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Abstract In this paper we study functionally fitted methods based on explicit two step peer
formulas. We show that with s stages it is possible to get explicit fitted methods for fitting
spaces of high dimension 2s, by proving the existence and uniqueness of such formulas. Then,
weobtain particularmethodswith 2 and3 stagesfitted to trigonometric and exponential spaces
of dimension 4 and 6 respectively. By means of several numerical examples we show the
performance of the obtained methods, comparing them to fitted Adams–Bashforth–Moulton
methods with the same order.
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1 Introduction

We consider the numerical solution of IVPs for first order differential systems

d

dt
y(t) = f (t, y(t)), t ∈ [t0, t0 + T ], y(t0) = y0 ∈ R

m, (1)
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with a sufficiently smooth vector field f (t, y)where some properties of the behaviour of their
unique global solution y = y(t; t0, y0) are known in advance. In the case that the solution
of (1) has an oscillatory behaviour and further we know an estimate of the frequency, some
modifiedRunge–Kutta (RK)methods using this information, usually called trigonometrically
fitted or more generally exponentially fitted methods [1,3,4,9,13,14], have been proposed
to improve their accuracy and efficiency over standard RK methods that are based on a
polynomial approximation of the local solution at each point. More generally, for IVPs (1)
with solutions belonging to (or that can be well approximated by) a functional space F ,
functionally fitted RK methods specially adapted to this space have been analyzed in [5–8].

Concerning the highest dimension of the fitting space that can be attained for a RK
method, it is known that it is closely related to the stage order of the method. Thus, assuming
(q + 1)-dimensional fitting spaces F = Fq = 〈ϕ0(t), ϕ1(t), . . . , ϕq(t)〉 of smooth linearly
independent real functions in [t0, t0 + T ] in the sense that the Wronskian matrix is non
singular for all t ∈ [t0, t0 + T ], it has been proved by Ozawa [8] that for any fitting space
Fq there exists a RK method with s = q stages fitted to Fq for all h ∈ (0, h0] with h0
sufficiently small. However, for explicit RK methods the stage order is limited to one and
this implies serious restrictions in the dimensionality of the fitting space. In particular, Berghe
et al. [13] have derived explicit four stage RK methods trigonometrically fitted to the space
F2 = 〈1, cos(ω t), sin(ω t)〉, where ω is a fixed frequency, with coefficients that depend on
ν = ω h, and such that when ν → 0 they tend to the coefficients of the classical fourth order
RK method. Higher dimensions of the fitting space are not possible for explicit methods.

Linear multistep methods do not have such a limitation, as shown for example in the early
paper of Gautschi [4]. In this case, with k steps, an explicit method can be fitted to k + 1
dimensional spaces.

In this paper we will consider the so called explicit two step peer methods introduced
by Weiner, Schmitt et al. [10–12,15–18] in a series of papers as an alternative to classical
Runge–Kutta (RK) and multistep methods attempting to combine the advantages of these
two classes of methods. For a given set of admissible fixed nodes c j , j = 1, . . . , s in the
sense that |ci − c j | �= 0, 1 for all i �= j , that is

c1, c2, . . . , cs, 1 + c1, 1 + c2, . . . , 1 + cs,

is a non confluent set of nodes, and starting from known approximations Y0, j to y(t0 +
c j h), j = 1, . . . , s we obtain a new set of approximations

Y1, j � y(t1 + c j h) where t1 = t0 + h,

by means of the equations

Y1, j =
s∑

k=1

a jkY0,k + h
s∑

k=1

b jk f (t0 + ckh, Y0,k)

+ h
j−1∑

k=1

r jk f (t1 + ckh, Y1,k), j = 1, . . . , s, (2)

where the elements of

A = (a jk) ∈ R
s×s, B = (b jk) ∈ R

s×s, R = (r jk) ∈ R
s×s,

with A and B full matrices and R strictly lower triangular are the free parameters that define
the method with Ae = e = (1, . . . , 1)T ∈ R

s to ensure the preconsistency condition.
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Extending in a natural way the definition of fitted RK and multistep methods we will say
that the explicit two step peer method (2) is fitted to Fq if

ϕ(t1 + c j h) =
s∑

k=1

a jk ϕ(t0 + ckh) + h
s∑

k=1

b jk ϕ̇(t0 + ckh)

+ h
j−1∑

k=1

r jk ϕ̇(t1 + ckh), j = 1, . . . , s (3)

holds for all ϕ ∈ Fq .
From this definition it is clear that for a given set of admissible nodes at each stage we

have at least 2s free parameters and this flexibility allow us to obtain explicit methods that
attain high stage order. The authors of the present paper have proved in [2] that s stage peer
methods can attain order q = 2s − 1, also with the same stage order. In this paper we will
show that it is possible to obtain explicit peer methods fitted to spaces Fq with q large,
taking enough number of stages. Recall also that in the case of fitting to polynomial spaces
i.e. Fq = Πq = 〈1, t, . . . , tq〉, several methods have been proposed in [16–18] that are
competitive with the standard integrators in use, and in particular, in [2] methods with 2 and
3 stages and order 3 and 5 respectively were obtained with optimal stability and accuracy
properties. This is important since usually fitted methods tend to standard ones when the
fitting parameter ν = ω h tend to zero.

