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Abstract The main purpose of this paper is to develop a fast fully discrete Fourier–
Galerkin method for solving the boundary integral equations reformulated from the modified
Helmholtz equation with boundary conditions. We consider both the nonlinear and the Robin
boundary conditions. To tackle the difficulties caused by the two types of boundary condi-
tions, we provide an improved version of the Galerkin method based on the Fourier basis.
By employing a matrix compression strategy and efficient numerical quadrature schemes
for oscillatory integrals, we obtain fully discrete nonlinear or linear system. Finally, we use
the multilevel augmentation method to solve the resulting systems. We point out that the
proposed method enjoys an optimal convergence order and a nearly linear computational
complexity. The theoretical estimates are confirmed by the performance of this method on
several numerical examples.

Keywords Modified Helmholtz equation · Fourier–Galerkin methods · Multilevel
augmentation methods
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1 Introduction

In this paper, we are concerned with the modified Helmholtz equation (or the linearized
Poisson–Boltzmann equation) with associated boundary conditions, which arises in many
areas of science and engineering [4,26,27,30,40]. The heat equation is of fundamental impor-
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tance in fluid dynamics, pattern formation, and variational problems. Discretizing the time
derivative of the heat equation, which is known as the Rothe’s method, gives rise to the modi-
fied Helmholtz equation. The Poisson–Boltzmann theory aims at describing the electrostatic
interaction of biological systems as long as the electrostatic coupling strength is weak. The
linearized Poisson Boltzmann equation has often been used to approximate ionic solutions.

Specifically, we consider the following boundary value problem:
⎧
⎨

⎩

�u(x) − α2u(x) = 0, x ∈ D,
∂u(x)

∂nx
= −g(x, u(x)) + f (x), x ∈ �,

(1.1)

whereα is a positive constant and g, f are both given functions.Here,wemake the assumption
that D is a simply connected bounded domain in R

2 and has a C2 boundary � with a
parametrization

x(t) = (x1(t), x2(t)), t ∈ I := [0, 2π].
Let nx denote the exterior unit normal to � at x . In this paper, we focus on two types of
boundary conditions: the nonlinear boundary condition with g being nonlinear with respect
to u and the linear boundary condition with g(·, u) = u, which is called the Robin boundary
condition. In any case, we always assume that the boundary value problem (1.1) is uniquely
solvable. In fact, the unique solvability can be obtained by imposing suitable assumptions on
the functions g, f and the boundary � [3,34,41].

Before solving the above boundary value problem, we make a few remarks about our
assumptions on the boundary. Although most boundaries of interest in some branches of
science are not smooth, there are many applications of smooth boundaries in the fields of
biology andmedicine and so on.Moreover, the boundaries in practical applications are usually
so complex that one can not find a suitable parametrization. For this case, we should consider
interpolating the complex boundary by a parametric curve by making use of a sequence of
data, which are sampled from the original curve. Then by replacing the original boundary
by the interpolating parametric curve, we solve the resulting boundary value problem by
the fast algorithm proposed in this paper. Specifically, we suppose that the original curve
passes through a sequence of points. We first choose parameter values corresponding to the
interpolation points and then find a parametric curve such as polynomial or spline curve,
matching position and/or derivatives at the same parameter values.

We note that efforts to address the above issue have beenmade by number of researchers in
the field of computer aided geometric designed. It has been shown that the choice of parame-
trization has a significant effect on the approximation performance of the resulting interpolat-
ing curve. The common choices of parameter include uniform, chordal [1], centripetal [28],
Foley–Nielson [19] parametrizations and parametrizations based on optimization. In [17,18],
the authors study the effect of parametrization on the rate of convergence of parametric curve
interpolation. The traditional approach to approximation of parametric curves is to consider
the curve as a vector-valued function and then apply a suitable scheme for approximation of
functions to each component [16]. To improve on the classical schemes, parametric approx-
imation schemes have been developed, which in the approximation of one component uses
information about the other components and so give better accuracy, [13–15,22,32,33,35].

Among all methods for numerically solving the boundary value problem (1.1), the bound-
ary integral equation approach is one of the most fundamental treatments [31]. It transforms
the boundary problem into an integral equation defined on the boundary. To review the bound-
ary integral equation reformulation, we introduce the modified Bessel function of order n
as
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Kn(z) := 1

2

∑

m∈Zn

(−1)m(n − m − 1)!
m!

( z

2

)2m−n

+ (−1)n+1
∑

m∈N0

1

m!(m + n)!
(

log
z

2
− 1

2
(ψ(m + n + 1)+ψ(m + 1))

)( z

2

)2m+n
,

(1.2)

where γ is the Euler’s constant and for l ∈ N

ψ(l) := −1

l
− γ −

∑

n∈N

(
1

l + n
− 1

n

)

.

Here, we letN denote the set of all positive integers and setN0 := N∪{0}. For each n ∈ N, we
also set Zn := {0, 1, . . . , n − 1} and Z0 = ∅. Then the fundamental solution of the modified
Helmholtz equation is given by

	(x, y) := 1

2π
K0(α|x − y|), x, y ∈ R

2.

By the potential theory, the solution of the boundary value problem (1.1) can be expressed
as

u(x) =
∫

�

∂u(y)

∂ny
	(x, y)dsy −

∫

�

u(y)
∂

∂ny
	(x, y)dsy, x ∈ D. (1.3)

Letting x tend to a point on the boundary � and using the boundary condition, we obtain the
boundary integral equation

u(x) + 2
∫

�

u(y)
∂

∂ny
	(x, y)dsy + 2

∫

�

g(y, u(y))	(x, y)dsy = 2
∫

�

f (y)	(x, y)dsy , x ∈ �.

(1.4)

Once the solution of the boundary integral equation is achieved, one can get the normal
derivative on the boundary and then obtain the solution of (1.1) by calculating the expression
(1.3). This motivates one to solve the boundary integral equation (1.4) numerically. We note
that Eq. (1.4) is a linear boundary integral equation for the Robin boundary condition and a
nonlinear one for the nonlinear boundary condition.

In the literature, there have been various numerical methods developed for solving the
boundary integral equations reformulated from the modified Helmholtz equation with linear
or nonlinear boundary conditions. A Galerkin method with one-periodic B-splines as basis
functions [36] and a spectral collocation method [37] were proposed for the mixed boundary
value problem. Fast multipole-accelerated integral equation methods were discussed in [7,
26,27] for solving the modified Helmholtz equation with different kinds of linear boundary
conditions. For the nonlinear boundary value problem, the mechanical quadrature methods
and extrapolation were developed in [8]. In this paper, we shall consider the Galerkin method
using the Fourier basis for solving the boundary integral equation (1.4). Our interest in the
Fourier–Galerkin method is motivated by the decomposition of the weakly singular integral
operator arising in the integral equation (1.4). To be more specific, we split the operator into
the form A + B, where the operator A carries the main singularity characteristic of the
original operator and the operatorB, however, is a compact operator with a smooth kernel. It
is worth to point out that the operatorA has the Fourier basis functions as its eigenfunctions.
Taking this advantage, we get the matrix representation of A under the Fourier basis as a
diagonal matrix with the entries being obtained directly.
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In fact, solving the discrete system resulting from the Fourier–Galerkin method requires
large computational costs, which are caused for two reasons. One reason is that we have
to face computing double singular integrals resulting from the boundary condition. In the
case of nonlinear boundary condition, these integrals arise from evaluating and updating
the Jacobian matrix in each iteration step of Newton’s method for solving the nonlinear
system. And in the case of the Robin boundary condition, setting up the coefficient matrix
in the resulting linear system also leads to these integrals. To overcome this difficulty, we
first adopt a technique, which was used in [9,10] for solving the Laplace’s equation with
nonlinear boundary condition. Specifically, we project the term, involving the boundary
function g, onto the approximate subspace.Bydoing so,we transform the evaluation of double
singular integrals into establishing the matrix representations of operators and multiplying
these matrices by vectors. The matrix representation of the operatorA has a simple structure
and needs no computational efforts to set up. However, the matrix representation of other
operators are usually dense and so we shall apply appropriate matrix truncation strategy.
The truncation strategy allows us not only to compress the dense matrices to sparse ones
but also to retain enough entries to represent critical information encoded in the original
matrices. Because of the smoothness of the kernel functions, we shall take the hyperbolic
cross compression proposed in [6] and employ the numerical quadrature formula developed
in [24] to compute the nonzero entries in resulting sparse matrices. Moreover, the Robin
boundary condition also need us to set up another dense matrix with the entries involving
single oscillation integrations. We shall adopt the trapezoid quadrature rule and the fast
Fourier transform to build this matrix. The other reason for the large computational costs is
to invert the linear or nonlinear operator in the entire approximate subspace, which usually
has a large dimension so that one can get good approximation accuracy. The multilevel
augmentation method developed in [9,11,12] can help us to deal with this issue efficiently.
It is worth to point out that the fast algorithm based upon the above techniques preserves
the optimal convergence order and at the same time enjoys a nearly linear computational
complexity.

