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Abstract In this paper, we present a fully discrete scheme by discretizing the space with
the local discontinuous Galerkin method and the time with the Crank–Nicholson scheme to
simulate the multi-dimensional Schrödinger equation with wave operator. The scheme can
preserve the energy conservationwhich is an important property of the nonlinear Schrödinger
equation with wave operator. The energy conservation is also a crucial property for long time
simulations which will be demonstrated in the numerical experiment. The optimal error
estimates of the semi-discrete scheme can be obtained for the linear case. Some numeri-
cal experiments in multi-dimensional spaces are shown to demonstrate the accuracy and
capability of this scheme.

Keywords Schrödinger equation with wave operator · Local discontinuous Galerkin
method · Energy conservation · Optimal error estimates

1 Introduction

In this paper, we consider the nonlinear Schrödinger equation with wave operator (NLSW)
in a bounded domain with dimension d ≤ 3

utt − �u + iαut + β(xxx) f (|u|2)u = 0, (xxx ∈ �, 0 < t < T ),

u(xxx, 0) = u0(xxx), ut |t=0 = u1(xxx), (xxx ∈ �), (1.1)
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where u(xxx, t) is a complex function, α is a real constant, β(xxx) and f (x) are real functions,
and i2 = −1. NLSW can be used in a wide range of physical applications such as the
nonrelativistic limit of the Kelin–Gordon equation [17,19,21], the Langmuir wave envelope
approximation in plasma [4] and the modulated planar pulse approximation of the sine-
Gordon equation for light bullets [2,25].

We will present the fully discrete local discontinuous Galerkin (LDG) scheme with the
Crank–Nicholson time discretization to solve the nonlinear Schrödinger equation with wave
operator. This scheme is implicit in time which is unconditionally stable and can preserve
the energy in discrete level.

This equation had been discussed in [12] and its reference. An important property of
Eq. (1.1) is energy conservation. Computing the inner product of Eq. (1.1) with ut and then
taking the real part, we can obtain the conservative law as follows

‖ut‖2 + ‖∇u‖2 +
∫

�

β(xxx)F(|u|2)d� = Constant, (1.2)

where F(s) = ∫ s
0 f (r)dr . Hence, the conservative scheme should work better than the non-

conservative ones. In [30], Zhang et al. had pointed out the nonconservative schemes may
easily lead the nonlinear Schrödinger equation blow up, and therefore they had developed a
conservative difference scheme for the nonlinear Schrödinger equation. Even though adding
a little dissipation could make the non-conservative scheme stable, it would destroy the accu-
racy. Many methods had been found to solve the nonlinear Schrödinger equation with wave
operator. In [12], an implicit nonconservative finite difference method had been found, but
it needed lots of algebraic operators. There was an explicit conservative finite difference
scheme to be constructed in [31]. However, this method was conditionally stable. Moreover,
in [24,32] the conservative finite difference schemes were used to simulate the generalized
nonlinear Schrödinger equations with wave operator. The results of these schemes worked
well, however, the convergence order of all schemes was low. In [23], discrete-time orthogo-
nal spline collocationmethods for the nonlinear Schrödinger equationwithwave operator had
been constructed. A finite difference scheme could be found in [1] and Bao had given the uni-
form error estimate of this method. In [22], multisymplectic Fourier pseudospectral method
had been presented for the nonlinear Schrödinger equation with wave operator. In [14], a
compact finite difference scheme had been developed to solve the nonlinear Schrödinger
equation with wave operator. In addition, many LDG methods had been developed to solve
time dependent Schrödinger equations in [11,15,16,27]. Xu and Shu gave the proof of error
estimates about the linear Schrödinger equation in [29]. Energy conserving LDG methods
for wave propagation problems had been developed in [26]. These schemes mentioned above
were only considered in one-dimensional case.

In this paper, we consider the multi-dimensional case for the nonlinear Schrödinger equa-
tion with wave operator. We will present a high order energy conserving LDG method to
simulate this equation. Discontinuous Galerkin (DG) methods are a class of finite element
methods using completely discontinuous basis functions, which are usually chosen as piece-
wise polynomials. They were first designed to solve hyperbolic conservation laws with only
first order spatial derivatives such as in [18] for solving steady state linear equations, and
Cockburn in [5–8] for solving time dependent linear equations. The LDGmethod is an exten-
sion of DG method aimed to solve PDEs which contain high order spatial derivatives and it
was first introduced by Cockburn and Shu in [9] to solve nonlinear convection diffusion equa-
tions which were motivated by successful numerical experiments in [3] for the compressible
Navier–Stokes equations. The LDG method has several advantages as follows. Firstly, it can
be designed as any order of accuracy. Since the order of accuracy can be locally determined
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in each cell, it has efficient p adaptivity. Secondly, the allowance of arbitrary triangulation
even with hanging nodes makes efficient h adaptivity come true. Moreover, the method has
embarrassingly high parallel efficiency because the elements only communicate with imme-
diate neighbors regardless of the order of the accuracy of the scheme. More details about the
LDG methods for high-order time dependent PDEs can be found in the review paper [28].

This paper is organized as follows. In Sect. 2, we develop the semi-discrete LDG method
for the nonlinear Schrödinger equation with wave operator and give the proof of the energy
conserving property. In addition, some optimal error estimates for the linear case in multi-
dimensional space are analyzed in this section. The fully discrete LDG method coupled
with the Crank–Nicholson time discretization and the energy conserving properties are pre-
sented in Sect. 3. Numerical results in multi-dimensional spaces are shown in Sect. 4 and the
concluding remarks are given in Sect. 5.

2 Local Discontinuous Galerkin Method for the Nonlinear Schrödinger Equation with
Wave Operator

In this section we will give the semi-discrete LDG method for the nonlinear Schrödinger
Eq. (1.1).Hereweuse thehomogenousDirichlet or periodic boundary conditions in abounded
domain with dimension d ≤ 3. We will discretize the space by using the LDG method and
leave the time dependence continuous. For the simplicity, we first give some notations, inner
products and norms in the complex space.

2.1 Notations, Inner Products and Norms in the Complex Space

In order to define the LDG method we should introduce some notations and inner products
and norms in the complex space.

2.1.1 Notations

We first introduce the finite element spaces associated to the triangulation Th = {K } of �.
The domain � can be decomposed into the set of Th . The boundary of � can be denoted as
� = ∂�. Let cPk(K ) denote the space of complex polynomials of degree at most k ≥ 0 on
each element K . The piecewise complex polynomials space cVh is defined as the space of
piecewise complex polynomials of degree at most k in each variable,

cVh = {v ∈ L2(�) : v|K ∈ cPk(K ), ∀K ∈ Th}.
We also give this definition for vector-valued functions by defining

c�h = {φφφ ∈ [L2(�)]d : φφφ|K ∈ [cPk(K )]d , ∀K ∈ Th}.
For each K ∈ Th , let hK denote the diameter of K and we set h := maxK∈Th hK . The
functions in cVh and c�h are complex valued functions and are allowed to have discontinuities
across element interfaces. In order to define the flux functions some notations are necessary to
be introduced. Let e be an interior edge shared by the “left” and “right” elements denoted by
KL and K R . The “left” and “right” can be uniquely defined for each e according to any fixed
rule. Ifφφφ is a function on KL and K R , but possibly discontinuous across e, letφφφL := (φφφ|KL )|e
and φφφR := (φφφ|K R )|e be the left and right trace respectively.
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2.1.2 Inner Products and Norms in the Complex Space

Let w∗ denote the conjugate of w and define the inner product as

(w, v)K =
∫

K
wv∗d K , (w, v)∂K =

∫
∂K

wv∗ds,

(ppp,qqq)K =
∫

K
ppp · qqq∗d K , (ppp,qqq)∂K =

∫
∂K

ppp · qqq∗ds,

and the conjugate of the inner product is defined as

(w, v)∗K = (v,w)K , (ppp,qqq)∗K = (qqq, ppp)K ,

for the scalar variables w, v and the vector variables ppp, qqq respectively. The definitions of the
L2-norm over K and on the boundary ∂K are given as

‖η‖2K =
∫

K
|η|2d K , ‖qqq‖2K =

∫
K

|qqq|2d K ,

‖η‖2∂K =
∫

∂K
|η|2ds, ‖qqq‖2∂K =

∫
∂K

|qqq|2ds.