The paper is organized as follows: In Sect. 2, after introducing a class of explicit two step
peer methods with s-stages that are strongly zero-stable, we show that under some minor
restrictions on the nodes for any fitting space Fq with q = 2s − 1 there exists a unique fitted
method for |h| sufficiently small. A remarkable property is that, as in the polynomial case
[2], in the fitting conditions the 2s2 − s free parameters that define the coefficients of (2)
can be separated into s sets of linear equations with (2s − 1) parameters in each set, and this
fact simplifies greatly the calculation of the coefficients. In particular if Fq is the space of
solutions of a linear homogeneous differential equation with constant coefficients of order
(q + 1) then the coefficients of (2) are independent of the starting time t0.

In Sect. 3, fitted two stage peer methods to some four dimensional fitting spaces F3 are
constructed. For F3(ω) = 〈1, t, cos(ω t), sin(ω t)〉 the coefficients are explicitly given in
terms of d = c2 − c1 and ν = ω h showing that they tend to those of the polynomial case
when ω → 0 i.e. ν → 0. Also a study of the stability on the real and imaginary axes is given.

In Sect. 4, the three-stage peer methods fitted to some 6-dim, fitting spaces F5 are stud-
ied. Here the nodes are taken from [2] and only fitting spaces that are solution of linear
homogeneous equations with constant coefficients are considered. Finally, in Sect. 5 some
numerical experiments are presented to show the performance of the above fitted methods for
problems with oscillatory solutions. The proposed methods are compared to exponentially
fitted Adams–Bashforth–Moulton method with the same order in PECE mode.

2 Fitted Two Step Peer Methods

In our study of fitted peer methods of type (2) it will be sufficient to consider a scalar equation
(m = 1) and the methods can be written in the vector form

Y1 = A Y0 + h B f0 + h R f1, (4)
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where, to simplify, we have used the following notations

Yk = (
Yk,1, . . . , Yk,s

)T ∈ R
s, (5)

c = (c1, . . . , cs)
T ∈ R

s, (6)

fk = f (tke + hc, Yk) = (
f (tk + hc j , Yk, j )

)s
j=1 ∈ R

s .

Before imposing the fitting conditions observe that (4) is a multivalued method and the zero
stability requires that A has a unit eigenvalue λ1(A) = 1 and the remaining eigenvalues
|λ j (A)| ≤ 1, j = 2, . . . , s and those of modulus one correspond to simple elementary
divisors. Here as in [2,16–18] we will consider methods with the stronger requirement

λ1(A) = 1, λ j (A) = 0, j = 2, . . . , s. (7)

Furthermore, following the ideas of [2], to simplify the derivation of the fitting methods and
to get methods with high stage order, we will take A with the form

A = P−1 Â P, (8)

with P = (pi j ) ∈ R
s×s a lower triangular matrix with ones at the diagonal, and Â = (âi j ) ∈

R
s×s upper triangularwhose diagonal is diag( Â) = (1, 0, . . . , 0), that clearly satisfy (7).Note

that the preconsistency condition of (4) Ae = e implies that Pe = e1 = (1, 0, . . . , 0)T ∈ R
s

and thenwe have s(s−1)/2 free parameters in Â and s(s−1)/2 free parameters in P together
with the s − 1 consistency conditions of Pe = e1.

By using (8), Eq. (4) can be rewritten as

P Y1 = Â P Y0 + h B̂ P f0 + h R̂ P f1 (9)

with
B = P−1 B̂ P, R = P−1 R̂ P . (10)

We associate to (4) the linear s-dim vector valued operator L[ϕ; h] defined for a smooth
scalar function ϕ and a step size h at time t by

L[ϕ; h](t) ≡ ϕ((t + h)e + hc) − A ϕ(te + hc)

−h B ϕ̇(te + hc) − h R ϕ̇((t + h)e + hc). (11)

Now we introduce the following definition:

Definition 1 For a given set of admissible nodes and a fitting spaceFq = 〈ϕ0(t), ϕ1(t), . . . ,
ϕq(t)〉 the method (4) is fitted to the linear space Fq with step size h at t0 if

L[ϕ; h](t0) = 0, ∀ϕ ∈ Fq . (12)

As a first remark observe that if the starting values
(
Y0, j

)s
j=1 of the peer method (9) belong

to a solution of the differential equation contained in the fitting space Fq in the sense that
there exist ϕ ∈ Fq such that

