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Abstract For decades, the widely used finite difference method on staggered grids, also
known as the marker and cell (MAC) method, has been one of the simplest and most effec-
tive numerical schemes for solving the Stokes equations and Navier—Stokes equations. Its
superconvergence on uniform meshes has been observed by Nicolaides (SIAM J Numer Anal
29(6):1579-1591, 1992), but the rigorous proof is never given. Its behavior on non-uniform
grids is not well studied, since most publications only consider uniform grids. In this work,
we develop the MAC scheme on non-uniform rectangular meshes, and for the first time we
theoretically prove that the superconvergence phenomenon (i.e., second order convergence in
the L2 norm for both velocity and pressure) holds true for the MAC method on non-uniform
rectangular meshes. With a careful and accurate analysis of various sources of errors, we
observe that even though the local truncation errors are only first order in terms of mesh
size, the global errors after summation are second order due to the amazing cancellation
of local errors. This observation leads to the elegant superconvergence analysis even with
non-uniform meshes. Numerical results are given to verify our theoretical analysis.
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1 Introduction

Due to the importance of incompressible flows, many numerical methods (such as finite
difference methods, finite element methods, and finite volume methods) have been developed
for solving the Stokes and Navier—Stokes equations over the past five decades (e.g., [5,14]
and references therein). However, it is arguably that “Among the many numerical methods
that are available for solving the Navier—Stokes equations, one of the best and simplest is
the marker-and-cell method.” (Girault and Lopez [4, p. 347]). The same point view has been
shared by Han and Wu [6, p. 560]: “It is well known that the marker and cell (MAC) is
one of the simplest and most effective numerical schemes for solving Stokes equations and
Navier—Stokes equations.” The MAC method was introduced by Lebedev [12] and Daly et
al. [3]in 1960s, and has been widely used in engineering applications as evidenced being the
basis of many flow packages [17, p. 1579]. The MAC method is a finite difference method on
rectangular cells with pressure approximated at the cell center, the x-component of velocity
approximated at the midpoint of vertical edges of the cell, and the y-component of velocity
approximated at the midpoint of horizontal edges of the cell (cf. Fig. 1).

Though the MAC method has been used successfully since 1965, its theoretical numer-
ical analysis was not carried out until 1992 by Nicolaides and his collaborators [17,18] by
transforming the MAC method into a finite volume method. The difficulty is due to the fact
that only a few mathematical tools are available for finite difference or finite volume methods
[4, p. 348]. In 1996, Girault and Lopez [4] performed further analysis of the MAC method
by interpreting it as a mixed finite element method for the vorticity—velocity—pressure for-
mulation with special numerical quadratures. Then in 1998, Han and Wu [6] showed that
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Fig. 1 An exemplary staggered grid
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the MAC method can be obtained from a new mixed finite element method with the two
components of velocity and pressure defined on three staggered rectangular grids. In 2008,
Kanschat [11] showed that the MAC scheme is algebraically equivalent to the first-order
local discontinuous Galerkin method of Cockburn et al. [2] with a proper quadrature. Their
method is based on the H (div)-conforming Raviart-Thomas RT element. Inspired by the
work of Kanschat [11], very soon Minev [15] demonstrated that the MAC scheme can be
obtained by using the first-order Nédélec edge element on rectangular cells.

We would like to remark that all these papers [4,6,11,17] proved that the MAC method
has first order convergence O (h) for both the velocity (in H! norm) and the pressure (in L?
norm) on uniform rectangular meshes. But Nicolaides [17, p. 1591] pointed out that numerical
results suggest that the velocity is O (h?) without any proof. To our best knowledge, there is
no any existing paper proving the O (h?) convergence for the velocity.

In this paper, inspired by the analysis technique developed by Weiser and Wheeler [24]
for elliptic problems, and Siili and Monk [16,23] for both elliptic and Maxwell’s equations
solved by cell-centered non-uniform rectangular grids, we first derive the MAC scheme from
a variational form, and then we show that the O (h?) superconvergence is indeed true for
both the velocity and pressure on non-uniform rectangular grids. Superconvergence for other
equations are well studied (cf. [7-9,19,25,26], [13, Ch. 5] and references therein). Finally,
we like to mention that (as one anonymous referee pointed out) there are some convergence
analysis obtained for the MAC scheme developed for primitive equations (PEs), and planetary
geostrophic equation (PGEs). For example, for the PEs the O (h?) convergence for the velocity
in the L2 norm is proved on uniform rectangular meshes by Samelson et al. [21], and for PGEs
the O (h*) convergence in the L? norm is proved for the temperature on uniform rectangular
meshes by Samelson et al. [22]. It would be interesting to explore in the future if our analysis
can be extended to these problems on non-uniform rectangular grids.

The rest of the paper is organized as follows. In Sect. 2, we demonstrate that the MAC
scheme can be derived from a variational form, which will be used late in the error analysis.
In Sect. 3, we prove a discrete stability, which enjoys the same form in the continuous case.
Section 4 is devoted to the O (h?) superconvergence analysis for the MAC scheme. Numerical
examples are presented in Sect. 5 to support our theoretical analysis. We conclude the paper
in Sect. 6.

