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Abstract We investigate the strong stability preserving (SSP) general linear methods with
two and three external stages and s internal stages. We also describe the construction of
starting procedures for these methods. Examples of SSP methods are derived of order
p = 2, p = 3, and p = 4 with 2 ≤ s ≤ 10 stages, which have larger effective Courant–
Friedrichs–Levy coefficients than the class of two-step Runge–Kutta methods introduced
by Jackiewicz and Tracogna, whose SSP properties were analyzes recently by Ketcheson,
Gottlieb, and MacDonald, and the class of multistep multistage methods investigated by
Constantinescu and Sandu. Numerical examples illustrate that the class of methods derived
in this paper achieve the expected order of accuracy and do not produce spurious oscilla-
tions for discretizations of hyperbolic conservation laws, when combined with appropriate
discretizations in spatial variables.
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1 Introduction

Consider the initial-value problem for a system of ordinary differential equations (ODEs){
y′(t) = f (t, y(t)) , t ∈ [t0, tend],
y(t0) = y0,

(1.1)

where the function f : R × R
m → R

m is assumed to be sufficiently smooth. In many
applications such systems arise from semidiscretization of the spatial derivatives in the partial
differential equations (PDEs) of mathematical physics.

We assume that the discretization of (1.1) by the forward Euler method

yn = yn−1 + h f (tn−1, yn−1), (1.2)

n = 1, 2, . . . , N , Nh = tend − t0, tn = t0 + nh, is monotone or contractive. This means that
the following inequality holds

‖yn‖ ≤ ‖yn−1‖, (1.3)

n = 1, 2, . . . , N , in some norm or semi-norm ‖ · ‖, for a suitably restricted time step deter-
mined by the condition

h ≤ hFE . (1.4)

It is then of interest to construct higher order numerical methods for (1.1), which preserve
the monotonicity property (1.3), under the perhaps modified restriction on the time step of
the form

h ≤ C · hFE . (1.5)

Numerical schemes for (1.1) that preserve the monotonicity condition (1.3) under the
modified restriction (1.5) are called strong stability preserving (SSP)methods and the constant
C ≥ 0 in (1.5) is called SSP coefficient.

Consider the explicit Runge–Kutta (RK) method with s stages for (1.1)⎧⎨
⎩
Y [n]
i = yn−1 + h

∑i−1
j=1 ai j f

(
tn−1 + c j h, Y [n]

j

)
, i = 1, 2, . . . , s,

yn = yn−1 + h
∑s

j=1 b j f
(
tn−1 + c j h, Y [n]

j

)
,

(1.6)

n = 1, 2, . . . , N , whereY [n]
i are approximations to y(tn−1+ci h), i = 1, 2, . . . , s, and yn is an

approximation to y(tn). This method is specified by the abscissa vector c = [c1, . . . , cs]T ∈
R
s , the coefficient matrix A = [ai j ∈ R

s×s , and the vector of weights b = [b1, . . . , bs]T ∈
R
s .
The search for SSP RK methods (1.6) is facilitated by a clever representation of these

methods as convex combinations of Euler steps. This so-called Shu–Osher representation,
which was first proposed in [53], has the form⎧⎪⎪⎨
⎪⎪⎩
Y [n]
1 = yn−1,

Y [n]
i = ∑i−1

j=1

(
αi j Y

[n]
j + hβi j f

(
tn−1 + c j h, Y [n]

j

))
, i = 2, 3, . . . , s,

yn = ∑s
j=1

(
αs+1, j Y

[n]
j + hβs+1, j f

(
tn−1 + c j h, Y [n]

j

))
,

(1.7)

n = 1, 2, . . . , N , where αi j are scalars such that

i−1∑
j=1

αi j = 1, i = 2, 3, . . . , s + 1,
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and the coefficients βi j are given by{
βi j = ai j −∑i−1

k= j+1 αikak j , i = 2, 3, . . . , s, j = 1, 2, . . . , i − 1,
βs+1, j = b j −∑s

k= j+1 αs+1,kak j , j = 1, 2, . . . , s.

The Shu–Osher representation (1.7) leads to the following

Theorem 1 [26,53] Assume that the forward Euler method (1.2) applied to (1.1) is strongly
stable, i.e., the inequality (1.3) holds under the time step restriction (1.4). Assume also that
αi j ≥ 0 and βi j ≥ 0. Then the solution {yn} obtained by the RKmethod (1.6) or (1.7) satisfies
the strong stability bound

‖yn‖ ≤ ‖yn−1‖,
n = 1, 2, . . . , N, under the time step restriction (1.5) with SSP coefficient C = C(α, β) given
by

C(α, β) = min

{
αi j

βi j
: i = 2, 3, . . . , s, j = 1, 2, . . . , i − 1

}
.

It was observed in [26] that it is also possible to characterize SSP methods if some of the
coefficients βi j are negative. This characterization is based on the convex combinations of
forward Euler steps and down winded (or backward in time) Euler steps, and the resulting
methods satisfy ‖yn‖ ≤ ‖yn−1‖ under the step size restriction (1.5) with a modified SSP
coefficient C = C(α, β) given by

C(α, β) = min

{
αi j

|βi j | : i = 2, 3, . . . , s, j = 1, 2, . . . , i − 1

}
.

SSP RK and linear multistep methods (LMMs) have been studied by Shu and Osher [53],
Gottlieb et al. [28], Spiteri andRuuth [56], Hundsdorfer et al. [35], Gottlieb [24], Hundsdorfer
and Ruuth [34], Ruuth and Hundsdorfer [50], Gottlieb and Ruuth [27], Gottlieb et al. [25,26],
Higueras [31–33] and Ferracina and Spijker [20–23]. SSP two-step Runge–Kutta (TSRK)
methods [40,42] were investigated by Ketcheson et al. [45]. Constantinescu and Sandu [19]
generalized Shu–Osher representation to a class ofmultistepmultistage schemes, which form
a special subclass of GLMs. They also constructed some optimal SSP methods in this class
by solving a constrained optimization problem, where the objective function for the SSP
coefficient C depend on the parameters of Shu–Osher representation of these methods.

SSP general linear methods (GLMs) were investigated by Spijker in his seminal paper
[55]. In this paper we will employ these results to construct new classes of SSP GLMs up
to the order p = 4 and stage order 1 ≤ q ≤ 4. In the context of ODEs coming from
discretization of PDEs, order p = 4 is usually considered to be sufficiently high. Moreover
this is consistent with [18] where multistep multiderivative methods up to order p = 4 only
were investigated.

The organization of this paper is as follows. In Sect. 2 we review a theory of monotonicity
of special representation of GLMs which was obtained by Spijker [55]. In Sect. 3 we apply
this theory to the class ofGLMs of the form introduced byBurrage andButcher [7] and further
investigated in [6,8,10,11,29,30,40,57]. In particular, we will reformulate the expression for
SSP coefficient C, and the criterion for SSP GLMs obtained by Spijker [55] in terms of the
coefficient matrices A,U,B, and V of GLMs. In Sect. 4 we will use this criterion to search
for SSP GLMs with two and three external stages up to the order p = 4 and stage order
1 ≤ q ≤ 4. This search is based on the solution of the constrained minimization problem,
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where the objective function depends on the SSP coefficient of the method, and the nonlinear
inequality constrains depend on the unknown parameters of the methods. In Sect. 5 we
describe the construction of starting procedures for SSP GLMs constructed Sect. 4. In Sect. 6
we present some results of numerical experiments with the new SSP schemes. Finally, in
Sect. 7 some concluding remarks are given and plans for future research are briefly outlined.