ϕ̇(t) = f (t, ϕ(t)), ϕ(t0 + c j h) = Y0, j , j = 1, . . . , s,

then the unique solution of (4) gives the exact values of the solution i.e. Y1, j = ϕ(t1 + c j h).
For Fq = Πq i.e. in the polynomial case, q is called the stage order of (4) and then (12)

is equivalent to
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L[y; h](t) = O(hq+1) for all y ∈ C∞

and this condition turns out to be independent of t .
For our class of strongly zero stable peer methods where A is given by (8) we have

L[ϕ; h](t0) = P−1 L̂[ϕ; h](t0), (13)

with
L̂[ϕ; h](t0) = Z(t + h) − Â Z(t) − h B̂ Ż(t) − h R̂ Ż(t + h) (14)

and Z(t) = P ϕ(te + hc). In view of (13) the method (4) is fitted to Fq at t0 with step size
h iff

L̂[ϕ; h](t0) = 0, ∀ϕ ∈ Fq . (15)

Next we give sufficient conditions on the functions of Fq that ensure that L[ϕ; h](t0) is
independent of t0 and therefore the coefficients of the fittedmethod can be chosen independent
of t0.

Theorem 1 LetFq be the (q+1)-dim space of solutions of a homogeneous linear differential
equation with constant coefficients with order (q + 1). If the linear operator L given by (11)
with A, B and R independent of t satisfies

L[ϕ; h](t0) = 0, ∀ϕ ∈ Fq

then

L[ϕ; h](t) = 0, ∀ϕ ∈ Fq , ∀ t ∈ [t0, t0 + T ].
Proof For simplicity we will take t0 = 0. Suppose that Fq is the basis of solutions of the
linear equation

Q(D)u(t) ≡ (
Dq+1 + aq Dq + . . . + a0

)
u(t) = 0, (16)

with real constants a j , j = 0, . . . , q where D denotes the time derivative. By the theory of
ODEs we know that for every root α ∈ C of the characteristic polynomial of (16) Q(z) = 0
with multiplicity k then there exists an invariant subspace of linearly independent solutions
of the form

ϕ0(t) = exp(αt), ϕ1(t) = t exp(αt), . . . , ϕk−1(t) = tk−1 exp(αt). (17)

Next we will show that the time invariance of L holds for the invariant subspace associated
to α, i.e. L[ϕ j ; h](0) = 0, j = 0, . . . , k − 1 implies L[ϕ j ; h](t) = 0, j = 0, . . . , k − 1.

For ϕ0(·) = exp(α·) the terms of the vector valued functions of ϕ0 in (9), e.g. ϕ0(te + hc)
satisfy

ϕ0(te + hc) = exp [α(te + hc)]

= exp(αt) exp(αhc)

= exp(αt) ϕ0(hc).

Then substituting into the right hand side of (11) we have

L[ϕ0; h](t) = exp(αt)L[ϕ0; h](0). (18)

For the function ϕ1(t) = t exp(αt) that satisfies ϕ1(t) ≡ ∂αϕ0(t), by the linearity of L and
(18) we have
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L[ϕ1; h](t) = L[∂αϕ0; h](t)
= ∂αL[ϕ0; h](t)
= ∂α

[
exp(αt)L[ϕ0; h](0)]

= t exp(αt) L[ϕ0; h](0) + exp(αt) ∂αL[ϕ0; h](0)
= t exp(αt) L[ϕ0; h](0) + exp(αt) L[ϕ1, h](0).

Hence if L[ϕ1; h](0) = L[ϕ0; h](0) = 0 then L[ϕ1; h](t) = 0 for all t .
The above approach extends successively to

ϕ j (t) = t j exp(αt) = 1

j !∂
j
αϕ0(t), j = 2, . . . , k − 1.

Finally since the sets of functions (17) for all roots α of the characteristic polynomial of (16)
are a basis of Fq , the theorem holds for this particular basis and due to the linearity of L it
also holds for any basis. �


Remarks – From this Theorem it follows that for fitting spaces of solutions of linear
homogeneous differential equations with constant coefficients if the available coeffi-
cients A, B, R (that may depend on the nodes and the step size h) of (9) are fitted for
some particular t0 then they are fitted for all t in the sense of above Definition 1. Further
due to (12) this Theorem also holds for the operator L̂.

– For fitting spaces that satisfy the assumptions of Theorem 1 if we take as basis point
t0 = −hc1 then L̂[ϕ; h](−hc1) depends on the nodes in the form of differences (c2 −
c1), . . . (cs − c1), therefore for the fitting conditions we may consider the differences to
a fixed node.