2 Derivation of the MAC Scheme

Let us consider the Stokes problem in two dimensional space: find the velocity . = (u*, u)”
and the pressure p such that

—pAu+Vp=f, inQ:=(0,L)x©O,L,), 1)
V.-u=0, inQ, ()
u=0, onof, 3)

where f = (f*, f¥)T denotes a given force, Jo pdxdy =0, and p > 0 is the viscosity. For
simplicity, we assume p = 1 in the rest paper. In the above, L, and L, denote the length of
the rectangular domain €2 in the x- and y-directions, respectively.

To construct a cell-centered difference scheme for the Stokes problem, we introduce a
non-uniform grid of €:

O=xp<x;<---<xy=L,, O=yg<y <---<ynv=0Ly,
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and denote the cell center (x; Vil ). Furthermore, we approximate the pressure at each
2
: X X (4.
cell center p(xi+%, yH%) by pi+%!j+%,the x-velocity u* at each x-edge center u* (x;, yH%)
by u;‘H . » and the y-velocity u” at each y-edge center uy(xl;%, yj) by ul‘ e To measure
s j 727.

the convergence rate, we denote iy = maxj<j<p (xX; — X;j—1), hy = max|<;j<y(yj — ¥j—1),
and h = max(hy, hy).
By integrating the x-component of Eq. (1) over cell &2, = (x;_1 ,xi+%) X (¥j, Yj+1)s

=3z
— |:/yjy/+1 (aalxx (xH_%,y) — aalxx (xi_%,y))dy

Yivl (ou® ou*
—I—/X. : (W(x»yjﬂ)— g(xyyj)) dx

1
-2

L) =2 ) o

=/ FECe ydxdy, 1<i<M—1,0<j<N-—1. )
Q

it

we have

Then approximating those edge integrals by midpoint values, the volume integral by its
center value, and dividing both sides by |Qi’j+% | = (xl.+% — X,-,%)(yjﬂ — yj), we obtain

1 whooo o —uwr o ur o —ut
i+1,j+5 iL,j+5 i,j+5 i—1,j+5
Xipl =L Xitl — X Xj — Xi—1
X X X X
u —u’ . ur .o, —u
_ 1 i,j+% l,j+% _ l,j+% l,j—%
Yji+1 =Y Yivd Vit Yivd Vi1
Pivyjrs ~Pimgits _ o 5
Yipl =X e
which can be rewritten as follows:
4+ .x — X +..x - X
w .o —Avut, ATut | —AJur
i j+d RN YU j+k Y i j45, A- o 6
- A = Sy ©
Xl =X Yi+1 =Y T

where we used the following standard forward and backward difference operators:

MX .l_uj.r.l p41.1—p.
+ ox i+l,j+5 L,j+5 _ i+5,]+75 i—
X P T e —— AX pl-‘rl i1 =

Lity Xitl — X LA

J+

=
=

_xi7

NI—=

X1
l+7

Similar notations are used for operations in the y-direction. Here we denote f~* il
Lty

= f“‘(xi, y]+%)
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Similarly, by integrating the y-component of Eq. (1) over cell Qi_% ;= (xi—1,x) X
(yj y]+1) we have

ou” ou”
- / (a (xi,y) — (xifl,y))dy
Y1 ax

/=2

+/ (% (x:704) - % (v y"%)) dx]
o )=o)

:/ P, ydxdy, 1<i<M,1<j<N-L @)
Q

=%

Then approximating those edge integrals by midpoint values, the volume integral by its
center value, and using the difference operators introduced above, we can obtain the cell-
centered difference scheme for the y-velocity:

+.¥ -y + .y -y
Ax”i,lj_Ax”i,lj Ay”i,lj_Ay”i,lj
— ; = 2 _ 2 2 +A)_pl %]+% — fl)_l ; (8)
i i—1 Yied V-1 2

By integrating Eq. (3) over cell QF% L= (x; —x;j—1) X (¥}, ¥j+1), and carring similar
techniques as above, we can obtain the cell-centered difference scheme for Eq. (3):

“ur +y —
Dyu oy F AUy =0 )

In summary, we recover the famous MAC scheme for the Stokes problem (1)—(3):

Aju;‘Hl - A‘u’( 4l A;‘,‘u;‘H_ - Ay_uj‘/+
»Jt+3 - LT3 2 - X
- +A p 1 1 =f" 1, (10
CNEE R Pickirt = iy 00
A+ ly_l i _Ax_ul_l/ A+ l}_l J _A;uly_l/
- z N z z +Aypl lj+l:fy_l .y (11)
Xi — Xi—1 yH%—yj_% /T2 i—5.]
- +u7 _
ALu? it —I—A t_%j_O. (12)
3 Stability Analysis
In this section, we will carry out the stability analysis for the scheme (10)—(12).
First, let us introduce various discrete norms to be used in the following analysis:
M N-1
187! 1P Z} Z(j)(xl- =X = AU AT (13)
i=1 j=

agus 02 ZZ( —xy) (var m i) A s "

3 1 y l]+l’
i=0 j=0
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M+1 N
-y 2 _ _ -y A=Y
185wy 1= ;,Z:‘)( )(y,+2 yj_%) Dyup s - bguy o (15)
M N
1Ayl ) P =20 2 @ = Xm0y = yj-0byu) ) Agul (16)

i=1 j=I

where functions out of the index bounds (0 < i < M,0 < j < N) are treated as zeros,
and any coordinates out of the physical domain are treated as their neighboring values. For
example, in (14) we treat

=0, gl = Ly, YN+1 =L,.

