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Abstract Superconvergence of discontinuous Galerkin (DG) methods for hyperbolic con-
servation laws has been intensively studied in different settings in the past. For example,
the numerical solution by a semi-discrete DG scheme is superconvergent with order 2k + 1
in the negative-order norms, when the solution is globally smooth. Hence the accuracy of
the numerical solution can be enhanced to (2k + 1)th order accuracy by simply applying a
carefully designed post-processor (Cockburn et al. in Math Comput 72:577–606, 2003). In
this paper, we investigate superconvergence for the DG schemes coupled with Lax–Wendroff
(LW) time discretization (LWDG). Through numerical experiments, we find that the original
LWDG scheme developed in Qiu et al. (Comput Methods Appl Mech Eng 194:4528–4543,
2005) does not exhibit superconvergence properties mentioned above. In order to restore
superconvergence, we propose to use the techniques from the local DG scheme to recon-
struct high order spatial derivatives, while, in the original LWDG formulation, the high order
derivatives are obtained by direct differentiation of the numerical solution. A collection of
1-D and 2-D numerical experiments are presented to verify superconvergence properties of
the newly proposed LWDG scheme. We also perform Fourier analysis via symbolic compu-
tations to investigate the superconvergence of the proposed scheme.
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1 Introduction

The discontinuous Galerkin (DG) methods are a class of finite element methods, designed
for solving hyperbolic problems and many others [13]. A distinct feature of the DG methods
is to use piecewise polynomial spaces of degree k with discontinuities at cell boundaries as
trial and test function spaces. Due to many attractive properties of DG methods, such as the
ease of handling complicated geometries and boundary conditions, the compactness and the
flexility for unstructuredmeshes and so on, these methods are becoming increasingly popular
in many applications [10,11,27].

In this paper, we consider another distinguished property of the DG scheme, namely,
superconvergence. In particular, we are interested in two types of superconvergence behav-
iors. One is the accuracy enhancement by post-processing the numerical solution, the other
one is the long time behavior of numerical errors. It is showed in [9] that a semi-discrete
DG solution converges with (2k + 1)th order accuracy in the negative-order norm, when the
problem is linear and the solution is globally smooth. Based on the error estimate, the DG
solution on translation invariant grids can be post-processed via a kernel convolution with
B-spline functions. The post-processed solution is proved to converge with order 2k + 1
in the L2 norm [4,9]. A similar superconvergence result for the local DG (LDG) methods
solving convection–diffusion problems is provided in [18]. On the other hand, it is shown
in [6–8,30] that the semi-discrete DG or LDG solution is closer to the Radau projection of
the exact solution [(k + 2)th order] than the exact solution itself [(k + 1)th order]. More
recently, Cao et al. constructed another special projection of the exact solution, which is even
closer to the DG solution than the Radau projection [(2k+1)th order], see [5]. Consequently,
the error of a DG solution will not significantly grow over a long time period. Some related
work of adopting Fourier analysis to investigate superconvergence properties forDG schemes
includes [2,3,16,17,25,26,31].

The semi-discrete DG scheme can be further combined with certain time integrators. For
example, one can choose the strong stability persevering (SSP) Runge–Kutta (RK) method
[14] to achieve high order accuracy in both space and time.As an alternative, the one-step one-
stage high order Lax–Wendroff (LW) type time discretization [21] attracts lots of attentions
due to its compactness and low-storage requirement [22,23]. The LW procedure is known as
the Cauchy–Kowalewski type time discretization in the literature, which relies on converting
each time derivative in a truncated temporal Taylor expansion (with expected accuracy) of
the solution into spatial derivatives by repeatedly using the underlying differential equation
and its differentiated forms. The original LWDG scheme is proposed by Qiu et. al in [22]
for the hyperbolic conservation laws and extended to Hamilton–Jacobi equations in [15]. In
this paper, we would like to investigate superconvergence properties of the LWDG scheme.
To the best of our knowledge, there is no superconvergence results reported in the literature
for the LWDG schemes. The numerical results documented in [6,9] indicates that the RKDG
scheme exhibits superconvergence properties if the spatial error dominates, whereas the
results reported in Sect. 2 below show that such superconvergence can not be observed
numerically for the original LWDG schemes in [22].

In order to restore superconvergence in the LWDG framework, we modify the original
scheme by borrowing techniques from the LDG scheme. In particular, the high order spatial
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derivatives in the LW procedure are reconstructed through a LDG formulation, while they are
obtained by direct differentiation of the numerical solution for the original LWDG scheme.
In addition, for the newly proposed LWDG scheme, flux terms appeared in the LDG frame-
work provide extra freedom to design appropriate numerical fluxes for numerical stability.
Numerical experiments demonstrate that themodified LWDG scheme is stable and high order
accurate. Moreover, it is observed that the proposed scheme displays similar superconver-
gence properties as a RKDG scheme. In order to theoretically reveal superconvergence of
the new LWDG scheme, we follow the analysis in [16] to study the eigen-structures of the
amplificationmatrix in the Fourier analysis framework. In [29], the dispersion and dissipation
error analysis for the original LWDG scheme is provided.

The paper is organized as follows. In Sect. 2, a review of DG and LDG methods is given.
In Sect. 3, we review superconvergence properties of DG schemes and perform a numerical
study to show that the original LWDG scheme does not exhibit superconvergence in terms
of accuracy enhancement by applying a post-processor (Sect. 3.1) and long time behavior
of errors (Sect. 3.2). In Sect. 4, we formulate a new LWDG scheme for the linear and non-
linear hyperbolic conservation laws and the Euler system. Some implementation details are
also discussed. In Sect. 5, we symbolically analyze the eigen-structures of the amplification
matrices of the proposed LWDG scheme as well as the original LWDG scheme when k =
1, 2. In Sect. 6, numerical examples for scalar and system of equations in one and two spatial
dimensions are provided to verify superconvergence properties of the proposed scheme. Some
interesting observations are discussed based on our understanding. Conclusions are given in
Sect. 7.

2 Review: DG, LDG Methods and LW Time Discretization

In this section, we briefly review the DG and LDG methods for solving hyperbolic conser-
vation laws and diffusion equations, respectively. We only consider 1-D cases for simplicity.
The original LW time discretization coupled with DG methods will also be discussed.

2.1 DG Scheme

We first review the DG scheme for the following 1-D hyperbolic conservation laws problem

ut + f (u)x = 0, x ∈ [a, b], t > 0, (2.1)

with suitable initial and boundary conditions.
Consider a partition of the computational domain [a, b] into N cells as follows:

a = x 1
2

< x 3
2

< · · · < xN+ 1
2

= b.

Denote the cell by I j = [x j− 1
2
, x j+ 1

2
] and the cell center by x j = 1

2

(
x j+ 1

2
+ x j− 1

2

)
, for

j = 1, . . . , N . The length of the cell is denoted by �x j = x j+ 1
2

− x j− 1
2
and the mesh size

�x = max1≤ j≤N �x j . Define the approximation space as

V k
h =

{
v : v|I j ∈ Pk(I j ); 1 ≤ j ≤ N

}
, (2.2)

where Pk(I j ) denotes the set of polynomials of degree up to k on cell I j . The semi-discrete
DG method for solving (2.1) is defined as follows: find uh ∈ V k

h such that ∀v ∈ V k
h , we have
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∫

I j
(uh)tv dx −

∫

I j
f (uh)vx dx + f̂ j+ 1

2
v−
j+ 1

2
− f̂ j− 1

2
v+
j− 1

2
= 0, j = 1, . . . , N . (2.3)

Here and below u+
h = uh(x+), u−

h = uh(x−) denote the right and left limits of the function

uh at a spatial location x , respectively. The monotone numerical flux f̂ := f̂ (u−
h , u+

h ) as the
exact or approximate Riemann solver is defined at the cell interface. In the simulation, one
can choose a standard monotone flux such as the Lax–Friedrichs flux. It was shown in [20]
that the numerical solution uh by the semi-discrete DG scheme is L2 stable, i.e.,

d

dt

∫ b

a
u2h dx ≤ 0, (2.4)

when the periodic boundary conditions are imposed.

