.

3 Solution of the Problem (7)–(8)

For simplicity, in this Section we will use the notations u = ũn , d = ˜dn , u∗ = un−1,
d∗ = dn−1 and f = f n . Hence, given (u∗, d∗), the problem (7)–(8) can be rewritten as:

Find (u, d) such that

1

k
(u − u∗) + (u∗ · ∇)u + 1

2
(∇ · u∗)u − ν�u + λ(∇d∗)t�d = f, (11)

1

k
(d − d∗) + u · ∇d∗ − γ�d = 0. (12)

As in [9], we subtract from d a “lifting” function d
n
as a solution of the Laplace–Dirichlet

problem

�d
n = 0, in �,

d
n = l(tn), on ∂�.

If we set

̂d = d − d
n
,

123

J Sci Comput (2015) 65:1129–1144 1133

then ̂d is the solution of the problem �̂d = �d and ̂d = 0 on ∂�. Again as in [9], we also
introduce the auxiliary variable

w = −√
λ�d = −μ�d = −μ�̂d,

where μ = √
λ. Then (u, d) is a solution of (11)–(12) if, and only if, (u, d = ̂d + d

n
, w) is

a solution of the coupled system

1

k
(u − u∗) + (u∗ · ∇)u + 1

2
(∇ · u∗)u − ν�u − μ(∇d∗)tw = f, (13)

μ

k
(d − d∗) + μ(u · ∇)d∗ + γ w = 0, (14)

μ�̂d + w = 0. (15)

To introduce the variational formulation of (13)–(15), we define the following trilinear form

c(u∗, u, ū) = ((u∗ · ∇)u, ū) + 1

2
(∇ · u∗, u · ū), ∀ u∗, u, ū ∈ H1

0 (�)N .

Hereafter we denote by (·, ·) the scalar product in L2(�). The variational formulation of
(13)–(15) can be written as follows:

Find (u, d = ̂d + d
n
, w) ∈ H1

0 (�)N × H1(�)N × L2(�)N such that

1

k
(u − u∗, ū) + ν(∇u,∇ū) + c(u∗, u, ū) − μ((∇d∗)tw, ū) = (f, ū), ∀ū ∈ H1

0 (�)N ,

(16)
μ

k
(d − d∗, w̄) + μ((u · ∇)d∗, w̄) + γ (w, w̄) = 0, ∀w̄ ∈ L2(�)N , (17)

μ(∇̂d,∇d̄) − −(w, d̄) = 0, ∀d̄ ∈ H1
0 (�)N . (18)

To solve (16)–(18), we use a successive iterative method studied in [9] (see Algorithm 1).

Algorithm 1 Successive iterative algorithm for the coupled problem (7)-(8)

Initialization: Let w(0) be given (w(0) = wn−1 if n ≥ 2 or w(0) = −μ�̂d0 if n = 1).
Step
 ≥ 0: Let w(
) ∈ L2(�)N be given.

1. Compute u(
) ∈ H1
0 (�)N such that for all ū ∈ H1

0 (�)N :

1

k
(u(
), ū) + ν(∇u(
), ∇ū) + c(u∗, u(
), ū) = (f, ū) + 1

k
(u∗, ū) + μ((∇d∗)tw(
), ū). (19)

2. Compute (̂d(
+1), w(
+1)) ∈ H1
0 (�)N × L2(�)N such that for all (d̄, w̄) ∈ H1

0 (�)N × L2(�)N :

{ μ

k
(̂d(
+1), w̄) + γ (w(
+1), w̄) = μ

k
(d∗ − d

n
, w̄) − μ(u(
) · ∇d∗, w̄),

μ(∇̂d(
+1), ∇d̄) − −(w(
+1), d̄) = 0.
(20)

3. We stop iterating (19)–(20) as soon as

‖ u(
) − u(
−1) ‖2
L2

+ ‖ d(
) − d(
−1) ‖2
L2

+ ‖ w(
) − w(
−1) ‖2
L2

‖ u(
) ‖2
L2

+ ‖ d(
) ‖2
L2

+ ‖ w(
) ‖2
L2

≤ ε2. (21)

Note that problem (19) in Algorithm 1 is equivalent to N decoupled convection-diffusion
equations, one for each component of the velocity field u(
). Hence N linear non-symmetric

123

1134 J Sci Comput (2015) 65:1129–1144

systems depending on the time step must be solved. On the other hand, problem (20) in
Algorithm 1 decouples each component of the pair (̂d(
+1), w(
+1)). Moreover, since w(
+1)

will be approximated by P0 finite elements, we can eliminate each component of w(
+1)

from (20)1 in function of the corresponding component of ̂d(
+1) in (20)2 by the so-called
“static condensation” process. Then, problem (20) is equivalent to solving N linear symmetric
systems independent from the time step k.

