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Abstract In this paper, we propose a hybridized discontinuous Galerkin (HDG) method
with reduced stabilization for the Poisson equation. The reduce stabilization proposed here
enables us to use piecewise polynomials of degree k and k − 1 for the approximations of
element and inter-element unknowns, respectively, unlike the standard HDG methods. We
provide the error estimates in the energy and L2 norms under the chunkiness condition. In the
case of k = 1, it can be shown that the proposed method is closely related to the Crouzeix–
Raviart nonconforming finite element method. Numerical results are presented to verify the
validity of the proposed method.
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1 Introduction

In this paper, we propose a new hybridized discontinuous Galerkin (HDG) method with
reduced stabilization. We consider the Poisson equation with homogeneous Dirichlet bound-
ary condition as a model problem:

− �u = f in Ω, (1a)

u = 0 on ∂Ω. (1b)

Here Ω ⊂ R
2 is a convex polygonal domain, and f ∈ L2(Ω) is a given function. For

simplicity, we here deal with only the two-dimensional case, although the proposed method
can be applied to the three-dimensional problems.
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The HDG methods are already applied to various problems and are still being developed.
For second order elliptic problems, the HDG methods were introduced and analyzed by
Cockburn et al. [7,8]. The embedded discontinuous Galerkin (EDG) methods, which is
the continuous-approximation version of the HDG method, were analyzed in [9]. In these
HDG methods, the numerical traces are hybridized in a mixed formulation. In [16], another
approach of the HDG method was proposed. The hybridization presented in [16] is based on
the hybrid displacement method proposed by Tong for linear elasticity problems [17]. The
resulting scheme is almost equivalent to the IP-H [8].

In the formulations of HDG methods, element and hybrid unknowns are introduced. The
element unknown can be eliminated by the hybrid unknown, which allows us to reduce the
number of the globally coupled degrees of freedom. In all the standard HDG methods, we
need to use two polynomials of equal degree for the approximations of the element and hybrid
unknowns in order to achieve optimal convergences. The motivation of the reduced stabiliza-
tion we propose is to use piecewise polynomials of degree k and k − 1 for approximations
of the element and hybrid unknowns, respectively, which we call Pk–Pk−1 approximation.
In [4,5], reduced stabilization was introduced for the discontinuous Galerkin method (the
RIP-method). In [14], Lehrenfeld first proposed a reduced HDG scheme by adjusting a
numerical flux, which is equivalent to our proposed scheme. However, no error analysis was
presented.

In [9], it is proved that the hybrid part of an EDG solution coincides with the trace of
a finite element solution with the linear element. Analogously, the proposed method with
P1–P0 approximation is closely related to the Crouzeix–Raviart nonconforming finite ele-
ment method [12]. We prove that our approximate solution coincides with the Crouzeix–
Raviart approximation at the midpoints of edges.

We provide a priori error estimates under the chunkiness condition. The optimal error
estimates in the energy norm are proved. In terms of the L2-errors, it is shown that the
convergence rates are optimalwhen the scheme is symmetric. However, for the nonsymmetric
schemes, we prove only the sub-optimal estimates in the L2 norm due to the lack of adjoint
consistency. We also provide the easy implementation by means of the Gaussian quadrature
formula in the two-dimensional case. Unfortunately, such implementation is impossible in
the three-dimensional case.

This paper is organized as follows. Sect. 2 is devoted to the preliminaries. In Sect. 3, we
introduce reduced stabilization, and describe the proposed method. In Sect. 4, we provide
the error estimates in the energy and L2 norms under the chunkiness condition. In Sect. 5,
numerical results are presented to verify the validity of our scheme. Finally, in Sect. 6, we
end with a conclusion.