The L2-norm in the domain � is defined as

‖η‖2� =
∑

K∈Th

‖η‖2K , ‖qqq‖2� =
∑

K∈Th

‖qqq‖2K .

The Hl(K )-norm over K is defined as

‖η‖Hl (K ) =
⎛
⎝∑

|α|≤l

‖Dαη‖2K
⎞
⎠

1
2

, l > 0.

The Hl(�)-norm in the domain � is defined as

‖η‖Hl (�) =
⎛
⎝ ∑

K∈Th

‖η‖2Hl (K )

⎞
⎠

1
2

, ‖qqq‖Hl (�) =
⎛
⎝ ∑

K∈Th

‖qqq‖2Hl (K )

⎞
⎠

1
2

,

where l = 0 is the L2-norm.

2.2 The LDG Scheme

In order to define the LDG method, we rewrite the nonlinear Schrödinger Eq. (1.1) into a
system of the first order equations

utt − ∇ · qqq + iαut + β(xxx) f (|u|2)u = 0,

qqq − ∇u = 0.

The general formulation of the LDG scheme is to find uh ∈ cVh and qqqh ∈ c�h such that for
all K ∈ Th and all test functions v ∈ cVh and φφφ ∈ c�h we have

((uh)t t , v)K + (qqqh,∇v)K − (q̂qqh · ννν, v)∂K + iα((uh)t , v)K + (β(xxx) f (|uh |2)uh, v)K = 0,
(2.1)

(qqqh,φφφ)K + (uh,∇ · φφφ)K − (ûh,φφφ · ννν)∂K = 0, (2.2)
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The “hat” terms in (2.1)–(2.2) in the cell boundary terms from integration by parts are the
numerical fluxes, which are functions defined on the edges and should be designed to ensure
stability and ννν is the outward normal vector of the integrated domain. Here we use the simple
alternating fluxes:

q̂qqh = qqqh |R, ûh = uh |L . (2.3)

The choice of the fluxes is not unique.
We define the numerical entropy flux as

H∂K (v,φφφ; v̂, φ̂φφ) = (v, φ̂φφ · ννν)∂K + (v̂,φφφ · ννν)∂K − (v,φφφ · ννν)∂K .

By using the numerical flux defined above we have the following property (see [10],
Lemma 2.2).

Lemma 1 (Dong and Shu [10]) Suppose e is an inter-element face shared by the elements
K1 and K2, then

H∂K1
⋂

e(v,φφφ; v̂, φ̂φφ) + H∂K2
⋂

e(v,φφφ; v̂, φ̂φφ) = 0,

for any v ∈ cVh and φφφ ∈ c�h. Here v̂e = vL and φ̂φφe = φφφR. In addition, the periodic
boundary conditions and the homogenous Dirichlet boundary conditions give∑

K∈Th

H∂K (v,φφφ; v̂, φ̂φφ) = 0.

2.3 Energy Conservation

In this subsection, we will show that the semi-discrete LDG method conserves energy. This
property is consistent with Eq. (1.2).

Proposition 2 The energy with time continuous

Eh(t) = ‖(uh)t‖2� + ‖qqqh‖2� + (β(xxx), F(|uh |2))�, (2.4)

is conserved by using the semi-discrete LDG method (2.1)–(2.2) for all time. Where
F(s) = ∫ s

0 f (r)dr.

Proof Wefirst take the derivative of Eq. (2.2) about time and choose the test functionφφφ = qqqh ,
then we have

((qqqh)t ,qqqh)K + ((uh)t ,∇ · qqqh)K − ((ûh)t ,qqqh · ννν)∂K = 0, (2.5)

and take the conjugate of (2.5), we get

(qqqh, (qqqh)t )K + (∇ · qqqh, (uh)t )K − (qqqh · ννν, (ûh)t )∂K = 0. (2.6)

In Eq. (2.1), we choose the test function v = (uh)t to obtain

((uh)t t , (uh)t )K + (qqqh,∇(uh)t )K − (q̂qqh · ννν, (uh)t )∂K

+ iα((uh)t , (uh)t )K + (β(xxx) f (|uh |2)uh, (uh)t )K = 0, (2.7)

and also take the conjugate of (2.7), one can obtain

((uh)t , (uh)t t )K + (∇(uh)t ,qqqh)K − ((uh)t , q̂qqh · ννν)∂K

− iα((uh)t , (uh)t )K + (β(xxx) f (|uh |2)(uh)t , uh)K = 0. (2.8)

We add Eqs. (2.5)–(2.8) to get
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((uh)t t , (uh)t )K + ((uh)t , (uh)t t )K + ((qqqh)t ,qqqh)K + (qqqh, (qqqh)t )K

+ (β(xxx) f (|uh |2)uh, (uh)t )K + (β(xxx) f (|uh |2)(uh)t , uh)K

+ ((uh)t ,∇ · qqqh)K + (∇(uh)t ,qqqh)K + (∇ · qqqh, (uh)t )K + (qqqh,∇(uh)t )K

− ((ûh)t ,qqqh · ννν)∂K − ((uh)t , q̂qqh · ννν)∂K − (qqqh · ννν, (ûh)t )∂K − (q̂qqh · ννν, (uh)t )∂K = 0,
(2.9)

and with the integration by parts of (2.9), one can obtain
((uh)t t , (uh)t )K + ((uh)t , (uh)t t )K + ((qqqh)t ,qqqh)K + (qqqh, (qqqh)t )K

+ (β(xxx) f (|uh |2)uh, (uh)t )K + (β(xxx) f (|uh |2)(uh)t , uh)K

− H∂K ((uh)t ,qqqh; (ûh)t , q̂qqh) − H∂K (qqqh, (uh)t ; q̂qqh, (ûh)t ) = 0. (2.10)

Using the results in Lemma 1 and the numerical fluxes (2.3), we can obtain following equation
by summing up Eq. (2.10) over all elements K

d

dt

(‖(uh)t‖2� + ‖qqqh‖2� + (β(xxx), F(|uh |2))�
) = 0.

From this equation we can see that the energy Eh(t) is invariant for all time. 	

2.4 Error Estimates for the Linear Equation

In this section, we derive the optimal error estimates for the energy conserving LDG method
proposed in Sect. 2.2 of the linear Schrödinger equation with wave operator that is

utt − �u + iαut + β(xxx)u = 0, (xxx ∈ �, 0 < t < T ). (2.11)

We will give the energy norm and L2 norm in the different cases of β(xxx). Moreover, in this
section, we omit the subscript � when need ‖ · ‖� for convenience. The proof is based on
the rectangular meshes and we will first give some notations and projections on this special
meshes.