4 Solution of the Problem (9)

By using the notations u = un and p = pn , the problem (9) is rewritten as:
Find (u, p) such that

1

k
(u − ũn) − ν(�u − ν�ũn) + ∇ p = 0, ∇ · u = 0, u|∂� = 0. (22)

Let us introduce the bilinear and linear forms

a1(u, ū) = 1

k
(u, ū) + ν(∇u,∇ū), ∀ u, ū ∈ H1

0 (�)N

τ1(ū) = 1

k
(̃un, ū) + ν(∇ũn,∇ū), ∀ ū ∈ H1

0 (�)N

and the (quadratic and convex) functional F1 : H1
0 (�)N → R defined by

F1(ū) = 1

2
a1(ū, ū) − τ1(ū)

In (22), the pressure p is the Lagrangemultiplier associated with the divergence constraint
∇·u = 0. Therefore, (22) is the (strong) saddle-point formulation of the following constrained
minimization problem:

Find u ∈ H1
0 (�)N with ∇ · u = 0 such that:

F1(u) ≤ F1(ū), ∀ ū ∈ H1
0 (�)N with ∇ · ū = 0. (23)

The saddle-point (u, p) of the constrained problem (23) can be computed using Uzawa/
conjugate gradient algorithm operating in the space H1(�)∩ L2

0(�) for the pressure, where

L2
0(�) =

{

p ∈ L2(�),

∫

�

p dx = 0

}

.

This space H1(�) ∩ L2
0(�) is endowed with the scalar product (∇ p,∇q).

The resulting conjugate gradient algorithm is then preconditioned by the discrete operator
equivalent of (−�), see e.g. [6,7]. The corresponding Uzawa/conjugate gradient algorithm
is described in Algorithm 2.

Note that the vectorial problems (24) and (25) in Algorithm 2 are decoupled by compo-
nents.

5 Solution of the Problem (10)

Again for simplicity, in this Section we set d = dn and q = qn . Hence, problem (10) is
rewritten as:

123

J Sci Comput (2015) 65:1129–1144 1135

Algorithm 2 Uzawa/conjugate gradient algorithm for the Stokes problem (22)

Initialization: Let p(0) ∈ L20(�) be given (p(0) = pn−1 if n ≥ 2 or p(0) = 0).

1. Compute u(0) ∈ H1
0 (�)N via

a1(u
(0), ū) = τ1 (̃u

n−1, ū) + (p(0), ∇ · ū), ∀ū ∈ H1
0 (�)N . (24)

2. Compute g(0) ∈ L20(�) via

(∇g(0), ∇ ḡ) = (∇ · u(0), ḡ), ∀ḡ ∈ L20(�).

3. Set p̄(0) = g(0)

Step
 ≥ 0: Let p(
), u(
), g(
), p̄(
) be given.

1. Compute u(
) ∈ H1
0 (�)N via

a1(u
(
), ū) = (p̄(
),∇ · ū), ∀ū ∈ H1

0 (�)N . (25)

2. Compute g(
) ∈ L20(�) via

(∇ ḡ(
),∇ ḡ) = (∇ · u(
), ḡ), ∀ḡ ∈ L20(�). (26)

3. Compute the step size

t(
) = (∇g(
), ∇g(
))

(p̄(
),∇ · u(
))
. (27)

4. Update p(
), g(
) and u(
)

p(
+1) = p(
) − t(
) p̄
(
), g(
+1) = g(
) − t(
)g

(
), u(
+1) = u(
) − t(
)u
(
). (28)

5. If
∣

∣

∣∇g(
+1)
∣

∣

∣

2

L2

∣

∣

∣∇g0
∣

∣

∣

−2

L2
≤ ε2, then pn = p(
+1) and un = u(
+1); else compute

ρ(
) =
∣

∣

∣∇g(
+1)
∣

∣

∣

2

L2
∣

∣∇g(
)
∣

∣

2
L2

.