Note that to easily distinguish between the various norms, we leave the subindices inside
the norms. For functions without operators Af or Af, the discrete norm is defined as the
function value at the cell center multiplying the cell area, e.g.,

M N-1

[PREED 3D I TR [T hITNR a7)

i=0 j=0

To prove the stability result for our scheme (10)—(12), we need the following lemmas.

Lemma 3.1

M N
ZZ( —‘xi—%)(y/“ YU 1B Pigd el

i=0 j=0

M N
SDIPICEEE CATESTI I e (18)

i=1 j=1

N

Proof Note that

. —_ . X . -
53 (50g —5g) O 0y
i=0 j=0
- Zz(yf“ Ty (pi+%yj+% - pi—%,H%)
l J
X
1
— _ . oy, x X
- Z(y./+1 y-’)Z(ui,j+% Mi—l,j+%) Pi-}.j+s
J 1

=—ZZ(x,—xl_1)<y,+1—y,) (A ul +%)~pi_%,,+%, (19)

X
where in the third step we used the identity >, u i Pisd ! => ui—l,j+1 Pi 1l

Here and below, without confusion we may not erte out the specific bounds of i and ;.
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By the same technique, we have

oy . — ) y . “p. .
23 =) (v =g )y APy
i J

— . . y
—Z(xl—xlfl)- Z:ul_fjpl_,,+2 wy Pt
1
— _ y
= Z(xl Xi— I)Z( 1_7 i+l u’_i ]) p,_f 5
=—ZZ<x, X))y = ¥)) - (A u lyj)-p,-_%,,%. (20)

The proof is completed by adding (19) and (20), and using (12). ]
We also need the following discrete Poincaré inequality.
Lemma 3.2
L: L
O (Y | R (VoS Y | o e AT [
iy L L2
@) Ny AP = ZENAzel AP+ —HlATu] PR
7J 7J
Proof (i) By definition of the discrete norm (17), we have
M N-1 2
[CINIEES 35 3 CHESN [NESHE ()
i=0 j=0

=

M i
2
[ZO 3= %iy) O = )] D G =S A |
i=0 j

m=1

[\)\._.
¥
(=]

N-1

>

+

N\

Jj
— 2
(X _xi,%) (yj+1 _yj)|2(yn+% _ynf%) Ay uin+%|
n=0
M
5 (0 o
i i
— 2
|:Z(xm — Xpm—1) - Z(xm — Xm—1)|AL u;:z,j+%| i|

m=1 m=1

(xi+% - xi_%) Vj+1 —yj)

J
2
(ynJr% —y,,,%) 'Z(ynJr% ) |A u; n+1|

n=1 n=1
N-1

M
1
EE Z (Xm — Xm— 1)(yj+l_)’j)|A u*
m=1 j=0

m, +l|
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M i
Z (xi-ﬁ-% _xi—%) : Z(xm — Xm—1)
i=0 m=1
1 M N-—1
- 2
2 22 (g = img) Gy =g ) 1850,
i=0 n=1
Z()’/—H —yj)- Z(y,,+2 yn_,)
n=1
2 2

Ly ar Ly Ay 2
7” ”m,+'” +7|| uy %II,
which completes the proof. (ii) The proof is similar to (i). ]

Remark 3.1 If a function v only vanishes on one edge of €2, the discrete Poincaré inequality
can be modified as:

2
1P < L3IAY v; ,+1|| Vuly=0 =0,

2 2 2 _
EL,VHAyvi—%,j” Vvly=0 =0.

||lj+

||vi,%,j||

To make the stability analysis clearer, we first prove the following identities.