This paper is organized as follows. We describe the Fourier–Galerkin method for solving
the resulting boundary integral equation in the next section. Through introducing an additional
projection operator, we present an improved version of the Fourier–Galerkin method. In
Sect. 3, we establish the fast solvers for the linear and nonlinear system resulting from the
improved Fourier–Galerkin method, respectively. We also give the convergence analysis as
well as the computational complexity estimate of the proposed algorithm for the linear system.
The analysis of the algorithm for the nonlinear system can be obtained by arguments similar
to those in [10]. In Sect. 4, to demonstrate the computational efficiency and the approximate
accuracy of the proposed algorithms, we present numerical examples for both the nonlinear
boundary condition and the Robin boundary condition.

2 The Fourier–Galerkin Method for Boundary Integral Equations

In this section, we describe the Fourier–Galerkin method for solving the boundary integral
equation (1.4).We also provide an improved version of thismethod,which ismore suitable for
solving the nonlinear boundary value problem as well as the Robin boundary value problem.

To this end, we begin with presenting Eq. (1.4) in an operator form. With respect to the
parametrization of the boundary �:

x(t) = (x1(t), x2(t)), t ∈ I = [0, 2π],
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we set r(s, t) := |x(s) − x(t)|, for any s, t ∈ I . Let Z be the set of all integers. By using the
modified Bessel functions defined as in (1.2), we define two kernels at s, t ∈ I by

L(s, t) := 1

π
K0(αr(s, t))

and

K(s, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

αK1(αr(s, t))

π

x ′
2(t)(x1(t) − x1(s)) − x ′

1(t)(x2(t) − x2(s))

r(s, t)
, s − t �= 2kπ, k ∈ Z,

1

π

x ′
1(t)x

′′
2 (t) − x ′

2(t)x
′′
1 (t)

2(x ′
1(t)

2 + x ′
2(t)

2)
, otherwise.

Then by introducing three functions on I as

u(t) := u(x(t)), g(t, u(t)) := g(x(t), u(x(t))), f (t) := f (x(t)), t ∈ I,

we can now rewrite Eq. (1.4) as

u(s) −
∫

I
K(s, t)u(t)dt +

∫

I
L(s, t)g(t, u(t))|x ′

(t)|dt =
∫

I
L(s, t) f (t)|x ′

(t)|dt, s ∈ I.

(2.1)

Associated with the kernelsK and L, we define two linear integral operators respectively,
by

(K u)(s) :=
∫

I
K(s, t)u(t)dt, s ∈ I,

and

(L u)(s) :=
∫

I
L(s, t)u(t)dt, s ∈ I.

Properties of the operators K and L are inherited from those of the kernels K and L,
respectively. Specifically, observing from the definition, we have that the kernel K is of
Cμ−2 when the boundary � is of Cμ,μ ≥ 2. The smoothness of the kernel K leads directly
to the compactness of the operator K . By Eq. (1.2) for n = 0, we get

K0(z) = − log
z

2
− γ, z → 0,

which shows that K0 has a logarithmic singularity at z = 0, so is the kernel L. Thus, the
operator L is a weakly singular integral operator. We next decompose the integral operator
L into the sum of two integral operators, where one carries themain singularity characteristic
ofL and the other is a compact operator with a smooth kernel. This can be done by splitting
the kernel L into the form

L(s, t) = A(s, t) + B(s, t), s, t ∈ I, (2.2)

where for any s, t ∈ I

A(s, t) := − 1

π
log

∣
∣
∣
∣2e

−1/2 sin
s − t

2

∣
∣
∣
∣ ,

and

B(s, t) =
⎧
⎨

⎩

L(s, t) − A(s, t), t − s �= 2kπ, k ∈ Z,

− 1

π
log

αe1/2|x ′(t)|
2

− γ

π
, otherwise,

123



558 J Sci Comput (2015) 65:553–575

and defining two operators by

(A u)(s) :=
∫

I
A(s, t)u(t)dt, (Bu)(s) :=

∫

I
B(s, t)u(t)dt, s ∈ I.

Among all the decompositions of the operator L , Eq. (2.2) has two advantages. Firstly,
the singular operator A has the Fourier basis functions as its eigenfunctions. Specifically,
for any k ∈ Z there holds A (eik(·)) = λkeik(·) with λk = 1/max{1, |k|}. Then its matrix
representation under the Fourier basis is diagonal and the entries on the diagonal can also be
obtained exactly. Secondly, although the matrix representation of the compact operator B
under the Fourier basis is usually dense, it can be compressed to a sparse matrix without loss
of critical information encoded in the matrix. We note that the compression strategy can also
be used to deal with the matrix representation of the compact operator K under the same
basis.

We also define an operator by

(�u)(t) := g(t, u(t))|x ′
(t)|, t ∈ I, (2.3)

which is nonlinear for the case that g(x, u) is nonlinear with respect to u and is linear for
the case that g(x, u) = u. With the operators defined above, Eq. (2.1) is represented in an
operator form:

u − K u + (A + B)�u = h, (2.4)

where h := (A + B)( f |x ′|).
The features of the kernels motivate us to use the Galerkin method based on the Fourier

basis for solving the operator equation (2.4). We now turn to describing this method. For
each n ∈ N, we introduce a finite dimensional subspace of L2(I ), spanned by the Fourier
basis ek(t) := eikt/

√
2π, t ∈ I, k ∈ Z, as

Xn := span{ek : |k| ∈ Zn}.
LetPn be the orthogonal projection from L2(I ) onto Xn . The Fourier–Galerkin method for
solving Eq. (2.4) is described as finding un in Xn such that

un − PnK un + Pn(A + B)�un = Pnh. (2.5)

To describe the unique solvability and the error analysis of Eq. (2.5), we introduce the
Fréchet derivative of the operator L� at u as an integral operator defined by

((L�)′(u)h)(s) :=
∫

I
L(s, t)� ′(u)h(t)dt.

Under certain hypotheses imposed on the linear operator K − (L�)
′
(u), we obtain in the

following theorem the existence of the solution of Eq. (2.5) and its convergence property.
We note that the theorem can be proved by making use of Theorem 3.3.2 in [11] for the
case of the Robin boundary condition and Theorem 2 in [38,39] for the case of the nonlinear
boundary condition.