2 Monotonicity Theory for GLMs

Following Spijker [55] we consider the formulation of GLMs, for numerical solution of (1.1),
of the form
{
Y [n]
i = h

∑m
j=1 ti j f

(
tn−1 + c j h, Y [n]

j

)
+∑�

j=1 si j y
[n−1]
j , i = 1, 2, . . . ,m,

y[n]
i = Y [n]

m−�+i , i = 1, 2, . . . , �,
(2.1)

n = 1, 2, . . . , N , where 1 ≤ � ≤ m. Here, Y [n]
i , i = 1, 2, . . . ,m, are internal approximations

or stages, which are used to compute the external approximations y[n]
i , i = 1, 2, . . . , �,

which propagate from step to step. This method is specified by the abscissa vector c =
[c1, . . . , cm]T ∈ R

m , and the coefficient matrices T = [ti j ] ∈ R
m×m and S = [si j ] ∈ R

m×�.
Different representations of (2.1) are discussed byButcher [8,10,11], Hairer et al. [29], Hairer
and Wanner [30], and Jackiewicz [40]. Observe that the RK method (1.6) can be written as
GLM (2.1) with m = s + 1, � = 1, and

T =
[
A 0
bT 0

]
∈ R

(s+1)×(s+1), S =
[
e
1

]
∈ R

s+1,

where e = [1, . . . , 1]T ∈ R
s .

As in [55] we shall assume that the parameters si j of the coefficient matrix S satisfy the
condition

�∑
j=1

si j = 1, i = 1, 2, . . . ,m. (2.2)

Observe that this assumption is automatically satisfied for the RK methods (1.6) and for the
class of GLMs considered in Sect. 3. Moreover, as observed by Spijker [55], this condition is
no essential restriction on themethod (2.1) since any preconsistent GLMs can be transformed
into an equivalent GLM satisfying (2.2). We refer to Butcher [10,11] and Jackiewicz [40]
for the transformations of GLMs.

Denote by I the identity matrix of dimension m, and let [S | γT], γ ∈ R, stand for the
m × (� + m) matrix whose first � columns equal to those of S and the last m columns equal
to those of γT. Then following Spijker [55], we consider the condition

det(I + γT) �= 0 and (I + γT)−1[S | γT] ≥ 0, (2.3)

where the inequality in (2.3) should be interpreted componentwise. Then the essence of the
fundamental result obtained by Spijker [55] is that the SSP coefficient C = C(S,T) of the
GLM (2.1) is given by

C = C(S,T) = sup
{
γ ∈ R : γ satisfies (2.3)

}
. (2.4)
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This coefficient can be computed, similarly to [45], by the solution to the constrained mini-
mization problem

min
γ,c,S,T

−γ,

subject to

{
(I + γT)−1[S | γT] ≥ 0,
Φp,q(c,S,T) = 0,

(2.5)

where the nonlinear equality constrains Φp,q(c,S,T) = 0 represent the order conditions to
achieve order p and stage order q . This process will be discussed in more detail in Sect. 4
for specific examples of GLMs (2.1). In particular, solving the minimization problem (2.5)
for the forward Euler method (1.2), for which m = 1, � = 1, and

T =
[
0 0
1 0

]
∈ R

2×2, S =
[
1
1

]
∈ R

2,

and the inequality constrains take the form

(I + γT)−1[S | γT] =
[

1 0 0
1 − γ γ 0

]
≥ 0,

we obtain C = C(S,T) = 1, as should be the case.

3 Construction of SSP GLMs

In this section we consider the class of GLMs investigated by Burrage and Butcher [7]. On
the uniform grid tn = t0 + nh, n = 0, 1, . . . , N , Nh = tend − t0, these methods take the
form⎧⎨
⎩
Y [n]
i = h

∑s
j=1 ai j f

(
tn−1 + c j h, Y [n]

j

)
+∑r

j=1 ui j y
[n−1]
j , i = 1, 2, . . . , s,

y[n]
i = h

∑s
j=1 bi j f

(
tn−1 + c j h, Y [n]

j

)
+∑r

j=1 vi j y
[n−1]
j , i = 1, 2, . . . , r,

(3.1)

n = 1, 2, . . . , N . Here, the internal approximations or stages approximate the solution y to
(1.1) at the points tn−1 + ci h, i.e.,

Y [n]
i = y(tn−1 + ci h) + O(hq+1), i = 1, 2, . . . , s, (3.2)

and the external approximations y[n]
i approximate the linear combinations of the scaled

derivatives of the solution, i.e.,

y[n]
i =

p∑
k=0

qikh
k y(k)(tn) + O(h p+1), i = 1, 2, . . . , r. (3.3)

These method are specified by the abscissa vector c = [c1, . . . , cs]T ∈ R
s , four coefficient

matrices A = [ai j ] ∈ R
s×s,U = [ui j ] ∈ R

s×r ,B = [bi j ] ∈ R
r×s,V = [vi j ] ∈ R

r×r ,
the vectors qi = [q1,i , . . . , qr,i ]T ∈ R

r , i = 0, 1, . . . , p, and four integers: the order of the
method p, the stage order q , the number of external approximations r , and the number of
internal approximations or stages s.

In what follows we will restrict our attention to GLMs (3.1) with s internal stages and
r = 2 external stages of order p and stage order 1 ≤ q ≤ p. Moreover, we shall assume that
the matrix A is strictly lower triangular, i.e.,
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A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
a2,1 0
...

. . .
. . .

as−1,1
. . .

. . . 0
as,1 as,2 · · · as,s−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
s×s,

and the matrix U has the form

U =
⎡
⎢⎣
u1
...

us

⎤
⎥⎦ ∈ R

s×2, ui = [
ui,1 ui,2

] ∈ R
2, ui,1 + ui,2 = 1,

i = 1, 2, . . . , s. We shall also assume that the matrix V is a rank one matrix of the following
form V = evT , where e = [1, 1]T ∈ R

2, v = [v1, v2]T ∈ R
r , and vT e = 1. Then it follows

that V is power bounded, and as a result the method (3.1) is zero-stable, compare [40]. In
order to get methods with higher Ceff coefficients we will also consider methods having
rank(V) = 2. In this case the matrix V will assume the form

V =
[

v1 1 − v1
v2 1 − v2

]
,

and its power boundedness will be ensured by the condition |v1 − v2| < 1.
Algebraic analysis of order ofGLMs (3.1)was developed in themonographs byButcher [8,

10,11], see also [57]. Order conditions for these formulas are also discussed in themonograph
[29] using the approach proposed by Skeel [54] for fixed-stepsize methods. Jackiewicz and
Vermiglio [41] andCardone et al. [17] derived order conditions for (3.1) using a generalization
of the approach proposed by Albrecht [1–5] for RK and composite integration methods. Put{

γ0 = e − Uq0,

γk = ck
k! − Ack−1

(k−1)! − Uqk, k = 1, 2, . . . , p,
(3.4)

and {
γ̂0 = q0 − Vq0,

γ̂k = ∑k
l=0

ql
(k−l)! − Bck−1

(k−1)! − Vqk, k = 1, 2, . . . , p,
(3.5)

where e = [1, . . . , 1]T ∈ R
s, ci := [ci1, . . . , cis]T . It will be always assumed that q0 =

e = [1, . . . , 1]T ∈ R
r , so that the stage preconsistency condition γ0 = 0, or Uq0 = e, and

the preconsistency condition γ̃0 = 0, or Vq0 = q0, are automatically satisfied. Moreover,
we will always assume that the GLMs (3.1) has stage order at least one, i.e., γ1 = 0, or
Ae + Uq1 = c, compare (3.4).