– For a (q + 1)-dim basis of solutions Fq = 〈ϕ0(t) = 1, ϕ1(t), . . . , ϕq(t)〉 of the linear
homogeneous equation with constant coefficients

Q(D)u(t) ≡ u(q+1)(t) + aqu
(q)(t) + . . . + a1u

(1)(t) = 0

the functions ϕ j depend on the roots 0, ω1, . . . , ωr of the characteristic polynomial

Q(z) = zq+1 + aq z
q + . . . + a1z = zβ0 (z − ω1)

β1 . . . (z − ωr )
βr

with β0 + β1 + . . . + βr = q + 1. Clearly when all ω j → 0 then Q(z) → zq+1 and the
solutions of Dq+1u(t) = 0 is the polynomial basis ϕ j (t) = t j , j = 0, . . . , q . Because
of this the coefficients of a two step peer fitted method will be functions of hω j = ν j

such that when all ν j → 0, tend to those of a polynomially fitted two step peer method.
The fitting conditions (14, 15) define the available parameters Â, B̂ and R̂ as solutions of s

independent, decoupled sets of q +1 linear equations each of them containing 2s unknowns,
corresponding to one row of the three matrices. In the polynomial case it has been studied in
[2] the conditions under which the order conditions (15) have a unique solution with maximal
order q = 2s − 1.

Next we will study the existence of two step peer methods with s stages fitted to general 2s
dimensional spacesF2s−1 = 〈ϕ0 = 1, ϕ1, . . . , ϕ2s−1〉 at a given time t0, that is, the existence
of a unique solution of the order conditions (15) with L̂ defined by (14) in the free parameters
of Â, B̂ and R̂.
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We start considering the first component of L̂ that is given by

L̂1[ϕ; h](t0) = z1(t0 + h) − z1(t0)

−
s∑

k=1

â1k zk(t0) − h
s∑

k=1

b̂1k żk(t0), (19)

where z j (t), the components of Z(t), are defined in terms of ϕ(t) by

(z1(t), z2(t), . . . , zs(t))
T = P ϕ(te + hc)

Putting

â = (1, â12, . . . , â1s), b̂ = (̂b11, b̂12, . . . , b̂1s)

the operator (19) becomes

L̂1[ϕ; h](t0) = ϕ(t0 + (1 + c1)h) − ϕ(t0 + c1h)

−â P ϕ(t0e + hc) − hb̂ P ϕ̇(t0e + hc) (20)

and substituting the Taylor expansion of ϕ at t0 in the right hand sides of (20) we have

L̂1[ϕ; h](t0) =
∑

j≥1

h j

j ! μ j ϕ( j)(t0), (21)

where
μ j = (1 + c1)

j − c j1 − â P c j − j b̂ P c j−1. (22)

As remarked above for the polynomial basis ϕ = tk, k = 1, . . . , 2s−1 the fitting conditions

L̂1[tk; h](t0) = 0, k = 1, . . . , 2s − 1,

are equivalent to

μk = 0, k = 1, . . . , 2s − 1

that are linear equations in the unknowns â and b̂ that possess a unique solution.
For a general fitting space F2s−1 the fitting conditions

L̂1[ϕk; h](t0) = 0, k = 1, . . . , 2s − 1,

taking into account (21) can be written as

2s−1∑

j=1

h j

j ! μ j ϕ
( j)
k (t0) = O(h2s), k = 1, . . . , 2s − 1,

or else
(
μ1h, μ2

h2

2! , . . . , μ2s−1
h2s−1

(2s − 1)!
)
W (ϕ1, . . . , ϕ2s−1)(t0) = O(h2s).

Since theWronskian matrixW (ϕ1, . . . , ϕ2s−1)(t0) is non-singular these equations define for
sufficiently small h > 0

μ j = μ j (h, t0), j = 1, . . . , 2s − 1,

further μ j (h, t0) → 0 as h → 0.
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Now taking into account (22) we have

â P c j + j b̂ P c j−1 = (1 + c1)
j − c j1 − μ j (h, t0),

that define uniquely the unknowns â and b̂ with the same restrictions as in polynomial case
for h sufficiently small. Also these coefficients tend to those of the polynomial case when
h → 0.

Since a similar study can be carried out for the remaining components of L̂ we may
conclude with the following Theorem.

Theorem 2 Suppose that for a given set of admissible fixed nodes and constant matrix P
the polynomially fitted two step peer method (4), (8) with s stages has a unique solution with
stage order 2s − 1, then

1. For any linear space F2s−1 = 〈1, ϕ1(t), . . . , ϕ2s−1(t)〉 there exist a unique s-stage two
step peer method fitted to this space for h sufficiently small. This peer method has the
same nodes and P-matrix as the polynomially fitted method toΠ2s−1 and the coefficients

ÂF = Â(t0, h), B̂F = B̂(t0, h), R̂F = R̂(t0, h),

may depend (apart from the fitting space) on t0 and h.
2. If F2s−1 is a separable basis the coefficients are independent of t0.
3. Further when all the roots of the polynomial Q(D) tend to zero the coefficients

ÂF , B̂F , R̂F tend to those of the polynomial case.