2 Preliminaries and Notation

2.1 Chunkiness Condition

Let {Th}h be a family of meshes of Ω . Each element K ∈ Th is assumed to be a polygonal
domain star-shaped with respect to a ball of which radius is ρK . Let hK = diamK and
h = maxK∈Th hK . We assume that the boundary ∂K of K ∈ Th is composed of m-faces and
m is bounded by M from above independently of h. Let us denote Eh = {e ⊂ ∂K :K ∈ Th}.
In this paper, we assume that the family {Th}h satisfies the chunkiness condition [3,13]: there
exists a positive constant γC independent of h such that
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Fig. 1 Triangle condition
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ρK

≤ γC ∀K ∈ Th . (2)

From the chunkiness condition, a kind of cone condition follows [3,13]. Let T̃ be a reference
triangle with the height of γT > 0. We assume that T̃ is an isosceles triangle. Let ẽ denote
the base of T̃ . For each K ∈ Th and e ⊂ ∂K (Fig. 1), let Fe,K be an affine-linear mapping
from T̃ onto T ⊂ K such that Fe,K (ẽ) = e and the height of T is equal to γT he. The constant
γT depends only on the chunkiness parameter γC . Note that there exists a constant γE ≥ 1
such that

hT
he

≤ γE . (3)

2.2 Function Spaces

We introduce the piecewise Sobolev spaces over Th , i.e., Hk(Th) = {v ∈ L2(Ω) : v|K ∈
Hk(K ) ∀K ∈ Th}. The skeleton of Th is defined by Γh = ⋃

e∈Eh e. We use L2
D(Γh) = {v̂ ∈

L2(Γh) : v̂ = 0 on ∂Ω} and V = H2(Th) × L2
D(Γh) for the hybridized formulation of the

continuous problem. Let us define V (h) = {(v, v|Γh ) : v ∈ H2(Ω)} ⊂ H2(Ω)× H3/2(Γh),
where v|Γh stands for the trace of vh on Γh . We use the following inner products:

(u, v)Th =
∑

K∈Th

∫

K
uvdx, 〈u, v〉∂Th =

∑

K∈Th

∫

∂K
uvds

for u, v ∈ L2(Ω) or L2
D(Γh).

2.3 Finite Element Spaces and Projections

LetPk(Th)be the function space of element-wise polynomials of degree k overTh , andPl(Eh)
be the space of edge-wise polynomials of degree l over Eh , where k and l are nonnegative
integers. Then we define V k

h = Pk(Th) and V̂ l
h = Pl(Eh) ∩ L2

D(Γh). We employ V k,l
h =

V k
h × V̂ l

h as finite element spaces of V . Let us denote by Pk the L2-projection from L2(Γh)

onto Pk(Eh).

123



330 J Sci Comput (2015) 65:327–340

2.4 Mesh-Dependent Norms

Let ‖·‖m and |·|m be the usual Sobolev norms and seminorms in the sense of [1], respectively.
We introduce auxiliary mesh-dependent seminorms:

|v|21,h =
∑

K∈Th

|v|21,K for v ∈ H1(Th), (4)

|v|22,h =
∑

K∈Th

h2K |v|22,K for v ∈ H2(Th), (5)

|v|2j =
∑

K∈Th

∑

e⊂∂K

1

he

∥
∥Pk−1(v̂ − v)

∥
∥2
0,e for v = {v, v̂} ∈ V , (6)

where he is the diameter of e. Note that Pk−1v in (6) is defined by Pk−1(trace(v|K )), which
is well-defined, whereas v may be double-valued on ∂K . In our error analysis, we use the
following energy norm:

|||v|||2 = |v|21,h + |v|22,h + |v|2j for v = {v, v̂} ∈ V .

2.5 Trace and Inverse Inequalities

We here state the trace and inverse inequalities without proofs. The constants appearing in
the inequalities are independent of h, K ∈ Th and e ⊂ ∂K under the chunkiness condition.

Lemma 1 (Trace inequality) Let K ∈ Th and e be an edge of K . There exists a constant C
independent of K , e and h such that

‖v‖0,e ≤ Ch−1/2
e

(‖v‖20,K + h2K |v|21,K
)1/2 ∀v ∈ H1(K ). (7)

Proof Refer to [13]. ��
Lemma 2 (Inverse inequality) Let K ∈ Th. There exists a constant C independent of K and
h such that

|vh |1,K ≤ Ch−1
K ‖vh‖0,K ∀vh ∈ Pk(K ). (8)

Proof Refer to [3]. ��
We will use the lemma below to bound the terms of the complementary projection, I−Pk−1.