2.2 LDG Scheme

In this subsection, we review the LDG scheme [12] for the following 1-D diffusion equation:

ut = (c(u)ux )x , x ∈ [a, b], t > 0, (2.5)

with suitable initial and boundary conditions. Here we assume c(u) ≥ 0. The domain dis-
cretization is same as the DG scheme (2.3). In order to define the LDG scheme, we rewrite
Eq. (2.5) into the following system by introducing an auxiliary variable p = √

c(u)ux :

ut = (q ′ p)x , (2.6)

p = qx , (2.7)

where q(u) = ∫ u √
c(s) ds. The semi-discrete LDGmethod for solving (2.6)–(2.7) is defined

as follows: find uh, ph ∈ V k
h such that ∀v, w ∈ V k

h , we have
∫

I j
(uh)tv dx +

∫

I j
q ′ phvx dx − ̂q ′ ph j+ 1

2
v−
j+ 1

2
+ ̂q ′ ph j− 1

2
v+
j− 1

2
= 0, (2.8)

∫

I j
phw dx +

∫

I j
qwx dx − q̂ j+ 1

2
w−

j+ 1
2

+ q̂ j− 1
2
w+

j− 1
2

= 0, (2.9)

for j = 1, . . . , N . ̂q ′ ph and q̂ are numerical fluxes that are carefully designed for semi-
discrete L2 stability. For example, in [12], the following numerical fluxes were proposed,

̂q ′ ph = [[q(uh)]]
[[uh]] p−

h , (2.10)

q̂ = q(u+
h ), (2.11)

where

[[uh]] = u+
h − u−

h

denotes the jump of function uh at a spatial location.
The following semi-discrete L2 stability property is proved in [12],

d

dt

∫ b

a
u2h dx + 2

∫ b

a
p2h dx = 0, (2.12)

when the periodic boundary conditions are imposed.
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2.3 Time Discretization: LW Method

The LW time discretization, as an alternative to the method-of-line RK time discretization,
was proposed for the DG scheme in [22]. We consider the 1-D conservation law (2.1). The
formulation of LW type time discretization starts with a Taylor expansion in time for the
solution u. For example, for third order temporal discretization, we have

u(x, t + �t) ≈ u(x, t) + �tut (x, t) + �t2

2
utt (x, t) + �t3

6
uttt (x, t). (2.13)

The temporal derivatives in (2.13) are then converted into spatial derivatives via the original
differential equation (2.1) and its differentiated versions:

ut = − f (u)x , (2.14)

utt = (
f ′(u) f (u)x

)
x , (2.15)

uttt = − (
f ′′(u) ( f (u)x )

2 + f ′(u)
(
f ′(u) f (u)x

)
x

)
x
. (2.16)

Substituting (2.14)–(2.16) into (2.13) gives

u(x, t + �t) ≈ u(x, t)

− �t

(
f (u) − �t

2
f ′(u) f (u)x + �t2

6

(
f ′′(u) ( f (u)x )

2 + f ′(u)
(
f ′(u) f (u)x

)
x

))

x

= u(x, t) − �t F(u,�t)x , (2.17)

where

F = f (u) − �t

2
f ′(u) f (u)x + �t2

6

(
f ′′(u) ( f (u)x )

2 + f ′(u)
(
f ′(u) f (u)x

)
x

)
(2.18)

is a new flux function. The LWDG formulation is defined based on (2.17) as follows: given
unh ∈ V k

h , find u
n+1
h ∈ V k

h such that ∀v ∈ V k
h , we have

∫

I j
un+1
h v dx =

∫

I j
unhv dx + �tn

(∫

I j
F

(
unh,�tn

)
vx dx − F̂j+ 1

2
v−
j+ 1

2
+ F̂j− 1

2
v+
j− 1

2

)
,

(2.19)

for j = 1, . . . , N and n = 0, 1, . . .. Here unh approximates the solution of (2.1) at time tn ,

and �tn = tn+1 − tn . The numerical flux F̂j+ 1
2
is defined as

F̂j+ 1
2

= 1

2

((
F

((
unh

)+
j+ 1

2
,�tn

)
+ F

((
unh

)−
j+ 1

2
,�tn

))
− α

((
unh

)+
j+ 1

2
− (

unh
)−
j+ 1

2

))
,

(2.20)

where α = maxu | f ′(u)| with the maximum taken in the computational domain [a, b].
Here f (unh)x and

(
f ′(unh) f (u

n
h)x

)
x in F (2.18) are obtained by direct differentiation of the

numerical solution, i.e.,

f
(
unh

)
x = f ′ (unh

) (
unh

)
x ,

(
f ′ (unh

)
f
(
unh

)
x

)
x

= f ′ (unh
) (

2 f ′′ (unh
) (
unh

)2
x + f ′ (unh

) (
unh

)
xx

)
.

Note that the numerical flux F̂j+ 1
2
is very similar to the Lax–Friedrichs flux.
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3 Superconvergence Properties and Numerical Evidences

In this section, we review superconvergence properties of DG schemes and assess the numer-
ical performance of the corresponding properties for the LWDG schemes proposed in [22].

3.1 Enhanced Accuracy by Post-processing

It has been proved in [9] that a semi-discrete DG solution for a linear hyperbolic equation is
superconvergent in the negative-order norms with order of 2k + 1 assuming that the solution
is globally smooth. Because of this, the order convergence can be enhanced from (k + 1)th
order to (2k + 1)th order by applying a post-processor [4], when the mesh is translation
invariant. Specifically, such better approximated solution u�

h is obtained by convolving the
numerical solution with a convolution kernel Kh that is a linear combination of B-splines
[4,9],

u�
h = Kh � uh . (3.1)

We refer to [4,9] for the details of construction and analysis of the kernel. Along this line, a
similar estimation of the LDG scheme for solving linear convection–diffusion equations was
given in [18], and of theDG scheme for solving nonlinear scalar hyperbolic conservation laws
was provided in [19]. The numerical results reported in [9] show that the (2k + 1)th order of
convergence is achieved, when a high order SSP RK scheme is used for time discretization.
Note that the time step �t is chosen small enough such that the spatial error dominates.

Now, we study the convergence property of the post-processed solutions for the LWDG
scheme (2.19) with numerical flux specified in Eq. (2.20) for the following linear advection
problem:

ut + ux = 0, x ∈ [0, 2π],
u(x, t = 0) = sin x, (3.2)

with the periodic boundary conditions. In particular, we use the LWDG scheme (2.19) to
solve the model problem and post-process the numerical solution at final time step. The
numerical mesh is set to be uniform. The numerical solution is computed up to time T=1
and we let �t = CFL�x with CFL=0.01, thereby making the spatial error dominant.

InTable 1,we report the L2 and L∞ errors and orders of accuracy, before and after applying
the post-processing procedure. It is observed that themagnitude of numerical errors is reduced
by applying the post-processor, however the order of accuracy remains k + 1.

3.2 Long Time Behavior of Errors

It is discovered that the DG errors do not significantly grow over a very long time period [6].
Such behavior of error could be explained by the superconvergence of the DG solution in
approximating the Radau projection of the exact solution [6,8,30]. In particular, numerical
analysis for solving the linear advection equation (3.2) in [30] shows that theRadau projection
of the exact solution Pu satisfies

‖Pu − uh‖ ≤ C1(1 + T2)�xk+2.