Assuming that the starting vector y[0] satisfies the condition

y[0] = q0y(t0) + hq1y′(t0) + · · · + h pqp y
(p)(t0) + O(h p+1), (3.6)

the order conditions for GLMs (3.1) up to the order p = 4 derived in [17] take the form listed
in Table 1, where

g1(t) = ∂ f

∂y

(
t, y(t)

)
, �c = diag(c1, . . . , cs),

and when there is a couple of conditions separated by ‘or’, the first condition refer to order p
methods, while the second condition refers to methods with order greater than p. In this table
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Table 1 Recursive differentials
and order conditions for p ≤ 4

Order Recursive differentials Corresponding order conditions

p = 1 y′ γ̂1 = 0

p = 2 y′′ γ̂2 = 0

p = 3 y′′′ γ̂3 = 0

g1y
′′ VBγ2 = 0 or Bγ2 = 0

p = 4 y(4) γ̂4 = 0

g1y
′′′ VBγ3 = 0

g21 y
′′ VBAγ2 = 0

g′
1y

′′ VB�cγ2 = 0

we have also listed the recursive differentials used in Albrecht approach to the derivation of
order conditions.

The methods (3.1) can be written as GLMs of the form (2.1) with m = s + r, � = r , and
the matrices T and S defined by

T =
[
A 0
B 0

]
∈ R

(s+r)×(s+r), S =
[
U
V

]
∈ R

(s+r)×r .

Observe that it follows from the assumptions on the form ofU andV, that the condition (2.2)
on the coefficients si j of the matrix S is automatically satisfied.

We can reformulate the condition (2.3), and the characterization of SSP coefficient C =
C(S,T) of GLM (2.1) given by (2.4), in terms of the abscissa vector c, and the coefficient
matrices A,U,B, and V of GLMs (3.1). We have

I + γT =
[
I + γA 0

γB I

]
,

and it follows that det(I+ γT) �= 0 if and only if det(I+ γA) �= 0. Since A is strictly lower
triangular we have det(I + γA) �= 0,[

I + γA 0
γB I

]−1

=
[

(I + γA)−1 0
−γB(I + γA)−1 I

]
,

and it follows that

(I + γT)−1[S | γT] =
[

(I + γA)−1 0
−γB(I + γA)−1 I

] [
U γA 0
V γB 0

]

=
[

(I + γA)−1U (I + γA)−1γA 0
V − γB(I + γA)−1U γB − γB(I + γA)−1γA 0

]
.

We have

(I + γA)−1γA = (I + γA)−1(I + γA − I) = I − (I + γA)−1,

and

γB − γB(I + γA)−1γA = γB
(
I − (I + γA)−1γA

)
= γB(I + γA)−1(I + γA − γA) = γB(I + γA)−1,

which leads to

(I + γT)−1[S | γT] =
[

(I + γA)−1U I − (I + γA)−1 0
V − γB(I + γA)−1U γB(I + γA)−1 0

]
.

123



278 J Sci Comput (2015) 65:271–298

Hence, it follows that the condition (2.3) is equivalent to

(I + γA)−1U ≥ 0, I − (I + γA)−1 ≥ 0,
V − γB(I + γA)−1U ≥ 0, γB(I + γA)−1 ≥ 0,

(3.7)

and the characterization of the SSP coefficient (2.4) for GLMs (3.1) can be reformulated as

C = C(c,A,U,B,V) = sup
{
γ ∈ R : γ satisfies (3.7)

}
. (3.8)

4 Examples of SSP GLMs

In this section we will use the characterization (3.8) of the SSP coefficient C(c,A,U,B,V)

of GLMs (3.1) to search for new methods, for which this coefficient is as large as possible.
We will systematically investigate the cases of GLMs of order 2 ≤ p ≤ 4, stage order
1 ≤ q ≤ p, number of external stages r = 2 or r = 3 , and the number of internal stages
2 ≤ s ≤ 10.

When applied to nonstiff systems of differential equations methods of high stage order
are not necessarily more accurate than methods of stage order q = 1 or q = 2. This was also
observed in the numerical experiments reported in Sect. 6, where the methods of high stage
order achieve similar accuracy as methods of stage order q = 1 or q = 2. However, methods
of high stage order are usuallymore accurate formildly stiff and stiff systems than themethods
of low stage order because they do not suffer from order reduction phenomenon [8,10,11,30]
(compare Sect. 6). Moreover, methods of high stage order allow accurate, efficient, and
robust local error estimation, and computation of continuous extensions of uniform order
p. They also allow construction of methods with step-control stability and methods with
inherent Runge–Kutta stability. These and related issues are discussed in [12–16,38,39] and
the monograph [40]. Furthermore, efficient and reliable step changing strategies for GLMs,
based on the so-called rescale andmodify strategy, were proposed by Butcher and Jackiewicz
and are discussed in [14] and the monograph [38].

Similarly to [45], consider the minimization problem

min
γ,c,A,U,B,V,q1,...,qp

−γ,

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(I + γA)−1U ≥ 0,
I − (I + γA)−1 ≥ 0,
V − γB(I + γA)−1U ≥ 0,
γB(I + γA)−1 ≥ 0,
Φp,q(c,A,U,B,V,q1, . . . ,qp) = 0,

(4.1)

where Φp,q represents the order conditions up the the order p and stage order conditions up
to the stage order q ≤ p. For methods of order p = 2 the optimization problem (4.1) was
analytically solved using the Minimize command in Mathematica�, while for methods of
order p ≥ 3 it was numerically solved using the MATLAB� function fmincon choosing the
sequential quadratic programming (‘sqp’) algorithm. In the latter case we ran an extensively
numerical search using random starting points. The solution of this minimization problem
(4.1), leads to specific SSP GLMs (3.1) with SSP coefficient C. To compare methods with
different number of stages s we also define, as in [19] and [45], the effective CFL coefficient
by the normalization