Theorem 2.1 Suppose that u ∈ L2(I ) is an isolated solution of (2.4) and 1 is not an eigen-
value of the linear operator K − (L�)

′
(u). Then for sufficiently large n, Eq. (2.5) has a

unique solution un ∈ B(u, δ) for some δ > 0 and there exist positive constants c1 and c2
such that

c1‖u − Pnu‖ ≤ ‖u − un‖ ≤ c2‖u − Pnu‖.
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We next consider the convergence order of the solution of Eq. (2.5). For this purpose, we
introduce the Sobolev spaces of 2π -periodic functions, which are subspaces of L2(I ) and are
required for their elements a certain decay of their Fourier coefficients. To be more specific,
for each μ ≥ 0,

Hμ(I ) :=
{

φ ∈ L2(I ) :
∑

k∈Z
(1 + k2)μ|φk |2 < ∞

}

,

where φk is the k-th Fourier coefficient of φ defined by φk := ∫

I φ(x)ek(x)dx . The space
Hμ(I ) is a Hilbert space with the inner product defined for φ,ψ ∈ Hμ(I ) by

〈φ,ψ〉μ :=
∑

k∈Z
(1 + k2)μφkψk,

and its norm is given by ‖φ‖μ := 〈φ, φ〉
1
2
μ . We note that the space H0(I ) coincides with

L2(I ). It is well-known [2,25] that for any φ ∈ Hμ(I ), there holds

‖φ − Pnφ‖ ≤ n−μ‖φ‖μ. (2.6)

With the help of estimate (2.6), Theorem 2.1 shows that the Fourier–Galerkin method has
convergence of the optimal order.

Corollary 2.2 If the solution u ∈ Hμ(I ), μ ≥ 0, there exists a constant c > 0 such that

‖u − un‖ ≤ cn−μ‖u‖μ.

In terms of the Fourier basis, the Fourier Galerkin method (2.5) is equivalent to a system
of equations. Specifically, it suffices to seek a function un ∈ Xn with the form

un(t) =
∑

|l|∈Zn

alel(t), t ∈ I,

satisfying the system

〈un − K un + (A + B)�un, ek〉 = 〈h, ek〉, |k| ∈ Zn . (2.7)

We note that if the operator � defined in (2.3) is linear, so is the system (2.7). Otherwise, the
system is nonlinear, which is usually solved by Newton’s method. However, for solving any
kind of systems, we have to face computing the quantities

〈el , ek〉 − 〈K el , ek〉 + 〈(A + B)� ′(u∗
n)el , ek〉, |k|, |l| ∈ Zn, (2.8)

where u∗
n denotes un or u

(m)
n according to the type of the operator �. To be more specific, if

the operator� is linear, thenwe choose u∗
n = un and the items in (2.8) arise from establishing

the Galerkin matrix. If the operator � is nonlinear and u(m)
n denotes the solution at the mth

iteration of Newton’s method, then we choose u∗
n = u(m)

n and the items in (2.8) coincide
with the entries of the Jacobian matrix at the mth iteration. Since the items involve double
integrals, solving (2.7) demands a large amount of computational efforts.

We observe from (2.8) that the first item need not be evaluated because of the orthogonality
of ek’s. The discussion of the evaluation of the second item will be postponed until the next
section, where the quantities 〈K el , ek〉, |k|, |l| ∈ Zn, can be evaluated efficiently by com-
pressing the matrix representation of the operator K . In this section, we are only interested
in the third item which carries the main computational difficulties. Motivated by the fact that
the Fourier basis functions are the eigenfunctions of the operator A , we consider projecting
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the item � ′(u∗
n) onto the subspace Xn . By doing so, we will transform the computation of

double singular integrals into the establishment of the matrix representations of A and B
and the multiplication of matrices and vectors.

To implement the above idea, we introduce the improved Fourier–Galerkin method for
solving (2.4), which finds ûn ∈ Xn such that

ûn − PnK ûn + Pn(A + B)Pn�ûn = Pnh. (2.9)

The following theorem is concerned with the unique solvability and the convergence order
of the improved Fourier–Galerkin method. This result can be proved by arguments similar
to those for Theorem 2.1 and Corollary 2.2.

Theorem 2.3 Suppose that u ∈ L2(I ) is an isolated solution of (2.4) and 1 is not an eigen-
value of the linear operator K − (L�)

′
(u). Then for sufficiently large n, Eq. (2.9) has a

unique solution ûn ∈ B(u, δ) for some δ > 0 and there exists a constant c > 0 such that

‖u − ûn‖ ≤ c‖u − Pnu‖.
Furthermore, if the solution u ∈ Hμ(I ), μ ≥ 0, then there holds

‖u − ûn‖ ≤ cn−μ‖u‖μ.

3 A Fast Solver for the Improved Fourier–Galerkin Method

The main purpose of this section is to develop a fast fully discrete algorithm for solving
Eq. (2.9). This will be done by employing a matrix truncation strategy, quadrature formulas
for single and double oscillatory integrals and the multilevel augmentation method.

3.1 Fast Algorithm for Solving the Nonlinear System

When we consider the boundary value problem (1.1) with the nonlinear boundary condition,
Eq. (2.9) is equivalent to the following nonlinear system:

〈ûn − K ûn + (A + B)Pn�ûn, ek〉 = 〈h, ek〉, |k| ∈ Zn, (3.1)

with ûn :=
∑

|l|∈Zn
âl el . To rewrite (3.1) in a matrix form, we now present the matrix

representations of the operators K ,A and B under the Fourier basis. To this end, we
require some necessary notations. For each n ∈ N, we set Z+

n := {1, 2, . . . , n − 1}. We
denote by w = [wk, w−k : k ∈ Z

+
n ] the vector w = [w1, w−1, . . . , wn−1, w−(n−1)] and

by w = [wk, w−k : k ∈ Zn] the vector w = [w0, w1, w−1, . . . , wn−1, w−(n−1)]. For each
|k|, |l| ∈ Zn , we set

Kk,l :=
∫

I 2
K(s, t)ek(s)el(t)dsdt

and introduce the square matrix of order 2

Kk,l :=
[
K−k,l K−k,−l

Kk,l Kk,−l

]

.

By defining the matrix blocks

K := [Kk,l : k, l ∈ Z
+
n ], K′ := [K0,0], K′′ := [K0,k, K0,−k : k ∈ Z

+
n ],
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K′′′ := [K−k,0, Kk,0 : k ∈ Z
+
n ]T ,

we build the matrix representation of the operator K as

Kn :=
[
K′ K′′
K′′′ K

]

.

In a similar manner, we can define the matrices An and Bn as the matrix representations of
the operators A and B, respectively. The projection of �ûn can be expressed in the form

Pn�ûn(t) =
∑

|k|∈Zn

b̂kek(t), t ∈ I,

and the coefficients b̂k, |k| ∈ Zn , are determined by b̂k = 〈�ûn, ek〉. Associated with
ûn =

∑

|l|∈Zn

âl el , we introduce two vectors

ûn := [âk, â−k : k ∈ Zn]T and v̂n := [b̂k, b̂−k : k ∈ Zn]T .

By setting hk :=
∫

I
h(t)ek(t)dt, |k| ∈ Zn , we also define the vector

hn := [h−k, hk : k ∈ Zn]T .