Lemma 3 There exists a constant C independent of h such that, for all v ∈ H1(K ),

h−1
e ‖(I − Pk−1)v‖20,e ≤ C |v|21,K . (9)

Proof Let T̃ be a reference triangle and ẽ be the base of T̃ as illustrated in Fig. 1. Let
ṽ ∈ Pk(T̃ ) be arbitrarily fixed. We define a linear functional on H1(T̃ ) by

G(w̃) = 〈(I − Pk−1)ṽ, w̃〉ẽ.
Note that the functional G vanishes on P0(T̃ ). By the Schwarz and trace inequalities, we
have

|G(w̃)| ≤ ‖(I − Pk−1)ṽ‖0,ẽ‖w̃‖0,ẽ
≤ ‖(I − Pk−1)ṽ‖0,ẽ · Ch−1/2

ẽ (‖w̃‖2
0,T̃

+ h2
T̃
|w̃|2

1,T̃
)1/2

≤ C‖(I − Pk−1)ṽ‖0,ẽ‖w̃‖1,T̃ .
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By the Bramble–Hilbert lemma, we have

|G(w̃)| ≤ C‖(I − Pk−1)ṽ‖0,ẽ|w̃|1,T̃ .

Taking w̃ = ṽ gives us
‖(I − Pk−1)ṽ‖0,ẽ ≤ C |ṽ|1,T̃ . (10)

Let F(x̃) = B x̃+ d be an affine mapping from T̃ onto T ⊂ K such that F(ẽ) = e. Choosing
ṽ = v ◦ F , we have

‖(I − Pk−1)ṽ‖0,ẽ = meas(ẽ)1/2

meas(e)1/2
‖(I − Pk−1)v‖0,e, (11)

where meas(e) is the measure of e. From [6, Theorem 3.1.2.], it follows that

|ṽ|1,T̃ ≤ C‖B‖| det B|−1/2|v|1,T

≤ C
hT
2ρT̃

meas(T̃ )1/2

meas(T )1/2
|v|1,T , (12)

where ρT̃ is the radius of the inscribed ball of T̃ . The measure of T is given by

meas(T ) = γT he
2

meas(e). (13)

From (12), (13) and (3), we have

|ṽ|1,T̃ ≤ C
hT

h1/2e meas(e)1/2
|v|1,T

≤ CγE
h1/2e

meas(e)1/2
|v|1,T . (14)

From (10), (11) and (14), it follows that

‖(I − Pk−1)v‖0,e ≤ Ch1/2e |v|1,T ≤ Ch1/2e |v|1,K ,

which completes the proof. ��
2.6 Approximation Property

The approximation property in the energy norm follows from those of Pk(Th) and Pk(Eh).

Lemma 4 (Approximation property) Let v ∈ Hk+1(Ω) and v = {v, v|Γh }. We assume that
the finite element space for the hybrid unknown is discontinuous. Then there exists a positive
constant C independent of h such that

inf
vh∈V k,k−1

h

|||v − vh ||| ≤ Chk |v|k+1. (15)

Proof It is known that there exists wh = {wh, ŵh} ∈ V k,k
h such that

‖v − wh‖0 ≤ Chk+1|v|k+1, (16)

|v − wh |i,h ≤ Chk+1−i |v|k+1 (i = 1, 2), (17)
⎛

⎝
∑

K∈Th

∑

e⊂∂K

h−1
e ‖v − ŵh‖20,e

⎞

⎠

1/2

≤ Chk |v|k+1. (18)
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Let us define vh = {wh,Pk−1ŵh} ∈ V k,k−1
h . Note that |v − vh |j = |vh |j = |wh |j. By the

trace inequality for K ∈ Th and e ⊂ ∂K , we have

‖Pk−1(ŵh − wh)‖0,e ≤ ‖ŵh − wh‖0,e
≤ ‖ŵh − v‖0,e + ‖v − wh‖0,e
≤ ‖ŵh − v‖0,e + Ch−1/2

e (‖v − wh‖20,K + h2K |v − wh |21,K )1/2.