Compute the new conjugate direction:

p̄(
+1) = g(
+1) + ρ(
) p̄
(
). (29)

6. We stop iterating (25)–(29) as soon as

(∇g(
), ∇g(
))

(∇g(0), ∇g(0))
≤ ε.

Find (u, q) such that

1

k
(d − ˜dn) − γ�d + q d = −γ�˜dn, |d| = 1, d|∂� = ln . (30)

To simplify we introduce the forms

a2(d, d̄) = 1

k
(d, d̄) + γ (∇d,∇d̄), ∀ d, d̄ ∈ H1(�)N

123

1136 J Sci Comput (2015) 65:1129–1144

τ2(d̄) = 1

k
(˜dn, d̄) + γ (∇˜dn,∇d̄), ∀ d̄ ∈ H1(�)N

and the (quadratic and convex) functional F2 : H1(�)N −→ R, defined by

F2(d̄) = 1

2
a2(d̄, d̄) − τ2(d̄)

In (30), the term q d is the Lagrange multiplier associated with the constraint |d| = 1.
Therefore, (30) is the (strong) saddle-point formulation of the following constrained mini-
mization problem (with non-convex restriction):

Find d ∈ H1
ln (�)N with |d| = 1, such that:

F2(d) ≤ F2(d̄), ∀ d̄ ∈ H1
ln (�)N with |d̄| = 1, (31)

where H1
ln (�)N is the affine subspace

H1
ln (�)N =

{

d ∈ H1(�)N : d|∂� = ln
}

.

The augmented Lagrangian formulation combines the advantages of both the Lagrangemulti-
pliermethod and the penaltymethodwithout suffering fromdisadvantage of either.Moreover,
there is no need to increase the penalty parameter to infinity.

Let us introduce the set of point-wise constraint

C =
{

d : d ∈ L2(�)N ; |d| = 1 a.e. in �
}

and its characteristic function

χC (d) =
{

0 if d ∈ C
+∞ if d /∈ C.

Then, the problem (31) is equivalent to

d ∈ H1
ln (�)N s.t. F2(d) + χC (d) ≤ F2(d̄) + χC (d̄), ∀d̄ ∈ H1

ln (�)N . (32)

We associate with (32) the Augmented Lagrangian functionalLr : H1
ln (�)N × L2(�)N ×

L2(�)N , defined by

Lr (d, e, μ) = F2(d) + χC (e) + r

2
|d − e|2L2 + (μ, d − e), (33)

with r > 0 an “augmentation” parameter. A saddle-point (d, e, μ) of (33), can be approxi-
mated by a (standard) Uzawa-type algorithm of the form (μ(0) given):

1. Given μ(
), find (d(
), e(
)) such that

Lr (d
(
), e(
), μ(
)) ≤ Lr (d̄, ē, μ(
)), ∀ (d̄, ē) ∈ (H1

ln)
N × L2(�)N .

2. Update the multiplier

μ(
+1) = μ(
) + r(d(
) − e(
)).

For obvious decomposition properties, we prefer the following (Uzawa) block-relaxation
type algorithm [4]. Starting from (e(0), μ(0)) ∈ L2(�)N × L2(�)N (e(0) = μ(0) = dn−1),
we compute successively d(
+1), e(
+1) and μ(
+1) as follows:

d(
+1) ∈ (H1
ln)

N , Lr (d
(
+1), e(
), μ(
)) ≤ Lr (d̄, e(
), μ(
)), ∀ d̄ ∈ (H1

ln)
N , (34)

e(
+1) ∈ L2(�)N , Lr (d
(
+1), e(
+1), μ(
)) ≤ Lr (d

(
+1), ē, μ(
)), ∀ ē ∈ L2(�)N , (35)

123

J Sci Comput (2015) 65:1129–1144 1137

wh

ph
uh, dh

Fig. 1 Finite element spaces

μ(
+1) = μ(
+1) + r(d(
+1) − e(
+1)). (36)

Obviously, the discrete approximation space for e(
) and μ(
) will be the same as for the
director field d(
).

Taking into account some simplifications, (34)–(36) lead to Algorithm 3, where imple-
mentation of (35) and (36) will be made explicitly. Moreover, the vectorial problem (37) of
Algorithm 3 is decoupled by components.