Let In denote the identity matrix of order 2n − 1. By using the matrix and vector notations,
Eq. (3.1) takes the equivalent matrix form

(In − Kn)ûn + (An + Bn)v̂n = hn . (3.2)

To develop a fast solver for (3.2), we shall apply appropriate matrix truncation strategy
to the dense matrices Kn and Bn . Using this strategy, we not only compress a dense matrix
to a sparse one but also retain enough entries to represent critical information encoded in
the original matrix. It is the smoothness of the kernel functions K and B that allows us to
carry out the hyperbolic cross compression technique to the matrices Kn and Bn . In fact,
this type of compression comes from the hyperbolic cross sparse approximation of functions
by the Fourier basis, which remove the unnecessary high frequency terms and retain only
low frequency and necessary high frequency terms in the Fourier expansion. Specifically, we
introduce the index set Ln := {[k, l] ∈ Z

2
n : kl ≤ n} and define the truncation matrix of Kn

by setting

K̃k,l :=
{
Kk,l , [k, l] ∈ Ln ∩ (Z+

n )2,

02×2, otherwise,
K̃ := [K̃k,l : k, l ∈ Z

+
n ],

and letting

K̃n :=
[
K′ K′′
K′′′ K̃

]

.

The dense matrix Bn can be similarly handled. If we use N (M) to denote the number
of nonzero entries in the matrix M, an estimation in [6] gives that N (K̃n) = N (B̃n) =
O(n log n), which shows the sparsity of the matrices K̃n and B̃n . This truncation strategy
admits a fast algorithm to set up the matrix representations and to solve (3.2) subsequently.

Numerical implementation of the fastmethod requires efficient computation of the nonzero
entries of thematrices K̃n and B̃n . These quantities involve oscillatory integrals, which should
be treated by efficient quadrature formula. For recent development of numerical integration of
oscillatory integrals, see [20,21,23,29].Wewill use an efficient quadrature formula developed
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in [23] for computing the nonzero entries of the truncated matrix K̃n , which are defined by
the integrals

Kk,l :=
∫

I 2
K(s, t)ek(s)el(t)dsdt, |k|, |l| ∈ Ln .

In this method, one first constructs a multi-scale Lagrange interpolation on sparse grids as a
good approximation of the kernel function K. Replacing the kernel function K by the multi-
scale Lagrange interpolation, one can obtain a quadrature formula of the original integrations.
With the help of the product integration method, the resulting oscillation integrations can be
evaluated exactly. Readers are referred to [23,24] for a detailed description of the algorithm.
In the following, we denote by K̃n,N the matrix K̃n with Kk,l being evaluated by the quadra-
ture formula in [23], where N is the number of partition level of the multi-scale Lagrange
interpolation for the kernel K. We deal with the entries of the matrix B̃n in a similar manner
and obtain the matrix B̃n,N .

Up to now, by replacing the dense matrices Kn and Bn by K̃n,N and B̃n,N , respectively,
we obtain the fully discrete truncated nonlinear system

(In − K̃n,N )̃un,N + (An + B̃n,N )̃vn,N = hn, (3.3)

where ũn,N := [ãk,N , ã−k,N : k ∈ Zn]T is the corresponding solution to be determined and
ṽn,N := [b̃k,N , b̃−k,N : k ∈ Zn]T with

b̃k,N :=
〈

�

⎛

⎝
∑

|l|∈Zn

ãl,Nel

⎞

⎠ , ek

〉

, |k| ∈ Zn .

Finally, we consider solving the nonlinear system (3.3) by the multilevel augmentation
method. The key idea of the multilevel augmentation method is to solve the system by
inverting the nonlinear or linear operator in a subspace of a much lower dimension with
a compensation of high frequency by matrix-vector multiplications. To apply this idea to
Eq. (3.3), we let k be a fixed positive integer and denote the initial level of approximation.
Assume that we solve (3.3) with n := 2k+m , m ∈ N. We write the matrix K̃n,N in the block
form

K̃n,N =

⎡

⎢
⎢
⎣

K 00 K 01 · · · K 0m

K 10 K 11 · · · K 1m

· · · · · · · · · · · ·
Km0 Km1 · · · Kmm

⎤

⎥
⎥
⎦ ,

where K 00 has order (2k+1 − 1) × (2k+1 − 1), K 0q has order (2k+1 − 1) × 2k+q , Kq0

has order 2k+q × (2k+1 − 1) for q = 1, 2, . . . ,m and K pq has order 2k+p × 2k+q for
p, q = 1, 2, . . . ,m. For each l = 0, 1, . . . ,m, we denote by K̃k,l,N the submatrix of K̃n,N

that has the form

K̃k,l,N =

⎡

⎢
⎢
⎣

K 00 K 01 · · · K 0l

K 10 K 11 · · · K 1l

· · · · · · · · · · · ·
Kl0 Kl1 · · · Kll

⎤

⎥
⎥
⎦ ,

and split K̃k,l,N into its “low frequency” and “high frequency” components:

K̃
L
k,l,N = [

K 00 K 01 · · · K 0l
]

and K̃
H
k,l,N =

⎡

⎣
K 10 K 11 · · · K 1l

· · · · · · · · · · · ·
Kl0 Kl1 · · · Kll

⎤

⎦ .
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By the same way, we also introduce the submatrices and corresponding “low frequency”
components and “high frequency” components for the matrices In,An and B̃n,N . With the
help of these notations, we establish the following fast algorithm for solving the nonlinear
system (3.3).

Algorithm 1: The fast multilevel augmentation method for the nonlinear system
Let k be a fixed positive integer. Set h2k+m := [〈h, e j 〉, 〈h, e− j 〉 : j ∈ Z2k+m ]T .

Step 1: According to Newton’s method, solve the nonlinear system

(I2k − K̃k,0,N )uk,0,N + (A2k + B̃k,0,N )vk,0,N = h2k ,

for the solution uk,0,N = [(uk,0,N ) j , (uk,0,N )− j : j ∈ Z2k ]T , where
vk,0,N := [〈�(uk,0,N ), e j 〉, 〈�(uk,0,N ), e− j 〉 : j ∈ Z2k ]T

and uk,0,N := ∑
| j |∈Z2k

(uk,0,N ) j e j . Set l := 1.

Step 2: Set hk,l := [〈h, e j 〉, 〈h, e− j 〉 : j ∈ Z2k+l \Z2k ]T .

• Compute v̂k,l,N = [〈�(uk,l−1,N ), e j 〉, 〈�(uk,l−1,N ), e− j 〉 : j ∈ Z2k+l ]T .
• Augment the matrices K̃

H
k,l−1,N ,AH

k,l−1 and B̃
H
k,l−1,N to form K̃

H
k,l,N ,AH

k,l and B̃
H
k,l,N ,

respectively.

• Augment the vector uk,l−1,N by setting ûk,l,N =
[
uk,l−1,N

02k+l×1

]

.

• Compute

uH
k,l,N := hk,l + K̃H

k,l,N ûk,l,N − (AH
k,l + B̃H

k,l,N )v̂k,l,N .

Let uH
k,l,N := ∑

| j |∈Z2k+l \Z2k
(uH

k,l,N ) j e j .

Step 3: Augment thematrices K̃
L
k,l−1,N ,AL

k,l−1 and B̃
L
k,l−1,N to form K̃

L
k,l,N ,AL

k,l and B̃
L
k,l,N ,

respectively. According to Newton’s method, solve the nonlinear system

(ILk,l − K̃L
k,l,N )

[
uL
k,l,N

uH
k,l,N

]

+ (AL
k,l + B̃L

k,l,N )vk,l,N = h2k

for the solution uL
k,l,N = [(uL

k,l,N ) j , (uL
k,l,N )− j : j ∈ Z2k ]T , where

vk,l,N := [〈�(uLk,l,N + uH
k,l,N ), e j 〉, 〈�(uLk,l,N + uH

k,l,N ), e− j 〉 : j ∈ Z2k+l ]T

and uLk,l,N := ∑
| j |∈Z2k

(uL
k,l,N ) j e j . Define uk,l,N :=

[
uL
k,l,N

uH
k,l,N

]

and uk,l,N :=
uLk,l,N + uH

k,l,N .
Step 4: Set l ← l + 1 and go back to Step 2 until l = m.