It leads to the following error estimation:

‖e‖ ≤ C0�xk+1 + C1(1 + T2)�xk+2, (3.3)
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Table 1 Linear advection. LWDG scheme in [22]

Mesh Before post-processing After post-processing

L2 error Order L∞ error Order L2 error Order L∞ error Order

P1

20 4.21E−03 – 1.34E−02 – 3.77E−04 – 5.37E−04 –

40 1.06E−03 1.99 3.45E−03 1.96 4.49E−05 3.07 6.27E−05 3.10

60 4.72E−04 2.00 1.54E−03 1.98 1.38E−05 2.91 1.92E−05 2.92

80 2.65E−04 2.00 8.71E−04 1.99 6.24E−06 2.76 8.63E−06 2.77

100 1.70E−04 2.00 5.58E−04 1.99 3.47E−06 2.62 4.79E−06 2.64

P2

20 1.02E−04 – 3.50E−04 – 4.25E−06 – 6.03E−06 –

40 1.28E−05 3.00 4.41E−05 2.99 2.67E−07 3.99 3.78E−07 4.00

60 3.79E−06 3.00 1.31E−05 3.00 7.06E−08 3.28 9.99E−08 3.28

80 1.60E−06 3.00 5.51E−06 3.00 2.89E−08 3.11 4.09E−08 3.11

100 8.18E−07 3.00 2.82E−06 3.00 1.46E−08 3.05 2.07E−08 3.05

P3

20 2.12E−06 – 4.81E−06 – 8.76E−08 – 1.20E−07 –

40 1.32E−07 4.00 3.48E−07 3.82 2.74E−09 5.00 3.52E−09 5.09

60 2.59E−08 4.02 6.74E−08 4.02 5.36E−10 4.02 6.88E−10 4.03

80 8.22E−09 3.99 2.13E−08 4.02 1.70E−10 4.00 2.18E−10 4.00

100 3.37E−09 4.00 8.75E−09 3.99 6.96E−11 3.99 8.93E−11 3.99

T=1, CFL=0.01

where C0 and C1 are positive constant. Note that the first term, which is independent of
time, will dominate the error until T = O(1/

√
�x). In [16], an optimal error estimation

was obtained via Fourier analysis. If the mesh is assumed to be uniform and the boundary
condition is periodic, the numerical error by a DG scheme (when k = 1, 2, 3) for the linear
advection equation (3.2) can be decomposed into three parts:

‖e‖ ≤ C0�xk+1 + TC1�x2k+1 + C2 exp

(
−CT

�x

)
�xk+1, (3.4)

where C0, C1, C2 and C are positive constant. The claim indicates that the error does not
significantly grow until T = O(1/�xk).

We use the model problem (3.2) to compare the LWDG schemes with the RKDG schemes
in the context of the long time behavior of numerical errors. We use P2 as the approximation
space and let N = 50, CFL=0.01. Note that both schemes are third order accurate in space
and time. We compute the numerical solutions using the two types of DG schemes up to time
T = 500, and plot the time evolution history of the L2 errors in Fig. 1. It is observed that the
numerical error by the RKDG scheme does not significantly grow for a long time simulation.
In fact, the magnitude of error at T = 500 is comparable to that at the very beginning of the
simulation. Contrarily, the error by the LWDG scheme begins to noticeably grow around
T=20, and the growth rate is observed to be linear after some time.

In [16], the following error is defined and studied for the DG scheme:

ē = uh(t = 2π) − uh(t = 4π). (3.5)
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Fig. 1 Long time behavior of errors. 1-D linear advection. The RKDG P2 scheme versus the original LWDG
P2 scheme. CFL = 0.01

Table 2 Linear advection

Mesh P1 P2 P3

L2 error Order L2 error Order L2 error Order

20 1.94E−03 – 1.32E−05 – 2.74E−07 –

40 2.57E−04 2.91 1.48E−06 3.16 1.71E−08 4.00

60 8.24E−05 2.81 4.29E−07 3.05 3.39E−09 4.00

80 3.80E−05 2.69 1.79E−07 3.03 1.07E−09 3.99

100 2.14E−05 2.57 9.15E−08 3.02 4.36E−10 4.05

Original LWDG scheme in [22]. The L2 norms of error ē and the order of accuracy. CFL=0.01

It is proved in [16] that the error ē by a RKDG scheme (when k = 1, 2, 3) is in the
order of 2k + 1 for spatial accuracy. Here, we check the error ē for the LWDG scheme when
solving the model equation (3.2). In Table 2, we report the L2 norms of error ē and orders of
accuracy. Only (k + 1)th order of accuracy is observed for the LWDG scheme.

In summary, several superconvergence properties of a semi-discreteDG scheme, including
accuracy enhancement by post-processing the numerical solution and long time behaviors
of errors, are maintained by the a discrete RKDG scheme, whereas they are not numerically
observed when the original LW temporal discretization [22] is used. In the next section, we
propose a newLWDG scheme, which aims to restore superconvergence propertiesmentioned
above.

4 A New LWDG with LDG for High Order Spatial Derivatives

In the section,we formulate a newLWDGscheme for solving linear and non-linear hyperbolic
conservation laws. Some stability issues will be discussed.

123



J Sci Comput (2015) 65:299–326 307

4.1 Linear Advection Equations

In this subsection, we still consider the linear advection equation (3.2). As the original LWDG
scheme,we startwith theTaylor expansion of the solution in time as inEq. (2.13) for achieving
third order temporal accuracy. By repeatedly using the underlying differential equation and
its differentiation versions, we obtain

u(t + �t) ≈ u(t) − �tux + �t2

2
uxx − �t3

6
uxxx . (4.1)

Note that the original LWDG formulation uses direct differentiation of the solution to obtain
high order spatial derivatives. However, in the new formulation, we propose to use the LDG
techniques to reconstruct high order derivatives instead. To illustrate the idea of using an
LW time discretization procedure in the LDG framework, we consider solving the following
partial differential equation (PDE) by an LDG scheme:

ut = ε1ux + ε2uxx + ε3uxxx , (4.2)

where ε1 < 0, ε2 > 0, and ε3 < 0 are constant. Two auxiliary variables are introduced,

p = ux , q = px .

The corresponding semi-discrete LDG scheme is to find uh, ph, qh ∈ V k
h such that

∀v, w, s ∈ V k
h , we have

∫

I j
(uh)tv dx = −

∫

I j
(ε1uh + ε2 ph + ε3qh)vx dx + (ε1(ûh) j+1/2

+ ε2( p̂h) j+1/2 + ε3(q̂h)
n
j+1/2)v

−
j+1/2

− (ε1(ûh) j−1/2 + ε2( p̂h) j−1/2 + ε3(q̂h) j−1/2)v
+
j−1/2,∫

I j
phw dx = −

∫

I j
uhwx dx + (ũh) j+1/2w

−
j+1/2 − (ũh) j−1/2w

+
j−1/2,

∫

I j
qhs dx = −

∫

I j
phsx dx + ( p̃h) j+1/2s

−
j+1/2 − ( p̃h) j−1/2s

+
j−1/2, (4.3)

for j = 1, . . . , N . Here uh , ph and qh approximate the solution, and its first and second order
spatial derivatives of (4.2), respectively. ûh , ũh , p̂h , p̃h , and q̂h are numerical fluxes chosen
according to stability consideration as in [12,28]:

ûh = u−
h , p̂h = p+

h , ũh = u−
h , q̂h = q+

h , p̃h = p+
h . (4.4)

Similar to the semi-discrete LDG scheme for solving the convection–diffusion equations [12]
and KdV-type equations [28], we have the following proposition:

Proposition 4.1 The semi-discrete LDG scheme (4.3) equipped with the alternating numer-
ical fluxes (4.4) is L2 stable.