From the above and (16)–(18), it follows that |||v − vh ||| ≤ Chk |v|k+1. ��
Remark In the standard HDGmethods, we can impose the continuity at nodes on the hybrid
unknowns to reduce the number of degrees of freedom,which is so-called continuous approx-
imation. However, the approximation property with respect to the energy norm does not hold
for the continuous approximation since Pk−1vh is not continuous at nodes in general even if
vh is continuous. Indeed, it is found by numerical experiments that the convergence rates in
the energy and L2 norms are sub-optimal for the continuous approximation.

3 Reduced HDGMethod

3.1 The Standard HDG Scheme

To begin with, we present the standard HDG formulation: find uh = {uh, ûh} ∈ V k,k
h such

that

Bstd(uh, vh) = ( f, vh)Ω ∀vh = {vh, v̂h} ∈ V k,k
h , (19)

where the bilinear form is defined by

Bstd(uh, vh) = (∇uh,∇vh)Th + 〈n · ∇uh, v̂h − vh〉∂Th

+s〈n · ∇vh, ûh − uh〉∂Th

+〈τ(ûh − uh), v̂h − vh〉∂Th . (20)

Here s is a real number and τ is a stabilization parameter. The parameter τ takes a constant
value τe/he on each edge e with 0 < τ0 ≤ τe ≤ τ1 for some τ0, τ1. We refer to [16] for the
details of the derivation.

3.2 Reduced HDG Schemes

Let us sketch the main idea of our method. The second term in the convectional scheme (20)
can be rewritten as

〈n · ∇uh, v̂h − vh〉∂Th = 〈n · ∇uh,Pk−1(v̂h − vh)〉∂Th

since n · ∇uh ∈ Pk−1(Th). The stabilization term is correspondingly decomposed into

〈τ(ûh − uh), (v̂h − vh)〉∂Th = 〈τPk−1(ûh − uh),Pk−1(v̂h − vh)〉∂Th

+〈τ(I − Pk−1)(ûh − uh), (I − Pk−1)(v̂h − vh)〉∂Th

Our reduced stabilization is obtained by dropping the second term in the right-hand side. The
proposed scheme reads: find uh = {uh, ûh} ∈ V k,k−1

h such that

Bh(uh, vh) = ( f, vh)Ω ∀vh = {vh, v̂h} ∈ V k,k−1
h , (21)
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where the bilinear form is defined by

Bh(uh, vh) = (∇uh,∇vh)Th + 〈n · ∇uh, v̂h − vh〉∂Th

+s〈n · ∇vh, ûh − uh〉∂Th

+〈τPk−1(ûh − uh),Pk−1(v̂h − vh)〉∂Th . (22)

3.3 Local Conservativity

Let K be an element of Th , and let χK denote a characteristic function on K . Taking
vh = {χK , 0} in (21), we find that our method as well as the other HDG methods satis-
fies the followingt local conservation property

−
∫

∂K
σ̂ (uh) · nds =

∫

K
f dx, (23)

where σ̂ is a numerical flux defined by

σ̂ (uh) = ∇uh + τ(ûh − uh)n.

3.4 Implementation Using the Gaussian Quadrature Formula

In this section, we will show that the reduced stabilization term can be easily calculated by
means of the Gaussian quadrature formula in the two-dimensional case. We can also avoid
the calculation of the L2 projections in the reduced stabilization term by using it.

For simplicity, we consider the case of the interval I = [−1, 1]. Let ϕm be the Legendre
polynomial of order m ≥ 0 on I . Let f be a smooth function on I . The k-point Gauss-
Legendre quadrature rule on I is given by

Gk[ f ] =
k∑

i=1

wi f (ai ),

where {ai , wi }ki=1 are the quadrature points and weights. The standard stabilization term for
Pk–Pk approximation can be exactly computed by using the (k + 1)-point Gauss-Legendre
quadrature rule. If we use the k-point quadrature rule instead of (k + 1)-point one, then the
reduced stabilization term is obtained.