Algorithm 3 Uzawa block-relaxation algorithm for the subproblem (10)

 = 0 Given (e(0), μ(0)) ∈ L2(�)N × L2(�)N (e(0) = μ(0) = dn−1)

 ≥ 0 Compute successively d(
+1), e(
+1) and μ(
+1) as follows

1. Compute d(
+1) ∈ (H1
ln)N such that

a2(d
(
+1), d̄) + r(d(
+1), d̄) = τ2(d̄) + (re(
) − μ(
), d̄), ∀ d̄ ∈ (H1

0)N . (37)

2. Compute the auxiliary unknown

e(
+1) = rd(
+1) + μ(
)

∣

∣rd(
+1) + μ(
)
∣

∣

.

3. Update the multiplier

μ(
+1) = μ(
) + r(d(
+1) − e(
+1)).

4. We iterate until

‖d(
+1) − d(
)‖L2(�)

‖d(
+1)‖L2(�)

≤ ε.

6 Numerical Experiments

We assume that � is a 2D polygonal domain which can be entirely triangulated by a family
Th furnished by a bigger familyT2h dividing each triangle ofT2h into four triangles bymeans
of the edge-midpoints. Finite element spaces for (̃uh, ˜dh), (uh, ph, wh) and (dh, eh, μh) are
chosen as in Fig. 1, where all approximations are over Th except for pressure which is
approximated in T2h (this approximation for the velocity/pressure is called P1-iso-P2/P1
which is known to satisfy the Babuska-Brezzi inf-sup condition [8]).

123

1138 J Sci Comput (2015) 65:1129–1144

All numerical results were carried out using uniformmeshes of the square� = (0, 1)2 and
vectorized Matlab codes [13]. As linear solver, we use the generalized minimum residual
method (gmres) for the non symmetric systems of Algorithm 1 and the preconditioned
conjugate gradient method (pcg) for symmetric (positive definite) systems (i.e. all linear
systems in Algorithms 2 and 3). The preconditioner matrices are obtained by incomplete
factorizations.

6.1 Test Case with Exact Stationary Solution

We present, in this subsection, computations on a test case with known solution, proposed by
Prohl [17]. Contrary to [17], now all numerical simulations are carried out without removing
the convection term in Eq. (1). The constants λ, ν and γ are set to unity, and we adjust
right-hand sides in (1)–(3) and (5) such that the following functions be an exact solution:

u =
(

x2(1 − x)2(2y − 6y2 + 4y3)
−y2(1 − y)2(2x − 6x2 + 4x3)

)

, (38)

p = x2 − 1

3
, (39)

d =

⎛

⎜

⎜

⎝

1

2
x

(1 − 1

4
x2)1/2

⎞

⎟

⎟

⎠

. (40)

The exact solution (38)–(40) is approximated as a stationary solution of the correspond-
ing evolution problem, using the time-stepping scheme (7)–(8), (9)–(10), with initialization
equal to zero. We assume that a stationary solution is reached if the relative L2(�)-error for
(uh, ph, dh) is less than 10−8. The time step is taken as k = 0.001. Tolerance parameter ε

for the iterative algorithms (Algorithms 1, 2 and 3) is set to ε = 10−6.
The augmented LagrangianAlgorithm 3 is very sensitive to the choice of the augmentation

parameter r . In our simulations, we assume that

r = α
h

k
, (41)

where h is the mesh size and k the time step. We make this (empirical) choice to make the
augmentation parameter independent from themesh size. Figure 2 shows the average number
of iterations in Algorithm 3 (required to reach the stationary state) versus the augmentation
parameter r , using the mesh size h = 1/16. We can notice that the average number of
iterations in Algorithm 3 is large for small values of r (r < 100, i.e. α < 15). For sufficiently
large values of r (α > 400), the average number of iterations in Algorithm 3 is between 5
and 6. Note that large values of r can lead to numerical instabilities (zero pivots can appear
during complete or incomplete factorizations). Table 1 shows that, with (41) for α = 500,
the average number of iterations in Algorithm 3 is virtually independent from the mesh size.