2.4.1 Notations on Rectangular Meshes

Without loss of generality, we consider a two-dimensional rectangular domain� and it is easy
to be extended to the three-dimensional case. The computational domain is discretized into
shape-regular rectangular meshes Ki, j = Ii × J j where Ii = [xi− 1

2
, xi+ 1

2
], i = 1, . . . , Nx ,

and J j = [y j− 1
2
, y j+ 1

2
], j = 1, . . . , Ny . The center of each mesh is (xi , y j ) where xi =

(xi− 1
2
+xi+ 1

2
)/2, y j = (y j− 1

2
+y j+ 1

2
)/2.Themesh sizes are denoted byhx = max1≤i≤Nx hx

i ,

hy = max1≤ j≤Ny hy
j where hx

i = xi+ 1
2
− xi− 1

2
, hy

j = y j+ 1
2
− y j− 1

2
and h = max(hx , hy) is

themaximalmesh size.We denote by u(x+
i+ 1

2
, y) and u(x−

i+ 1
2
, y) the values of u at xi+ 1

2
, from

the right cell, Ki+1, j , and from the left cell, Ki, j , respectively; u(x, y+
j+ 1

2
) and u(x, y−

j+ 1
2
)

are defined in the same way. We denote Ki, j by K for simple presentation.
Let cQk(K ) denote the space of tensor product of complex polynomials of degree at most

k ≥ 0 on each element K . In this case the spaces cVh and c�h can be written as,

cVh = {v ∈ L2(�) : v|K ∈ cQk(K ), ∀K ∈ Th},
c�h = {φφφ ∈ [L2(�)]d : φφφ|K ∈ [cQk(K )]d , ∀K ∈ Th}.

For the one-dimensional case, we have cQk(K ) = cPk(K ) which is the space of complex
polynomials of degree at most k ≥ 0 defined on K .

123



628 J Sci Comput (2015) 65:622–647

2.4.2 Projections and Inequalities

We need to introduce some projections and inequalities which will be used to prove the error
estimate. We consider the standard L2 projection P of a functionw(xxx)with k +1 continuous
derivatives into space cVh , that is

(Pw, v)� = (w, v)�,

for any v ∈ cQk on K .
Moreover, we will give two special projections which will be used throughout this paper

in the one-dimensional case. The one-dimensional projections P±
x for a complex-valued

function w, which project w into the one-dimensional piecewise polynomial space of degree
k while taking the values of w at the cell interface, are defined as follows

(P−
x w, v)Ii = (w, v)Ii , ∀v ∈ cPk−1(Ii ) and (P−

x w)

(
x−

i+ 1
2

)
= w

(
x−

i+ 1
2

)
,

(P+
x w, v)Ii = (w, v)Ii , ∀v ∈ cPk−1(Ii ) and (P+

x w)

(
x+

i− 1
2

)
= w

(
x+

i− 1
2

)
.

The one-dimensional projections on the y-direction P±
y are defined in the same way. Since

in this paper we use the Cartesian meshes, we can extend the definitions of the above special
projections to two dimension on a two-dimensional rectangular element K = Ii × J j , the
projection P− for scalar functions is defined as

P− = P−
x ⊗ P−

y .

The projection P− on the Cartesian meshes has the following super-convergence property
(see [10], Lemma 3.7).

Lemma 3 (Dong and Shu [10]) Suppose η ∈ Hk+2(�), ρρρ ∈ c�h and the projection P−,
then we have

|(η − P−η,∇ · ρρρ)� − (η − ̂P−η,ρρρ · ννν)�| ≤ Chk+1‖η‖Hk+2(�)‖ρρρ‖�,

where the “hat” term is the numerical flux.

The projection + for vector-valued functions ρρρ = (ρ1(x, y), ρ2(x, y)) is defined as

+ρρρ = (P+
x ⊗ Pyρ1, Px ⊗ P+

y ρ2),

where Px , Py are the standard L2 projections in the x and y directions, respectively. It is easy
to see that for any ρρρ ∈ [H1(�)]2, the restriction of +ρρρ to I ⊗ J (= Ki, j ) is the elements
of [cQk(I ⊗ J )]2 that satisfies

(+ρρρ − ρρρ,∇w)I⊗J = 0,

for any w ∈ [cQk(I ⊗ J )], and
((

+ρρρ
(

xi− 1
2
, ·

)
− ρρρ

(
xi− 1

2
, ·

))
· ννν,w

(
x+

i− 1
2
, ·

))
J

= 0, ∀w ∈ cQk(I ⊗ J ),

((
+ρρρ

(
·, y j− 1

2

)
− ρρρ

(
·, y j− 1

2

))
· ννν,w

(
·, y+

j− 1
2

))
I

= 0, ∀w ∈ cQk(I ⊗ J ).
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There are some approximation results for the projections defined above (see, e.g. [10])

‖ηe‖� ≤ Chk+1‖η‖Hk+1(�), (2.12)

‖ρρρe‖� ≤ Chk+1‖ρρρ‖Hk+1(�), (2.13)

where ηe = Pη−η, or ηe = P±η−η, ρρρe = ±ρρρ −ρρρ and C is independent of mesh size h.

2.4.3 A Priori Error Estimates

In order to obtain the error estimates for smooth solutions of the energy conserving LDG
scheme, we first give the error equations.

Notice that the LDG scheme is also satisfied when the numerical solutions uh , qqqh are
replaced by the exact solutions u, qqq = ∇u (the consistency of the LDG scheme). The error
equations are as follows

((u − uh)t t , v)K + (qqq − qqqh,∇v)K − ((qqq − q̂qqh) · ννν, v)∂K

+ iα((u − uh)t , v)K + (β(xxx)(u − uh), v)K = 0, (2.14)

(qqq − qqqh,φφφ)K + (u − uh,∇ · φφφ)K − (u − ûh,φφφ · ννν)∂K = 0. (2.15)

Denote

eu = u − uh = u − Pu + Pu − uh = u − Pu + Peu,

eqqq = qqq − qqqh = qqq − qqq + qqq − qqqh = qqq − qqq + eqqq .

In this section, we choose the projections as follows without special illustration

(P,) = (P−, P+) in one dimension,

(P,) = (P−,+) in multi-dimensions.

Lemma 4 Assume the initial conditions of the LDG scheme are given by

uh(xxx, 0) = P−u(xxx, 0), (uh)t (xxx, 0) = Put (xxx, 0), (2.16)

here P is the standard L2 norm, then we have

‖Peu(0)‖ = 0, ‖eqqq(0)‖ ≤ Chk+1, ‖(Peu)t (0)‖ ≤ Chk+1, (2.17)

((eu)t (0), v)K = 0, ∀v ∈ cQk . (2.18)

Proof Herewe only give the proof for the error estimate of ‖eqqq (0)‖. The others are obvious.
Taking φφφ = eqqq in the error equation of (2.15), we have

(qqq − qqqh,eqqq)K + (u − uh,∇ · (eqqq))K − (u − ûh, (eqqq) · ννν)∂K = 0.

With the help of the interpolation error estimates (2.12), (2.13) and Lemma 3 we can obtain
the initial error estimate of ‖eqqq(0)‖

‖eqqq(0)‖ ≤ Chk+1.

We complete the proof. 	

Lemma 5 Let u and qqq be the exact solutions of Eq. (1.1), and uh, qqqh be the numerical
solutions of the semi-discrete LDG method with the numerical fluxes in (2.3) and the initial
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conditions (2.16). Assume the function β(xxx) is bounded and let β̄ = 1
|�|

∫
�

|β(xxx)|dxxx ≥ 0,
then we have

d

dt
(‖eqqq‖2 + ‖(Peu)t‖2 + β̄‖Peu‖2) (2.19)

≤ Chk+1(‖eqqq‖ + ‖(Peu)t‖) + 2max
xxx∈�

|β(xxx) − β̄|‖Peu‖‖(Peu)t‖, (2.20)

where C is independent of the size mesh h.