Lemma 3.3
M N-1
M) —Eg()’jﬂ U -(A;u;ﬁH%—A;u;ﬁ%)=||A;u;ij+%||2,
M N-1
@) - prolr ( +1 _x’—%) Mij%—% . (A;uzﬁ% B A; ;CJ+ ) ||A’ul J+1 “2’
M N
Gif) ;;0 (g =vimp) (Aju;.‘,%,] - A;u;.‘,%,j) =llagu)_, 1P,

M N
V) — oy y A At A=Y — A=Y 2
@iv) Ezo(x, xl_l)uF%’j (A},uii%,j Ay”i,%,j) ”Ay”i,L,j” .
i=1 j=
Proof (i) Itis easy to see that

M N-1

=22 O - y-’)uiﬁ% ' (A;uiﬂ_% —Ayu f1+2)
i=1 j=0
:_Z(y/+1_y/ Zl:ut]+l. ;r t]+1_zuzﬁ—l. ;ujcj+%
i=
N-1
= FO()’/H - yl);( 1 M?—l,jﬁ-%) Ayl f}+2
M N-1
= ; FO(x,- =iyt = PATU A=A
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where we used the definition (13) in the last step.
(i) Similarly, we have
M N-1
_ _ x . +.,x AT X
>3 (reey =)y (o5 - o)
i=0 j=0
M N—1 N—1
_ _ b - X _ X +,,x
= Z(m% X_1) Yij+d Ay Ui g+l Uij+d oMl
i=0 j=0 j=0
M N—1
_ _ _ - X AT _ - X 2
=2 (xi+% xi*%) (yf'+£ yi*%) Ayt pas Byt = 8y 1%
i=0 j=0
where we used the definition (14) in the last step.
The proofs of (iii) and (iv) can be carried out similarly. ]

With the above preparations, we can obtain the following stability for our scheme.
Theorem 3.1

- X
[|AYu

2 — X
P AT

2 -, 2 -y 2
A A
Fa P lagey P AT
2 y 2
fc(nﬁﬁ%n 17, )

Proof Multiplying (10) by (x; 1=

Xi_%)(y.j+] — yj)u;‘Hl , and summing up all i and j,
Jta
we obtain

i,j+>
x + x - X
— X1 —Xx,_1)u. . ATur | — AU,
ZZ( i+3 l—j) z,/+%( YU+t y 1._/+%)
L J

+ZZ (xi“‘% a xi_%) Oj+1 = yj)uij+%A;pi+%,j+%
i

— o — vt +,,x _ X
IR CUNEETIN
i J

— . — . X X
= 3030 (g = ximy) Ot = 1)
i J

where we skipped the detailed lower and upper indices for both i and j.
Similarly, multiplying (11) by (x; — xi_l)(yj+% — yj_%)ui);l _, We obtain

y +,y -y
- 1=y u o (ATuw o —ATu
,z;(y’*z o)y (8, - a0y )
_242 R y +.y A=Y
4 '(xz xl*l)“i_%’j (Ayui 1 Ayu. 1 )
i

—75.J i—5.J
. 1=y, Y AP
+ZZ(X1 xt*l)(yJ_;,_% y]_%)ui_é’j ypl—%qj""%
l J

=> D> (i—xi1) ()’H7 — Yl
i

y y
z) Yy (22
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Adding (21) and (22), using the identities given in Lemmas 3.1 and 3.3, then using the
Cauchy—Schwarz inequality to those two right-hand side terms and Lemma 3.2, we have

- X 2
[T

L2 2 Li 2 1 2
~x - X -y - X X
<o Slaguy 0P AT P ) g1l

- X 2 -y 2 -y 2
oy P IATw P+ 1Ayl

L2 L3 : (-
+az(;||Axuf;,j||2 + 2’||Ayu§;,j||2) + a1
which concludes the proof by choosing §; and &, sufficiently small. O
Remark 3.2 Multiplying (1) by u, integrating by parts and using (2), we easily have
1Vally = (f 0 = 113 + 31l
Using the Poincaré inequality [1, p. 135]
llull§ < ClIVull§, Vu e (Hy (@)

and choosing § > 0 small enough, we obtain the stability in continuous form

IVull3 < CIIfI3, (23)

whose discrete form is given in Theorem 3.1.

4 Error Analysis

In this section, we shall derive the error analysis for our scheme. First, let us denote the errors

X X X
et =utxi,y. 1) —ut.
ij+% ( ! yﬁi) ij+3
y y Y
e’ L =u\X._1,yi)—Uu. .5
i—%.j ( i—3 y,) i—%.j
ep :p(x 1 y ])—p 1 .
i+5.+3 i+377J+s i+t3.J+3°
X 1 X
where u”* (x;, yj+l)’ u”(x;_1,y;)and p(xl.Jr%, yH%) denote the exact solutions u*, u” and

p of the Stokes problem (1)—(3) at those specific points, respectively.
From our scheme derivation process, we can obtain the following error equations:

A;"e? = Afer A;"e? = Ay_e),“ o
iL,j+>5 iL,j+>5 iL,j+>5 iL,j+>5 +Aiep — R¥ (24)
- x €1 1 TR
xi+% —xi_% Vi+l —Yj i+5,j+3 i,j+t3
atel | —ape’ o Afe | —Aje |
_ i—5,] T2 1=7.J 1=7.] +A7€p - R’ (25)
— X =y, YVWiegjty  im3d]
Xi — Xi—1 y]_,_% y]_% 2 2 2
- d
ALer . ATe” =R% | . 26
x z,/+%+ Y-l i-1j+3’ (26)

where detailed expressions for R*, RY and R¢ will be given below.
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From (4) and (10), we have