To reduce the number of unnecessary iterations in Algorithm 3, we have computed themin
and max values for |dh | using several values of the tolerance ε. The results are summarized in
Table 2. We can notice that we do not need high accuracy in Algorithm 3. Indeed, according
to the mesh size, the norm of the director field can be considered as satisfactory as soon as
ε = 10−2.

Table 3displays the L2(�) and H1(�)-errors for (uh, ph, dh),which confirmsnumerically
the convergence of the proposed scheme with respect to the mesh size h.

123

J Sci Comput (2015) 65:1129–1144 1139

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

20

40

60

80

100

120

140

Penalty parameter

A
ve

ra
g

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

Fig. 2 Average number of iterations in Algorithm 3 versus the augmentation parameter r

Table 1 Average number of iterations in Algorithm 3 for various mesh sizes, with r = 500 h/k

Mesh size h 1/8 1/16 1/32 1/64 1/128

Number of iterations 5 5 5 6 6

Table 2 Min and max values for |dh | with repect to ε in Algorithm 3, h = 1/32

Tolerance ε in Algorithm 3 10−2 10−3 10−4 10−5 10−6

min |dh | 0.999987 0.999987 0.999999 0.999999 0.999999

max |dh | 1.000402 1.000402 1.000000 1.000000 1.000000

Table 3 L2(�) and H1(�)-errors towards the stationary solution (38)–(40)

h ‖dh − d‖L2 ‖dh − d‖H1 ‖uh − u‖L2 ‖uh − u‖H1 ‖ph − p‖L2

1/8 6.0709 × 10−4 7.8064 × 10−3 9.4204 × 10−4 1.4222 × 10−2 7.9048 × 10−3

1/16 2.3554 × 10−4 3.8769 × 10−3 2.4905 × 10−4 7.0873 × 10−3 2.4985 × 10−3

1/32 9.8581 × 10−5 1.9395 × 10−3 6.2446 × 10−5 3.5321 × 10−3 8.7538 × 10−4

1/64 4.5747 × 10−5 9.6495 × 10−4 1.5677 × 10−5 1.7533 × 10−3 3.4502 × 10−4

1/128 1.6159 × 10−5 4.7330 × 10−4 4.0809 × 10−6 8.8102 × 10−4 1.1856 × 10−4

6.2 Test Case with Exact Time-Dependent Solution

Again, the constants λ, ν and γ are set to unity and we adjust right-hand sides in (1)–(3) and
(5)–(6) such that the exact solution is (cf. Prohl [17]):

123

1140 J Sci Comput (2015) 65:1129–1144

0 1 2 3 4 5 6

x 10
4

0

10

20

30

40

50

60

Penalty parameter

A
ve

ra
g

e
n

u
m

b
er

 o
f

it
er

at
io

n
s

k=1/10
k=1/160

Fig. 3 Average number of iterations in Algorithm 3 versus the augmentation parameter r , for k = 1/10
(discontinuous line) and k = 1/160 (continuous line), and h = 1/16

Table 4 Average number of iterations in Algorithm 3 for k = 1/10 and k = 1/160, with r = 3000 h/k

h 1/8 1/16 1/32 1/64 1/128

Iterations for k = 1/10 37 32 18 13 12

Iterations for k = 1/160 4 5 5 5 5

u = (1 + t3)

(

x2(1 − x)2(2y − 6y2 + 4y3)
−y2(1 − y)2(2x − 6x2 + 4x3)

)

,

d =
(

t x
(1 − t2x2)1/2

)

,

p = t (x2 − 1

3
).

Tolerance parameter ε for the iterative algorithms (Algorithms 1, 2 and 3) are set to ε = 10−6.
As in the previous Section, we take the penalty parameter in Algorithm 3 as r = α h/k.
Figure 3 shows the average number of iterations in Algorithm 3 versus the augmentation
parameter r for h = 1/16 and two time steps: k = 1/10 and k = 1/160. One can notice that
for k = 1/10, the number of iterations in Algorithm 3 is lower than 10 if α > 3 × 104. In
contrast, for k = 1/160, the number of iterations in Algorithm 3 is about 5-6 if α > 50. We
can conclude that if the time step is not small enough, α must be chosen large. This property
is illustrated in Table 4. For k = 1/160, the number of iterations is virtually independent of
the mesh size while it is decreasing with respect to the mesh size for k = 1/10.