Proof We take derivative about time in the error Eq. (2.15) and let v = (Peu)t in (2.14),
φφφ = eqqq in (2.15), we have

((u − uh)t t , (Peu)t )K + (qqq − qqqh,∇(Peu)t )K − ((qqq − q̂qqh) · ννν, (Peu)t )∂K

+ iα((u − uh)t , (Peu)t )K + (β(xxx)(u − uh), (Peu)t )K = 0, (2.21)

((qqq − qqqh)t ,eqqq)K + ((u − uh)t ,∇ · (eqqq))K − ((u − ûh)t , (eqqq) · ννν)∂K

= 0, (2.22)

let u − uh = u − Pu + Peu , qqq − qqqh = qqq − qqq + eqqq and using the properties of the
projection  we can derive

((u − Pu)t t , (Peu)t )K + iα((u − Pu)t , (Peu)t )K + iα((Peu)t , (Peu)t )K

+ ((Peu)t t , (Peu)t )K + (eqqq ,∇(Peu)t )K − ((̂eqqq) · ννν, (Peu)t )∂K

+ (β(xxx)(u − Pu), (Peu)t )K + (β(xxx)(Peu), (Peu)t )K

= 0, (2.23)

((qqq − qqq)t ,eqqq)K + ((u − Pu)t ,∇ · (eqqq))K − ((u − P̂u)t , (eqqq) · ννν)∂K

+ ((eqqq)t ,eqqq)K + ((Peu)t ,∇ · (eqqq))K − ((̂Peu)t , (eqqq) · ννν)∂K

= 0, (2.24)

and take the conjugate of (2.23) and (2.24), we can obtain

((Peu)t , (u − Pu)t t )K − iα((Peu)t , (u − Pu)t )K − iα((Peu)t , (Peu)t )K

+ ((Peu)t , (Peu)t t )K + (∇(Peu)t ,eqqq)K − ((Peu)t , (̂eqqq) · ννν)∂K

+ ((Peu)t , β(xxx)(u − Pu))K + ((Peu)t , β(xxx)(Peu))K

= 0, (2.25)

(eqqq , (qqq − qqq)t )K + (∇ · (eqqq), (u − Pu)t )K − (eqqq , (u − P̂u)t · ννν)∂K

+ (eqqq , (eqqq)t )K + (∇ · (eqqq), (Peu)t )K − ((eqqq) · ννν, (̂Peu)t )∂K

= 0. (2.26)

By summing up Eqs. (2.23)–(2.26) over all rectangular elements K and with the integration
by parts and let β(xxx) = (β(xxx) − β̄) + β̄, we can get

d

dt
(‖eqqq‖2 + ‖(Peu)t‖2 + β̄‖Peu‖2)
=

∑
K∈Th

[H∂K ((Peu)t ,eqqq ; (̂Peu)t ,̂eqqq)

+ H∂K (eqqq , (Peu)t ;̂eqqq , (̂Peu)t )]
− [((qqq − qqq)t , (eqqq))� + ((eqqq), (qqq − qqq)t )�
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+ ((u − Pu)t t , (Peu)t )� + ((Peu)t , (u − Pu)t t )�]
−

∑
K∈Th

[((u − Pu)t ,∇ · (eqqq))K − ((u − P̂u)t , (eqqq) · ννν)∂K

+ (∇ · (eqqq), (u − Pu)t )K − (eqqq , (u − P̂u)t · ννν)∂K ]
− iα[((u − Pu)t , (Peu)t )� − ((Peu)t , (u − Pu)t )�]
− [(β(xxx)(u − Pu), (Peu)t )� + ((Peu)t , β(xxx)(u − Pu))�]
− [((β(xxx) − β̄)(Peu), (Peu)t )� + ((Peu)t , (β(xxx) − β̄)(Peu))�].

Now we use the results in Lemma 3, Lemma 1, the Cauchy–Schwartz inequality, and the
interpolation error estimates (2.12) and (2.13) to achieve

d

dt
(‖eqqq‖2 + ‖(Peu)t‖2 + β̄‖Peu‖2)
≤ 2‖(qqq − qqq)t‖‖eqqq‖ + 2‖(u − Pu)t t‖‖(Peu)t‖ + C1hk+1‖ut‖‖eqqq‖

+ 2α‖(u − Pu)t‖‖(Peu)t‖ + 2max
xxx∈�

|β(xxx)|‖u − Pu‖‖(Peu)t‖
+ 2max

xxx∈�
|β(xxx) − β̄|‖Peu‖‖(Peu)t‖

≤ Chk+1(‖eqqq‖ + ‖(Peu)t‖) + 2max
xxx∈�

|β(xxx) − β̄|‖Peu‖‖(Peu)t‖.
The last inequality is established because the β(xxx) is bounded. 	

Theorem 6 Let u and qqq be the exact solutions of Eq. (1.1), and uh, qqqh be the numerical
solutions of the semi-discrete LDG method with the numerical fluxes in (2.3) and the initial
conditions (2.16). For the case that β(xxx) is bounded, nonzero and β̄ = 1

|�|
∫
�

|β(xxx)|dxxx > 0

and |β(xxx) − β̄| ≤ M, where M is a positive constant. Then we have

‖(eu)t‖ ≤ C exp(αt)hk+1, ‖eqqq‖ ≤ C exp(αt)hk+1, ‖eu‖ ≤ C exp(αt)hk+1, (2.27)

for any t ∈ [0, T ] where C and α are constants which are independent of the size mesh h
and C does not depend on M while α depends on it.

Proof From Lemma 5, we have
d

dt
(‖eqqq‖2 + ‖(Peu)t‖2 + β̄‖Peu‖2)
≤ Chk+1(‖eqqq‖ + ‖(Peu)t‖) + 2max

xxx∈�
|β(xxx) − β̄|‖Peu‖‖(Peu)t‖

≤ Ch2k+2 + ‖eqqq‖2 + ‖(Peu)t‖2 + M‖Peu‖2 + M‖(Peu)t‖2

≤ M

β̄
β̄‖Peu‖2 + (M + 1)‖(Peu)t‖2 + ‖eqqq‖2 + Ch2k+2

≤ max

(
M

β̄
, M + 1, 1

)
(‖eqqq‖2 + ‖(Peu)t‖2 + β̄‖Peu‖2) + Ch2k+2,

let α = max( M
β̄

, M + 1, 1) and by using the Gronwall inequality and Lemma 4 we can

obtain,

‖(Peu)t‖ ≤ C exp(αt)hk+1,

‖eqqq‖ ≤ C exp(αt)hk+1,

‖Peu‖ ≤ C exp(αt)hk+1.
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Together with the approximation errors in (2.12) and (2.13), the error estimate (2.27) can be
derived. All the C in the proof may be different. 	


Remark 7 From this theorem we have derived the optimal energy norm and L2 norm error
even though the coefficients of the estimates are exponential increase. Indeed, if the function
β(xxx) is positive constant, without loss of generality we assume β(xxx) = 1 and at this case
M = 0, we can obtain a linear increase about the coefficients of the estimate by suffering a
little modification in the proof. That is

max
t∈[0,T ] ‖(eu)t‖ ≤ Chk+1(T + 1), max

t∈[0,T ] ‖eqqq‖ ≤ Chk+1(T + 1),

max
t∈[0,T ] ‖eu‖ ≤ Chk+1(T + 1). (2.28)

However, when the function β(xxx) is negative constant, we could not obtain the same result.

In the next, we will give the estimates when the function β(xxx) = 0.