3 Two Stage Functionally Fitted Peer Methods

With s = 2 the preconsistency condition Pe = e1 implies that the lower triangular matrix P
is the constant matrix

P =
(

1 0

−1 1

)
. (23)

On the other hand the matrices Â, B̂, R̂ will have the form

Â =
(
1 â12

0 0

)
, B̂ =

(
b̂11 b̂12

b̂21 b̂22

)
, R̂ =

(
0 0
r̂21 0

)
, (24)

and

Z(t) = P ϕ(te + hc) =
(

ϕ(t + c1h)

−ϕ(t + c1h) + ϕ(t + c2h)

)
. (25)

Since the linear operator L̂ of (14) is

L̂[ϕ; h](t) = Z(t + h) − Â Z(t) − h B̂ Ż(t) − h R̂ Ż(t + h) (26)

we have two order conditions and in each condition there are three free parameters. The first
equation with the parameters â12, b̂11, b̂12 can be written in the form

[ϕ(t + c2h) − ϕ(t + c1h)]̂a12 + hϕ̇(t + c1h)̂b11

+ h[ϕ̇(t + c2h) − ϕ̇(t + c1h)]̂b12 = ϕ(t + h + c1h) − ϕ(t + c1h). (27)
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The second one with the parameters b̂21, b̂22, r̂21 is

hϕ̇(t + c1h)̂b21 + h[ϕ̇(t + c2h) − ϕ̇(t + c1h)]̂b22
+ hϕ̇(t + h + c1h)̂r21 = ϕ(t + h + c2h) − ϕ(t + h + c1h). (28)

These parameters will be determined by imposing that (27), (28) hold for the functions
ϕ j (t), j = 1, 2, 3 of a fitting space

F3 = 〈1, ϕ1(t), ϕ2(t), ϕ3(t)〉,
therefore we have two sets of three linear equations that are independent between them.

IfF3 is the space of solutions of a homogeneous linear differential equation with constant
coefficients of order four, as shown in Theorem 1 the unknowns in (27), (28) are independent
of t , hence by taking t = −hc1 and putting d = c2 − c1, the above equations can be written
as

[ϕ(hd) − ϕ(0)]̂a12 + hϕ̇(0)̂b11 + h[ϕ̇(hd) − ϕ̇(0)]̂b12 = ϕ(h) − ϕ(0). (29)

and
hϕ̇(0)̂b21 + h[ϕ̇(hd) − ϕ̇(0)] + b̂22hϕ̇(h)̂r21 = ϕ((d + 1)h) − ϕ(h). (30)

Next we assume that F3 is the space of solutions of a linear homogeneous equation with
constant coefficients that includes the pair of trigonometric functions sin(ω t), cos(ω t) with
a constant positive frequency ω, then we can take an additional function that will have the
form ϕ(t) = exp(αt) with real α �= 0 or else ϕ(t) = t . With this last choice

F3(ω) = 〈1, t, sin(ω t), cos(ω t)〉 ≡ 〈1, t,Re(eiω t ), Im(eiω t )〉 (31)

Now substituting into (27) the basis functions, the coefficients â12, b̂11, b̂12 are defined by

â12 = −1 + cos ν + cos(dν) − cos ν cos(dν) + ν sin(dν) − sin ν sin(dν)


1
,

b̂11 = (−2 + d − d cos ν)(1 − cos(dν) + d sin ν sin(dν)


1
,

b̂12 = −ν − dν + dν cos ν − ν cos(dν) − sin ν + sin(dν) sin(ν − dν)

ν
1
, (32)

with d = c2 − c1, ν = hω and 
1 = −2 + 2 cos(dν) + dν sin(dν).
Similarly from the Eq. (28) we get

r̂21 = sin(dν/2) (dν cos(dν/2) − 2 cos ν sin(dν/2))


2
,

b̂21 = − sin(dν/2) (dν cos(ν − dν/2) − 2 cos ν sin(dν/2))


2
,

b̂22 = − sin(ν/2) (dν cos(ν/2) + sin(ν/2) − sin(dν + ν/2))

Δ2
, (33)

with 
2 = 2ν sin(dν/2) sin(ν/2) sin((ν − dν)/2).
Note that when ν → 0 the above expressions tend to those of the polynomial case

â12 = −2 + 3d

d3
, r̂21 = d (d2 − 6)

6 (d − 1)
,

b̂11 = 2 − 3 d + d2

d2
, b̂12 = 1 − d

d2
,
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Fig. 1 Left: plot of the stability region of the non-fitted peer s = 2 method for d = d1 (left) and d = d2
(right)

b̂21 = (6 − d) d2

6 (d − 1)
, b̂22 = d (3 + 2 d)