Table 5 displays the L2(�) and H1(�)-errors at t = 0.5 for uh , ph and dh and confirms
numerically the convergence of the proposed scheme with respect to the time step k. We
notice that the approximation of the pressure is better in the stationary problem than in the
evolution case.

123

J Sci Comput (2015) 65:1129–1144 1141

Table 5 L2(�) and H1(�)-errors at t = 0.5 and time-steps k = 0.1 × 21−
 (h = 1/256)

 ‖dh − d‖L2 ‖dh − d‖H1 ‖uh − u‖L2 ‖uh − u‖H1 ‖ph − p‖L2

1 2.9303 × 10−4 2.2657 × 10−3 1.4089 × 10−5 5.0818 × 10−4 8.5832 × 10−2

2 1.9684 × 10−4 1.4923 × 10−3 6.4825 × 10−6 4.9937 × 10−4 8.4722 × 10−2

3 1.2060 × 10−4 9.2021 × 10−4 2.5101 × 10−6 4.9715 × 10−4 8.4157 × 10−2

4 6.4724 × 10−5 5.4118 × 10−4 6.5534 × 10−7 4.9670 × 10−4 8.3880 × 10−2

5 3.0190 × 10−5 3.4011 × 10−4 5.8558 × 10−7 4.9661 × 10−4 8.3746 × 10−2

Fig. 4 Director field on a square
liquid crystal slab for p = 1,
tstat = 0.143

6.3 Liquid Crystals on a Square Slab

We consider a test problem, derived from [5], with � = (0, 1)2, f = 0, (γ, ν, λ)

= (1, 1, 10−6) and the Dirichlet boundary conditions u = 0 and d = (cos(pθ), sin(pθ)),
where p is an integer, cos θ = (x −1/2)/r , sin θ = (y−1/2)/r and r = ((x −1/2)2 + (y−
1/2)2)1/2 for any (x, y) on the boundary. In fact, integer p is the number of cycles given by
the director boundary data. The initial values u0 and d0 have the same formulas except that
(x, y) is taken in the whole domain �.

The time step is k = 0.001, the mesh size is h = 1/32 and, after some tests, we take
the augmentation parameter as r = 320 h/k. In order to reduce the number of unnecessary
iterations in Algorithm 3, we choose the tolerance in the augmented Lagrangian Algorithm
3 as ε = 10−4. In the other iterative algorithms the tolerance is ε = 10−6. We assume that
a stationary solution is reached if the L2(�)-error for (uh, dh, ph) is less than 10−5 and the
corresponding time is denoted by tstat .

Figures 4, 5, 6, and 7 depict the reached stationary director fields. Note that for p = 1, 2,
3 and 4, then one, two, three and four singularities are obtained, respectively. We have also
computed the stationary director fields for p = 5, 6, 7 and 8. As was pointed out in [5], it
seems hard to predict the number of point singularities for p ≥ 7. Notice that, our results

123

1142 J Sci Comput (2015) 65:1129–1144

Fig. 5 Director field on a square
liquid crystal slab for p = 2,
tstat = 0.229

Fig. 6 Director field on a square
liquid crystal slab for p = 3,
tstat = 0.253

for p > 1 are rather different from those of [5] from a qualitative point of view, because
pictures of director vector given in [5] and in Figs. 4, 5, 6, and 7 are different, and also from
a quantitative one, because for instance for p = 2 we obtain two point-singularities while
three point-singularities are reached in [5]. Nevertheless, the computations of this paper are
not fully comparable to those obtained in [5] where a liquid crystal model involving only the
director vector is considered, while our results are obtained for a coupled fluid/director field
model.

Finally, Table 6 shows the average number of iterations in Algorithm 3 versus p.

123

J Sci Comput (2015) 65:1129–1144 1143

Fig. 7 Director field on a square
liquid crystal slab for p = 4,
tstat = 0.609

Table 6 Average number of iterations in Algorithm 3 versus p, with r = 320 h/k

p 1 2 3 4 5 6 7 8

Iterations 9 13 16 20 22 19 17 21

7 Conclusion

We have designed a fully splitting and decoupled in time linear algorithm for nematic liquid
crystal flows with explicit treatment of the unitary constraint for the director field by an
augmented Lagrangian technique. This algorithm allows us to use only P1 finite elements in
space, choosing the stable pair P1-iso P2/P1 for the velocity-pressure approximation.