Ceff = C
s
.
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Table 2 Ceff for GLMpqr with
order p = 2, stage order q = 1, 2
and r = rank(V) = 1, 2,Ceff for
TSRK methods of order p = 2,
with s internal stages, 2 ≤ s ≤ 10
and Ceff for MMpq methods of
order p = 2, stage order
q = 1, 2, with k = 2 steps and s
stages, 2 ≤ s ≤ 4

s GLM211 GLM221 GLM212 GLM222 TSRK MM21 MM22

2 0.740 0.691 0.847 0.822 0.707 0.71 0.59

3 0.829 0.787 0.902 0.881 0.816 0.82 0.74

4 0.873 0.837 0.928 0.910 0.866 0.87 0.81

5 0.899 0.868 0.943 0.928 0.894

6 0.916 0.889 0.953 0.940 0.913

7 0.928 0.905 0.960 0.948 0.926

8 0.937 0.916 0.965 0.955 0.935

9 0.944 0.925 0.969 0.960 0.943

10 0.950 0.936 0.972 0.964 0.949

Table 3 Ceff for GLMpqr with order p = 3, stage order q = 1, 2, 3 and r = rank(V) = 1, 2,Ceff for TSRK
methods of order p = 3, with s internal stages, 2 ≤ s ≤ 10 and Ceff for MMpq methods of order p = 3,
stage order q = 1, 2, 3, with k = 2 steps and s stages, 2 ≤ s ≤ 4

s GLM311 GLM321 GLM331 GLM312 GLM322 GLM332 TSRK MM31 MM32 MM33

2 0.401 0.222 0.412 0.293 0.366 0.37 0.37 0.17

3 0.452 0.398 0.106 0.550 0.483 0.136 0.550 0.55 0.55 0.48

4 0.530 0.516 0.249 0.612 0.527 0.360 0.578 0.58 0.55 0.52

5 0.564 0.551 0.344 0.659 0.572 0.423 0.598

6 0.607 0.579 0.410 0.694 0.581 0.443 0.630

7 0.636 0.569 0.426 0.711 0.575 0.461 0.641

8 0.661 0.562 0.474 0.750 0.565 0.477 0.653

9 0.680 0.570 0.481 0.742 0.570 0.489 0.667

10 0.688 0.577 0.477 0.734 0.569 0.498 0.683

Table 4 Ceff for GLMpqr with order p = 4, stage order q = 1, 2, 3 and r = rank(V) = 1, 2,Ceff for TSRK
methods of order p = 4, with s internal stages, 3 ≤ s ≤ 10 and Ceff for MMpq methods of order p = 4,
stage order q = 1, 2, 3, with k = 2 steps and s stages, 2 ≤ s ≤ 4

s GLM411 GLM421 GLM431 GLM412 GLM422 GLM432 TSRK MM41 MM42 MM43 MM44

3 0.277 0.239 0.017 0.318 0.293 0.030 0.286 0.29 0.29 0.22

4 0.393 0.368 0.114 0.446 0.444 0.156 0.398 0.40 0.39 0.35 0.14

5 0.471 0.455 0.219 0.485 0.477 0.260 0.472

6 0.507 0.479 0.302 0.541 0.495 0.395 0.506

7 0.543 0.500 0.415 0.569 0.513 0.422 0.534

8 0.575 0.515 0.434 0.583 0.520 0.434 0.562

9 0.609 0.516 0.444 0.609 0.516 0.447 0.586

10 0.629 0.518 0.451 0.629 0.518 0.458 0.610

4.1 Methods with Two External Stages

The Ceff coefficients for methods with two external stages are listed in Tables 2, 3 and 4,
using the notation GLMpqr , where p is the order of the method, q is the stage order, and
where r now stands for the rank of the coefficient matrix V. For comparison, in these tables
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we have also listed Ceff coefficients for SSP TSRK methods investigated by Ketcheson et
al. [45], and multistep multistage methods investigated by Constantinescu and Sandu [19].
These multistep multiderivative methods are denoted by MMpq , where p is the order and q
is the stage order of the method.

We can see that GLMs (3.1) of order p = 2 stage order q = 1 have larger Ceff coefficients
than the optimal TSRK methods of order p = 2 investigated by Ketcheson et al. [45]. These
Ceff coefficients for TSRK methods are equal to the threshold factors (Rs,k,p) of a class of
GLMs investigated by Ketcheson [44] (compare with Table 1 in [44]). For 2 ≤ s ≤ 4 these
coefficients are also equal to Ceff coefficients of multistep multistage methods investigated by
Constantinescu and Sandu [19]. We can also see that GLMs (3.1) of order p = 2, stage order
q = 2, and rank(V) = 2 have lager Ceff coefficients than TSRK methods and, for 2 ≤ s ≤ 4,
than MM22 methods. For GLMs (3.1) of order p = 2, stage order q = 2, and rank(V) = 1
these coefficients are somewhat smaller than Ceff coefficients for TSRKmethods, but they are
still larger, for 2 ≤ s ≤ 4, than Ceff coefficients for MM22 methods. It follows from Table 3
that GLMs (3.1) with p = 3, q = 1, and rank(V) = 1 have, for s = 2 and 8 ≤ s ≤ 10,
larger Ceff coefficients than the optimal TSRKmethods investigated by Ketcheson et al. [45],
but smaller than the threshold factors (Rs,k,p) of a class of GLMs investigated by Ketcheson
[44] for s ≥ 3 (compare again with Table 1 in [44]). These coefficients are also smaller, for
2 ≤ s ≤ 4, than the Ceff coefficients for MM31 methods. For GLMs (3.1) with p = 3, q = 1
and rank(V) = 2Ceff coefficients are larger than the Ceff coefficients for TSRK methods
and, for 2 ≤ s ≤ 4, than for MM31 methods. It follows from Table 4 that GLMs (3.1)
with p = 4, q = 1, and rank(V) = 1 have, for 6 ≤ s ≤ 10, larger Ceff coefficients than
optimal TSRK methods investigated in [45] but smaller than the threshold factors (Rs,k,p)
of a class of GLMs investigated in [44] (compare with Table 1 in [44]). These coefficients
are also smaller, for 3 ≤ s ≤ 4, than the Ceff coefficinets of MM41 methods. We can also
see that GLMs (3.1) with p = 4, q = 1 or q = 2, and rank(V) = 2 have larger Ceff
coefficients than MM41 or MM42 methods. The SSP coefficients of GLMs of stage order
q > 1 are smaller than the SSP coefficients of TSRK methods, but they have the advantage
of higher stage order. Relaxing the requirement on the rank of V leads always to methods
with larger Ceff coefficients. Moreover, the GLMs (3.1) have quite large regionsA of absolute
stability. The scaled regions of absolute stability, obtained by multiplying the points on the
boundary by p/s, where p is the order of the method and s the number of stages, are plotted
in Figs. 1, 2, 3, 4, 5, 6, 7 and 8. For comparison we have also plotted on these figures by
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Fig. 1 Stability region of RK method with p = s = 2 (thick line) and scaled stability regions of SSP GLMs
of order p = 2 and stage order q = 1 with s stages (thin lines). These regions increase in size as s ranges
from 2 to 10
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Fig. 2 Stability region of RK method with p = s = 2 (thick line) and scaled stability regions of SSP GLMs
of order p = 2 and stage order q = 2 with s stages (thin lines). These regions increase in size as s ranges
from 2 to 10
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Fig. 3 Stability region of RK method with p = s = 3 (thick line) and scaled stability regions of SSP GLMs
of order p = 3 and stage order q = 1 with s stages (thin lines). These regions increase in size as s ranges
from 2 to 10
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Fig. 4 Stability region of RK method with p = s = 3 (thick line) and scaled stability regions of SSP GLMs
of order p = 3 and stage order q = 2 with s stages (thin lines). These regions increase in size as s ranges
from 2 to 10