Aty (xi,yj+%)—A;ux (xi’yj+%) A'y"'uX (xi,yj+%)—A;ux (x,-,yj_‘_%)

X X
.. l = —
i,j+3 xi+% —xF% Yj+1 —Yj

o)

Yi+l (ou* ou*
ol () )
lJ

Aj{ux (xi, yj+1) A (xi, yj+%)
1 —X 1

2

8 X
/ ( (x, yj+1) — — . (X,yj)) dx
,]+1| dy

_A;'ux (xi,yj+%) - Ay_ux (x,',ijr%)

Yji+1 = Yj

1 Yj+1
_ﬁ/ (7 (g ) = (o)) 80w (g0

X X X
T / 7Gxy = 1 (31,3,
= Rf+R“2“+R§‘+R4.
Similarly, from (7) and (11), we have

AFuY (xl.i%, yj)—A;uy(xii%, ) A;'uy (x,-,%’ yj)

27)

a Xi — X1
- y
+ATp (xi,l, yﬂ%) - fF%J

1 Yiy ou”Y u”Y
= — — (i, y) — 7()51‘—17 y) ) dy
| yj,% ax ax

|Qi,%7j

AFuY (xl._%, yj) —ALu (xi_%, yj)

Xi — Xi—1

n 1 /xi ou’ ( ) ou’ ( ) d
o — — (x, y. ——(x,y. X
19y 1Sy Vay 7 iw) 7 0y W i
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1
b [ Pedidy = £ (x_y0)
192, 1 1 Ja | 2
2» -1
=R+ R+ Ry +Ry. (28)
Finally, from (12), it is easy to see that
d A X +.,y .
Ry ey = 050 (v vye) + 050 () @)

To prove the error analysis of our scheme, below we first estimate Ry . Denote the maximum

norm for the r-th derivatives of any function w as | D" w|x = | a;’,y, 3wy,, loo. @25 wherem+n =r,
andm,n > 0.
Lemma 4.1
RE 1 /3’1“ (8u" ( ou* J
=5 X; l,y) (x~_l7}7) y
! 12 5111y, ax \its ax U=z
Ajux(x,-, yj_,’_%) — A;ux (xl-, yj+%)
Xl =X
1 0 u* 2(1 D4, %
= =5 Gt 3101 = 20) o (50,341 ) + OUDID I, (30)

Proof (i) Note that R can be rewritten as follows

Afu* (x,- y; 1)—A‘u" (X‘ v 1)
) +5 L +5

/ (x Vdxdy—— . . 2
t/+1| Xipdl =X

By the Taylor expansion, we have

dxdy.

I\J\'—-

€1V}

uf 1 3%ul
Alu® (Xi»y]ur%) = 3x =+ (Xz+1 )WZ*
3,x 1 4rx

28 Uy 30 u 32
+8(Xi+1 —Xi) o5 oy Gk — X (32)

where 2 e * ,k =1, 2,3, denote the derivatives evaluated at point (x;,

the derivative at some point between (x;, y ) ) and (xj41,y i+ ).

Vil
Similarly, by the Taylor expansion, we can obtain

_ aut 1 8%u
A (o vjag) = G gl 05

83 X 1 4~x
2 * . 13

8)63 + ﬂ(xl—l xl) ax4 5

+é(x,-_1 —x) (33)

wher

a 1)and(xl,y]+1)
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Combining (32) and (33), we have

A;—MX ()ci7 ijr%) — ATu* (xi, yH%)

H—% 1—%
_ 1
Xipl — X
Xie] — Xi—1 0%ur  xie] — xi—| 83ux ot
[”’2’ o+ T G e = 260) 5+ Ol Sl
82 x 1 a3ux ) 34MX
= ox T (xz+l +xi-1 — 2x;) 8x3* + O(hx)Hwﬂoo, (34)

where in the last step we used the following property
Xi +Xi41  Xi—1+ X Xi4] — Xi—1
T e e R (35)

On the other hand, using the Taylor expansion:

3%u* azufﬁ 83ui 3ux 4y
2+u_mﬁg+0—w%%)a+omm0um

ax2 - dx
Integrating this expansion over cell €2; jrl and using the property
/Q. | 1(y—yjﬂ‘_%)dxdy:0,
z,j+7

we have

1 Rur k1 ul
444f/ = e (i 4 Xt — 26) £ O] ID .
ij+1 | * 4 0x

0x2
(36)
Subtracting (34) from (36), we have
1 83 x
RY = — 35 (i1 + 211 = 26) == + O D)1 D*u o,
which concludes the proof. O

Remark 4.1 For simplicity, in Lemma 4.1 we used the maximum norm to bound the error. If
we want to bound the error by the Sobolev norm, we have to use the Taylor expansion with
error in integral form.

Furthermore, we like to remark that R is only O (k) for a non-uniform grid, since x; 1 +
Xi—1 — 2x; # 0 unless a uniform mesh is considered. Hence the traditional error analysis
technique by using the stability result directly can lead to only O(h) convergence. Such
issue has been noticed before for elliptic problems (e.g., [23,24]) and Maxwell’s equations
[16]. By following similar ideas, we can derive O (h2) error estimate by summing up all the
contributions of local truncation errors as shown in the next lemma.