We study the numerical behavior of the scheme, observing that the fixed-point iterative
procedure (19)–(20) works well, because the convergence criterion (21) is satisfied after few
(≈ 4–5) iterations. Moreover, since the augmented Lagrangian Algorithm 3 is sensitive with
respect to the augmentation parameter r , we propose an empirical rule for choosing this
parameter depending on the quotient of mesh size over time step. Nevertheless, how to make
an automatic choice of the optimal value of this augmentation parameter in Algorithm 3 is
still an open question.

Acknowledgments The authors are very grateful to the anonymous referees for their helpful and valuable
suggestions and remarks, which greatly improved the earlier version of this paper.

References

1. Badia, S., Guillén-González, F., Gutiérrez-Santacreu, J.V.: Finite element approximation of nematic liquid
crystal flows using a saddle-point structure. J. Comput. Phys. 230, 1686–1706 (2011)

123

1144 J Sci Comput (2015) 65:1129–1144

2. Blasco, J., Codina, R.: Error estimates for an operator-splitting method for incompressible flows. Appl.
Numer. Math. 51, 1–17 (2004)

3. Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen–Leslie model for nematic
liquid crystal flow. SIAM J. Numer. Anal. 46(4), 1704–1731 (2008)

4. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and operator-splitting methods in nonlinear mechan-
ics. Studies in Applied Mathematics. SIAM, Philadelphia (1989)

5. Glowinski, R., Lin, P., Pan, X.-B.: An operator-splitting method for a liquid crystal model. Comput. Phys.
Comm. 152, 242–252 (2003)

6. Glowinski, R., Pan, T.W., Periaux, J.: Distributed Lagrangemultiplier methods for incompressible viscous
flow around moving rigid bodies. Comput. Methods Appl. Mech. Eng. 151, 181–184 (1998)

7. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.: A distributed Lagrange multiplier/fictitious domain
method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput.
Methods Appl. Mech. Eng. 184, 241–267 (2000)

8. Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations: theory and algorithms.
Springer, Berlin (1986)

9. Girault, V., Guillén-González, F.: Mixed formulation, approximation and decoupling algorithm for a
nematic liquid crystals model. Math. Comput. 80(274), 781–819 (2011)

10. Guillén-González, F., Gutiérrez-Santacreu, J.V.: A linear mixed finite element scheme for a nematic
Ericksen–Leslie liquid crystal model. ESAIM: M2AN 47(5), 1433–1464 (2013)

11. Guillén-González, F., Redondo-Neble, M.V.: New error estimates for a viscosity-splitting scheme in time
for the three-dimensional Navier–Stokes equations. IMA J. Numer. Anal. 31(2), 556–579 (2011)

12. Guillén-González, F., Redondo-Neble,M.V.: Spatial error estimates for a finite element viscosity-splitting
scheme for the Navier–Stokes equations. Int. J. Numer. Anal. Methods 10(4), 826–844 (2013)

13. Koko, J.: Calcul Scientifique avec Matlab. Elippses, Paris (2009)
14. Lin, P., Liu, C.: Simulations of singularity dynamics in liquid crystal flows: a C0 finite element approach.

J. Comput. Phys. 215, 348–362 (2006)
15. Liu, C., Walkington, N.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37(3), 726–741

(2000)
16. Liu, C., Walkington, N.: Mixed methods for the approximation of liquid crystal flows. M2AN 36(2),

205–222 (2002)
17. Prohl, A.: Computational micro-magnetism. Advances in Numerical Mathematics. Teubner, Stuttgart

(2001)

123

	A Splitting in Time Scheme and Augmented Lagrangian Method for a Nematic Liquid Crystal Problem
	Abstract
	1 Introduction
	1.1 The Liquid Crystal Model
	1.2 Known Results
	1.3 Novelty of the Paper
	1.4 Organization of the Paper

	2 A Viscosity-Splitting Time Discrete Scheme
	3 Solution of the Problem (7)--(8)
	4 Solution of the Problem (9)
	5 Solution of the Problem (10)
	6 Numerical Experiments
	6.1 Test Case with Exact Stationary Solution
	6.2 Test Case with Exact Time-Dependent Solution
	6.3 Liquid Crystals on a Square Slab

	7 Conclusion
	Acknowledgments
	References