To close this subsection, we will show in the following theorem that the proposed method
is indeed a fast algorithm and preserves the optimal order of convergence. It can be proved
by arguments similar to those in [10]. To present this result, following [10], we introduce
two spaces of functions. For any α := [α0, α1] ∈ N

2
0, let |α|∞ := max{α0, α1} and |α| :=

|α0| + |α1|. For a function f ∈ Cσ (I 2) and for α := [α0, α1] ∈ N
2
0, we write

f (α)(s, t) :=
(

∂ |α|

∂sα0∂tα1
f

)

(s, t), (s, t) ∈ I 2,

123



564 J Sci Comput (2015) 65:553–575

and define the space

Xσ (I 2) := { f : I 2 → R : f (α) ∈ C(I 2), |α|∞ ≤ σ }.
For μ ≥ 0, we also define the space Hμ(I 2) of functions φ ∈ L2(I 2) whose Fourier
coefficients {φk,l : k, l ∈ Z} satisfy

∑

k∈Z

∑

l∈Z
(1 + k2)μ(1 + l2)μ|φk,l |2 < ∞.

Theorem 3.1 If the kernel functionsK andB ∈ Xσ (I 2)∩Hμ(I 2)withσ ≥ μ+1/2+ε, μ ≥
0, ε > 0 and u ∈ Hμ(I ), then there exist a positive constant c and a positive integer n0,
such that for all k ≥ n0 and m ∈ N0, there holds

‖uk,m,N − u‖ ≤ c2−μ(k+m)‖u‖μ,

where N = k + m. In addition, the total number of multiplications required for obtaining
uk,m,N in Algorithm 1 is O((k + m)32k+m).

3.2 Fast Algorithm for Solving the Linear System

In the case of the Robin boundary value problem, the operator � is given by

(�u)(t) = u(t)|x ′
(t)|, t ∈ I.

This leads the system (3.1), which is equivalent to (2.9), to be a linear system.We nowwrite it
in a matrix form. In this case, we also need the matrix representations of the operatorsK ,A
andB, which have been described in the last subsection. The only difference is the projection
of �ûn . Since (�ûn)(t) = ûn(t)|x ′(t)|, t ∈ I , the coefficients b̂k’s can be represented by

b̂k =
∑

|l|∈Zn

〈|x ′|el , ek〉âl , |k| ∈ Zn .

For each |k|, |l| ∈ Zn , we set ψk,l :=
∫

I
|x ′(t)|ek(t)el(t)dt and define square matrix of order

2

Fk,l :=
[

ψ−k,l ψ−k,−l

ψk,l ψk,−l

]

.

Using the matrix blocks defined by

F := [Fk,l : k, l ∈ Z
+
n ], F′ := [ψ0,0],

F′′ := [ψ0,k, ψ0,−k : k ∈ Z
+
n ], F′′′ := [ψ−k,0, ψk,0 : k ∈ Z

+
n ]T ,

we build the matrix

Fn :=
[
F′ F′′
F′′′ F

]

.

With the help of this matrix and the representation matrices of operators, (3.1) reduces to the
linear system

(In − Kn)ûn + (An + Bn)Fn ûn = hn . (3.4)

By similar arguments with those in the last subsection, we compress Kn and Bn to sparse
matrices and evaluate the nonzero entries of the resulting matrices by the quadrature formula
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in [23]. In addition, for computing the entries of Fn , we use the trapezoid quadrature formula.
That is, for each |k|, |l| ∈ Zn , we set

ψ̃k,l := π

n

∑

j∈Z2n

∣
∣
∣
∣x

′
(
jπ

n

)∣
∣
∣
∣ ek

(
jπ

n

)

el

(
jπ

n

)

. (3.5)

We then denote F̃n the matrix Fn with the entries being evaluated by formula (3.5). We
note that the number of multiplications used to set up F̃n by the fast Fourier transform is
O(n log2 n). Consequently, we obtain the fully discrete truncated linear system

(In − K̃n,N )ũn,N + (An + B̃n,N )̃Fn ũn,N = hn . (3.6)

In the light of the idea of the multilevel augmentation methods, we establish in the follow-
ing a fast algorithm for solving (3.6) with n = 2k+m . Here, we also define the submatrices
and corresponding “low frequency” components and “high frequency” components for the
matrix F̃n as we have defined for K̃n,N .

Algorithm 2: The fast multilevel augmentation method for the linear system
Let k be a fixed positive integer. Set h2k+m := [〈h, e j 〉, 〈h, e− j 〉 : j ∈ Z2k+m ]T .

Step 1: Solving the linear system

(I2k − K̃k,0,N )uk,0,N + (A2k + B̃k,0,N )̃F2kuk,0,N = h2k , (3.7)

for the solution uk,0,N = [(uk,0,N ) j , (uk,0,N )− j : j ∈ Z2k ]T . Define uk,0,N :=
∑

| j |∈Z2k
(uk,0,N ) j e j . Set l := 1.

Step 2: Set hk,l := [〈h, e j 〉, 〈h, e− j 〉 : j ∈ Z2k+l \Z2k ]T .

• Augment the matrices K̃
H
k,l−1,N ,AH

k,l−1,B̃
H
k,l−1,N and F̃k,l−1 to form K̃

H
k,l,N ,AH

k,l ,

B̃
H
k,l,N and F̃k,l , respectively.

• Augment the vector uk,l−1,N by setting ûk,l,N =
[
uk,l−1,N

02k+l×1

]

.

• Compute

uH
k,l,N := hk,l + K̃H

k,l,N ûk,l,N − (AH
k,l + B̃H

k,l,N )̃Fk,l ûk,l,N . (3.8)

Let uH
k,l,N := ∑

| j |∈Z2k+l \Z2k
(uH

k,l,N ) j e j .

Step 3: Augment thematrices K̃
L
k,l−1,N ,AL

k,l−1 and B̃
L
k,l−1,N to form K̃

L
k,l,N ,AL

k,l and B̃
L
k,l,N ,

respectively. Solve the linear system

(ILk,l − K̃L
k,l,N )

[
uL
k,l,N

uH
k,l,N

]

+ (AL
k,l + B̃L

k,l,N )[(̃FL
k,l)

∗uL
k,l,N + (̃F

H
k,l)

∗uH
k,l,N ] = h2k (3.9)

for the solution uL
k,l,N = [(uL

k,l,N ) j , (uL
k,l,N )− j : j ∈ Z2k ]T . Define uLk,l,N :=

∑
| j |∈Z2k

(uL
k,l,N ) j e j , uk,l,N :=

[
uL
k,l,N

uH
k,l,N

]

and uk,l,N := uLk,l,N + uH
k,l,N .

Step 4: Set l ← l + 1 and go back to Step 2 until l = m.

Remark In step 2 of Algorithm 2, for computing uH
k,l,N according to formula (3.8), we have to

face themultiplication of the densematrix F̃k,l and the vectors ûk,l,N . This will bring to us the
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large computational costs. To deal with this issue, we rewrite the vector v̂k,l,N := F̃k,l ûk,l,N
by the following formulas:

uk,l−1,N

(
jπ

n

)

=
∑

|q|∈Z2k+l−1

(uk,l−1,N )qeq

(
jπ

n

)

, j ∈ Z2n,

and

(v̂k,l,N )p := π

n

∑

j∈Z2n

uk,l−1,N

(
jπ

n

) ∣
∣
∣
∣x

′
(
jπ

n

)∣
∣
∣
∣ ep

(

− jπ

n

)

, |p| ∈ Z2k+l .