thick line the stability regions of RK methods of the same order. The same coordinate axes
are used for methods of order p = 2 and stage order q = 1 or q = 2; order p = 3 and stage
order q = 1, q = 2, or q = 3; and order p = 4 and stage order q = 1, q = 2, or q = 3.
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Fig. 5 Stability region of RK method with p = s = 3 (thick line) and scaled stability regions of SSP GLMs
of order p = 3 and stage order q = 3 with s stages (thin lines). These regions increase in size as s ranges
from 3 to 10
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Fig. 6 Stability region of RK method with p = s = 4 (thick line) and scaled stability regions of SSP GLMs
of order p = 4 and stage order q = 1 with s stages (thin lines). These regions increase in size as s ranges
from 3 to 10
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Fig. 7 Stability region of RK method with p = s = 4 (thick line) and scaled stability regions of SSP GLMs
of order p = 4 and stage order q = 2 with s stages (thin lines). These regions increase in size as s ranges
from 3 to 10
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Fig. 8 Stability region of RK method with p = s = 4 (thick line) and scaled stability regions of SSP GLMs
of order p = 4 and stage order q = 3 with s stages (thin lines). These regions increase in size as s ranges
from 3 to 10

In the case p = 2 and q = 1 the minimization problem (4.1) can be solved exactly, and
the resulting s-stage methods have the following coefficients:

c = [
cs − (s − 1)a . . . cs − a cs

]T
,

[
A U
B V

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 1 0
a 0 0 . . . 0 1 0
a a 0 . . . 0 1 0
...

...
...

. . .
...

...
...

a a a . . . 0 1 0
b b b . . . b v 1 − v

0 0 0 . . . 0 v 1 − v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

q0 = [
1 1

]T
, q1 = [

cs − (s − 1)a cs − (s − 1)a + sb−1
v−1

]T
,

q2 =
[
q1,2 q1,2 + 2(bs−1)cs−a(s−1)(bs−2)−1

2(v−1)

]T
.

For this method

a = 1

γ
, b = 3 − a(s − 1)

2s
and v = 2

3 − a(s − 1)
,

where

γ = C = 5s − 3 + 2
√
4s2 − 3s

9
.

Observe that for optimal SSP RK methods of order 2 with s stages we have C = s − 1 [26],
and for optimal SSP TSRK methods of order 2 with s stages we have C = √

s(s − 1) [45].
The effective SSP coefficients Ceff for these methods satisfy the relation

s − 1

s
<

√
s − 1

s
<

5s − 3 + 2
√
4s2 − 3s

9s
, s ≥ 2

and they all tend to one as s → ∞.
We conclude this section by listing the coefficients of some of the GLMs which will be

used in our numerical experiments in Sect. 6. To simplify the implementation aspects we
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consider GLMs such that q1,i = 0, i = 0, 1, . . . , p, so that y[n]
1 approximates directly y(tn)

and no special finishing procedure is needed. The coefficients of GLMs of order p = 2, 3, 4,
stage order q = 1, with s = p stages are listed below.

1. GLM of order p = s = 2 and stage order q = 1:

c =
[
0.3650467037271516

1

]
, A =

[
0 0

0.7043404725156382 0

]
,

U =
[

0 1
0.1900775312702241 0.8099224687297759

]
,

B =
[
0.3508928386155310 0.4332425042681505
0.5142476411512765 0.6349344054595566

]
,

v = [
0.4086656449371389 0.5913343550628611

]T
,

q0 =
[
1
1

]
, q1 =

[
0

0.3650467037271516

]
, q2 =

[
0

−0.1037226703320720

]
.

For this method Ceff = 0.575.

2. GLM of order p = s = 3 and stage order q = 1:

c = [
0.0684518223468909 0.9 1

]T
,

A =
⎡
⎣ 0 0 0
0.8306711524589209 0 0
0.4776457731022248 0.4824893165972064 0

⎤
⎦ ,

U =
⎡
⎣ 0.5606899042304484 0.4393100957695516
0.5550613320633171 0.4449386679366829
0.7441549843152873 0.2558450156847127

⎤
⎦ ,

B =
[
0.5370363792990961 0.1529221010600519 0.2659459898471803
0.2951312505427116 0.2981240144887791 0.5184658435950905

]
,

v = [
0.7170037151312315 0.2829962848687685

]T
,

q0 =
[
1
1

]
, q1 =

[
0

0.1558166384202529

]
,

q2 =
[

0
0.2108260905150779

]
, q3 =

[
0

−0.1042344495356952

]
.

For this method Ceff = 0.397.

3. GLM of order p = s = 4 and stage order q = 1:

c = [
0.4676018664273567 0.5676018664273567 0.6676018664273566 1

]T
,

A =

⎡
⎢⎢⎣

0 0 0 0
0.3673596196753279 0 0 0
0.1720505432778199 0.4017691394372760 0 0
0.0899387057827172 0.2100231463150690 0.4484381257008554 0

⎤
⎥⎥⎦ ,

U =

⎡
⎢⎢⎣
0.1224498945564486 0.8775501054435514
0.6242046549256117 0.3757953450743883
0.8239986383411790 0.1760013616588210
0.5278213329229676 0.4721786670770324

⎤
⎥⎥⎦ ,
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Table 5 Ceff for GLMpqr with
order p = 3, stage order
q = 1, 2, r = rank(V) = 3,Ceff
for TSRK methods of order
p = 3, with s internal stages,
2 ≤ s ≤ 10 and Ceff for MMpq
methods of order p = 3, stage
order q = 1, 2, 3, with k = 3
steps and s stages, 2 ≤ s ≤ 4

s GLM313 GLM323 TSRK MM31 MM32 MM33

2 0.566 0.554 0.366 0.56 0.56 0.55

3 0.667 0.578 0.550 0.58 0.58 0.58

4 0.654 0.567 0.578 0.58 0.56 0.47

5 0.672 0.580 0.598

6 0.694 0.583 0.630

7 0.726 0.580 0.641

8 0.750 0.581 0.653

9 0.742 0.578 0.667

10 0.735 0.578 0.683

Table 6 Ceff for GLMpqr with order p = 4, stage order q = 1, 2, 3, r = rank(V) = 3,Ceff for TSRK
methods of order p = 4, with s internal stages, 3 ≤ s ≤ 10 and Ceff for MMpq methods of order p = 4,
stage order q = 1, 2, 3, with k = 3 steps and s stages, 3 ≤ s ≤ 4

s GLM413 GLM423 GLM433 TSRK MM41 MM42 MM43 MM44

3 0.475 0.475 0.376 0.286 0.39 0.39 0.36 0.33

4 0.526 0.505 0.477 0.398 0.46 0.46 0.45 0.26

5 0.539 0.532 0.494 0.472

6 0.556 0.552 0.501 0.506

7 0.592 0.554 0.509 0.534

8 0.618 0.554 0.514 0.562

9 0.648 0.554 0.520 0.586

10 0.651 0.555 0.525 0.610

B =
[
0.2331192407258031 0.1409247474047351 0.3009003088461573 0.1073705564586502
0.1338392960126851 0.1813062195702598 0.3871221944272032 0.6128963374789214

]
,

v = [
0.5914695020769672 0.4085304979230328

]T
,

q0 =
[
1
1

]
, q1 =

[
0

0.5328491940537238

]
, q2 =

[
0

0.0067355902309170

]
,

q3 =
[

0
−0.0055320508775149

]
, q4 =

[
0

0.0014251362856992

]
.