Lemma 5 Let Pk−1 denote the L2-projection from L2(I ) onto Pk−1(I ). Then we have, for
all ûh, v̂h ∈ Pk(I ),

Gk[ûh v̂h] =
∫

I
Pk−1ûhPk−1v̂hds. (24)

Proof We can write ûh = ∑k
j=1 u jϕ j and v̂h = ∑k

j=1 v jϕ j . Note that the Legendre poly-
nomial ϕk vanishes at the quadrature points, i.e., ϕk(ai ) = 0 for 1 ≤ i ≤ k, and that Gk is
exact for polynomials of degree ≤ 2k − 1. Then we have
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Gk[ûh v̂h] =
k∑

i=1

⎡

⎣wi

k∑

j=1

u jϕ j (ai ) ·
k∑

j=1

v jϕ j (ai )

⎤

⎦

=
k∑

i=1

⎡

⎣wi

k−1∑

j=1

u jϕ j (ai ) ·
k−1∑

j=1

v jϕ j (ai )

⎤

⎦

=
k∑

i=1

[
wiPk−1uh(ai )Pk−1vh(ai )

]

= Gk[Pk−1ûhPk−1v̂h]
=

∫

I
Pk−1ûhPk−1v̂hds,

which completes the proof. ��
Remark In the three-dimensional case, the efficient implementaion using the Gaussian cuba-
ture formula is impossible since there exists almost no cubature formula such that the nodes
are the common zeros of orthogonal polynomials (see, for example, [10,15]). Even for a
triangle, it is known that there does not exist such a cubature formula of degree≥ 3, see [11].
Only in the case of k = 1, our method can be easily implemented by the barycentric rule.

3.5 Relation with the Crouzeix–Raviart Nonconforming Finite Element Method

In [9], it is proved that the numerical trace of the EDGmethod coincides with the approximate
solution given by the conforming finite element method on a skeleton Γh . In this section,
we reveal the relation between the Crouzeix–Raviart nonconforming finite element and our
symmetric scheme(s = 1) with P1–P0 triangular elements. The meshes considered here are
assumed to be triangular. Let Πh denote the Crouzeix–Raviart interpolation operator with
respect to a mesh Th . For û ∈ L2(Γh), the interpolation Πhû ∈ P1(Th) is given by

∫

Γh

(Πhû)v̂hds =
∫

Γh

ûv̂hds ∀v̂h ∈ P0(Th).

Theorem 1 Let uh = {uh, ûh} ∈ V 1,0
h be the approximate solution provided by (21) with

s = 1 and uCR be the Crouzeix–Raviart approximation. Then we have

Πhûh = uCR. (25)

In particular, we have for all e ∈ Eh,
∫

e
ûhds =

∫

e
uCRds. (26)

Proof By the definition of the Crouzeix–Raviart interpolation, we have

〈n · ∇uh,Πh v̂h − v̂h〉∂Th = 0.

and
〈τPk−1(ûh − uh),Pk−1(Πh v̂h − v̂h)〉∂Th = 0. (27)

Taking vh = {Πh v̂h, v̂h} ∈ V 1,0
h in (21) yields

Bh(uh, vh) = (∇uh,∇(Πh v̂h))Th + s〈n · ∇(Πh v̂h), ûh − uh〉∂Th

= (1 − s)(∇uh,∇(Πhvh))Th + s(∇(Πhûh),∇(Πh v̂h))Th (28)
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When s = 1, the resulting equation for ûh reads

(∇(Πhûh),∇(Πh v̂h))Th = ( f,Πh v̂h)Ω ∀v̂h ∈ P0(Eh). (29)

The solution of the equation above is uniquely determined to be uCR. Hence we have Πhûh
= uCR. ��

Remark For higher-order polynomials, (28) does not hold since the Laplacian of uh does not
vanish. In the case of a polygonal element, the reduced stabilization term does not vanish,
that is, (27) does not hold. Therefore we might not find a discrete equation in terms of only
the hybrid unknown, like (29), in general cases.

4 Error Analysis

First, we prove the consistency, boundedness and coercivity of the bilinear form of our
method.