Proof The proof is similar to that in [28], thus omitted for brevity.
Based on the semi-discrete LDG scheme (4.3) for Eq. (4.2), we define the new LWDG

formulation as follows: given unh ∈ V k
h , find pnh , qnh , un+1

h ∈ V k
h such that ∀v, w, s ∈ V k

h ,
we have
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∫

I j
un+1
h vdx =

∫

I j
unhvdx + �t

(∫

I j
(unh − �t

2
pnh + �t2

6
qnh )vxdx

−
((

ûnh
)
j+1/2 − �t

2

(
p̂nh

)
j+1/2 + �t2

6

(
q̂nh

)
j+1/2

)
v−
j+1/2

+
((

ûnh
)
j−1/2 − �t

2

(
p̂nh

)
j−1/2 + �t2

6

(
q̂nh

)
j−1/2

)
v+
j−1/2

)
, (4.5)

∫

I j
pnhwdx = −

∫

I j
unhwxdx + (

ũnh
)
j+1/2 w−

j+1/2 − (
ũnh

)
j−1/2 w+

j−1/2, (4.6)

∫

I j
qnh sdx = −

∫

I j
pnhsxdx + (

p̃nh
)
j+1/2 s

−
j+1/2 − (

p̃nh
)
j−1/2 s

+
j−1/2, (4.7)

for j = 1, . . . , N and n = 0, 1, . . .. Here unh , p
n
h and qnh approximate the solution, and its

first and second order spatial derivatives of (2.1) at time tn , respectively. ûnh , ũ
n
h , p̂

n
h , p̃

n
h , and

q̂nh are the numerical fluxes chosen as in (4.4).
Note that the proposed LWDG scheme (4.5) is formulated by applying the forward Euler

time discretization to the semi-discrete LDG scheme (4.3) with ε1 = −1, ε2 = �t
2 , and

ε3 = −�t2
6 .

4.2 Nonlinear Scalar Conservation Laws

Now, we consider a 1-D nonlinear scalar hyperbolic conservation law (2.1). Similar to the
linear case, we start with the second order Taylor expansion of the solution. Again, in order
to formulate a new LWDG scheme, we first consider the following PDE:

ut = ε1 f (u)x + ε2
(
f ′(u) f (u)x

)
x , (4.8)

where ε1 < 0 and ε2 > 0 are constant. By introducing the auxiliary variable

p = f (u)x ,

we define the corresponding semi-discrete LDG scheme for Eq. (4.8): find uh, ph ∈ V k
h

such that ∀v, w ∈ V k
h , we have

∫

I j
(uh)tvdx = −

∫

I j

(
ε1 f (uh) + ε2 f

′(uh)ph
)
vxdx +

(
ε1 f̂ j+1/2 + ε2̂f ′ p j+1/2

)
v−
j+1/2

−
(
ε1 f̂ j−1/2 + ε2̂f ′ p j−1/2

)
v+
j−1/2,∫

I j
phwdx = −

∫

I j
f (uh)wxdx + f̃ j+1/2w

−
j+1/2 − f̃ j−1/2w

+
j−1/2, (4.9)

for j = 1, . . . , N . Here f̂ j+1/2, ̂f ′ p j+1/2 and f̃ j+1/2 are the numerical fluxes, which are
carefully chosen for the stability consideration as follows:

f̂ j+1/2 : standard monotone numerical flux,

̂f ′ p j+1/2 = [[ f (uh)]] j+1/2

[[uh]] j+1/2
(ph)

+
j+1/2,

f̃ j+1/2 = f ((uh)
−
j+1/2). (4.10)
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The resulting semi-discrete scheme features a similar stability property as the linear case. In
particular, we have the following proposition.

Proposition 4.2 The semi-discrete LDG scheme (4.9) with the numerical fluxes (4.10) is L2

stable.

Proof Over cell I j , let v = uh and w = ph in scheme (4.9), we can derive the following cell
entropy inequality,

1

2

d

dt

∫

I j
u2hdx + ε2

∫

I j
p2hdx = Ĥ j+1/2 − Ĥ j−1/2 + � j−1/2, (4.11)

where Ĥ j+1/2 is the numerical entropy flux defined by

Ĥ j+1/2 = −ε1

(
F

(
(uh)

−
j+1/2

)
− (uh)

−
j+1/2 f̂ j+1/2

)

+ ε2
[[ f (uh)]] j+1/2

[[uh]] j+1/2
(ph)

+
j+1/2(uh)

−
j+1/2

with F(u) = ∫ u f (s)ds, and

� j−1/2 = ε1

(
[[F(uh)]] j−1/2 − f̂ j−1/2[[uh]] j−1/2

)
≤ 0

because of the monotonicity of the numerical flux f̂ and ε1 < 0. The L2 stability follows by
summing up (4.11) over j . ��

Similar to the linear case, one can formulate a LWDG scheme for solving (2.1) based on
the semi-discrete scheme (4.9) with second order accuracy in time: find pnh , u

n+1
h ∈ V k

h such
that, ∀v, w ∈ V k

h , we have

∫

I j
un+1
h v dx =

∫

I j
unhv dx + �t

(∫

I j

(
f
(
unh

) − �t

2
f ′ (unh

)
pnh

)
vx dx

−
(
f̂ j+1/2− �t

2
̂f ′ pnh j+1/2

)
v−
j+1/2+

(
f̂ j−1/2− �t

2
̂f ′ pnh j−1/2

)
v+
j−1/2

)
,

∫

I j
pnhw dx = −

∫

I j
f
(
unh

)
wx dx + f̃ j+1/2w

−
j+1/2 − f̃ j−1/2w

+
j−1/2, (4.12)

for j = 1, . . . , N and n = 0, 1, . . .. The numerical fluxes f̂ j+1/2, ̂f ′ p j+1/2, and f̃ j+1/2

are chosen as (4.10). Again, note that the new LWDG scheme (4.12) is defined by the semi-
discrete LDG scheme (4.9) coupled with the forward Euler time discretization with ε1 = −1
and ε2 = −�t

2 .
The higher temporal order accuracy can be attained by incorporatingmore time derivatives

in the Taylor expansion. For example, the third order temporal derivative can be added to
achieve third order accuracy. However, we find it difficult to formulate a semi-discrete LDG
scheme, for which the L2 stability can be proved, when solving the following PDE,

ut = ε1 f (u)x + ε2
(
f ′(u) f (u)x

)
x + ε3

(
f ′′(u) ( f (u)x )

2 + f ′(u)
(
f ′(u) f (u)x

)
x

)
x
.

(4.13)

Here, ε1 < 0, ε2 > 0, and ε3 < 0 are constant. On the other hand, we can mimic the
procedure of the linear case by introducing another auxiliary variable

123



310 J Sci Comput (2015) 65:299–326

q = (
f ′(u)p

)
x ,

and obtain

f ′′(u) ( f (u)x )
2 + f ′(u)

(
f ′(u) f (u)x

)
x = f ′′(u)p2 + f ′(u)q.

Similar to the scheme (4.12), we can develop a LWDG scheme with third order accuracy
in time. The simple alternating fluxes are chosen for the third order terms in simulations
[27,28]. From our extensive numerical tests, the proposed third order scheme appears to be
stable.

Remark 4.3 The proposed scheme can be directly extended to high dimensional problems
as the original LWDG scheme. However, much more auxiliary variables are needed. From
this point of view, the proposed scheme is much more involved in implementation than the
original LWDG scheme when solving high dimensional problems.

4.3 Hyperbolic System: Euler System

The proposed scheme can be extended for solving hyperbolic systems. To illustrate the idea,
we consider the 1-D Euler system

⎛
⎜⎝

ρ

M

E

⎞
⎟⎠

t

+
⎛
⎜⎝

M

vM + P

v(E + P)

⎞
⎟⎠

x

= 0, (4.14)

where ρ is density, v is velocity, M = ρv is momentum, E is total energy and P is pressure
given by the equation of state P = (γ − 1)(E − 1

2vM) with γ = 1.4. Below, we consider
a second order accurate LW procedure by repeatedly using the Euler equation (4.14) and its
differentiation versions, we have

ρ(t + �t) ≈ ρ(t) + �tρt + �t2

2
ρt t

= ρ(t) − �tMx + �t2

2
(vM + P)xx ,

M(t + �t) ≈ M(t) + �tMt + �t2

2
Mtt

= M(t) − �t (vM + P)x + �t2

2

(
(γ − 1)(v(E + P))x

+ (3 − γ )v(vM + P)x + γ − 3

2
v2Mx

)

x
,

E(t + �t) ≈ E(t) + �t Et + �t2

2
Ett

= E(t) − �t (v(E + P))x + �t2

2

((
3

2
(γ − 1) + γ

E

P

)
(vM + P)x

+
(

(γ − 1)v3 − γ Ev

ρ

)
Mx + γ v(v(E + P))x

)

x
. (4.15)

Similar to the scalar case, define the following three auxiliary variables

p = Mx , q = (vM + P)x , r = (v(E + P))x . (4.16)
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Plugging (4.16) into (4.15), we obtain

ρ(t + �t) ≈ ρ(t) − �tMx + �t2

2
qx

M(t + �t) ≈ M(t) − �t (vM + P)x + �t2

2

(
γ − 3

2
v2 p + (3 − γ )vq + (γ − 1)r

)

x

E(t + �t) ≈ E(t) − �t (v(E + P))x + �t2

2

((
(γ − 1)v3 − γ vE

ρ

)
p

+
(
3

2
(γ − 1) + γ

E

P

)
q + γ vr

)

x
. (4.17)

Then, a second order LWDG method can be formulated based on (4.16) and (4.17). Again,
higher order accuracy can be obtained by incorporating more derivatives in the truncated
Taylor expansion (4.15) and introducing the corresponding auxiliary variables. In the sim-
ulation, we adopt the Godunov flux for the first order spatial derivative and the alternating
fluxes for the high order derivatives in the LDG framework. The details of the formulation
are omitted for brevity.