For this method Ceff = 0.291.
It is worth remarking that the coefficients listed here are computed using double precision

accuracy and they are reported with 16 digits. Specifically, we used the MATLAB� function
fmincon setting the absolute and relative tolerances both equal to 10εM , where εM here stands
for the machine epsilon. For the reported methods, we verified that the inequality constraints
in (4.1) are satisfied, and themaximum residua for the equality constraints in (4.1) are smaller
than 3εM . A technique similar to the one used in [37] can be used when more accurate coef-
ficients are needed, for example for implementation in an extended precision environment.

4.2 Methods with Three External Stages

The higher value of Ceff coefficients obtained for the cases with rank(V) = 2 suggests
that good values of Ceff can be also obtained considering methods having r = 3 (three
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external stages) and rank(V) = 3. The results of such investigation are listed in Tables 5
and 6. For comparison, in these tables we have again listed Ceff coefficients for SSP TSRK
methods investigated by Ketcheson et al. [45], and multistep multistage methods investigate
by Constantinescu and Sandu [19].

5 Construction of Starting Procedures

In this section we describe the construction of starting procedures for GLMs (3.1) of order
p and stage order q ≤ p, which are defined by the abscissa vector c = [c1, . . . , cs]T ∈ R

s ,
the coefficient matrices

[
A U
B V

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 u1,1 u1,2
a2,1 0 u2,1 u2,2
...

...
. . .

...
...

as,1 as,2 · · · 0 us,1 us,2
b1,1 b1,2 · · · b1,s v1 v2
b2,1 b2,2 · · · b2,s v1 v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and the vectors

q0 =
[
1
1

]
, q1 =

[
q1,1
q2,1

]
, . . . , qp =

[
q1,p
q2,p

]
.

This method requires the starting vector y[0] which satisfies the relation (3.6). The com-
putation of such a vector can be achieved by associating with each component y[0]

i , i = 1, 2,
a starting procedure Si in the form of a generalized explicit RK method

c(i) A(i)

b(i)
0 b(i)T =

c(i)
1 = 0 0
c(i)
2 a(i)

2,1 0
...

...
...

. . .

c(i)
si a(i)

si ,1
a(i)
si ,2

· · · 0

b(i)
0 b(i)

1 b(i)
2 · · · b(i)

si

, (5.1)

with si stages, i = 1, 2. The order conditions for these starting procedures can be derived
in a similar way as order conditions for RK methods. Denote by Tk the set of rooted trees
of order less than or equal to k [8,10,11]. For easy reference the trees up to the order four
and the functions ρ(t)—the order of t, α(t)—the number of ways of labeling t, σ (t)—the
symmetry of t , and γ (t) - the density of t , are listed in Table 7. In this table we have also listed
the elementary differentials F(t) and elementary weights Φ(t) corresponding to t ∈ Tk , and
�c(i) stands for diag(c(i)

1 , . . . , c(i)
si ).We refer to [8,10,11] for the definitions of these functions

and the definition of F(t) and Φ(t).
Expanding the solution y(t1) to (1.1) into Taylor series around t0 we obtain

y(t1) = y0 + hy′(t0) + h2

2! y
′′(t0) + · · · + h p

p! y
(p)(t0) + O(h p+1). (5.2)

Similarly, expanding into Taylor series around t0 the numerical solution defined by the con-
tinuous extension of the RK method (1.6)
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Table 7 Trees t ∈ Tk , 1 ≤ k ≤ 4, the functions ρ(t), α(t), σ (t), γ (t), elementary differentials F(t) and
elementary weights Φ(t) corresponding to t

t ρ(t) α(t) σ (t) γ (t) F(t) Φ(t)

τ 1 1 1 1 f b(i)T e

[τ ] 2 1 1 2 f ′ f b(i)T c(i)

[
τ2
]

3 1 2 3 f ′′( f, f ) b(i)T c(i)
2

[2τ ]2 3 1 1 6 f ′ f ′ f b(i)A(i)c(i)

[
τ3
]

4 1 6 4 f ′′′( f, f, f ) b(i)T c(i)
3

[τ [τ ]] 4 3 1 8 f ′′( f, f ′ f ) b(i)�ciA
(i)c(i)

[
2τ

2
]
2

4 1 2 12 f ′ f ′′( f, f ) b(i)A(i)c(i)
2

[3τ ]3 4 1 1 24 f ′ f ′ f ′ f b(i)A(i)2c(i)

Yi (t) = y0 + (t − t0)
i−1∑
j=1

ai j f
(
t0 + c j (t − t0), Y j (t)

)
, i = 1, 2, . . . , s,

ỹ(t) = y0 + (t − t0)
s∑

j=1
b j f

(
t0 + c j (t − t0), Y j (t)

)
,

t ∈ [t0, t1], leads to

ỹ(t1) = y0 + h ỹ′(t0) + h2

2! ỹ
′′(t0) + · · · + h p

p! ỹ
(p)(t0) + O(h p+1). (5.3)

We can obtain order conditions for RK method (1.6) comparing (5.2) and (5.3). It is known
[8,10,11] that the derivatives of the exact solution y and numerical solution ỹ can be written
as

y(k)(t0) =
∑
t∈Tk

α(t)F(t)(y0),

and

ỹ(k)(t0) =
∑
t∈Tk

α(t)γ (t)Φ(t)F(t)(y0),

k = 1, 2, . . . , p. Hence, the RK method (1.6) has order p if and only if

ỹ(k)(t0) = y(k)(t0), 1 ≤ k ≤ p,
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which, taking into account that k = ρ(t), leads to the well known order conditions

Φ(t) = 1

γ (t)
, ρ(t) ≤ p.

To obtain order conditions for starting procedures Si defined by (5.1) we have to compare
(5.3) with the expansions

y[0]
i = qi,0y0 + hqi,1y

′(t0) + h2qi,2y
′′(t0) + · · · + h pqi,p y

(p)(t0) + O(h p+1), (5.4)

i = 1, 2. Since qi,0 = 1 this implies that b(i)
0 = 1, and

ỹ(k)(t0) = k!qi,k y(k)(t0), k = 1, 2, . . . , p.