6 (d − 1)
. (34)

In [2] a detailed study was made of the stability region of the classical peer method,
in particular of the stability intervals along the real axis and along the imaginary axis, as a
function of d . Choosing d = d1 where d1 = (−15+√

609)/8 ≈ 1.2097, the stability interval
along the real axis is maximised, while the size of the stability interval along the imaginary
axis is quite acceptable and at the same time the error constants of both stages (see [2], p.
397 and 402) are kept sufficiently small. The corresponding region of stability is displayed
in the left part of Fig. 1. As we will mainly focus in this paper on oscillatory problems, i.e.
problems for which all eigenvalues of the Jacobian lie along the imaginary axis, we have
searched for alternative choices of d for which the size of the stability interval along the
imaginary axis is approximately equally large. Therefore, in the right part of Fig. 1, we have
made the choice d = d2, where d2 = 0.85. This choice leads to a peer method with a smaller
interval of stability along the real axis, but along the imaginary axis the stability interval is
almost the same as for the choice d = d1. In the case d = d2 however, the error constants
are half as large as in the case d = d1 and moreover, since d2 ∈ [0, 1], this method allows
to integrate a problem without function evaluations beyond the endpoint of the integration
interval.

From Fig. 1 we see that the border of the stability region is very close to the imaginary axis
for sufficiently small values of z = λ h, where y′ = λ y is the test equation. This behaviour,
which makes the methods very suited for solving problems with oscillatory solutions, is also
present (even more in the d = d2 case than in the d = d1 case) for the EF versions as long
as ω h is sufficiently small (recall that for ω → 0 an EF method reduces to the underlying
polynomial method). As an example, in Fig. 2 the stability regions are shown for methods
fitted to ω h = 1. We notice in both cases that the border of the stability region crosses the
imaginary axis at z = i . Recall that when an s-stage peer method fitted to F3(ω) is applied
with step size h to the complex test equation y′ = i ω y, the numerical solution is supposed
to coincide with the exact one. Since the numerical solution can be expressed in terms of
powers of the eigenvalues of the stability matrix M(i ω h) of the method, this means that
one of these eigenvalues, λ1 say, must take the form λ1 = exp(i ω h), such that |λ1| = 1,
i.e. z = i ω h cannot lie in the interior part of the region of stability, it can at the best lie
on the border of the stability region, which is the case if all s − 1 other eigenvalues of the
stability matrix M(z) have modulus one at most. Choosing d = d1 this is the case as long as
ω h < 2.72 . . ., for the choice d = d2 as long as ω h ≈ 1.41 . . .. This imposes however no
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Fig. 2 Left: plot of the stability region of the peer s = 2 method fitted to F3 with ω h = 1 for d = d1 (left)
and d = d2 (right)

extra restriction in practice, since we already assume ω h to be small enough (smaller than
π/2 say) in order to avoid singularities in the coefficients of the method.

Taking into account all above arguments, we can conclude that for oscillatory problems
the method with d = d2 should be preferred above d = d1. Numerical experiments (see
Sect. 5) confirm this.

4 Three Stage Functionally Fitted Peer Methods

In [2] the class of 3-stage 2-step peer methods fitted to

F = 〈1, t, t2, t3, t4, t5〉 = Π5 (35)

was studied. The coefficients of the peer method can be expressed in terms of the free
parameters p32, d2 = c2 −c1 and d3 = c3 −c1, which were chosen to maximize the stability
interval along the real axis and along the imaginary axis and to minimize the coefficients of
the leading term of the local error. After extensive numerical search it was found that for
p32 = −0.522, d2 = 0.904 and d3 = 1.141 the corresponding fifth order method has a real
stability interval [−2.02, 0] and a stability interval along the imaginary axis of [−0.24, 0.24].
Figure 3, which plots this stability region, shows however that along the imaginary axis the
spectral radius of the stability matrix remains very close to unity for a much larger interval:
in practice, for y′ = i λ y, stability is obtained for λ h ∈ [−0.6, 0.6].

Now, we consider EF variants of this particular 3-stage peer method, which are fitted to

F5(ω1, ω2) = 〈1, t, sin(ω1 t), cos(ω1 t), sin(ω2 t), cos(ω2 t)〉 (36)

and will especially focus on three particular cases:

– F5(ω, 0) = 〈1, t, t2, t3, sin(ω t), cos(ω t)〉
– F5(ω, ω) = 〈1, t, sin(ω t), cos(ω t), t sin(ω t), t cos(ω t)〉
– F5(ω, 2ω) = 〈1, t, sin(ω t), cos(ω t), sin(2ω t), cos(2ω t)〉
In Fig. 4 the value η of the (apparent) stability interval [−iη, i η] along the imaginary

axis for these three choices are shown as a function of ν = ω h. In Fig. 5 we focus on the
particular choice ν = ω h = 1 and the stability regions of these three EF variants of the peer
s = 3 stage method are shown. Since in all three cases there is a non-empty stability interval
along the imaginary axis and since the boundary of the stability region is also quite close to
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Fig. 3 Stability region for the three-stage peer method with p32 = −0.522, d2 = 0.904 and d3 = 1.141
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Fig. 4 Plots of the value η of the (apparent) stability interval [−i η, i η] along the imaginary axis of the peer
method fitted to F5(ω, ω2) as a function of ν = ω h for the peer s = 3 method with ω2 = 0 (lower curve)
and ω2 = ω (middle curve) and ω2 = 2ω (upper curve)
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the imaginary axis (indicating there is almost no dissipation), each of the three methods are
suited to solve problems with periodic solutions.

5 Numerical Experiments

In this sectionwe present the results of some numerical experiments comparing the behaviour
of several fitted and non fitted methods for some test problems. Due to the linear, explicit,
multistep nature of the stages of the peer schemes, we use predictor-corrector pairs of linear
multistep methods for comparison. First, we compare the third order peer method given in [2]
with d = 0.85 against the classical two step third-order Adams–Bashforth–Moulton pair in
PECEmode (denoted by AM3). Also, we include the corresponding fitted version of the peer
method and of the Adams–Bashforth–Moulton method to F3(ω) = 〈1, t, cos(ωt), sin(ωt)〉
(denoted by PEER2(ω) and AM3(ω) respectively).

For fifth-order schemes, we choose the classical four-step Adams–Bashforth–Moulton
pair of order 5 (denoted by AM5), the fitted versions of the previous scheme to F5(ω, 0)
(denoted by AM5(ω)), to F5(ω, 2ω) (denoted by AM5(ω, 2ω)) and to F5(ω, ω) (denoted
by AM5(ω, ω)). The fitted multistep methods have been obtained following the ideas in
[4]. For peer schemes, we present the standard PEER3 method given by the authors in [2],
and similar fitted methods as the multistep ones denoted by PEER3(ω), PEER3(ω, 2ω) and
PEER3(ω, ω) respectively.
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Fig. 6 Efficiency plot of third order schemes for the Duffing problem
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Fig. 7 Efficiency plot of fifth order schemes for the Duffing problem

It is worth to note that the PECE implementation of the AM3 pair as well as of the
AM5 requires 2 function evaluations per step. For the PEER2 methods, we need 2 function
evaluations per step as well, but for the PEER3 methods, 3 function evaluations are needed.
In order to be able to compare the computational cost (total number of function evaluations,
denoted as nfcn), we have applied AM3 and PEER2 with the same step sizes, but the PEER3
methods were applied with step sizes that are 50 % larger than those of the AM5 methods.
The step sizes that are reported, are the ones used for the PEER3 methods.

The criterion used in the numerical comparisons is the usual test based on computing the
maximum global error in the solution over the whole integration interval. All computations
were carried out with 30 digits on a PC computer running python using thempmath library.
The starting approximations Y0, j of the peer methods as well as the ones needed for the
Adams methods are the exact ones.

Problem 1 Our first test problem is the Duffing’s equation

q ′′ + (β2 + k2)q = 2k2q3,

where β and k are positive constants. In our tests we have taken β = 5, k = 0.035 and the
initial conditions q(0) = 0, q ′(0) = β which correspond to the periodic solution q(t) =
sn(βt, k/β). In Figs. 6 and 7 we display the global errors obtained for third and fifth order
schemes respectively for step sizes h = 2−i/10, i = 1, . . . , 5 in the integration interval
[0, 20] and ω = 5 as an estimation of the frequency.
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Fig. 8 Efficiency plot of fifth-order schemes for the two body problem with eccentricity 0.05

As can be seen in Fig. 6, the efficiency curves for the two stage peer schemes with
d = 1.20 . . . are practically the same as those for the AM3 ones. Moreover, the new peer
scheme with d = 0.85 is slighty superior to the others, as was expected due to the smaller
coefficients of the leading term of the local error.

From Fig. 7 we can observe that in all cases, the fitting methods improve greatly the
performance with respect to the standard non fitted methods. Also, it is worth to note that
peer schemes are slighty more efficient that AM ones.

We can also see that the three fitted PEER5 methods produce results that are quite close
to each other, and there is not really an advantage in choosing ω2 = 2ω = 10. This can
however be explained by applying an FFT to the numerical solution over one (approximate)
period of length 2π/5. The analysis of the energy of the transformed signal reveals that the
contributions of the frequencies 2ω in q and 3ω q ′ are about equally large.

For the next problems we will consider only fifth order methods because we are interested
in testing the performance when the dimension of the fitting space is large.