5 Fourier Analysis

In this section, we apply the classical Fourier analysis to the newly proposed LWDG scheme
to study its superconvergence properties. In particular, we follow the approach in [16] to
analyze the eigen-structure of the amplification matrix for the LWDG schemes via symbolic
computations.

Under the assumption of uniformmeshes and periodic boundary conditions, Fourier analy-
sis for the 1-D linear advection equation (3.2) is performed by assuming the initial condition
to be a plane wave

u(x, 0) = exp(iωx), (5.1)

where ω is the wave number. The numerical solution for a DG scheme can be represented as

un(x) =
k∑

l=0

unl, jφl, j (x), x ∈ I j , (5.2)

where unl, j are the degrees of freedom and φl, j (x) are the basis functions of V k
h over cell I j .

We adopt the scaled Legendre orthogonal polynomial basis in the following discussion, i.e.,

φ0, j (x) = 1, φ1, j (x) = x − x j
�x

, φ2, j (x) =
(
x − x j
�x

)2

− 1

12
, . . .

We first note that a fully discrete DG scheme can be written in a matrix form

un+1
j =

m1∑
m=−m0

Amunj+m, (5.3)

where unj = (un0, j , . . . , u
n
k, j )

T , and ( j −m0, . . . , j +m1) is the stencil. For example, denote

by β = �t
�x , we have
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un+1
j =

(
β + 2β2 β

2 + β2

−6β − 6β2 −3β − 3β2

)
unj−1 +

(
1 − β − 4β2 −β

2 − β2

2

6β − 6β2 1 − 3β − 12β2

)
unj

+
(

2β2 −β2

2

12β2 −3β2

)
unj+1,

for the proposed LWDG scheme of P1 DG spatial discretization combined with a second
order LW procedure.

Assume

unj = ûnexp(iωx j ), (5.4)

substituting which into the DG scheme (5.3) provides the following iterative equation for the
coefficient vector ûn ,

ûn+1 = Gûn, (5.5)

where G is the amplification matrix, given by

G =
m1∑

m=−m0

Amexp(imξ), ξ = ω�x . (5.6)

It is observed from the symbolic computations that G is diagonalizable. Denote the k + 1
eigenvalues as λ0, . . . , λk . The linear stability requires |λl | ≤ 1, l = 0, . . . , k. Note that there
is only one physically relevant eigenvalue, denoted by λ0, which approximates the analytical
eigenvalue exp(−iω�t). Under certain CFL time step restriction, the other k non-physical
eigenvalues will be damped exponentially fast as one evolves the numerical solution in time.

Below, we will analyze the dispersion and dissipation errors for the physically relevant
eigenvalue λ0 via symbolic computations. Note that such analysis of RKDG schemes and
original LWDGschemes are given in [16] and [29], respectively. The comparison between the
two LWDG schemes will be drown based on the dispersion and dissipation errors analysis,
which can partially explain why the new LWDG scheme exhibits superconvergence but the
original one does not.

We perform symbolic computations on Mathematica. Below is a summary for the two
LWDG schemes when k = 1, 2. Note that, when k = 3, the symbolic computation becomes
prohibitively complicated for the LWDG schemes. Moreover, it is even more difficult to
deal with the case of k >= 4 in the current Fourier analysis framework, where an algebraic
equation with degree greater than 4 needs to be solved symbolically. We assume 0 < β ≤ 1
and ω�x  1 in the asymptotic expansions.

• New LWDG scheme

– P1 case

λ0 = 1 − iω�t − ω2

2
�t2 − iω4

72
�t�x3 + O(�t�x4)

– P2 case

λ0 = 1 − iω�t − ω2

2
�t2 + iω3

6
�t3 − iω6

7200
�t�x5 + O(�t�x6)
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• Original LWDG scheme [29]

– P1 case

λ0 = 1 − iω�t − ω2

2
�t2 − iω3

12
�t2�x + O(�t�x3)

– P2 case

λ0 = 1 − iω�t − ω2

2
�t2 + iω3

6
�t3

− ω4

120

(
(20β + 5)�t4 − 2�t3�x − �t2�x2

1 + β

)
+ O(�t�x4)

The normalized dispersion and dissipation error of the physically relevant eigenvalue λ0
is defined as

e0 = 1

�t
(λ0 − exp(−iω�t)). (5.7)

In [16], the error e0 is analyzed for the RKDG schemes. It is found that e0 is (2k + 1)th
order accurate in space and pth order accurate in time with the approximation space V k

h and
a pth order SSP RK method. Such extra high order accuracy of e0 in space contributes to the
superconvergence for RKDG. Below, we analyze the error e0 for the two LWDG schemes.
We only consider P1 and P2 cases, and adopt a LW time discretization procedure such that
the resulting LWDG scheme has the same order of accuracy in space and time. Denote eN0
and eO0 as the normalized dispersion and dissipation errors (5.7) for the new (N) and original
(O) LWDG scheme, respectively.

By a simple Taylor expansion of Eq. (5.7) with λ0 computed above, we have the following.

• P1 case

eN0 = −ω4

72
�x3 − iω3

6
�t2 + O(�x4 + �t3), (5.8)

eO0 = − iω3

12
�t�x − iω3

6
�t2 + O(�x3 + +�t3). (5.9)

• P2 case

eN0 = − iω6

7200
�x5 − ω4

24
�t3 + O(�x6 + �t4), (5.10)

eO0 = − ω4

β + 1

(
(5β + 2)

24
�t3 − 1

60
�t2�x − 1

120
�t�x2

)
+ O(�x3 + �t4).

(5.11)

Discussion First we note that the order of the leading term in eN0 as shown in (5.8) is the same
as that from the RKDG scheme, which is (2k+1)th order in space and (k+1)th order in time
for both P1 and P2 cases. With the similar argument in [16], it is implied that the numerical
error by the new LWDG scheme does not significantly grow if the spatial error dominates.
In fact, we only need to choose sufficiently small CFL number to reduce the temporal error.
In the simulation, we let CFL=0.01 and the superconvergent (2k + 1)th order accuracy can
be numerically observed when the mesh is relatively coarse, e.g. see Table 3. Also note that
the (2k + 1)th order superconvergence only occurs in space, while the temporal accuracy for
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Table 3 1-D linear advection