Lemma 6 (Consistency) Let u be the exact solution of (1a)(1b), and u = {u, u|Γh }. Then
we have

Bh(u, vh) = ( f, vh)Ω ∀vh ∈ V k,k
h . (30)

Proof Since û − u = 0 on Γh and the normal derivative of u is single-valued, we have

Bh(u, vh) = (∇u,∇vh)Th − 〈n · ∇u, vh〉∂Th

= (−�u, vh)Th

= ( f, vh)Ω. (31)

��

Lemma 7 (Boundedness) There exists a constant Cb independent of h such that

|Bh(w, v)| ≤ Cb |||w||| |||v||| ∀w, v ∈ V (h) + V k,k−1
h . (32)

Proof Letw = {w, ŵ} = {w̄+wh, w̄|Γh + ŵh} and v̄ = {v, v̂} = {v̄+vh, v̄|Γh + v̂h}, where
w̄, v̄ ∈ H2(Ω) and {vh, v̂h}, {wh, ŵh} ∈ V k,k−1

h . We estimate each term in the bilinear form
separately. By the Schwarz inequality, we have

|(∇w,∇v)K | ≤ ‖∇w‖0,K ‖∇v‖0,K . (33)

To bound the second term in the bilinear form, we decompose it as

〈n · ∇w, v̂ − v〉∂Th = 〈n · ∇(w̄ + wh), (v̄ + v̂h) − (v̄ + vh)〉∂Th

= 〈n · ∇w̄, v̂h − vh〉∂Th + 〈n · ∇wh, v̂h − vh〉∂Th . (34)

Since 〈n · ∇w̄, z〉∂Th = 0 for any single-valued function z, we have

〈n · ∇w̄, v̂h − vh〉∂Th = 〈n · ∇w̄,Pk−1(v̂h − vh)〉∂Th + 〈n · ∇w̄, (I − Pk−1)(v̂h − vh)〉∂Th

= 〈n · ∇w̄,Pk−1(v̂h − vh)〉∂Th + 〈n · ∇w̄, (I − Pk−1)(v̄ − vh)〉∂Th .

(35)
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Similarly, noting that 〈n · ∇wh, (I − Pk−1)z〉∂Th = 0 for any single-valued function z, we
have

〈n · ∇wh, v̂h − vh〉∂Th

= 〈n · ∇wh,Pk−1(v̂h − vh)〉∂Th + 〈n · ∇wh, (I − Pk−1)(v̂h − vh)〉∂Th

= 〈n · ∇wh,Pk−1(v̂h − vh)〉∂Th + 〈n · ∇wh, (I − Pk−1)(v̄ − vh)〉∂Th . (36)

From (34), (35) and (36), it follows that

〈n · ∇w, v̂ − v〉∂Th = 〈n · ∇w,Pk−1(v̂h − vh) + (I − Pk−1)(v̄ − vh)〉∂Th . (37)

By the trace inequality and Lemma 3, we get

|〈n · ∇w, v̂ − v〉∂Th | ≤ C(|w|21,h + h2|w|22,h)1/2(|v|2j + |v̄ − vh |21,h)1/2
≤ C |||w||| |||v||| . (38)

In tha same manner, the third term in the bilinear form can be bounded. The stabilization
term is bounded as

∣
∣〈τPk−1(ŵ − w),Pk−1(v̂ − v)〉∂Th

∣
∣ = ∣

∣〈τPk−1(ŵh − wh),Pk−1(v̂h − vh)〉∂Th

∣
∣

≤ τ1|w|j|v|j. (39)

Combining (33), (38) and (39), we obtain

|Bh(w, v)| ≤ Cb |||w||| |||v||| , (40)

where the constant Cb depends on the constants of the trace inequality and τ1, but is inde-
pendent of h. The proof is completed. ��
Lemma 8 (Coercivity) Assume that τ0 is sufficiently large. Then there exists a constant
Cc > 0 independent of h such that

Bh(vh, vh) ≥ Cc |||vh |||2 ∀vh ∈ V k,k−1
h . (41)

When s = −1, it holds for any τ > 0.

Proof Letting uh = vh in (21), we have

Bh(vh, vh) ≥ |vh |21,h − |1 − s| ∣∣〈n · ∇vh, v̂h − vh〉∂Th

∣
∣ + τ0|vh |2j . (42)

Note that

〈n · ∇vh, v̂h − vh〉∂Th = 〈n · ∇vh,Pk−1(v̂h − vh)〉∂Th . (43)

By the trace inequality and Young’s inequality, it follows that, for any ε > 0,

Bh(vh, vh) ≥ (1 − Cε)|vh |21,h + (τ0 − ε−1)|vh |2j . (44)

If τ0 > C + 1, then we can take ε = (τ−1
0 + C−1)/2. Therefore we obtain

Bh(vh, vh) ≥ 1

2
(|vh |21,h + |vh |2j )

≥ C |||vh |||2 , (45)

where we have used the inverse inequality. If s = −1, then the second term in the right-hand
side in (42) vanishes. From this, we see that (45) holds for any τ > 0 when s = −1. ��
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Next, we prove the error estimates with respect to the energy norm.