Lemma 4.2

=

33 (s -

20 A — X
1 xioy) Gjer = YR )y < CRIALES Il
i=1j

I}

(=}
N\
I\l
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Proof Denote bl iy = ax3 (x,, y]+|) For the dominant term (x;+1 + x;—1 — 2x;)b; gt
of Ry, using property (35), we have
M N-1
23 (01 = 5e1) Ot =0+t =200 b
i=1 j=0
N-1
Xi4+1 — Xi—1 2
(y;+] _y/)z f (Xit1 +xi—1 — xl)e ,]+2
Jj=0 i=1
N-1
( _ )Z (xl+1 xl)+(xl Xi— 1)
Yi+1 —Yj 2
Jj=0 i=1
T@ier = xi) = (i = xi-1)ley 11?, g
Z(y/+1 y,)Z[(x,+1 —x)? = (i —xi-)?]ef iy
=0 i=1
| V-l
2
2 j+1 — yj)Z(xz_xz 1) (z 1]+1b, 1]+2_er+%bi~j+%)
j=0 i=1
| MoN-
=—3 Z Z(xi — X)) (j41 — ¥ - (i — xi-1)?
Pl
|: Xl+l+ellj+ bl/+i|
2 —eF
< ChyllAy U+||I (37)

where in the last step we used the Cauchy—Schwarz inequality, the notation of norm (13),
and the identity

AL (aib)) =biAa; +a;i_1 AL b;.
Similar estimates can be obtained for R;. Now we investigate the error caused by R3.

Lemma 4.3

1 Yj+1
X = N e . — .
B = 807 (5143 7,1) 19,44 / ( (sao) = (o))
) 2 7
= 0D pllso- (38)

Proof Note that R can be rewritten as
RI=A7 ( . % (¢ yyaxd (39)
3 =0y P 1+ y]+2 1 | ax » Y y.

Using the Taylor expansion at (x;, y: jan! ), we have

_ Ops 1 3
8 (viagevy) = G0 5 (v 0oy = 20) 55

3 p
)||a 3||o<>7 (40)

ap*

where P ,k =1, 2, denote the derivatives evaluated at point (x;, y; o+l ).
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Taking the Taylor expansion of 2 ax at (x;, y; jan! ), and then integrating over cell €; b

we obtain

3 3 1 a2
|/ p = p* ~ 3 (xi+% +x, 1 —2x,~) W’)z"+0(h2)||D3p||oo. 1)
z/+‘ +1

The proof is completed by substituting (40) and (41) into (39). O

Lemma 4.4

1
(i) Ry = 7/ f*(x, y)dxdy — f* (xi,y- l)
|Qi,j+l| Qi.'+1 4 It1

af* 20112 £
= 3G 51 =20 2 (3 v00 ) + OGDIID e,
M N-1
1 — vy . 2AT
i 3 0( —xiy) G = ¥)RE € S CRIALE L (42)
1= ]:

Proof (i) Using the Taylor expansion of f* at (x;,y id ), and then integrating over cell
Q b we obtain

1 afy
= f — A 2 2 ,x
,,+1I/ =5 +2(t+‘+xf% ZX) o + OhHID” oo,

(43)

which completes the proof of (i).
(i) The proof of (ii) follows the same idea of Lemma 4.2.

]
Lemma 4.5
d — A , +,,y .
Ri*%,j+% = Axux (xlvijrl) +Ayu\ (xi,lvyj)
3u 3y
0 u”
S [ 3 oo + ODIl— 7y oo (44)
Proof Taking the Taylor expansion of all functions at (x;_ LYyl 1), we have
. ur 1 3%ut )
At (xiyppy) = 5245 (v we =2y ) S5+ O e i e
, duy 1 3%ul
afw (v 1) = w3 () +vis1 —29;41) et o )|
Summing up the above two estimates, and using (29) and the properties
. XX ] Yt Yt
[_% - 2 ’ yj+§ - 2 ’
we conclude the proof. O

With the above preparations, now we can prove the following convergence result.
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Theorem 4.1 Under the assumption that the pressure error is O (h?), i.e.,

||e" < Ch?, (45)

2

we have the discrete H| error estimate
ATe" ATe" AT ATeY < Ch? 4
I xei’H%ll + 1l yei’H%II + 1l xel._%’jll + yei_%’jll <Ch*, (46)
and the discrete Ly error estimate

X y )
llej il +llel_y 1l = Ch. )

Proof The proof follows a similar idea to the stability analysis developed in Theorem 3.1.
One major difference is that the discrete divergence equation (26) is not zero anymore by

comparison to (12).
Multiplying (24) by |Ql j+) |e e and (25) by |§2i7% j|eiy L summing up the results
WA

over all i and j, and using Lemma 3 3 (with u replaced by e), we obtain

185 €l 1P+ IATer P+ NaTe, 1P +1a7e, P
_ x e y
ZZI slel R +1+ZZI9 sty R
& —-p
_ZZ| t]+1|ezj+‘ Ave) i+1,j+1 _szhlj 1 Aye,;%,ﬁ%' (48)
Using Lemmas 4.2-4.4 and the Cauchy—Schwarz 1nequa11ty, we have