Hence, it follows that the order conditions for starting procedures Si take the form

Φ(t) = ρ(t)!qi,ρ(t)

γ (t)
, ρ(t) ≤ p, i = 1, 2. (5.5)

The starting procedures (5.1) can bewritten asGLMof the form (2.1)withmi = si+1, � =
1, and the matrices T(i) and S(i) given by

T(i) =
[
A(i) 0

b(i)T 0

]
∈ R

(si+1)×(si+1), S(i) =
[
e
1

]
∈ R

si+1,

i = 1, 2.
We conclude this section by listing coefficients of starting procedures for the second

stage of GLMs presented at the end of Sect. 4. We will write c,A, b0, and b instead of
c(2),A(2), b(2)

0 , and b(2).

1. Starting procedure for GLM of order p = s = 2 and stage order q = 1:

c A
b0 bT

=
0 0 0

0.2812093945309069 0.2812093945309069 0
1 0.7338916724562181 −0.3688449687290664

.

2. Starting procedure for GLM of order p = s = 3 and stage order q = 1:

c = [
0 0.7335162159189944 2.251072404473931

]T
,

A =
⎡
⎣ 0 0 0
0.7335162159189944 0 0
0.9141884855975350 1.3368839188763961 0

⎤
⎦ ,

b0 = 1, b =
⎡
⎣−0.3515107644351690

0.6136211845789465
−0.1062937817235246

⎤
⎦
T

.
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3. Starting procedure for GLM of order p = s = 4 and stage order q = 1:

c = [
0 −0.0484369237260314 2.251072404473931 −0.3753454798145245

]T
,

A =

⎡
⎢⎢⎣

0 0 0 0
−0.0484369237260314 0 0 0
6.8617545996333957 −7.7088758801318322 0 0

−2.7818048469195342 2.6107806659149184 −0.2043212988099087 0

⎤
⎥⎥⎦,

b0 = 1, b =

⎡
⎢⎢⎣

0.3400007423942334
0.2240113419846398

−0.0124829643367784
−0.0186799259883710

⎤
⎥⎥⎦ .

6 Numerical Experiments

To verify order of convergence of the methods derived in this paper we will use the test
problem from [19,52]

∂y(x, t)

∂t
= −∂y(x, t)

∂x
+ t − x

(1 + t)2
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (6.1)

with initial condition y(x, 0) = 1 + x, 0 ≤ x ≤ 1, and left boundary condition y(0, t) =
1/(1 + t), 0 ≤ t ≤ 1. The exact solution to this problem is

y(x, t) = 1 + x

1 + t
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

This solution is linear in space and, as observed in [19] we can use first-order upwind
discretization in space variable x without introducing discretization errors.

It is the worth remarking that, from (3.3), the external stages of the GLMs (3.1) approx-
imate a linear combination of the solution and its derivatives at grid points. So, usually, a
finishing procedure is needed to recover an approximation for y(tend). This can be achieved
by using information coming from one or two previous steps. This finishing procedure is a
suitable linear combination of external stages, and does not involve any additional evaluation
of the function f .

We have plotted on Figs. 9, 10 and 11 in double logarithmic scale the norm of global
error at the end point t f of the interval of integration versus stepsize h for methods of order
p = 2, p = 3, p = 4, and stage order q = 1. We can see that all methods achieve the
expected order of convergence. The convergence graphs for methods of order p = 2 and
stage order q = 2, of order p = 3 and stage order q = 2 or q = 3, and of order p = 4
and stage order q = 2 or q = 3 also confirm the expected order of convergence. These
graphs are not reproduced here. We have also presented in Table 8 the norm of the error at
the end of the interval of integration and the observed order of convergence for GLMs with
p = s = 2, p = s = 3, p = s = 4, and q = 1. The results for methods with larges number
of stages s and higher stage order q are similar to those presented in Table 8 and are not
reproduced here.

In order to further validate the order preservation for high stage order SSP GLMmethods
we report in Figs. 12 and 13 the results of numerical tests that point out that the constructed
high order stages SSP GLM methods preserve the theoretical order of convergence p, while
low stage order SSP RK methods suffer from the well known order reduction phenomenon.
Specifically, following Constantinescu and Sandu [19], we considered problem (6.1) and
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Fig. 9 Order verification for GLMs of order p = 2 and stage order q = 1 with 2 ≤ s ≤ 10 stages

pointed out that, when the spatial and temporal grids are refined simultaneously, SSPRK(3,
3) method [24] and SSPRK(5, 4) method [26,48,56] only achieve order p = 2, while GLM
of order p = 3, stage order q = 3 and s = 3 internal stages, preserves the expected order
p = 3 (see Fig. 13).

For the sake of completeness, it is worth to remark that when the space grid is maintained
fixed—the ODE problem is fixed—then the expected order is preserved from all the consid-
ered Runge–Kutta and general linear methods (see Fig. 12). The order reduction phenom-
enon for RK methods reported in Fig. 13 is due to naive implementation of a time-dependent
Dirichlet boundary condition. This phenomenon has been deeply analyzed in the literature
and for linear hyperbolic equations it can be reduced or avoided by a suitable transformation
or differentiation of the boundary conditions as shown in [18,36,51,52].

To verify monotonicity properties of GLMs constructed in this paper we consider, follow-
ing Constantinescu and Sandu [19] and Ketcheson et al. [46], the inviscid Burgers equation

∂y(x, t)

∂t
+ ∂

∂x

(
1

2
y2(x, t)

)
= 0, 0 ≤ x ≤ 2, 0 ≤ t ≤ t f , (6.2)

with discontinuous initial condition

y(x, 0) =
{
0, 0 ≤ x < 0.5 or 1 < x ≤ 2,
1, 0.5 ≤ x ≤ 1,

and periodic boundary conditions

y(0, t) = y(1, t), 0 ≤ t ≤ t f .
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Fig. 10 Order verification for GLMs of order p = 3 and stage order q = 1 with 2 ≤ s ≤ 10 stages

The space derivative in (6.2) was discretized by the conservative upwind approximation
of the first order

y2(xi , t) ≈ y2(xi , t) − y2(xi−1, t)

Δx
,

i = 1, 2, . . . , N , where xi = iΔx, i = 0, 1, . . . , N , NΔx = 2. The resulting system of
ordinary differential equations corresponding to N = 100 spatial points was then solved on
the time interval [0, 0.5].Wehave found experimentally that theEulermethod for this problem
is SSP for h ≤ hFE ≈ 0.0167 and the GLM with p = 2, q = 1, and s = 2 is SSP if the
time step h satisfies the theoretical bound h ≤ 1.48 hFE , compare with Table 2. However, the
observed restriction on the time step h is somewhat less stringent and given by h ≤ 1.58 hFE .
The results reported on Fig. 14 correspond to the time step h = 1.43 hFE = 0.0238.