Theorem 8 Let u and qqq be the exact solutions of Eq. (1.1), and uh, qqqh be the numerical
solutions of the semi-discrete LDG method with the numerical fluxes in (2.3) and the initial
conditions (2.16) and β(xxx) = 0 we have the following error estimates

‖(eu)t‖ ≤ Chk+1(t + 1), ‖eqqq‖ ≤ Chk+1(t + 1), f or t ∈ [0, T ], (2.29)

and the L2 norm estimate

max
t∈[0,T ] ‖eu(t)‖ ≤ C(T + 1)2hk+1, (2.30)

where C is independent of the mesh size h.

Proof • Estimates of ‖eqqq‖ and ‖(Peu)t‖
We first give the estimates in the sense of energy that is the inequality (2.29). Since

β(xxx) = 0, Lemma 5 can be written as

d

dt
(‖eqqq‖2 + ‖(Peu)t‖2)
≤ Chk+1(‖eqqq‖ + ‖(Peu)t‖)
≤ Chk+1(‖eqqq‖2 + ‖(Peu)t‖2) 1

2

which leads to

d

dt
(‖eqqq‖2 + ‖(Peu)t‖2) 1

2 ≤ Chk+1.

After using the property of the initial condition (2.17) and integrating this equation with
respect to time between 0 and t we can obtain

(‖eqqq‖2 + ‖(Peu)t‖2) 1
2 ≤ C(t + 1)hk+1.

Together with the approximation errors in (2.12) and (2.13), the error estimates (2.29) can
be obtained.

• Estimate of ‖(Peu)‖
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Then we give the L2 norm error estimate. By using the property of  and the chain rule
in time derivative we can rewrite the error Eq. (2.14) as

− ((Peu)t , vt )K + (eqqq ,∇v)K − ((̂eqqq) · ννν, v)∂K + iα((u − uh)t , v)K

= −((u − Pu)t t , v)K − d

dt
((Peu)t , v)K . (2.31)

For any time τ ≤ T , denote

Ēu(t) =
∫ τ

t
Peu(s)ds, Ēqqq(t) =

∫ τ

t
eqqq(s)ds,

Eε
u(t) =

∫ τ

t
(u − Pu)(s)ds, Eε

qqq(t) =
∫ τ

t
(qqq − qqq)(s)ds.

We take the integral of the error Eq. (2.15) between t and τ , then we have

(Eε
qqq ,φφφ)K + (Eε

u,∇ · φφφ)K − (Êε
u,φφφ · ννν)∂K

+ (Ēqqq ,φφφ)K + (Ēu,∇ · φφφ)K − ( ˆ̄Eu,φφφ · ννν)∂K = 0. (2.32)

We choose the test function to be v = Ēu(t) in (2.31) andφφφ = eqqq in (2.32), we can achieve

((Peu)t , Peu)K + (eqqq ,∇ Ēu)K − ((̂eqqq) · ννν, Ēu)∂K + iα((u − uh)t , Ēu)K

= −((u − Pu)t t , Ēu)K − d

dt
((Peu)t , Ēu)K , (2.33)

(Eε
qqq ,eqqq)K + (Eε

u,∇ · (eqqq))K − (Êε
u, (eqqq) · ννν)∂K

+ (Ēqqq ,eqqq)K + (Ēu,∇ · (eqqq))K − ( ˆ̄Eu, (eqqq) · ννν)∂K = 0, (2.34)

and take the conjugate of (2.33) and (2.34), we can obtain

(Peu, (Peu)t )K + (∇ Ēu,eqqq)K − (Ēu, (̂eqqq) · ννν)∂K − iα(Ēu, (u − uh)t )K

= −(Ēu, (u − Pu)t t )K − d

dt
(Ēu, (Peu)t )K , (2.35)

(eqqq , Eε
qqq)K + (∇ · (eqqq), Eε

u)K − ((eqqq) · ννν, Êε
u)∂K

+ (eqqq , Ēqqq)K + (∇ · (eqqq), Ēu)K − ((eqqq) · ννν, ˆ̄Eu)∂K = 0. (2.36)

Let

I = −iα[((u − uh)t , Ēu)� − (Ēu, (u − uh)t )�],
II = −

[
((u − Pu)t t , Ēu)� + d

dt
((Peu)t , Ēu)� + (Ēu, (u − Pu)t t )�

+ d

dt
(Ēu, (Peu)t )�

]
− [(Eε

qqq ,eqqq)� + (eqqq , Eε
qqq)�]

= −[((u − Pu)t , Peu)� + d

dt
((u − uh)t , Ēu)� + (Eε

qqq ,eqqq)�

+ (Peu, (u − Pu)t )� + d

dt
(Ēu, (u − uh)t )� + (eqqq , Eε

qqq)�],
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III = −
∑

K∈Th

[(Eε
u,∇ · (eqqq))K − (Êε

u, (eqqq) · ννν)∂K + (∇ · (eqqq), Eε
u)K

− ((eqqq) · ννν, Êε
u)∂K ],

IV =
∑

K∈Th

[H∂K (Ēu,eqqq ; ˆ̄Eu,̂eqqq) + H∂K (eqqq , Ēu;̂eqqq , ˆ̄Eu)].

By summing up Eq. (2.33)–(2.36) over all rectangular elements K and noticing the opposite
fluxes in (2.3), using the periodic or homogenous Dirichlet boundary conditions and Lemma
1, we get

d

dt
(‖Peu‖2 − ‖Ēqqq‖2) = I + II + III + IV = I + II + III. (2.37)

By integrating Eq. (2.37) from 0 to τ and using the fact Ēqqq(τ ) = 0 we have

‖Peu(τ )‖2 − ‖Peu(0)‖2 + ‖Ēqqq(0)‖2 =
∫ τ

0
(I + II + III)dt.

Note that

Eε
qqq(t) =

∫ τ

t
(qqq − qqq)(s)ds =

(∫ τ

t
qqq(s)ds

)
− 

(∫ τ

t
qqq(s)ds

)
,

and the definition of Ēu(t), we have ‖Eε
qqq‖ ≤ Chk+1 and ‖Ēu‖ ≤ CT max

t∈[0,T ] ‖Peu‖.
Since we have Ēu(τ ) = 0 , the initial error estimate (2.18), the results in Lemma 3 and the
inequality (2.29), we can obtain

∣∣∣∣
∫ τ

0
IIdt

∣∣∣∣ ≤ 2
∫ τ

0
‖(u − Pu)t‖‖Peu‖dt + 2

∫ τ

0
‖Eε

qqq‖‖eqqq‖dt

≤ 2τ max
t∈[0,T ] ‖(u − Pu)t‖ max

t∈[0,T ] ‖Peu‖ + 2τ max
t∈[0,T ] ‖Eε

qqq‖ max
t∈[0,T ] ‖eqqq‖

≤ 2T ( max
t∈[0,T ] ‖(u − Pu)t‖ max

t∈[0,T ] ‖Peu‖ + max
t∈[0,T ] ‖Eε

qqq‖ max
t∈[0,T ] ‖eqqq‖)

≤ CT (hk+1 max
t∈[0,T ] ‖Peu‖ + (T + 1)h2k+2);