E E Q. . 1le’ R E E Q1 e R
— L | w+z| ij+y i,j+%+ — L | l—z,J| i—1ji-1.j
i J t J

2 -,y
=Ch (IIA el 18ye +1II+|IA ’jII+IIAyel.7%’jII)- (49)

Following the proof of Lemma 3.1, we obtain

Q. . 1let ATl E E Q. 1 .]e -ATer
ZZ' w+7| ij+y X i+%,j+%+ | t—w' i—%j Y Ti=h+
i i
P
=- E E Xi — Xi— i+1— Vi) A e
—~ & (xi i 1)(yj+1 y./) |: X lj+1 + : %’ji| i1 i+

<R’

syllllel = Crllel (50)
where in the last step we used the Cauchy—Schwarz inequality and Lemma 4.5.
Substituting (49), and (50) with the assumption (45) into (48), we conclude the proof of
(46).
Using Lemma 3.2 (with u replaced by e) to (46), we have (47). ]

Remark 4.2 Theorem 4.1 shows that we have the O(h?) superconvergence on the non-
uniform rectangular grids, which is a much better result than those obtained in earlier works
(e.g., [4,6,17]). Of course, this result is based on the assumption (45). Actually, from the
above proof it is not difficult to see that if we replace the assumption (45) by the normal
requirement

e, ll=C. 1)

o=
Nl—=

@ Springer



J Sci Comput (2015) 65:341-362 357

(i.e., the error of pressure is bounded, which is equivalent to that the numerical pressure is
bounded), then we recover the usual O (k) convergence for the velocity in both discrete H;
and L, norms.

In the rest of this section, we want to show that the assumption (45) actually holds true
when the pressure p = 0 on just one boundary edge of 2. Hence u = 0 is only imposed
for either u* or u” on that edge, and this change of boundary conditions does not affect all
previous results (cf. Remark 3.2).

Taking the divergence of (1) and using (2), we have

Integrating (52) over cell €2; 1 and following the same idea used for developing the

+3.J+3
MAC scheme for the Stokes problem, we can obtain the cell-center difference scheme for
the pressure:

+ _A- + _A-
AxPivd j4y —BePitl j+) N By Pipl el =By Pid il

=g.,1..1. (53)
Xigl = Xi Yi+l = Yj H2.0%3
Multiplying (53) by pi+%,j+%|9i+%,j+%|’ and summing up all i and j, we have
- 2 - 2
185 Pyt g P AT Py P S Ngigy il s il (54

which, along with the discrete Poincaré inequality for p (cf. Remark 3.2 by assuming p = 0
on one edge of €2), we have the stability:

- 2 - 2 2
NAY P ) j i 1T Ay P syt 17 = Cllggyy LI (55)
Following the steps used above for deriving the error estimate for the Stokes problem, we
can easily obtain the error estimate:

—A — A 2
18587 ) ol lagel, il =Ch, (56)

. /\p _ _
where the error of p is denotes by ei+%’j+% = p(xi+%, yH%) Piyd j+l-
From (56) and the discrete Poincaré inequality foré” | | ,wehave|le” | ||| < Ch?,
L+§,j+§ l+§,j+§
which justifies the validity of our assumption (45).

5 Numerical Results

In this section, we present some numerical results to justify our theoretical analysis. For
simplicity, we fix our domain 2 = (0, )%, and w = 11n (1). We solve a test problem of
[20], which has the exact solution of

p = 150(x — 0.5)(y — 0.5),
W (x,y) = =256 (0 = DPy(y = D@y = 1, 0’ (x,y) = —u(y,x),
where the corresponding f is given by (1). Using the MAC scheme for the problem on
uniform and nonuniform meshes, we obtain the errors and the relative errors of pressure and
velocity given in Tables 1 and 2, respectively. The non-uniform mesh used here is generated

from the corresponding uniform mesh by refining the prime-numbered intervals in both x
and y directions (cf. Fig. 2).
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Table 1 Convergence results obtained with uniform rectangular grids