Mesh Before post-processing After post-processing

L2 error order L∞ error Order L2 error Order L∞ error Order

P1

20 4.22E−03 – 1.37E−02 – 3.73E−04 – 5.41E−04 –

40 1.06E−03 1.99 3.51E−03 1.96 4.25E−05 3.14 6.09E−05 3.15

60 4.72E−04 2.00 1.57E−03 1.98 1.22E−05 3.09 1.74E−05 3.09

80 2.65E−04 2.00 8.85E−04 1.99 5.04E−06 3.06 7.18E−06 3.07

100 1.70E−04 2.00 5.68E−04 1.99 2.55E−06 3.05 3.63E−06 3.06

P2

20 1.07E−04 – 3.66E−04 – 2.52E−06 – 3.59E−06 –

40 1.34E−05 3.00 4.62E−05 2.99 4.47E−08 5.82 6.36E−08 5.82

60 3.96E−06 3.00 1.37E−05 3.00 4.37E−09 5.74 6.21E−09 5.74

80 1.67E−06 3.00 5.78E−06 3.00 8.60E−10 5.65 1.22E−09 5.65

100 8.56E−07 3.00 2.96E−06 3.00 2.48E−10 5.57 3.53E−10 5.57

P3

20 2.07E−06 – 5.44E−06 – 6.89E−08 – 9.75E−08 –

40 1.30E−07 3.95 3.85E−07 3.82 2.76E−10 7.97 3.90E−10 7.96

60 2.55E−08 4.03 7.55E−08 4.02 1.08E−11 7.98 1.53E−11 7.98

80 8.07E−09 4.00 2.37E−08 4.02 1.09E−12 7.98 1.54E−12 7.98

100 3.31E−09 4.00 9.74E−09 3.99 1.85E−13 7.96 2.61E−13 7.96

New LWDG scheme. T=1, CFL = 0.01

eN0 is still k + 1. On the other hand, under the assumption β < 1, error eO0 by the original
LWDG scheme is dominated by

eO0 = O(�t�xk),

rather than an extra high order term O(�x2k+1) as in the new LWDG scheme.
Finally, we briefly address the efficiency of the proposed method in terms of the CFL time

step restrictions obtained from linear stability. In the Fourier analysis framework, the upper
bound of CFL numbers can be derived. Such a technique is adopted in [22] to obtain the CFL
upper bounds for the original LWDG schemes, which are approximately 0.22 for the P1 case
and 0.12 for the P2 case. We perform the same analysis for the proposed LWDG schemes to
derive the upper bound of CFL numbers. They are approximately 0.20 and 0.11 for the P1

and P2 cases, which are slightly smaller than those for the original LWDG schemes.

6 Numerical Examples

In this section, we provide a collection of 1-D and 2-D numerical examples to investigate
the superconvergence properties of the newly proposed LWDG schemes in different settings.
In the simulations, we choose relatively small CFL numbers, e.g., CFL=0.01, such that the
spatial error dominates. We remark that if a large CFL number is taken, the relatively low
order temporal accuracy may pollute the superconvergent (2k + 1)th order of accuracy in
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Fig. 2 Long time behavior of errors. 1-D linear advection. Original LWDG P2 versus newLWDG P2 scheme.
CFL = 0.01

space. Thus only the low order temporal accuracy can be numerically observed. This is also
true for the RKDG schemes, see [9].

6.1 1-D Linear Advection Equation

Consider the linear advection problem:

ut + ux = 0, x ∈ [0, 2π], (6.1)

with the initial condition

u(x, 0) = sin(x), (6.2)

and the periodic boundary conditions. In the simulation, we choose �t = CFL�x with
CFL = 0.01. In Table 3, we report the L2 and the L∞ errors and the orders of accuracy
before and after the post-processing procedure for the proposed LWDG scheme. Unlike the
original LWDG scheme, it is clearly observed that the magnitude of numerical errors by the
new LWDG schemes is greatly reduced through the post-processing procedure and the orders
of accuracy are also enhanced from k+1 to 2k+1. The observation indicates that numerical
error of the new LWDG scheme is order of 2k +1 in space in terms of negative-order norms.
A rigorous proof of the claim is subject to future investigation.

Then we test the long time behavior of the L2 errors by the proposed LWDG scheme in
comparison to that by the original LWDG scheme. In Fig. 2, we report the time evolution of
numerical errors by the two types of LWDG P2 schemes with N = 50 up to time T=500. It
is observed that the error by the new LWDG scheme does not significantly grow over a long
period of time, which is very similar to the result by the RKDG P2 scheme shown in Fig. 1.
Also note that the error by the original LWDG scheme grows linearly with respect to time.

In [16], the following error is defined and studied for RKDG schemes:

ē = uh(t = 2π) − uh(t = 4π). (6.3)
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Table 4 1-D linear advection

Mesh P1 P2 P3

L2 error Order L2 error Order L2 error Order

20 1.89E−03 – 1.88E−06 – 1.40E−09 –

40 2.39E−04 2.99 5.96E−08 4.98 7.42E−12 7.56

60 7.08E−05 3.00 7.98E−09 4.96 4.36E−13 6.99

80 2.99E−05 3.00 1.93E−09 4.93 5.96E−14 6.92

100 1.53E−05 3.00 6.50E−10 4.88 1.34E−14 6.68

New LWDG scheme. The L2 norms of error ē and the orders of accuracy. CFL = 0.01

For a RKDG scheme, the error ē is in the order of 2k+1 in space, which indicates that the
numerical error will not significantly grow for a long time period. Here, we also check the
error ē for the proposed LWDG scheme. In Table 4, we report the L2 norms of error ē and
orders of accuracy. Similar to the RKDG scheme, (2k + 1)th order of accuracy is observed,
which implies that the numerical error by the new LWDG scheme does not significantly grow
for a long time period. The observation is consistent with the results given in Fig. 2. Also
note that the original LWDG scheme does not enjoy such superconvergence property.

In Fig. 3, we plot the errors of the numerical solutions before and after post-processing,
and errors ē in absolute value and in logarithmic scale for the new LWDG P2 scheme and
the original LWDG P2 scheme. It is observed that, for both schemes, the post-processed
errors and errors ē are much less oscillatory and also much smaller in magnitude than the
pre-processed errors. Moreover, note that the magnitude of post-processed errors and errors ē
by the new LWDG scheme is smaller than that by the original LWDG scheme, as the former
ones are fifth order accurate in space, but the latter ones are only third order.

At last, wewould like to report the convergence behavior for the proposed LWDGschemes
at the right-shifted Radau points as well as for the cell averages. Denote the l∞ error at the
right-shifted Radau points by

eR(t) = max
0≤ j≤N
0≤l≤k

|uh(xl, j , t) − u(xl, j , t)|,

where xl, j , l = 0, . . . , k are the k + 1 right-shifted Radau points on cell I j , and denote the
l2 error for the cell average by

eA(t) =
⎛
⎝ 1

N

N∑
j=1

(
1

�x j

∫

I j
uh(x, t) − u(x, t)dx

)2
⎞
⎠

1
2

.

For a semi-discrete DG scheme, it has been shown in [5,30] that the error eR(t) and the error
eA(t) converge with order of k + 2 and 2k + 1, respectively. The numerical results reported
in [30,31] also indicate that the fully-discrete RKDG scheme exhibits the same supercon-
vergence when the spatial error dominates. In Tables 5 and 6, we report the errors eR and
eA, respectively, and the associated orders of accuracy at time T=1. Similar to the RKDG
schemes, (k + 2)th order accuracy for eR and (2k + 1)th order accuracy for eA are observed.
We remark that the chosen alternating fluxes in (4.4) are crucial for observing the supercon-
vergence numerically at the shifted Radau points. In particular, for stability consideration,
we can also take ũh = u+

h and p̂h = p−
h in (4.4), and the numerical performance of such
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Fig. 3 Linear advection. The new LWDG P2 scheme (left column). The original LWDG P2 scheme (right
column). Before post-processing (top). After post-processing (middle). Error ē (bottom). CFL = 0.01. T = 4π
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Table 5 1-D linear advection