∣∣∣∣
∫ τ

0
IIIdt

∣∣∣∣ ≤ 2
∫ τ

0
Chk+1‖eqqq‖dt

≤ 2Chk+1τ max
t∈[0,T ] ‖eqqq‖

≤ CT (T + 1)h2k+2;∣∣∣∣
∫ τ

0
Idt

∣∣∣∣ ≤ 2α
∫ τ

0
‖(eu)t‖‖Ēu‖dt

≤ 2α
∫ τ

0
‖(eu)t‖CT max

t∈[0,T ] ‖Peu‖dt

≤ 2αCT τ max
t∈[0,T ] ‖(eu)t‖ max

t∈[0,T ] ‖Peu‖
≤ CT 2(T + 1)hk+1 max

t∈[0,T ] ‖Peu‖.
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Summing up all these three equations and noticing that the ‖Peu(0)‖ = 0 in the initial error
estimates (2.17) and using the fact

ab ≤ a2

4
+ b2,

we have

max
t∈[0,T ] ‖Peu‖2 + ‖Ēqqq(0)‖2

≤ CT (hk+1 max
t∈[0,T ] ‖Peu‖ + 2(T + 1)h2k+2 + T (T + 1)hk+1 max

t∈[0,T ] ‖Peu‖)

≤ C[(T 2 + 2T + 2)h2k+2 + T 2(T + 1)2h2k+2] + 1

2
max

t∈[0,T ] ‖Peu‖2

≤ C(T + 1)4h2k+2 + 1

2
max

t∈[0,T ] ‖Peu‖2.
From this equation we can conclude

max
t∈[0,T ] ‖Peu‖ ≤ C(T + 1)2hk+1,

combining with the approximation error we have

max
t∈[0,T ] ‖eu(t)‖ ≤ C(T + 1)2hk+1,

where C is independent of h. And the constant C may be different in different equations. 	


3 Time Discretization

In this section we extend the semi-discrete LDG method to the fully discrete method which
can also conserve the energy. Here we consider the Crank–Nicholson scheme based on the
LDG method for space discretization, which is well-known to conserve the energy.

3.1 Difference Operators

In this section,we introduce somedifference operators about timewhichwill be used through-
out the next contents. Let 0 = t0 < t1 < · · · < tN = T be a partition of the interval [0, T ]
with the time step �tn = tn+1 − tn . Here we use the uniform time step �t and un is the
numerical value at t = tn .
Forward difference operator

�+un = un+1 − un

�t
.

Backward difference operator

�−un = un − un−1

�t
.

Central difference operator

δun = un+1 − un−1

2�t
.

Second-order central difference operator

δ2un = �+un − �−un

�t
= un+1 − 2un + un−1

�t2
.
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Average value operator

δ̄un = un+1 + un−1

2
.

3.2 Time Discretization

The fully discrete approximation un
h = u(·, tn) of Eq. (1.1) are shown as follows

(δ2uh, v)K + (δ̄qqqh,∇v)K − (δ̄q̂qqh · ννν, v)∂K + iα(δuh, v)K + (G δ̄uh, v)K = 0, (3.1)

(qqqn+1
h ,φφφ)K + (un+1

h ,∇ · φφφ)K − (ûn+1
h ,φφφ · ννν)∂K = 0, (3.2)

(qqqn−1
h ,φφφ)K + (un−1

h ,∇ · φφφ)K − (ûn−1
h ,φφφ · ννν)∂K = 0, (3.3)

for all test functions v ∈ cVh and φφφ ∈ c�h and the numerical fluxes are defined in (2.3),

where G = β(xxx)
F(|un+1

h |2)−F(|un−1
h |2)

|un+1
h |2−|un−1

h |2 . We can see this scheme is implicit.

We have shown that the semi-discrete LDG method conserves the time continuous energy
Eh(t) in Sect. 2.3. Similarly, we can show the energy conservation property for the fully time
discrete method.

Proposition 9 The solutions to the fully discrete LDG method (3.1)–(3.3) conserves the
discrete energy

En+1
h =

∥∥∥∥∥
un+1

h − un
h

�t

∥∥∥∥∥
2

+
∥∥∥qqqn+1

h

∥∥∥2+∥∥qqqn
h

∥∥2
2

+
∫

�

β(xxx)
F

(
|un+1

h |2
)

+ F
(|un

h |2)
2

d� = En
h ,

(3.4)

for all n.

Proof In Eq. (3.1), let the test function v = δuh , we can obtain

(δ2uh, δuh)K + (δ̄qqqh,∇δuh)K − (δ̄q̂qqh · ννν, δuh)∂K + iα(δuh, δuh)K

+ (G δ̄uh, δuh)K = 0, (3.5)

and take the conjugate of (3.5) to get

(δuh, δ2uh)K + (∇δuh, δ̄qqqh)K − (δuh, δ̄q̂qqh · ννν)∂K − iα(δuh, δuh)K

+ (Gδuh, δ̄uh)K = 0. (3.6)

In Eqs. (3.2) and (3.3), we choose the test function to be φφφ = δ̄qqqh/�t , we have
(
qqqn+1

h , δ̄qqqh/�t
)

K
+

(
un+1

h ,∇ · δ̄qqqh/�t
)

K
−

(
ûn+1

h , δ̄qqqh/�t · ννν
)

∂K
= 0, (3.7)

(
qqqn−1

h , δ̄qqqh/�t
)

K
+

(
un−1

h ,∇ · δ̄qqqh/�t
)

K
−

(
ûn−1

h , δ̄qqqh/�t · ννν
)

∂K
= 0, (3.8)

subtracting (3.7) and (3.8) yields

(δqqqh, δ̄qqqh)K + (δuh,∇ · δ̄qqqh)K − (δûh, δ̄qqqh · ννν)∂K = 0, (3.9)

and its conjugate

(δ̄qqqh, δqqqh)K + (∇ · δ̄qqqh, δuh)K − (δ̄qqqh · ννν, δûh)∂K = 0. (3.10)
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We add Eqs. (3.5)–(3.6) and (3.9)–(3.10) to get

(δ2uh, δuh)K + (δuh, δ2uh)K + (δqqqh, δ̄qqqh)K

+ (δ̄qqqh, δqqqh)K + (G δ̄uh, δuh)K + (Gδuh, δ̄uh)K

= −{(δ̄qqqh,∇δuh)K + (∇δuh, δ̄qqqh)K + (δuh,∇ · δ̄qqqh)K + (∇ · δ̄qqqh, δuh)K

− [(δ̄q̂qqh · ννν, δuh)∂K + (δuh, δ̄q̂qqh · ννν)∂K + (δûh, δ̄qqqh · ννν)∂K + (δ̄qqqh · ννν, δûh)∂K ]},
(3.11)

and with the integration by parts of (3.11), one can obtain

(δ2uh, δuh)K + (δuh, δ2uh)K + (δqqqh, δ̄qqqh)K

+ (δ̄qqqh, δqqqh)K + (G δ̄uh, δuh)K + (Gδuh, δ̄uh)K

= H∂K (δuh, δ̄qqqh; δûh, δ̄q̂qqh) + H∂K (δ̄qqqh, δuh; δ̄q̂qqh, δûh). (3.12)

Noticing Lemma 1 and summing up Eq. (3.12) over all elements K , after some calculations
we can obtain

2 × 1

2�t

⎡
⎣

∥∥∥∥∥
un+1

h − un
h

�t

∥∥∥∥∥
2

−
∥∥∥∥∥

un
h − un−1

h

�t

∥∥∥∥∥
2
⎤
⎦

+ 2 × 1

2�t

⎡
⎢⎣

∥∥∥qqqn+1
h

∥∥∥2 + ∥∥qqqn
h

∥∥2
2

−
∥∥qqqn

h

∥∥2 +
∥∥∥qqqn−1

h

∥∥∥2
2

⎤
⎥⎦

+ 2 × 1

2�t

[∫
�

β(xxx)
F(|un+1

h |2) + F(|un
h |2)

2
d�

−
∫

�

β(xxx)
F(|un

h |2) + F(|un−1
h |2)

2
d�

]
= 0, (3.13)

fromEq. (3.13) and the definition of En
h in (3.4), we have En+1

h = En
h for all n. This illustrates

the discrete energy is conserved by using this fully discrete method. 	