The numerical approximation obtained by the SSP GLM of order p = 2 and stage order
q = 1 listed at the end of Sect. 4 with starting procedure given at the end of Sect. 5 is
presented on the top graph of Fig. 14. We have also plotted the numerical approximation
obtained by DIMSIM of order p = 2 and stage order q = 2 from [9] (see also [40]) which is
not SSP, that is its SSP coefficient is Ceff = 0. We can see that the SSP GLM exhibits smooth
behavior, and that there are spurious oscillations generated by DIMSIM. Similar behavior
of numerical approximations was observed for SSP GLM of order p = 3 and p = 4 listed
at the end of Sect. 4 applied to the discretization of (6.2) with starting procedures listed in
Sect. 5, and for DIMSIMs of order p = 3 and p = 4 and stage order q = 3 and q = 4 from
[40].
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Fig. 11 Order verification for GLMs of order p = 4 and stage order q = 1 with 2 ≤ s ≤ 10 stages

Table 8 Accuracy test for problem (6.1) for the SSP GLMmethods with p = s = 2, p = s = 3, p = s = 4,
and q = 1

N SSP p = s = 2, q = 1 SSP p = s = 3, q = 1 SSP p = s = 4, q = 1

Error Order Error Order Error Order

64 6.61e−05 – 1.01e−05 – 2.69e−08 –

128 1.64e−05 2.01 1.27e−06 3.00 1.54e−09 4.13

256 4.09e−06 2.00 1.58e−07 3.00 9.21e−11 4.06

512 1.02e−06 2.00 1.98e−08 3.00 5.63e−12 4.03

1,024 2.55e−07 2.00 2.47e−09 3.00 3.49e−13 4.01

The first columns displays the number of steps N

Following Ferracina and Spijker [23] and Ketcheson et al. [45,46] we consider also the
Buckley–Leverett equation

∂y(x, t)

∂t
+ ∂

∂x

(
Φ (y(x, t))

)
= 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ t f , (6.3)

with

Φ(y) = y2

y2 + a(1 − y)2
.
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Fig. 12 Order preservation for SSP GLM of order p = 3, stage order q = 3 and s = 3 internal stages, and
for SSPRK(3, 3) and SSPRK(5, 4) on problem (6.1) when only the temporal grid is refined

This equation models a two-phase flow through the porous media, see for example [49]. We
take a = 1/3 and assume the discontinuous initial condition

y(x, 0) =
{
0, 0 ≤ x ≤ 0.5,
0.5, 0.5 < x ≤ 1,

and periodic boundary conditions

y(0, t) = y(1, t), 0 ≤ t ≤ t f .

As in [23] the Eq. (6.3) was approximated by the system of ordinary differential equations
of the form

y′
i (t) =

Φ
(
yi− 1

2
(t)
)

− Φ
(
yi+ 1

2
(t)
)

Δx
, (6.4)

where yi (t) ≈ y(xi , t), xi = iΔx, i = 0, 1, . . . , N , NΔx = 1. We define

y j+ 1
2
(t) = y j (t) + 1

2
φ
(
θ j (t)

) (
y j+1(t) − y j (t)

)
,

where φ(θ) is a limiter function, due to Koren [36,47], which is defined by

φ(θ) = max
{
0,min

{
2,

2

3
+ 1

3
θ, 2θ

}}
,
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Fig. 13 Order preservation for SSP GLM of order p = 3 and stage order q = 3 (top figure) and order
reduction phenomenon for SSPRK(3, 3) and SSPRK(5, 4) (bottom figure) on problem (6.1) when spatial and
temporal grids are refined simultaneously

and

θ j (t) =
{
0, j = 0,
y j (t)−y j−1(t)
y j+1(t)−y j (t)

, j = 1, 2, . . . , N .

We semi-discretize the problem (6.3) using N = 100 spatial points and, as in [23,45,46],
we integrate the resulting system of ordinary differential equations (6.4) on the interval
[0, 1/8]. For this problem Euler method is SSP for h ≤ hFE = 0.0025 [23,45,46], and
the GLM with p = 2, q = 1, and s = 2 is SSP if the time step h satisfies the theoretical
bound h ≤ 1.48 hFE , compare again with Table 2. However, the observed restriction on the
time step h is less stringent and given by h ≤ 2.17 hFE . Similar behavior was observed by
Ketcheson et al. [45] in the context of TSRK methods, where they reported larger values of
observed SSP coefficients C than those obtained by the solution of the minimization problem
to compute optimal values of C. The results reported on Fig. 15 correspond to the time step
h = 2 hFE = 0.005.

The numerical approximation obtained by the SSP GLM of order p = 2 and stage order
q = 1 listed at the end of Sect. 4with starting procedure given at the end of Sect. 5 is presented
on the top graph of Fig. 15. We have also plotted the numerical approximation obtained by
DIMSIM of order p = 2 and stage order q = 2 from [9] (see also [40]) which is not SSP, that
is its SSP coefficient is Ceff = 0. We can observe that, similarly as in the previous example,
the SSP GLM exhibits smooth behavior, and that there are spurious oscillations generated by
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Fig. 14 Numerical approximations at t f = 0.5 to the discretization of Burgers equation with N = 100,
obtained by SSP GLM of order p = 2 and stage order q = 1, and by DIMSIM of order p = 2 and stage order
q = 2 which is not SSP. These results correspond to h = 0.0238

DIMSIM. As before, similar behavior of numerical approximations was observed for SSP
GLM of order p = 3 and p = 4 and stage order q = 1 listed at the end of Sect. 4 applied
to the discretization of (6.2) with starting procedures listed in Sect. 5, and for DIMSIMs of
order p = 3 and p = 4 and stage order q = 3 and q = 4 from [40]. There is extensive
numerical evidence that GLMs derived in this paper combined with starting procedures listed
in Sect. 5 preserve SSP of the overall numerical processes.

7 Concluding Remarks

We have used the monotonicity theory of GLMs developed by Spijker [55] to construct SSP
methods with two and three external stages and s internal stages for differential systems. We
also derived order conditions for starting procedures for GLMs investigated in this paper.
Examples of methods are provided of order p = 2 and stage order q = 1 or q = 2, order p =
3 and stage order q = 1, q = 2, or q = 3, and of order p = 4 and stage order q = 1, q = 2, or
q = 3. Examples of starting procedures for these methods are also provided. Many methods
derived in this paper have larger effective Courant–Friedrichs–Levy coefficients Ceff than the
class of TSRK methods introduced by Jackiewicz and Tracogna [42], whose SSP properties
were analyzed recently byKetheson et al. [45]. Numerical examples illustrate that allmethods
derived in this paper achieve the expected order of accuracy. Moreover, under appropriate
stepsize restrictions, these methods combined with appropriate spatial discretization, do not
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Fig. 15 Numerical approximations at t f = 1/8 to the discretization of the Buckley–Leverett equation with
N = 100, obtained by SSP GLM of order p = 2 and stage order q = 1, and by DIMSIM of order p = 2 and
stage order q = 2 which is not SSP. These results correspond to h = 0.005

produce spurious oscillations when applied to semidiscretizations of hyperbolic conservation
laws.

Future work will address the construction of implicit SSP GLMs and explicit SSP GLMs
of high order, and the efficient implementation of these methods for semidiscretizations in
space variables of partial differential equations.
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