Applying the fast Fourier transform to obtain uk,l−1,N

(
jπ

n

)

, j ∈ Z2n, and then

(v̂k,l,N )p, |p| ∈ Z2k+l , we require only O(n log2 n) number of multiplications. We shall

compute the vector (̃F
H
k,l)

∗uH
k,l,N in (3.9) in the same way.

In the rest of this subsection, we analyze the proposedmethod.We first gives an estimation
of the computational cost required for Algorithm 2.

Theorem 3.2 The total number ofmultiplications required for obtaininguk,m,N inAlgorithm
2 is O((k + m)32k+m).

Proof The total number of multiplications required for obtaining uk,m,N equals to the sum
of numbers of multiplications used to generate the matrices K̃2k+m ,N , B̃2k+m ,N and F̃2k+m

and that used to carry out the computing steps listed in Algorithm 2.
It is known [24] that the number of multiplications for generating K̃2k+m ,N and B̃2k+m ,N

is O((k + m)32k+m). Applying the fast Fourier transform to compute the entries of F̃n , we
require O((k +m)2k+m) number of multiplications. To carry out the computing steps listed
in Algorithm 2, we need to compute only once of step 1 and update for l ∈ Zm+1 in steps
2 and 3. The computational cost of step 1, used to solve a linear system of a much smaller
order, can be considered as a constant. In step 2, as has been pointed out, the number of
multiplications used for computing the vector F̃k,l ûk,l,N is is O((k + m)2k+m). Since the
truncated matrices K̃H

k,l,N and B̃H
k,l,N both have O((k + l)2k+l) numbers of nonzero entries,

the number of multiplications used to multiply these matrices with corresponding vectors
is also O((k + l)2k+l). In step 3, the number of multiplications for evaluating the vector

(̃F
H
k,l)

∗uH
k,l,N is also O((k + m)2k+m). Moreover, since the linear system (3.9) has the same

size as (3.7), we consider the computational cost for solving it as a constant.
Consequently, we get the desired result by adding up the above estimates together. ��
We next establish the convergence order of the approximate solution uk,m,N by a similar

analysis used in the nonlinear case. To this end, we represent Algorithm 2 in an operator
form. Following [10], we introduce the following operators. Set n := 2k+m and N := k+m.
We denote by Kn and ˜Kn,N the linear operators from Xn to Xn , which have Kn and K̃n,N

as the matrix representations under the Fourier basis, respectively. For each l ∈ Zm+1, we
also introduce the operator ˜Kk,l,N : X2k+l → X2k+l with the matrix representation K̃k,l,N

and split the operator into its “lower frequency” and “higher frequency” components as
˜Kk,l,N = ˜K L

k,l,N + ˜K H
k,l,N , with

˜K L
k,l,N := P2k

˜Kk,l,N , ˜K H
k,l,N := (P2k+l − P2k )

˜Kk,l,N .

It is clear that the matrices K̃
L
k,l,N and K̃

H
k,l,N are just the matrix representations of the opera-

tors ˜K L
k,l,N and ˜K H

k,l,N , respectively. In a similarmanner, we also introduce the corresponding
operators for the kernel functions A and B.
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Moreover, we define the interpolating projection operator Qn : L2(I ) → Xn by

Qn(φ) :=
∑

|k|∈Zn

φ̃kek

with

φ̃k := π

n

∑

j∈Z2n

φ

(
jπ

n

)

e−k

(
jπ

n

)

, |k| ∈ Zn .

It is known [2,25] that there exists a positive constant c such that for any φ ∈ Hμ(I ) with
μ > 1/2, there holds

‖φ − Qnφ‖ ≤ cn−μ‖φ‖μ.

Let Fn := Pn�|Xn and F̃n := Qn�|Xn . Then the matrices Fn and F̃n are the matrix
representations of operators Fn and F̃n , respectively. For each l ∈ Zm+1, we use F̃k,l to
denote the linear operator from X2k+l to X2k+l with the matrix representation F̃k,l .

With these notations, for each l ∈ Zm+1, Eq. (3.8) is equivalent to

uH
k,l,N = (P2k+l − P2k )h + [ ˜K H

k,l,N − (A H
k,l + B̃H

k,l,N )F̃k,l ]uk,l−1,N , (3.10)

and linear system (3.9) is equivalent to

[P2k − ˜K L
k,l,N + (A L

k,l + B̃L
k,l,N )F̃k,l ](uLk,l,N + uH

k,l,N ) = P2k h. (3.11)

Combining (3.10) with (3.11), we have for each l ∈ Zm+1

[I − ˜K L
k,l,N + (A L

k,l + B̃L
k,l,N )F̃k,l ]uk,l,N

= P2k+l h + [ ˜K H
k,l,N − (A H

k,l + B̃H
k,l,N )F̃k,l ]uk,l−1,N . (3.12)

To give the convergence analysis, we need some useful lemmas. The first lemma given in
[10,24] is concerned with the differences between Kn and ˜Kn,N .

Lemma 3.3 If N := �log2 n� andK ∈ Xσ (I 2)∩Hμ(I 2)with σ ≥ μ+1/2+ε, μ ≥ 0, ε >

0, then there exist positive constants c and n0 ∈ N such that for all n ∈ N with n ≥ n0 and
for all w ∈ L2(I ),

‖(Kn − ˜Kn,N )Pnw‖ ≤ c‖w‖n−μ.

As a direct consequence of Lemma 4.3 in [10], we have the following estimation of the
differences (Bn − B̃n,N )Fn .

Lemma 3.4 If N := �log2 n� and B ∈ Xσ (I 2)∩Hμ(I 2)with σ ≥ μ+1/2+ε, μ ≥ 0, ε >

0, then there exist positive constants c and n0 ∈ N such that for all n ∈ N with n ≥ n0 and
for all w ∈ L2(I ),

‖(Bn − B̃n,N )FnPnw‖ ≤ c‖w‖n−μ.

The next result is devoted to estimate the difference between the operators Fn and F̃n ,
which can be proved by similar arguments to those of Lemma 4.1 in [5].

Lemma 3.5 If the function |x ′| ∈ Hμ+1(I ), μ ≥ 0, then there exists a positive constant c
such that for all n ∈ N and w ∈ L2(I )

‖(Fn − F̃n)Pnw‖ ≤ c‖w‖n−μ. (3.13)

Proof Replacing the function a by |x ′|, Lemma 4.1 in [5] leads directly the desired result. ��
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Combining the above three lemmas, we obtain the following estimation.

Lemma 3.6 If N := �log2 n�, B ∈ Xσ (I 2)∩ Hμ(I 2) with σ ≥ μ+ 1/2+ ε, μ ≥ 0, ε > 0,
and |x ′| ∈ Hμ+1(I ), then there exist positive constants c and n0 ∈ N such that for all n ∈ N

with n ≥ n0 and for all w ∈ L2(I ),

‖(Bn − B̃n,N )F̃nPnw‖ ≤ c‖w‖n−μ.

Proof By the triangle inequality, we get for all n ∈ N and w ∈ L2(I )

‖(Bn − B̃n,N )F̃nPnw‖ ≤ ‖(Bn − B̃n,N )FnPnw‖ + ‖(Bn − B̃n,N )(Fn − F̃n)Pnw‖.
(3.14)

On one hand, by Lemma 3.4, there exist c1 > 0 and n1 ∈ N such that for all n ≥ n1 and
w ∈ L2(I ),

‖(Bn − B̃n,N )FnPnw‖ ≤ c1‖w‖n−μ. (3.15)

On the other hand, applying Lemma 3.3 to the kernel B, we have that there exist positive
constants c2 and n2 ∈ N such that for all n ≥ n2 and w ∈ L2(I ),

‖(Bn − B̃n,N )(Fn − F̃n)Pnw‖ ≤ c2‖(Fn − F̃n)Pnw‖n−μ.