This fully discrete scheme is unconditionally stable and sincewe use the Crank–Nicholson
scheme on the time space the fully scheme has second order accuracy. From Proposition 9
we know this method can maintain the energy.

Remark There are some conservative high order temporal discretization in [13] such as
multi-stage Runge–Kutta methods and symmetric methods. However, they conserve linear
first integrals [20] and it is difficult to prove the energy conversation of the fully discrete
scheme if we use the high order ones on time space. Therefore, in this paper we only consider
the Crank–Nichoson scheme and in the future we will study the high order schemes for the
time discretization.

3.3 Implementation of the Fully Discrete Scheme

The fully discrete scheme (3.1)–(3.3) will result in the following nonlinear algebraic equation

uuun+1
h = L(uuun−1

h ,uuun
h,uuun+1

h ) + N (uuun−1
h ,uuun+1

h ), (3.14)
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where uuuh denotes the vector containing the degrees of freedom for uh , L(uuun−1
h ,uuun

h,uuun+1
h ) is

a linear function of uuun−1
h ,uuun

h,uuun+1
h and N is a nonlinear function of uuun−1

h ,uuun+1
h .

For the nonlinear termN (uuun−1
h ,uuun+1

h ), we use Newton method to linearize the nonlinear
system. In each Newton iteration, we will solve the linear equation system

Auuun+1
h = Buuun

h + Cuuun−1
h , (3.15)

where A, B and C are matrices depending on uuun
h and uuun−1

h . Then we use iterative approach
(G M RE S) to solve the linear system (3.15).

4 Numerical Results

In this section, we give some numerical examples in multi-dimensional spaces to illustrate
the validity and capability of the conservative method which we have developed above.

4.1 One-Dimensional Case

In this subsection, numerical experiments in the one-dimensional case are designed to show
the performance of the conservative scheme. Since the second order central difference is used
on time discretization and we mainly concern the effect of the spatial discretization, we use
the time step �t = c f l ∗ h2. This relation guarantees that the error will be dominated by the
spatial discretization.

Example 4.1 We consider the case of α = β = 1 and let f (|u|2) = 1 in Eq. (1.1) to obtain

utt − uxx + iut + u = 0, x ∈ [0, 2π],
where the exact solution is u(x, t) = exp(i(x + t)) and the boundary condition is periodic.

Example 4.1 aims to test the accuracy and the advantage of the conservative scheme. The
result can be found in Table 1. We give the L2 and L∞ error of the real part and the image
part respectively to show the accuracy. From the table, we can observe that the conservative
scheme mentioned above with the space of polynomials with degree k has (k + 1)th order
of accuracy. The table demonstrates that numerical results are consistent with the theoretical
result which we have proved in Sect. 2.4.3.

In Fig. 1, we give the numerical solutions with the conservative scheme and the LDG
scheme with the explicit time discretization until time T = 200π2 with the uniform mesh
N = 40 and the degree of polynomials is 2. From this figure, we can conclude the solution of
conservative scheme almost overlaps the exact solution while the LDG scheme with explicit
time discretization maintains the shape but has a phase shift. Moreover, in Fig. 2, we give
the energy time evolution and we can see that the numerical energy is conserved by the
conservative scheme. For the LDG scheme with explicit time discretization, the numerical
energy is not conserved very well.

Example 4.2 Let us consider the case of α = 1, β(x) = exp(−x2) and let f (|u|2) = 1 in
Eq. (1.1) with the initial condition

u0(x) = exp(ix), u1(x) = iexp(ix), x ∈ [0, 2π].
We use periodic boundary condition in this example.
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Table 1 Example 4.1, accuracy test at time T = π2 with the conservative scheme

N Real part Imaginary part
L2 error Order L∞ error Order L2 error Order L∞ error Order

p0 20 1.97E−01 – 2.09E−01 – 1.97E−01 – 2.09E−01 –

40 8.78E−02 1.17 8.69E−02 1.27 8.78E−02 1.17 8.69E−02 1.27

80 4.33E−02 1.02 4.11E−02 1.08 4.33E−02 1.02 4.11E−02 1.08

160 2.16E−02 1.00 2.01E−02 1.03 2.16E−02 1.00 2.01E−02 1.03

p1 20 4.76E−02 – 3.79E−02 – 4.76E−02 – 3.79E−02 –

40 4.41E−03 3.43 5.05E−03 2.91 4.41E−03 3.43 5.05E−03 2.91

80 9.26E−04 2.25 1.31E−03 1.95 9.26E−04 2.25 1.31E−03 1.95

160 2.24E−04 2.05 3.22E−04 2.02 2.24E−04 2.05 3.22E−04 2.02

p2 40 7.05E−04 – 4.25E−04 – 7.05E−04 – 4.25E−04 –

80 4.44E−05 3.98 2.79E−05 3.92 4.44E−05 3.98 2.79E−05 3.92

160 2.79E−06 3.99 1.81E−06 3.94 2.79E−06 3.99 1.81E−06 3.94

320 2.02E−07 3.79 1.59E−07 3.51 2.02E−07 3.79 1.59E−07 3.51

p3 20 1.80E−03 – 9.93E−04 – 1.80E−03 – 9.93E−04 –

40 1.13E−04 4.00 6.22E−05 4.00 1.13E−04 4.00 6.22E−05 4.00

80 7.04E−06 4.00 3.89E−06 4.00 7.04E−06 4.00 3.89E−06 4.00

160 4.45E−07 3.98 2.46E−07 3.98 4.45E−07 3.98 2.46E−07 3.98

Fig. 1 Example 4.1, left the exact solution and the numerical solution with the conservative scheme; right
the exact solution and the numerical solution with the nonconservative scheme. T = 200π2

In Fig. 3, we give the time evolution of |u| of NLSW with the variable β(x) by using the
conservative scheme with p2 polynomials and the uniform mesh N = 160. The difference
between Examples 4.1 and 4.2 is the value of β(x). We can observe that the value of |u| is
equal to 1 in Example 4.1 while in Example 4.2 it is not.

Example 4.3 We give an example with the parameters as

α = β = 1, f (|u|2) = |u|2,
with the initial condition

u0(x) = (1 + i)xe−10(1−x)2 , u1(x) = 0,
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Fig. 2 Example 4.1, The energy time evolution for T = 200π2

and the computational domain

x ∈ [−40, 40],
where we use the homogenous Dirichlet boundary conditions.

In Fig. 4, we give the movement of the soliton |u| of Example 4.3 with the space of
polynomials with degree k = 2. Comparing with other schemes such as compact finite
difference scheme in [14], conservative finite scheme in [31] and in [24] and so on, we
use less meshes with higher order scheme and the scheme has higher resolution which can
capture the oscillation precisely. Therefore, this scheme is stable and could not occur blow-up
phenomenon which has been presented in Fig. 4. This example illustrates the validity and
capability of the conservative scheme we presented.

Example 4.4 We consider the equation with the parameters as

α = 1, β = −2, f (|u|2) = |u|2,
and the exact solution is

u(x, t) = Asech(J x)ei�t , x ∈ [−50, 50],
where

A = |J |, � = 1

2
(−1 ±

√
1 − 4J 2).

In the computations, we take J = 1
4 and � = − 1

2 −
√
3
4 . More details can be found in [22].