Mesh P1 P2 P3

l∞ error Order l∞ error Order l∞ error Order

20 9.18E−04 – 1.06E−05 – 5.42E−07 –

40 1.17E−04 2.97 6.84E−07 3.96 6.18E−09 6.45

60 3.49E−05 2.99 1.36E−07 3.98 7.27E−10 5.28

80 1.47E−05 2.99 4.32E−08 3.99 1.51E−10 5.46

100 7.57E−06 2.99 1.77E−08 3.99 4.48E−11 5.46

New LWDG scheme. The l∞ norms of error eR and the orders of accuracy. CFL = 0.01

Table 6 1-D linear advection

Mesh P1 P2 P3

l2 error Order l2 error Order l2 error Order

20 4.15E−04 – 6.60E−07 – 7.96E−09 –

40 5.32E−05 2.96 2.09E−08 4.98 9.66E−11 6.36

60 1.59E−05 2.98 2.77E−09 4.99 4.27E−12 7.69

80 6.73E−06 2.98 6.61E−10 4.98 1.64E−13 11.33

100 3.46E−06 2.98 2.18E−10 4.97 2.01E−14 9.41

New LWDG scheme. The l2 norms of error eA and the orders of accuracy. CFL = 0.01

a choice is quick similar to the original one (4.4), including the accuracy enhancement by
postprocessing the numerical solution and the long time behavior of errors. However, the
superconvergence results at the right-shifted Radau points are lost. Such a phenomenon can
be explained as follows. When solving the 1-D linear diffusion equation (2.5) with c(u) = 1
by the LDGmethod (2.8)–(2.9), it has been pointed out in [7] that the superconvergence at the
Radau points depends on the choice of alternating fluxes (2.10)–(2.11). Specifically, taking
q̂ = u+ and ̂q ′ ph = p−

h will lead to superconvergence at the left-shifted Radau points, while

taking q̂ = u− and ̂q ′ ph = p+
h will lead to superconvergence at the right-shifted Radau

points, see [1,6]. Now consider the LDG scheme (4.3) for solving (4.2). For the first order
term, one can only take ûh = u− for stability issue, which results in the superconvergence
at the right-shifted Radau points. For the second order term, taking p̂h = p+

h and accord-
ingly ũh = u−

h will also lead to superconvergence at the right-shifted Radau points, which is
consistent with the first order term. Consequently, the superconvergence at the right-shifted
Radau points are preserved. On the other hand, if p̂h = p−

h and ũh = u+
h are taken, then

inconsistency occurs, and hence the superconvergence at the right-shfited Radau points is
destroyed. We also remark that the superconvergence at the shifted Radau points and for the
cell averages can not be numerically observed for the original LWDG schemes.

6.2 1-D Nonlinear Burgers’ Equation

Consider 1-D nonlinear Burgers’ equation:

ut +
(
u2

2

)

x
= 0, x ∈ [0, 2π], (6.4)
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Table 7 Burgers’ equation (6.4)

Mesh Before post-processing After post-processing

New LWDG Original LWDG New LWDG Original LWDG

L2 error Order L2 error Order L2 error Order L2 error Order

P1

20 4.46E−03 – 4.44E−03 – 3.44E−04 – 3.25E−04 –

40 1.13E−03 1.98 1.13E−03 1.97 3.48E−05 3.30 3.58E−05 3.18

60 5.05E−04 1.99 5.05E−04 1.99 9.39E−06 3.23 1.16E−05 2.77

80 2.85E−04 1.99 2.85E−04 1.99 3.74E−06 3.20 5.74E−06 2.45

100 1.83E−04 1.99 1.83E−04 1.99 1.84E−06 3.18 3.47E−06 2.26

P2

20 1.37E−04 – 1.28E−04 – 3.35E−05 – 3.41E−05 –

40 1.75E−05 2.97 1.62E−05 2.98 6.42E−07 5.70 8.02E−07 5.41

60 5.23E−06 2.98 4.81E−06 2.99 5.90E−08 5.89 1.31E−07 4.47

80 2.22E−06 2.99 2.04E−06 2.98 1.06E−08 5.96 4.69E−08 3.58

100 1.14E−06 2.99 1.05E−06 2.99 2.77E−09 6.03 2.28E−08 3.24

T=0.2, CFL = 0.01

with the initial condition

u(x, 0) = sin(x) + 2, (6.5)

and the periodic boundary conditions. The time step is simply chosen as �t = CFL�x with
CFL = 0.01. In Table 7, we report the L2 errors and the orders of accuracy before and after
the post-processing procedure for both the proposed LWDG scheme and the original LWDG
scheme. The superconvergent results are clearly observed for the new scheme. However, sim-
ilar to the linear case, the post-processed error is only order of k + 1 by the original LWDG
scheme. We remark that using a upwind flux, e.g., the Godunov flux, for the first order deriv-
ative term is crucial to obtain superconvergent results in the proposed LWDG formulation.
If a general monotone numerical flux such as the Lax–Friedrichs flux is used, the (2k + 1)th
order superconvergence result may not be observed. In Fig. 4, we plot errors of the numerical
solution before and after post-processing in absolute value and in logarithmic scale for both
LWDG P2 schemes. The highly oscillatory nature of the pre-processed errors is observed
for both schemes. The post-processed errors do not oscillate much and the magnitude is also
much smaller. Again the magnitude of the post-processed errors by the new LWDG scheme
is much smaller than that by the original LWDG scheme.

In order to study error ē for the Burgers’ equation, we add a source term to Eq. (6.4) such
that sin(x + t) + 2 is the exact solution. A similar strategy is used in [16]. We consider the
following Burgers’ equation with a source term:

ut +
(
u2

2

)

x
= (sin(x + t) + 3) cos(x + t), x ∈ [0, 2π], (6.6)

with the initial condition

u(x, 0) = sin(x) + 2,
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Fig. 4 Burgers’ equation (6.4). New LWDG scheme (left column). Original LWDG scheme (right column).
P2 is used. Before post-processing (top). After post-processing (bottom). CFL = 0.01, T = 0.2

and the periodic boundary condition. We report the L2 norms of error ē and the orders
of accuracy in Table 8 for the proposed LWDG scheme and the original LWDG scheme.
(2k + 1)th order of accuracy is clearly observed for the new LWDG scheme. Again, such
superconvergence result is not observed for the original LWDG scheme. In Fig. 5, we plot
numerical errors and errors ē in absolute value and in logarithmic scale for both LWDG P2

schemes. Note that, the error ē is much less oscillatory and smaller in magnitude than the
pre-processed error for the two schemes, however, the magnitude of the error ē by the new
LWDG scheme is much smaller than that by the original LWDG scheme.

6.3 1-D Euler System

Consider 1-D Euler system (4.14). Let the initial condition to be

ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1 and P(x, 0) = 1,

subject to 2-periodic boundary conditions. The exact solution is ρ(x, t) = 1+0.2 sin(π(x −
t)), v(x, t) = 1 and P(x, t) = 1. We compute the numerical solution up to T=2. In Table 9,
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Table 8 Burgers’ equation (6.6)

Mesh New LWDG Original LWDG

P1 P2 P1 P2

L2 error Order L2 error Order L2 error Order L2 error Order

20 5.25E−04 – 8.44E−07 – 6.06E−04 – 4.91E−05 –

40 7.21E−05 2.86 2.67E−08 4.98 9.47E−05 2.68 6.18E−06 2.99

60 2.16E−05 2.97 3.54E−09 4.99 3.34E−05 2.57 1.83E−06 3.00

80 9.14E−06 2.99 8.42E−10 4.99 1.66E−05 2.42 7.74E−07 3.00

100 4.69E−06 3.00 2.77E−10 4.98 9.91E−06 2.31 3.96E−07 3.00

The L2 norms of error ē and the orders of accuracy. CFL = 0.01
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Fig. 5 Burgers’ equation (6.6). New LWDG P2 scheme (left column). Original LWDG P2 scheme (right
column). Before post-processing (top). Error ē (bottom). CFL = 0.01. T = 4π

we report the L2 and L∞ errors and the orders of accuracy for densityρ before and after apply-
ing the post-processing procedure for the new LWDG scheme. Similar superconvergence
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Table 9 1-D Euler system