ep(h) h
Meshes  llepllo  llef(llo  lleutdllo  &p(h) eu(h) oo
h = % 0.1454 0.096 0.1358 0.0124 0.1167 - -
= é 0.0483 0.0177 0.025 0.0039 0.0245 0.3323  0.1843
= % 0.011 0.0036 0.0051 8.7952e—4  0.0051 0.2267  0.2026
h= % 0.0025 7.9287e—4  0.0011 1.9667e—4  0.0011 0.2243  0.2212
= 6%1 5.7207e—04  1.858le—4  2.6277e—04  4.5777e—5 2.6393e—4  0.2329  0.2343
h= IITS 1.3747e—04  4.4949e—5  6.3568e—05  1.09e—5 6.386le—5  0.2403  0.2419
Table 2 Convergence results obtained with nonuniform rectangular grids
llep (Wllo lleu (M1lo
Meshes llep(Mllo ez (Mllo llew (Mo llepMllo llew(Mllo Hspp(Zh)Ilo ||guu(2h)||0
= % 0.0613 0.0589 0.0833 0.0051 0.0722 - -
= é 0.0945 0.0097 0.0138 0.0076 0.0138 1.5429 0.1653
= % 0.0264 0.0025 0.0035 0.0021 0.0036 0.2793 0.2574
h= % 0.0079 6.5578e—4 9.274le—4  6.3199e—4 9.3092e—4  0.299 0.2618
h = é 0.0019 1.5353e—4  2.1713e—04 1.5032e—4 2.1810e—4 0.238 0.2341
h= ﬁ 4.534le—4  3.7202e—5 5.2611e—05 3.6274e—5 5.2855¢e—5 0.2413 0.2423
1 T T T
09 - 1
08 1
07 F 1
06 1
05 1
04 4
03 - i
02 1
01 F 1
0 1 1 1 1 | 1 1 1 1
0 0.1 02 03 04 0.5 06 0.7 08 09 1

Fig. 2 The non-uniform mesh generated from the 16 x 16 uniform mesh
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To evaluate the convergence rate, we define the following absolute errors for velocity and
pressure:

M
llesll =2
i =0

1

=

— %) G = ),

2

2
ut —u* (x; ) X
ijt+d i Yj+l i+

I
(=]
Nl—=

J

M—-1 N 2
lell1f = Z[u - (xi+%,yj)} Cerer =) (01 = 1)+
i=0 j=0
llewllg == leg 115 + llex 15,
M—-1N— 2
2
llepllp = Z Z [l’,+2 j+l —p( ,+%,yj+%)] (i1 = x)(Vj+1 — ¥j)s

and the relative errors for velocity and pressure:

llez llo /2’ R [ I (xi’yj+%)]2 (xi+% _xi—%) Vj+1 = ¥j)

&y = ’
wllo pP— ;
1 2
M— N y ) ' o B
v leallo 2iz0 2j=0 [uﬂr%,j _ux(xi+%’y-l)] (Xi1 — xi—1) (yj+% yj_%)
£y = - = ,
T o 5
Z Z, o[uV (xi+%’y-/)] (X1 — xi) (yj+% _yj—%)
leallo v/ Iledll + lleill
T o :
o e 13+ w113
\/ZMl il I CORTINY | CREEO IR
&p llepllo _ =0 &j=0 | Vity,j+3 i+3° 743 J j
" ipll PR ; :
Ziz() Zj:() [P(XH_%, yH%)] (Xit1 —xl-)(y_/-+1 — )’j)
We also display the ratios of relative errors of adjacently refined meshes (i.e. | (2h) and
;”(7(2%) for uniform meshes and nonuniform meshes in Tables 1 and 2, respectively. It is clear

that the ratios of relative errors converges to the expected value of 0.25 with enhanced mesh
resolution.

The errors and convergence rates of velocity and pressure obtained on various uniform
and non-uniform rectangular grids are displayed in Figs. 3 and 4, where we observe that the
convergence rates are of second order in the L? norm, which confirm our theoretical analysis.

6 Conclusions
The MAC method as an effective numerical method for solving 2D Stokes problems has

been widely used in practice. However, the second-order (super-)convergence of this method
on non-uniform meshes has not been pointed out and theoretically analyzed. In this work,
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10 T I
X
errors of velocity-x (|le [l )
_ . _errors of pressure (|[ep| |°)
R} O - errors of total velocity (|le ||,)
10 &,\:\ s
\\: . ; . .
w02t s T _
0 g |
0
o N
E \\: . 8
1 0-3 \\‘\_\O\ 4
NN
N o
- S
s AN
2 [ ""\\ \"‘ﬂ\\ 2
10 = i
1 9
O
10° = =
10 10

mesh resolution (1/h)

Fig. 3 Convergence results with uniform meshes

10 T T
X
_,_errors of velocity-x (||e_[|,)
.. _errors of pressure (| |ep| |°)
o'l , ) —- errors of total velocity (e ||,) ||
R
NN . .
b
0%} N -
9 NG
o
2 ‘&; ~
5
10°} ~e 1
8~ i
~ \‘\__ N -
2 ™. .
. N
w0 ~ N3
1 O o
)
-5
10 L L
10’ 10°

mesh resolution (1/h)

Fig. 4 Convergence results with nonuniform meshes

we prove rigorously in the first time that the L? errors for both the velocity and pressure
converge in the second order in terms of mesh size. Numerical results are provided to verify
the theoretical results. We like to mention that similar results hold true for 3D Stokes equations
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with similar cubic cell-centered grids. Some possible future works are to investigate the
convergence analysis for high order MAC scheme for the Stokes problem [10] and for the
full Navier—Stokes equation on nonuniform meshes.
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