Together with (3.13) the above inequality shows that there exists positive constant c3 such
that

‖(Bn − B̃n,N )(Fn − F̃n)Pnw‖ ≤ c3‖w‖n−2μ. (3.16)

Substituting (3.15) and (3.16) into the inequality (3.14) and letting c := max{c1, c3}, n0 :=
max{n1, n2}, we get the desired result. ��

A standard argument in [2,25] tells us that there exist a positive integer n0 and a positive
constant ρ such that for all n ≥ n0 and all w ∈ Xn ,

‖(I − Kn + (An + Bn)Fn))w‖ ≥ ρ‖w‖, (3.17)

which shows the operator I − Kn + (An + Bn)Fn is stable. We are now ready to present
the stability of the operator I − ˜Kn,N + (An + B̃n,N )F̃n .

Theorem 3.7 If N := �log2 n�, K,B ∈ Xσ (I 2) ∩ Hμ(I 2) with σ ≥ μ + 1/2 + ε, μ ≥
0, ε > 0, and |x ′| ∈ Hμ+1(I ), then there exist a positive integer n0 such that for all n ≥ n0
and for all w ∈ Xn,

‖(I − ˜Kn,N + (An + B̃n,N )F̃n)w‖ ≥ ρ

2
‖w‖.

Proof By Lemmas 3.3 and 3.6, we conclude that there exists a positive integer n1 such that
for all n ≥ n1 and for all w ∈ Xn ,

‖(Kn − ˜Kn,N )w‖ ≤ ρ

6
‖w‖, ‖(B̃n,N − Bn)F̃nw‖ ≤ ρ

6
‖w‖.

It follows from Lemma 3.5 and the uniformly boundedness of the operatorsAn andBn, n ∈
N, that there exists a positive integer n2 such that for all n ≥ n2 and for all w ∈ Xn ,

‖(An + Bn)(F̃n − Fn)w‖ ≤ ρ

6
‖w‖.

Combining the above inequalities with (3.17), we get for all n ≥ n0 := max{n1, n2} and for
all w ∈ Xn ,

‖(I − ˜Kn,N + (An + B̃n,N )F̃n)w‖
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≥ ‖(I − Kn + (An + Bn)Fn)w‖ − ‖(Kn − ˜Kn,N )w‖
−‖(B̃n,N − Bn)F̃nw‖ − ‖(An + Bn)(F̃n − Fn)w‖ ≥ ρ

2
‖w‖.

��

Theorem 3.8 If K,B ∈ Xσ (I 2) ∩ Hμ(I 2) with σ ≥ μ + 1/2 + ε, μ ≥ 0, ε > 0 and
u ∈ Hμ(I ), |x ′| ∈ Hμ+1(I ), then there exist a positive constant c and a positive integer n0,
such that for all k ≥ n0 and for all m ∈ N0,

‖uk,m,N − u‖ ≤ c2−μ(k+m)‖u‖μ, (3.18)

where N = k + m.

Proof We prove this theorem by induction on m. The proof for the case m = 0 is trivial. We
assume that (3.18) holds for the case of m − 1 and consider the case of m.

Let û2k+m be the solution of Eq. (2.9) with n = 2k+m . Using the triangle inequality, we
get

‖uk,m,N − u‖ ≤ ‖û2k+m − u‖ + ‖uk,m,N − û2k+m‖.
According to Theorem 2.3, the first term on the right-hand side of the above inequality can
be estimated as

‖u − û2k+m‖ ≤ c02
−μ(k+m)‖u‖μ (3.19)

for some positive constant c0 and sufficiently large integer k. It suffices to estimate the second
term. Combining (2.9) with (3.12), we represent the difference uk,m,N − û2k+m as

uk,m,N − û2k+m = [I − ˜Kk,m,N + (A2k+m + B̃k,m,N )F̃2k+m ]−1(u1 + u2), (3.20)

where

u1 := ( ˜Kk,m,N − K2k+m )û2k+m + [(B2k+m − B̃k,m,N )F̃2k+m ]û2k+m

+ (A2k+m + B2k+m )(F2k+m − F̃2k+m )û2k+m ,

and

u2 := [ ˜K H
k,m,N + (A H

2k+m + B̃H
k,m,N )F̃2k+m ](uk,m,N − uk,m−1,N ).

From Theorem 3.7, there holds for sufficiently large integer k

‖uk,m,N − û2k+m‖ ≤ 2

ρ
(‖u1‖ + ‖u2‖). (3.21)

We now turn to estimating u1 and u2. It follows from Lemmas 3.3, 3.5 and 3.6 and the
uniformly boundedness of the operators A2k+m and B2k+m , that there exists a constant c1
such that for sufficiently large integer k and for all m

‖u1‖ ≤ c12
−μ(k+m)‖û2k+m‖.

Since ‖û2k+m − u‖ → 0 uniformly for all m, as k → ∞, and ‖u‖ ≤ ‖u‖μ, we conclude that
there exists a constant c2 such that for sufficiently large integer k and for all m

‖u1‖ ≤ c22
−μ(k+m)‖u‖μ. (3.22)
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To estimate u2, we first prove the uniformly boundedness of the operators F̃n, n ∈ N, on
Xn . By Lemma 3.5 and with the fact that there holds ‖Fnw‖ ≤ c′‖w‖ for all n ∈ N and
w ∈ Xn , we have

‖F̃nw‖ ≤ ‖(F̃n − Fn)w‖ + ‖Fnw‖ ≤ (c′′n−μ + c′)‖w‖,
for all n ∈ N and w ∈ Xn . That is to say, there exists a positive constant c3 such that for all
n ∈ N and w ∈ Xn , ‖F̃nw‖ ≤ c3‖w‖. This leads to the following estimation of u2

‖u2‖ ≤ (‖ ˜K H
k,m,N‖ + c3‖A H

2k+m‖ + c3‖B̃H
k,m,N‖)‖uk,m,N − uk,m−1,N‖.

We note that ‖ ˜K H
k,m,N‖ + c3‖A H

2k+m‖ + c3‖B̃H
k,m,N‖ → 0 uniformly for all m, as k → ∞.

Hence, there holds for sufficiently large integer k and for all m,

‖u2‖ ≤ ρ

4
(‖uk,m−1,N − û2k+m‖ + ‖û2k+m − uk,m,N‖). (3.23)

Substituting (3.22) and (3.23) into (3.21), we obtain

‖uk,m,N − û2k+m‖ ≤ 4c2
ρ

2−μ(k+m)‖u‖μ + ‖uk,m−1,N − û2k+m‖.

Together with the induction hypothesis, the above inequality yields

‖uk,m,N − û2k+m‖ ≤ 4c2
ρ

2−μ(k+m)‖u‖μ + ‖uk,m−1,N − u‖ + ‖u − û2k+m‖
≤ c42

−μ(k+m)‖u‖μ, (3.24)

for some positive constant c4. By inequalities (3.19) and (3.24), we prove (3.18) for m. ��

4 Numerical Examples

In this section, we present numerical examples to demonstrate the approximate accuracy and
computational complexity of the proposed method. All computer programs for the numerical
examples are run on a personal computer with a 2.8GHz CPU and 8G memory.

As has been pointed out in [10], if the exact solution u of the boundary integral equation
is analytic, the improved Fourier–Galerkin method (2.9) enjoys the exponential convergence
order. Hence, for a small n the approximate solution ûn will achieve enough accuracy and
then we solve the nonlinear system (3.2) directly by Newton’s method or solve the linear
system (3.4) directly by Gaussian elimination. In this case, we denote by dn the dimensions
of the approximate subspaces and define the relative error Err of the approximate solution
by

Err := ‖u − ûn‖
‖u‖ .