Theorem 2 (Quasi-best approximation) Let u be the exact solution of (1a)(1b) and
u := {u, u|Γh } ∈ V . Let uh ∈ V k,k−1

h be an approximate solution provided by our method
(21). Then we have

|||u − uh ||| ≤ C inf
vh∈V k,k−1

h

|||u − vh ||| , (46)

where C is a positive constant independent of h.

Proof Let vh ∈ V k,k−1
h be arbitrary. By the coercivity, consistency and boundedness, we

have

Cc |||uh − vh |||2 ≤ Bh(uh − vh, uh − vh)

= Bh(u − vh, uh − vh)

≤ Cb |||u − vh ||| |||uh − vh ||| , (47)

from which it follows that

|||uh − vh ||| ≤ Cb

Cc
|||u − vh ||| . (48)

By the triangle inequality, we have

|||u − uh ||| ≤ |||u − vh ||| + |||vh − uh |||
≤

(

1 + Cb

Cc

)

|||u − vh ||| ,

which implies (46). ��
By the approximation property, the optimal-order error estimate in the energy norm follows
immediately.

Theorem 3 Let the notation be the same in Theorem 2. If u ∈ Hk+1(Ω), then we have

|||u − uh ||| ≤ Chk |u|k+1.

Finally, we prove the L2-error estimates.

Theorem 4 (L2-error estimates) Let the notation be the same as in Theorem 2. If
u ∈ Hk+1(Ω), then we have

‖u − uh‖0 ≤ Chk+1|u|k+1 for s = 1, (49)

‖u − uh‖0 ≤ Chk |u|k+1 for s �= 1, (50)

where C is a positive constant independent of h.

Proof First, we prove (49). We can use Aubin-Nitsche’s trick for s = 1. Let ψ ∈ H2(Ω) ∩
H1
0 (Ω) be the exact solution of the equation −�ψ = u − uh , and define ψ = {ψ,ψ |Γh }.

For any ψh ∈ V k,k−1
h , by the consistency and boundedness, we have

‖u − uh‖20 = Bh(u − uh,ψ)

= Bh(u − uh,ψ − ψh)

≤ Cb |||u − uh |||
∣
∣
∣
∣
∣
∣ψ − ψh

∣
∣
∣
∣
∣
∣ . (51)
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Note that there exists ψh ∈ V k,k−1
h such that

∣
∣
∣
∣
∣
∣ψ − ψh

∣
∣
∣
∣
∣
∣ ≤ Ch|ψ |2 ≤ Ch‖u − uh‖0.

By Lemma 3, we obatin (49). For the proof of the case s �= 1, we show the following
inequality in a similar manner presented in [2].

‖w − wh‖0 ≤ C |||w − wh ||| ∀w = {w,w|Γh } ∈ V (h),wh ∈ V k,k−1
h . (52)

Let ϕ ∈ H2(Ω) ∩ H1
0 (Ω) be the solution of −�ϕ = w − wh and define ϕ = {ϕ, ϕ|Γh }.

Then we have

‖w − wh‖20 = (∇ϕ,∇(w − wh))Th − 〈n · ∇ϕ, ŵh − wh〉∂Th

≤ C‖ϕ‖2,Ω |||w − wh ||| .

Since ‖ϕ‖2,Ω ≤ C‖w − wh‖0, we have (52). From Theorem 3, (50) follows immediately. ��

5 Numerical Results

5.1 Discontinuous Approximation

We consider the following test problem:

− �u = 2π2 sin(πx) sin(πy) in Ω, (53)

u = 0 on ∂Ω, (54)

where the domain Ω is the unit square and the source function is chosen so that the exact
solution is u(x, y) = sin(πx) sin(πy). We employed unstructured triangular meshes and
Pk–Pk−1 discontinuous approximation for 1 ≤ k ≤ 3. The schemes are all symmetric.
Tables 1 and 2 display the convergence histories of the reduced and standard HDG schemes,
respectively. The mesh size is given by h ≈ 0.1 × 2−(l−1). It can be observed that the
convergence rates of the piecewise H1-error and L2-error are optimal in all the cases, which
agrees with our theoretical results. We also see that the absolute errors of the reduced HDG
method is approximately as same as those of the standard HDG method. It suggests that the
complementary projection part of the hybrid quantity, namely (I − Pk−1)ûh , actually does
not contribute to accuracy.