Problem 2 Kepler’s problem defined by the Hamiltonian function

H = 1

2
(p21 + p22) − (

q21 + q22
)−1/2

,

with initial conditions q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =
((1 + e)/(1 − e))1/2, where e ∈ [0, 1) is the eccentricity of the elliptic orbit.
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Fig. 9 Efficiency plot of fifth-order schemes for the perturbed Kepler’s problem with δ = 0.01

In the numerical experiments presented here we have chosen the values e = 0.05, ω = 1,
and the integration is carried out on the interval [0, 20π] with the steps h = π/(10 ×
2i−1), i = 1, . . . , 6. The behaviour of the global error for the selected schemes are presented
in Fig. 8.

Here again, peer schemes are more efficient than AM ones. We also observe that for
both peer and AM methods, the (ω, 2ω) combination gives the best results. Again this can
be explained with an FFT applied to the numerical solution. This time, the energy spectrum
reveals that the three most important contributions (in that order) correspond to the frequency
ω, to the constant function and to the frequency 2ω.

Problem 3 A perturbed Kepler’s problem given by the Hamiltonian function

H = 1

2

(
p21 + p22

) − 1
(
q21 + q22

)1/2 − 2δ + δ2

3
(
q21 + q22

)3/2 ,

where δ is a small positive parameter and with the initial conditions

q1(0) = 1, q2(0) = 0, p1(0) = 0, p2(0) = 1 + δ,

whose exact solution is q1(t) = cos(t + δt), q2(t) = sin(t + δt), pi (t) = q ′
i (t), i = 1, 2.

The numerical results presented in Fig. 9 have been computed with the integration steps
h = π/(10 × 2i ), i = 1, . . . , 5. We take the parameter values δ = 10−2, ω = 1 and the
problem is integrated up to tend = 10π .
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Fig. 10 Efficiency plot of fifth-order schemes for the Euler equation

In this case, we again notice that the PEER3 methods perform better than the AM5
methods. Taking into account that the exact frequency is 1+δ with δ small, we can understand
why the (ω, ω) = (1, 1) combination (whichmay be considered as the limit case of (ω, ω+δ)

for δ → 0) gives the best results.

Problem 4 Our last example is the Euler equation given by

q ′ = f (q) = (
(α − β)q2q3, (1 − α)q3q1, (β − 1)q1q2

)T
,

with the initial values q(0) = (0, 1, 1)T . We choose the parameter values α = 1+ 1√
1.51

and

β = 1− 0.51√
1.51

. ω = 2π/T , with T = 7.45056320933095. The exact solution of this IVP is
given by

q(t) =
(√

1.51 sn(t, 0.51), cn(t, 0.51), dn(t, 0.51)

)T

,

where sn, cn, dn are the elliptic Jacobi functions. The integration is carried out on the interval
[0, 40] with step sizes h = 1/(5 × 2 j ), j = 0, . . . , 4 and w = 2π i/T and we plot the
efficiency results in Fig. 10.

Once more, the PEER3 methods perform better than the AM5methods. A Fourier analyis
reveals that in the first and second component of the solution the frequenciesω, 3ω, 5ω, . . .

are present, while the third component can be expressed in terms of 2ω, 4ω, …. Taking into
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Fig. 11 At the top the error in the Hamiltonian for the Perturbed Kepler’s problem and at the bottom the error
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Fig. 12 Efficiency plot of peer methods and DOPRI54 for the Perturbed Kepler’s problem with δ = 0.1

account the energy spectrum of the solution, it is clear why the (ω, 2ω) variant produces the
best results.

For the perturbedKepler’s problem and for the Euler equation,we have examined howwell
invariants are preserved bypeermethods, comparedwith the correspondingpolynomial fitting
peer method. In Fig. 11 the errors produced by fifth order PEER3 methods are displayed.
The results agree with those displayed in Figs. 9 and 10.

Finally, we also make a comparison of the fifth order peer methods with a standard solver
like DOPRI54. We have applied the well known code with variable step size to the perturbed
Kepler’s problemwith δ = 0.1. The efficiency plot shown in Fig. 12 (which for the DOPRI54
method is practically the same in constant step size mode) illustrates the power of the peer
methods for oscillatory problems.

From the results of the above numerical experimentswe can conclude that for the problems
under consideration it is essential to have an accurate estimation of the dominant frequency
(or frequencies). This estimate can be given, or given a numerical solution of low accuracy
and an estimate of the period, an estimation for this frequency can be computed by means
of a FFT. The numerical results obtained in the four examples with various choices for the
frequency (or frequencies) can be well understood by such an analysis. Furthermore, for all
problems the peer schemes appear to be superior in efficiency (using the number of function
evaluations as a comparison tool) to the corresponding Adams–Bashforth–Moulton pairs of
the same order, which were applied in PECE mode.
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