We show the numerical results of Example 4.4 in Fig. 5with polynomial spaces of different
degrees. This example is designed to illustrate the advantages of high order schemes. We
can see that these simulation solutions with polynomials of higher degree are better than that
with polynomials of lower degree from Fig. 5. One can conclude that the LDG method can
simulate some problems well since it can be designed as any order of accuracy.
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Fig. 3 Example 4.2, the figure time evolution of |u| by the using conservative scheme with p2 polynomials
and N = 160

4.2 Two-Dimensional Case

In this subsection, some numerical experiments will be designed to show the validity and
capability of the conservative scheme in the two-dimensional case.

Example 4.5 Here, we will consider the equation

utt − 1

2
(uxx + uyy) + iut + u = 0,

where the exact solution is u(x, y, t) = ei(x+y+t) and the domain is [0, 2π] × [0, 2π] to test
the accuracy of the conservative scheme which has been designed above.

Sinceweuse the secondorder schemeon timediscretization, in order to obtain the accuracy
which will be dominated by the spatial discretization, we take the time step �t = c f l ∗ h2.
We give the L2 and L∞ error of the real part and the image part respectively of Example 4.5
to test the accuracy of the conservative scheme in Table 2. we can see that the scheme with

123



642 J Sci Comput (2015) 65:622–647

Fig. 4 Example 4.3, the movement of soliton |u| by using the conservative scheme with the degree of
polynomial k = 2 and the mesh size h = 0.05
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Fig. 5 Example 4.4, numerical solutions and exact solutions with different degree of polynomials by using
the conservative scheme and the mesh size is h = 0.25 at time T = 2

the space of polynomials with degree k has (k +1)th order accuracy which is consistent with
the theoretical result which we have proved in Sect. 2.4.3.

Example 4.6 In this example, we give the parameters in Eq. (1.1) as

α = β = 1, f (|u|2) = |u|2,
with the initial condition

u0(x, y) = (1 + i)(x + y)e−10(1−x−y)2 , u1(x, y) = 0,

and the computational domain

(x, y) ∈ [−40, 40] × [−40, 40].
The boundary condition is the homogenous Dirichlet boundary condition.

In Fig. 6, we use the conservative scheme which we have developed in this paper to
simulate Example 4.6 and it can capture the soliton precisely. We give the movement contour
figure of soliton |u| in the left side and the section views when x = y are given to show the
effect of the scheme clearly in the right side of Fig. 6. Here we only give the figures in the
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Table 2 Example 4.5, accuracy test at time T = π2 by using the conservative scheme

Nx × Ny Real part Imaginary part

L2 error Order L∞ error Order L2 error Order L∞ error Order

p0 16 × 16 1.82 – 4.79E−01 – 1.82 – 4.79E−01 –
32 × 32 7.95E−01 1.20 2.10E−01 1.19 7.95E−01 1.20 2.10E−01 1.19

64 × 64 3.93E−01 1.02 1.01E−01 1.05 3.93E−01 1.02 1.01E−01 1.05

128 × 128 1.96E−01 1.00 4.98E−02 1.02 1.96E−01 1.00 4.98E−02 1.02

p1 16 × 16 6.39E−02 – 1.44E−02 – 6.39E−02 – 1.44E−02 –

32 × 32 1.50E−02 2.09 3.38E−03 2.09 1.50E−02 2.09 3.38E−03 2.09

64 × 64 3.64E−03 2.05 8.20E−04 2.05 3.64E−03 2.05 8.20E−04 2.05

128 × 128 8.93E−04 2.03 2.01E−04 2.03 8.93E−04 2.03 2.01E−04 2.03

p2 8 × 8 4.44E−02 – 9.26E−03 – 4.44E−02 – 9.26E−03 –

16 × 16 6.27E−03 2.82 1.41E−03 2.72 6.27E−03 2.82 1.41E−03 2.72

32 × 32 6.32E−04 3.31 1.42E−04 3.31 6.32E−04 3.31 1.42E−04 3.31

64 × 64 6.85E−05 3.21 1.54E−05 3.20 6.85E−05 3.21 1.54E−05 3.20

p3 8 × 8 4.25E−02 – 8.87E−03 – 4.25E−02 – 8.87E−03 –

16 × 16 2.64E−03 4.01 5.94E−04 3.90 2.64E−03 4.01 5.94E−04 3.90

32 × 32 1.67E−04 3.98 3.77E−05 3.98 1.67E−04 3.98 3.77E−05 3.98

64 × 64 1.06E−05 3.98 2.39E−06 3.98 1.06E−05 3.98 2.39E−06 3.98

domain [-3,4] in the right side figure to illustrate the stability of the scheme. From the right
side figures, we can see that the numerical results are stable and do not blow up since we use
high order energy conserving scheme which has high resolution. Moreover, these numerical
results show that the conservative scheme can work well at solving the nonlinear Schrödinger
equation with wave operator.

4.3 Three-Dimensional Case

In this subsection, we only give a numerical experiment to test the accuracy in the three-
dimensional case.

Example 4.7 We consider the equation

utt − 1

3
(uxx + uyy + uzz) + iut + u = 0,

where the exact solution is u(x, y, z, t) = ei(x+y+z+t) and the domain is [0, 2π] × [0, 2π]
× [0, 2π]. In addition, we use the periodic boundary condition.

Similarly, in order to obtain the accuracywhichwill be dominated by the spatial discretiza-
tion, we take the time step�t = c f l ∗h2. We present the L2 and L∞ error of the real part and
the image part respectively of Example 4.7 to test the accuracy of the conservative scheme
in Table 3. We can achieve the theoretical result like one-dimensional and two-dimensional
cases.
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Fig. 6 Example 4.6, the movement of soliton |u| by using the conservative scheme with the degree of
polynomial k = 2. The left side figures are contour figures of u; the right side figures are section views when
x = y

5 Conclusion

In this paper, we have developed the LDG method for multi-dimensional Schrödinger equa-
tions with wave operator. The energy conservation is an important property of Schrödinger
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Table 3 Example 4.5, accuracy test at time T = π2/8 by using the conservative scheme

Nx × Ny × Nz Real part Imaginary part

L2 error Order L∞ error Order L2 error Order L∞ error Order

p0 16 × 16 × 16 2.69 – 4.92E−01 – 2.69 – 4.92E−01 –

32 × 32 × 32 1.35 0.99 2.44E−01 1.02 1.35 0.99 2.44E−01 1.02

64 × 64 × 64 6.74E−01 1.00 1.21E−01 1.01 6.74E−01 1.00 1.21E−01 1.01

p1 16 × 16 × 16 3.88E−01 – 1.09E−01 – 3.88E−01 – 1.09E−01 –

32 × 32 × 32 9.60E−02 2.02 2.78E−02 1.98 9.60E−02 2.02 2.78E−02 1.98

64 × 64 × 64 2.38E−02 2.01 6.96E−03 2.00 2.38E−02 2.01 6.96E−03 2.00

p2 8 × 8 × 8 3.06E−01 – 1.01E−01 – 3.06E−01 – 1.01E−01 –

16 × 16 × 16 3.87E−02 2.98 1.37E−02 2.89 3.87E−03 2.98 1.37E−02 2.89

32 × 32 × 32 4.69E−03 3.04 1.60E−03 3.09 4.69E−03 3.04 1.60E−03 3.09

equations and hence we give the energy conservative scheme to simulate these equations.
This scheme is designed by discretizing the space with the LDG scheme and the time with
the Crank–Nicholson scheme. We also give the error estimates of the conservative scheme
for the linear case and the fully discretization is conservative. Some numerical examples in
multi-dimensional spaces are shown to illustrate the accuracy, validity and capability of the
energy conservative scheme.
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