5.2 Continuous Approximation

As mentioned in Sect 2.6, the approximation property does not hold for the continuous
approximations. As a result, the convergence order in the energy and L2 norms may not be
optimal. We carried out numerical experiments to observe the convergence rate. The same
test problem as in the previous is considered. We computed the approximate solutions by
the reduced HDG method with the P2–P1 and P3–P2 continuous approximations. The same
meshes as in the previous were used. The results are shown at Table 3. We observe that the
convergence rates in the piecewise H1 and L2 norms are sub-optimal, which indicates the
reduced stabilization is not suitable for the continuous approximations.
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Table 1 Convergence history of
the reduced HDG methods with
discontinuous approximations

l ‖u − uh‖ ‖∇u − ∇uh‖
Error Order Error Order

P1P0 1 6.7399E−03 – 2.7656E−01 –

2 1.5971E−03 2.48 1.3137E−01 1.28

3 3.9742E−04 2.05 6.7522E−02 0.98

4 9.7854E−05 2.01 3.2294E−02 1.06

P2P1 1 1.2851E−04 – 2.1856E−02 –

2 1.3557E−05 3.88 4.8848E−03 2.58

3 1.5594E−06 3.18 1.1857E−03 2.08

4 1.8789E−07 3.03 2.8859E−04 2.03

P3P2 1 5.7044E−06 – 1.1525E−03 –

2 2.7034E−07 5.25 1.1943E−04 3.91

3 1.8682E−08 3.93 1.6192E−05 2.94

4 9.7700E−10 4.23 1.7701E−06 3.17

Table 2 Convergence history of
the standard HDG methods with
discontinuous approximations

l ‖u − uh‖ ‖∇u − ∇uh‖
Error Order Error Order

P1P1 1 4.5794E−03 – 2.5585E−01 –

2 1.0083E−03 2.61 1.2030E−01 1.30

3 2.7100E−04 1.93 6.2282E−02 0.97

4 6.0270E−05 2.15 2.9429E−02 1.07

P2P2 1 1.2353E−04 – 2.2591E−02 –

2 1.2762E−05 3.91 5.0321E−03 2.59

3 1.5147E−06 3.14 1.2195E−03 2.09

4 1.8201E−07 3.04 2.9701E−04 2.02

P3P3 1 5.8623E−06 – 1.1410E−03 –

2 2.7867E−07 5.25 1.1733E−04 3.92

3 1.9385E−08 3.92 1.5902E−05 2.94

4 1.0046E−09 4.24 1.7365E−06 3.17

Table 3 Convergence history of
the reduced HDG methods with
continuous approximations

l ‖u − uh‖ ‖∇u − ∇uh‖
Error Order Error Order

P2P1 1 6.6188E−03 – 2.3451E−01 –

2 1.4856E−03 2.58 1.1206E−01 1.27

3 3.7717E−04 2.02 5.6537E−02 1.01

4 8.9346E−05 2.06 2.7466E−02 1.04

P3P2 1 1.5101E−04 – 1.4131E−02 –

2 1.5681E−05 3.90 3.1251E−03 2.60

3 1.8543E−06 3.14 7.6405E−04 2.07

4 2.2391E−07 3.03 1.8754E−04 2.01
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6 Conclusion

We proposed a new hybridized discontinuous Galerkin method with reduced stabilization.
We devised an efficient implementation of our method by means of the Gaussian quadra-
ture formula in the two-dimensional case. The error estimates in the energy and L2 norms
were proved under the chunkiness condition. It was also shown that our method with
P1–P0 approximation is closely related to the Crouzeix–Raviart nonconforming finite ele-
ment method. Numerical results confirmed the validity of the proposed schemes.
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