In the case when the exact solution u has a general regularity, we will use the fast algorithms
proposed in section 3 for solving (2.9). To demonstrate the numerical results, we let k denote
the initial level and m denote the number of levels to be augmented. We also use d2k+m

to denote the dimensions of the approximate subspaces. The relative error “Err” and the
approximation order “AO” are defined respectively by

Err := ‖u − uk,m,k+m‖
‖u‖ , and AO := log2

‖u − uk,m,k+m‖
‖u − uk,m+1,k+m+1‖ ,
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Table 1 Numerical results for
Example 4.1

n dn Err

2 3 8.0990e−03

8 15 1.1300e−06

16 31 1.1913e−11

where uk,m,k+m is the approximate solution obtained by Algorithm 1 or Algorithm 2. We
denote by “CT” the computing time measured in seconds, which is used for generating the
sparse matrices K̃n,N , B̃n,N and solving the nonlinear system (3.3) by Algorithm 1 or solving
the linear system (3.6) byAlgorithm2. To confirm the quasi-linear computational complexity,
we also define

CO := log2
CT(2k+m+1)

CT(2k+m)
.

We first present three numerical examples for solving the boundary integral equation
reformulated from the nonlinear boundary value problem:

⎧
⎨

⎩

�u(x) − 2u(x) = 0, x ∈ D,
∂u(x)

∂nx
= −u(x) − sin u(x) + f (x), x ∈ �,

(4.1)

where D is a circle plate region with the boundary � having the parametrization

x(t) = (cos t, sin t), t ∈ I.

Example 4.1 We choose the right-hand side function f = ecos t+sin t (cos t + sin t + 1) +
sin(ecos t+sin t ), t ∈ I, so that the function

u(t) = ecos t+sin t , t ∈ I,

is the exact solution of the integral equation reformulated from (4.1). Since the solution u is
analytic, we obtain the approximation solution by solving (3.2) directly by Newton’s method.
The numerical results for this example are presented in Table 1.

We observe from the numerical results that the approximation error decays quite fast so
that for n = 16 the approximate solution ûn has already got enough accuracy. Hence, we
need not to consider a fast solver for the improved Fourier–Galerkin method.

To confirm the theoretical order of approximation and computational complexity of Algo-
rithm 1, the following two examples are concerned with the exact solutions with different
regularities.

Example 4.2 In this example, the right-hand side function f is chosen such that

u(t) =
{
t, 0 ≤ t < π,

2π − t, π ≤ t < 2π,

is the exact solution of the integral equation. We note that u ∈ H0.5−ε(I ) with ε > 0 being
an arbitrary number. We solve (3.2) by Algorithm 1 with the initial level k = 4 and list the
numerical results in Table 2. It is known from the regularity of u that the convergence order
of the approximation solution is 0.5 − ε. This is confirmed by the numerical results listed
in Table 2. The numerical results also show that the computing time is consistent with the
quasi-linear computational complexity estimate.
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Table 2 Numerical results of
Algorithm 1 for Example 4.2

m d24+m Err AO CT CO

0 31 9.9015e−02 0.008

1 63 6.9683e−02 0.5068 0.021 1.3923

2 127 4.8969e−02 0.5045 0.061 1.5384

3 255 3.4533e−02 0.5037 0.163 1.4183

4 511 2.4391e−02 0.5017 0.444 1.4457

5 1,023 1.7238e−02 0.5007 1.167 1.3742

6 2,047 1.2186e−02 0.5003 3.156 1.4353

Table 3 Numerical results of
Algorithm 1 for Example 4.3

m d24+m Err AO CT CO

0 31 9.0850e−03 0.008

1 63 3.1511e−03 1.5276 0.023 1.5236

2 127 1.0977e−03 1.5214 0.061 1.4072

3 255 3.8554e−04 1.5095 0.165 1.4356

4 511 1.3589e−04 1.5044 0.437 1.4052

5 1,023 4.7973e−05 1.5021 1.168 1.4183

6 2,047 1.6949e−05 1.5010 3.162 1.4368

Example 4.3 We choose the right-hand side function f such that

u(t) = 1

12
(3t2 − 6π t + 2π2), t ∈ I,

is the exact solution of the integral equation. It can be seen that u ∈ H1.5−ε(I ) with ε > 0
being an arbitrary number. We also solve (3.2) by Algorithm 1 with the initial level k = 4
and report the the numerical results for this example in Table 3.

The next three numerical examples are devoted to solving the boundary integral equation
reformulated from the Robin boundary value problem:

⎧
⎨

⎩

�u(x) − 2u(x) = 0, x ∈ D,
∂u(x)

∂nx
= −u(x) + f (x), x ∈ �,

(4.2)

where D is a kite-shaped region with the boundary � having the parametrization

x(t) = (x1(t), x2(t)) = (cos t + 0.65 cos 2t + 0.65, 1.5 sin t), t ∈ I.

Example 4.4 In this example, we consider the analytic solution u(t) = e−x1(t)−x2(t), t ∈ I.
Then the right-hand side function has the form f (t) = e−x1(t)−x2(t)[(−1.5 cos t − sin t −
1.3 sin 2t)/

√
w(t)] with w(t) = (1.5 cos t)2 + (sin t + 1.3 sin 2t)2, t ∈ I . We solve (3.4)

directly by Gaussian elimination. The numerical results presented in Table 4 confirm that the
improved Fourier–Galerkin method attains the exponential convergence order.

Example 4.5 We choose the right-hand side function f such that

u(t) =
{
t, 0 ≤ t < π,

2π − t, π ≤ t < 2π,
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Table 4 Numerical results for
Example 4.4

n dn Err

2 3 1.0415e−01

8 15 1.5918e−03

16 31 2.7569e−08

32 63 4.5270e−11

Table 5 Numerical results of
Algorithm 2 for Example 4.5

m d24+m Err AO CT CO

0 31 9.9005e−02 0.008

1 63 6.9543e−02 0.5096 0.023 1.5236

2 127 4.8937e−02 0.5070 0.063 1.4537

3 255 3.4528e−02 0.5032 0.173 1.4573

4 511 2.4390e−02 0.5015 0.462 1.4171

5 1,023 1.7238e−02 0.5007 1.234 1.4174

6 2,047 1.2186e−02 0.5004 3.690 1.5803

Table 6 Numerical results of
Algorithm 2 for Example 4.6

m d24+m Err AO CT CO

0 31 9.0847e−03 0.008

1 63 3.1695e−03 1.5192 0.023 1.5236

2 127 1.0996e−03 1.5273 0.064 1.4764

3 255 3.8570e−04 1.5114 0.175 1.4512

4 511 1.3591e−04 1.5049 0.466 1.4130

5 1,023 4.7974e−05 1.5023 1.225 1.3944

6 2,047 1.6949e−05 1.5011 3.741 1.6106

is the exact solution of the integral equation reformulated from (4.2). Solving the linear system
(3.6) by Algorithm 2 with the initial level k = 4, we obtain the approximation solution. The
desired theoretical approximation order is 0.5 − ε since u ∈ H0.5−ε(I ) with ε > 0 being
an arbitrary number. We list the numerical results of this example in Table 5, which are
consistent with the approximate accuracy and computational complexity of Algorithm 2.

Example 4.6 In this example, we also consider the exact solution of the integral equation as

u(t) = 1

12
(3t2 − 6π t + 2π2), t ∈ I,

by choosing the right-hand side function f . As has been pointed out in Example 4.3, there
holds u ∈ H1.5−ε(I ) with ε > 0 being an arbitrary number. In Table 6, we present the
numerical results for this example when we solve (3.6) by Algorithm 2 with the initial level
k = 4.
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