Mesh Before post-processing After post-processing

L2 error Order L∞ error Order L2 error Order L∞ error Order

P1

20 8.61E−04 – 2.53E−03 – 2.04E−04 – 2.92E−04 –

40 2.13E−04 2.01 6.77E−04 1.90 2.48E−05 3.04 3.52E−05 3.05

60 9.45E−05 2.00 3.07E−04 1.95 7.26E−06 3.03 1.03E−05 3.03

80 5.31E−05 2.00 1.74E−04 1.97 3.05E−06 3.02 4.32E−06 3.02

100 3.40E−05 2.00 1.12E−04 1.98 1.55E−06 3.02 2.20E−06 3.02

P2

20 2.14E−05 – 7.35E−05 – 6.33E−07 – 8.98E−07 –

40 2.67E−06 3.00 9.24E−06 2.99 1.30E−08 5.60 1.85E−08 5.60

60 7.92E−07 3.00 2.74E−06 3.00 1.42E−09 5.47 2.01E−09 5.47

80 3.34E−07 3.00 1.16E−06 3.00 3.04E−10 5.36 4.31E−10 5.36

100 1.71E−07 3.00 5.92E−07 3.00 9.40E−11 5.26 1.33E−10 5.26

New LWDG scheme. L2 and L∞ errors of density ρ. T=2, CFL = 0.01

Table 10 1-D Euler system

New LWDG scheme. The L2

norms of error ē and the orders of
accuracy of density ρ.
CFL = 0.01

Mesh P1 P2

L2 error Order L2 error Order

20 3.79E−04 – 3.77E−07 –

40 4.77E−05 2.99 1.19E−08 4.98

60 1.42E−05 3.00 1.60E−09 4.96

80 5.98E−06 3.00 3.87E−10 4.93

100 3.06E−06 3.00 1.30E−10 4.88

property is observed as the scalar cases. In the simulation, the Godunov flux is used for the
first order derivatives in order to obtain the superconvergence result.

Then we check the error ē which is defined as

ē = ρh(t = 2) − ρh(t = 4),

since the period of the solution in time is 2. The L2 norms of error ē and orders of accuracy
are reported in Table 10 for P1 and P2. (2k + 1)th order accuracy is observed.

We also use the following benchmark Lax problem, for which discontinuous solution
structureswill be developed, to test the performance of the proposedLWDGscheme.Consider
the Riemann initial condition:

(ρ, v, P) = (0.455, 0.689, 3.528) x ≤ 0; (ρ, v, P) = (0.5, 0, 0.571) x > 0. (6.7)

A robust WENO limiting procedure with the TVB limiter as a troubled cell indicator is used
to suppress the spurious oscillations [24]. In Figs. 6 and 7, we plot the numerical solutions
of density ρ at T=1.3 with different TVB constant M . Comparable numerical results by the
proposed LWDG scheme are observed to those by the original LWDG scheme [22].
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Fig. 6 1-D Euler system. Lax problem. Density ρ. New LWDG scheme. TVB constant M = 1. P1 (left). P2

(right). N=200. T = 1.3
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Fig. 7 1-D Euler system. Lax problem. Density ρ. New LWDG scheme. TVB constant M = 50. P1 (left).
P2 (right). N=200. T = 1.3

6.4 2-D Linear Advection Equation

Consider the following 2-D linear advection equation

ut + ux + uy = 0, x × y ∈ [0, 2π] × [0, 2π], (6.8)

with the initial condition

u(x, y, 0) = sin(x + y), (6.9)

and the periodic boundary conditions. The time step is chosen as

�t = CFL
1

�x + 1
�y

,

where we set CFL=0.01 to make the spatial error dominant in the simulation. In Table 11,
we report the L2 and L∞ errors and the orders of accuracy before and after applying the
post-processor for the proposed LWDG scheme. Similar to the results for the 1-D advection
problem, (k + 1)th order of accuracy is observed for the pre-processed errors in both L2 and
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Table 11 2-D linear advection

Mesh Before post-processing After post-processing

L2 error Order L∞ error Order L2 error Order L∞ error Order

P1

20 × 20 5.40E−02 – 4.28E−02 – 1.61E−02 – 3.65E−03 –

40 × 40 1.32E−02 2.03 1.13E−02 1.92 1.97E−03 3.03 4.46E−04 3.03

60 × 60 5.86E−03 2.01 5.11E−03 1.96 5.80E−04 3.02 1.31E−04 3.02

80 × 80 3.29E−03 2.01 2.89E−03 1.98 2.43E−04 3.02 5.49E−05 3.02

100 × 100 2.10E−03 2.00 1.86E−03 1.98 1.24E−04 3.01 2.80E−05 3.02

P2

20 × 20 2.99E−03 – 3.40E−03 – 8.14E−05 – 1.83E−05 –

40 × 40 3.74E−04 3.00 4.25E−04 3.00 2.13E−06 5.25 4.80E−07 5.26

60 × 60 1.11E−04 3.00 1.26E−04 2.99 2.62E−07 5.17 5.90E−08 5.17

80 × 80 4.68E−05 3.00 5.33E−05 3.00 6.00E−08 5.13 1.35E−08 5.12

100 × 100 2.39E−05 3.00 2.73E−05 3.00 1.92E−08 5.10 4.33E−09 5.10

New LWDG scheme. T=1, CFL = 0.01

Table 12 Long time behavior of errors

Scheme T = 1 T = 20 T = 50 T = 100 T = 200

New LWDG P2 1.92E−04 1.92E−04 1.94E−04 1.99E−04 2.21E−04

Original LWDG P2 1.91E−04 1.95E−04 2.16E−04 2.77E−04 4.46E−04

2-D linear advection. LWDG P2 schemes. The L2 errors at T = 1, 20, 50, 100, and 200. Nx ×Ny = 50×50,
CFL=0.01

L∞ norms.Moreover, post-processed numerical solutions are superconvergent with the order
of 2k+1, which implies that numerical error is also order of 2k+1 in space in negative-order
norms for the 2-D case.

Then, we would like to test the long time behavior of the numerical errors. We set the
mesh size as Nx × Ny = 50 × 50 and report the numerical errors for the two LWDG P2

scheme at time T = 1, 20, 50, 100, 200 in Table 12. We observe that the numerical error by
the newLWDG scheme does not significantly grow for a long time period, which indicates, as
the RKDG scheme shown in [6], the new LWDG scheme features similar superconvergence
property for the 2-D linear advection problem. However, as the 1-D case, the error by the
original LWDG scheme is observed to noticeably grow at the beginning of the simulation.

Finally, we study the error ē which is defined as

ē = uh(t = π) − uh(t = 2π).

As the results reported in [16], error ē by the RKDG scheme is order of 2k + 1 in space for
solving the 2-D linear advection problem. In Table 13, we report the L2 norms of error ē
and orders of accuracy. The (2k + 1)th order of accuracy is observed. Such superconvergent
behavior of error ē implies that the numerical error by the proposed LWDG scheme solving
the 2-D linear advection problem does not significantly grow for a long time simulation. At
last, we want to point out that, similar to the 1-D cases, the original LWDG scheme for the
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Table 13 2-D linear advection

New LWDG scheme. The L2

norms of ē and the orders of
accuracy. CFL = 0.01

Mesh P1 P2

L2 error Order L2 error Order

20 × 20 4.61E−02 – 1.67E−04 –

40 × 40 5.96E−03 2.95 5.30E−06 4.98

60 × 60 1.77E−03 2.99 5.30E−06 4.99

80 × 80 7.50E−04 2.99 1.66E−07 4.99

100 × 100 3.84E−04 3.00 5.47E−08 4.99

2-D advection problem does not exhibit any superconvergence discussed above. We omit the
numerical results from the original LWDG schemes for brevity.

7 Conclusion

In this paper, we discuss the superconvergence properties of the discontinuous DG methods
LW time discretization. Numerical results indicate that the original LWDG scheme does not
possess several important superconvergence properties including accuracy enhancement by
applying a post-processor and long time behaviors of numerical errors. In order to restore the
superconvergence in the LW framework, we formulated a new LWDG scheme, in which the
techniques borrowed from the LDG scheme were adopted to obtain high order spatial deriv-
atives. Fourier analysis via symbolic computations was used to theoretically investigate the
superconvergence property. Future research directions include to establish stability analysis
and error estimate for the proposed LWDG scheme.
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